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Abstract

Machine learning force fields (MLFF) have been proposed to accelerate molecular1

dynamics (MD) simulation, which finds widespread applications in chemistry and2

biomedical research. Even for the most data-efficient MLFFs, reaching chemical3

accuracy can require hundreds of frames of force and energy labels generated by4

expensive quantum mechanical algorithms, which may scale as O(n3) to O(n7),5

with n proportional to the number of basis functions. To address this issue, we6

propose a multi-stage computational framework – ASTEROID, which lowers the7

data cost of MLFFs by leveraging a combination of cheap inaccurate data and8

expensive accurate data. The motivation behind ASTEROID is that inaccurate9

data, though incurring large bias, can help capture the sophisticated structures10

of the underlying force field. Therefore, we first train a MLFF model on a large11

amount of inaccurate training data, employing a bias-aware loss function to prevent12

the model from overfitting tahe potential bias of this data. We then fine-tune the13

obtained model using a small amount of accurate training data, which preserves the14

knowledge learned from the inaccurate training data while significantly improving15

the model’s accuracy. Moreover, we propose a variant of ASTEROID based on16

score matching for the setting where the inaccurate training data are unlabeled.17

Extensive experiments on MD datasets validate the efficacy of ASTEROID.18

1 Introduction19

Molecular dynamics (MD) simulation is a key technology driving scientific discovery in fields such20

as chemistry, biophysics, and materials science [Alder and Wainwright, 1960, McCammon et al.,21

1977]. By simulating the dynamics of molecules, important macro statistics such as the folding22

probability of a protein [Tuckerman, 2010] or the density of new materials [Varshney et al., 2008]23

can be estimated. These macro statistics are an essential part of many important applications such as24

structure-driven drug design [Hospital et al., 2015] and battery development [Leung and Budzien,25

2010]. Most MD simulation techniques share a common iterative structure: MD simulations calculate26

the forces on each atom in the molecule, and use these forces to move the molecule forward to the27

next state.28

The fundamental challenge of MD simulation is how to efficiently calculate the forces at each29

iteration. An exact calculation requires solving the Schrödinger equation, which is not feasible30

for many-body systems [Berezin and Shubin, 2012]. Instead approximation methods such as the31

Lennard-Jones potential [Johnson et al., 1993], Density Functional Theory (DFT, Kohn [2019]),32

or Coupled Cluster Single-Double-Triple (CCSD(T), Scuseria et al. [1988]) are used. CCSD(T)33

is seen as the gold-standard for force calculation, but is computationally expensive. In particular,34
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CCSD(T) has complexity O(n7) with respect to the number of basis functions used along with a35

huge storage requirement [Chen et al., 2020]. To accelerate MD simulations while maintaining high36

accuracy, machine learning based force fields (MLFFs) have been proposed. MLFFs take a molecular37

configuration as input and then predict the forces on each atom in the molecule, consequently speeding38

up the force calculation step.39

(a) Prediction Error vs. Training Set Size (b) Prediction Error on CCSD(T)

Figure 1: (a) Log-log plot of the number of training points versus the prediction error for deep force
fields (b) Prediction error on CCSD labeled molecules for force fields trained on large amounts of
DFT reference forces (100,000 configurations) and moderate amounts of CCSD reference forces
(1000 configurations). In both cases the model architecture used is GemNet [Gasteiger et al., 2021].

Most recently, deep learning techniques for force fields have been developed, resulting in highly40

accurate force fields parameterized by large neural networks [Gasteiger et al., 2021, Batzner et al.,41

2022]. Despite their empirical success, these methods suffer from a critical drawback: in order to42

train state-of-the-art machine learning force field models, a large amount of costly training data must43

be generated. For example, to train a model at the CCSD(T) level of accuracy, at least a thousand44

CCSD(T) calculations must be done to construct the training set. This is computationally expensive45

due to the method’s O(n7) cost.46

A natural solution to this problem is to train on fewer data points. However, if the number of training47

points is decreased, the accuracy of the learned force fields quickly deteriorates. In our experiments,48

we empirically find that the prediction error and the number of training points roughly follow a49

power law relationship, with prediction error ∝ (Number of Training Points)−1 [Müller et al., 1996,50

Cortes et al., 1993]. This can be seen in Figure 1a, where prediction error and train set size are51

observed to have a linear relationship with a slope of −1 when plotted on a log scale.52

Another option is to train the force field model on less accurate but computationally cheap reference53

forces calculated using DFT [Kohn, 2019] or empirical force field methods [Johnson et al., 1993].54

However, these algorithms introduce undesirable bias into the force labels, meaning that the trained55

models will have poor performance. This phenomenon can be seen in Figure 1b, where models56

trained on large quantities of DFT reference forces are shown to perform poorly relative to force57

fields trained on moderate quantities of CCSD(T) reference forces. Therefore current methodologies58

are not sufficient for training force field models in low resource settings, as training on either small59

amounts of accurate data (i.e. from CCSD(T)) or large amounts of inaccurate data (i.e. from DFT or60

empirical force fields) will result in inaccurate force fields.61

To address this issue, we propose to use both large amounts of inaccurate force field data and small62

amounts of accurate data to reduce the data generation cost needed to achieve highly accurate force63

fields. Our motivation is that computationally cheap data, though incurring large bias, can help64

capture the sophisticated structures of the underlying force field. Moreover, if treated properly, we65

can further reduce the bias of the obtained model by taking advantage of the accurate data.66

Specifically, we propose a multi-stage computational framework – datA cosST awarE tRaining of67

fOrce fIelDs (ASTEROID). In the first stage, small amounts of accurate data are used to identify the68
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bias of force labels in a large but inaccurate dataset. In the second stage, the model is trained on the69

large inaccurate dataset with a bias-aware loss function. This loss function generates smaller weights70

for data points with larger bias, suppressing the effect of label noise on training. The inaccurately71

trained model serves as a warm start for the third stage, where it is fine-tuned on the small and72

accurate dataset. Together, these stages allow the model to learn from many molecular configurations73

while incorporating highly accurate force data, significantly outperforming conventional methods74

trained with similar data generation budgets.75

Beyond using cheap labeled data to boost model performance, we also develop a method for the case76

where a large amount of unlabeled molecular configurations are cheaply available [Smith et al., 2017,77

Köhler et al., 2022]. Without labels, we cannot adopt the supervised learning approach. Instead,78

we draw a connection to score matching, which learns the gradient of the log density function with79

respect to each data point (called the score) [Hyvärinen, 2005]. In the context of molecular dynamics,80

we notice that if the log density function is proportional to the energy of each molecule, then the81

score function with respect to a molecule’s position is equal to the force on the molecule. Based on82

this insight, we show that the supervised force matching problem can be tackled in an unsupervised83

manner. This unsupervised approach can then be incorporated into the ASTEROID framework,84

improving performance when limited data is available.85

We demonstrate the effectiveness of our framework with extensive experiments on different force86

field data sets and downstream simulation tasks. We use two popular model architectures, GemNet87

[Gasteiger et al., 2021] and EGNN [Satorras et al., 2021], and verify the performance of our method88

in a variety of settings. These experiments show that ASTEROID can lead to significant gains when89

either DFT reference forces or empirical force field forces are viewed as inaccurate data and CCSD(T)90

configurations are used as accurate data. In addition, we show that we can learn accurate forces via91

the connection to score matching, and that using this objective in the second stage of training can92

improve performance on both DFT and CCSD(T) datasets.93

2 Background94

⋄ Machine Learning Force Fields. Recent years have seen a surge of interest in MLFFs. Much95

of this work has focused on developing machine learning architectures that have physically correct96

equivariances, resulting in large graph neural networks that can generate highly accurate force and97

energy predictions [Gasteiger et al., 2021, Satorras et al., 2021, Batzner et al., 2022]. Two popular98

architectures are EGNN and GemNet. Both models are translation invariant, rotationally equivariant,99

and permutation equivariant. EGNN is a smaller model and is often used when limited resources100

are available. The GemNet architecture is significantly larger and more refined than the EGNN101

architecture, modeling various types of inter-atom interactions. GemNet is therefore more powerful102

and can achieve state-of-the-art performance, but requires more resources to train.103

It has been observed that modern MLFFs often cannot achieve sufficient test accuracy to be reliable104

for MD simulations [Stocker et al., 2022]. Critically, the accuracy of deep force fields such as GemNet105

and EGNN is highly dependent on the size and quality of the training dataset. With limited training106

data, MLFFs cannot achieve the required accuracy for usefulness, preventing their application in107

settings where data is expensive to generate (e.g. large molecules). The amount of resources needed108

to train is therefore a key bottleneck preventing the widespread use of MLFFs.109

⋄ Data Generation Cost. The training data for MLFFs can be generated by a variety of force110

calculation methods. These methods exhibit an accuracy cost tradeoff: accurate reference forces111

from methods such as CCSD(T) require high computational costs to generate reference forces, while112

inaccurate reference forces from methods such as DFT and empirical force fields can be generated113

fairly quickly. Concretely, CCSD(T) is highly accurate but has O(n7) complexity, DFT is less114

accurate with complexity O(n3), and empirical force fields are inaccurate but could have complexity115

as low as O(n) [Lin et al., 2019, Ratcliff et al., 2017]. CCSD(T) is typically viewed as the gold116

standard for calculating reference forces, but its computational costs often make it impractical for MD117

simulation (it has been estimated that “a nanosecond-long MD trajectory for a single ethanol molecule118

executed with the CCSD(T) method would take roughly a million CPU years on modern hardware")119
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[Chmiela et al., 2018]. Due to this large expense, MLFF training data is typically generated first with120

MD simulations driven by DFT or empirical force fields. These simulations generate a large number121

of molecular configurations, and then CCSD(T) reference forces are computed for a small portion of122

these configurations. Therefore, a large amount of inaccurately labeled molecular configurations are123

often available along with the accurate CCSD(T) labeled data.124

3 ASTEROID125

Figure 2: Asteroid workflow diagram.

To reduce the data generation cost needed to train MLFFs, we propose a multi-stage training126

framework, ASTEROID, to learn from a combination of both cheaply available inaccurate data and127

more expensive accurate data.128

Preliminaries. For a molecule with k atoms, we denote a configuration (the positions of its atoms in129

3D) of this molecule as x ∈ R3k, its respective energy as E(x) ∈ R, and its force as F (x) ∈ R3k.130

We denote the accurately labeled data as DA = {(xa
1 , e

a
1 , f

a
1 ), ..., (x

a
N , eaN , fa

N )} and the inaccurately131

labeled data as DI = {(xn
1 , e

n
1 , f

n
1 ), ..., (x

n
M , enM , fn

M )}, where (xa
i , e

a
i , f

a
i ) represents the position,132

potential energy, and force of the ith accurately labeled molecule, (similarly (xn
j , e

n
j , f

n
j ) for the jth133

inaccurately labeled data). Conventional methods train a force field model E(·; θ) with parameters θ134

on the accurate data by minimizing the loss135

min
θ

L(DA, θ) =
(1− ρ)

3N

N∑
i=1

ℓf (f
a
i ,∇xE(xa

i ; θ)) +
ρ

N

N∑
i=1

ℓe(e
a
i , E(xa

i ; θ)), (1)

where ℓf is the loss function for the force prediction, and ℓe is the loss function for the energy136

prediction. Here the force is denoted by ∇xE(x; θ), i.e., the gradient of the energy E(x; θ) w.r.t. to137

the input x. In practice, most of the emphasis is placed on the force prediction, e.g. ρ = 0.001.138

3.1 Bias Identification139

The goal of ASTEROID is to leverage cheap MD simulation data to boost MLFF accuracy. However,140

the approximation algorithms used to generate cheap data DI introduce a large amount of bias into141

some force labels fn, which may significantly hurt accuracy. Motivated by this phenomenon, we aim142

to identify the most biased force labels so that we can avoid overfitting the bias during training. To do143

so, we use small amounts of accurately labeled data DA to identify the levels of bias in the inaccurate144

dataset DI . Specifically, we train a force field model by minimizing L(DA, θ) (Eq. 1), the loss over145

the accurate data, to get parameters θ0. Although the resulting model E(·; θ0) will not necessarily146

have good prediction performance because of the limited amount of training data, it can still help147

estimate the bias of the inaccurate data. For every configuration xn
j in the inaccurate dataset DI , we148

suspect it to have a large bias if there is a large discrepancy between its force label fn
j and the force149

label predicted by the accurately trained model ∇xE(xn
j ; θ0). We can therefore use this discrepancy150

as a surrogate for bias, i.e. B(xn
j ) = ∥∇xE(xn

j ; θ0)− fn
j ∥1.151

3.2 Bias-Aware Training with Inaccurate Data152

In the second stage of our framework, we train a force field model E(·; θinit) from scratch on large153

amounts of inaccurately labeled data DI . Although this data can effectively capture the intrinsic154
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problem structure, the high levels of bias on some data points may propagate to the final model and155

harm generalization performance. To avoid over-fitting to the biased force labels, we use a bias-aware156

loss function that weighs the inaccurate data according to their bias. In particular, we use the weights157

wj = exp(−B(xn
j )/γ) for configuration xn

j , where γ is a hyperparameter to be tuned. In this way,158

low-bias points are given higher importance and high-bias points are treated more carefully. We then159

minimize the bias-aware loss function160

min
θ

Lw(DI , θ) = (1− ρ)

M∑
i=1

wi · ℓf (fn
i ,∇xE(xn

i ; θ)) + ρ

M∑
i=1

wi · ℓe(eni , E(xn
i ; θ)) (2)

to get parameters θinit, resulting in the initial estimate of the MLFF E(·; θinit).161

3.3 Fine-Tuning over Accurate Data162

The model E(·; θinit) contains information useful to the force prediction problem, but may still163

contain bias because it is trained on inaccurately labeled data DI . Therefore, we further refine it164

using accurately labeled data DA. Specifically, we use E(·; θinit) as initialization for our final stage,165

in which we fine-tune the model over the accurate data by minimizing L(DA, θfinal) (Eq. 1). The full166

ASTEROID framework is illustrated in Figure 2.167

4 ASTEROID for Unlabeled Data168

In several settings, molecular configurations are generated without force labels, either because they
are not generated via MD simulation (e.g. normal mode sampling, Smith et al. [2017]) or because
the forces are not stored during the simulation [Köhler et al., 2022]. Although these unlabeled
configurations may be cheaply available, they are not generated for the purpose of learning force
fields and have not been used in existing literature. Here, we show that the unlabeled configurations
can be used to obtain an initial estimate of the force field, which can then be further fine-tuned on
accurate data. More specifically, we consider a molecular system where the number of particles,
volume, and temperature are constant (NVT ensemble). Let x refer to a molecule’s configuration and
E(x) refer to the corresponding potential energy. It is known that x follows a Boltzmann distribution,
i.e.

p(x) =
1

Z
exp

(
− 1

kβT
E(x)

)
,

where Z is a normalizing constant, T is the temperature, and kβ is the Boltzmann constant. In practice,169

configurations generated using normal mode sampling [Unke et al., 2021] or via a sufficiently long170

NVT MD simulation follow a Boltzmann distribution.171

Recall that we model the energy E(x) as E(x; θ), and the force can be calculated as F (x; θ) =172

∇xE(x; θ). It follows from Hyvärinen [2005] that we can learn the score function of the Boltzmann173

distribution using score matching, where the score function is defined as the gradient of the log density174

function ∇xlog p(x). In our case, we observe that the force on a configuration x is proportional175

to the score function, i.e., F (x) ∝ ∇xlog p(x). Therefore, we can use score matching to learn the176

forces by minimizing the unsupervised loss177

L(θ) = Ep(x)

[
1

β
Tr[∇xF (x; θ)] +

1

2
||F (x; θ)||2

]
, (3)

where β = 1
kβT

. A derivation can be found in Appendix A.5. Although this objective allows us178

to solve the force matching problem in an unsupervised manner, the unsupervised loss is difficult179

to optimize in practice. To reduce the cost of solving Eq. 3, we adopt sliced score matching [Song180

et al., 2020]. Sliced score matching takes advantage of random projections to significantly reduce the181

cost of solving Eq. 3, allowing us to apply score matching to large neural models such as GemNet.182

In our experiments, we find that score matching does not match the accuracy of CCSD(T) force labels.183

Instead, we can think of score-matching as a form of inaccurate training. We therefore use score184

matching as an alternative to stages one and two of the ASTEROID framework. That is, we minimize185

Eq. 3 to get θinit, after which the model is fine-tuned on the accurate data.186
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5 Experiments187

For our main experiments, we evaluate ASTEROID on MLFF datasets and downstream MD simula-188

tion tasks. For ASTEROID, we consider three settings: using DFT data to enhance CCSD(T) training,189

using empirical force field data to enhance CCSD(T) training, and using unlabeled configurations to190

enhance CCSD(T) training. In each setting, we evaluate the performance of ASTEROID and standard191

training over a variety of data generation budgets.192

5.1 Datasets and Models193

For the CCSD(T) data, we use MD17@CCSD, which contains 1,000 configurations labeled at the194

CCSD(T) and CCSD level of accuracy for five molecules [Chmiela et al., 2017]. For DFT data, we195

use the MD17 dataset, which contains molecular configurations labeled at the DFT level of accuracy196

[Chmiela et al., 2017]. For the empirical force field data, we generate 100,000 configurations for each197

molecule using the OpenMM empirical force field software [Eastman et al., 2017]. For the unlabeled198

datasets, we use MD17 with the force labels removed.199

The MD17 datasets do not release the computational cost of data generation, but when we replicate200

their experiments, we find that CCSD(T) labels cost roughly 40 times more than DFT labels. However,201

the difference in cost between CCSD(T) and DFT labels may change drastically depending on the202

implementation of each method. Therefore we evaluate the performance of ASTEROID when203

CCSD(T) force labels are 20, 40, and 80 times more expensive than DFT force labels. Note that the204

cost of empirical force labels is essentially negligible (more than 10,000 times cheaper) compared to205

CCSD(T) labels [Folmsbee and Hutchison, 2021].206

In each setting, we compare standard training with 250, 450, 650, or 850 CCSD(T) training samples207

with ASTEROID. For ASTEROID, we use either 1000, 2000, or 4000 DFT datapoints (corresponding208

to cost ratios of 20:1, 40:1, and 80:1 for DFT and CCSD(T) labels), and 200, 400, 600, or 800209

CCSD(T) data points. The computational budget of standard training and ASTEROID are therefore210

equivalent. A validation set of size 50 and a test set of size 500 are used in all experiments.211

We implement our method on GemNet and EGNN. For GemNet we use the same model parameters212

as Gasteiger et al. [2021]. For EGNN, we use a 5-layer model and an embedding size of 128. When213

training with inaccurate data, we train with a batch size of 16 and stop training when the loss stabilizes.214

In the fine-tuning stage, we use a batch size of 10 and train for a maximum of 2000 epochs. To tune215

the bias aware loss parameter γ, we search in the set {0.1, 0.5, 1.0, 2.0} and select the model with216

the lowest validation loss. Comprehensive experimental details are deferred to Appendix A.6.217

5.2 Enhancing Force Fields with DFT218

We display the results for using DFT data to enhance CCSD(T) training in Figure 3 for GemNet219

and Figure 4 for EGNN. From these figures, we can see that ASTEROID can outperform standard220

training for all amounts of data and cost ratios. Using larger amounts of inaccurate data can221

significantly reduce prediction error, but the 20:1 cost ratio already has large performance gains222

over standard training. When applied to GemNet in low resource settings, ASTEROID reduces223

the average prediction error by 39.4% and improves sample efficiency by a factor of 2. For EGNN,224

ASTEROID improves prediction error by 56% and increases sample efficiency by more than 3 times.225

The large performance increase for EGNN may be due to the fact that the EGNN architecture has226

less inductive bias than GemNet, and therefore may struggle to learn the structures of the underlying227

force field with only a small amount of data.228

5.3 Enhancing Force Fields with Empirical Force Calculation229

We present the results for empirical force field in Table 1. Additional results for GemNet can be230

found in Appendix A.7. Again we find that ASTEROID significantly outperforms the supervised231

baseline, improving prediction accuracy by 36% for GemNet and by 17% for EGNN. The good232

performance on empirical force fields indicates that ASTEROID is relatively robust to the label noise233

on the inaccurate data.234
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(a) Benzene (b) Aspirin (c) Ethanol (d) Malonaldehyde (e) Toluene

Figure 3: Main results for GemNet when DFT data is viewed as inaccurate. The ratio refers to the
number of DFT calculations that are equivalent to one CCSD(T) calculation. The results are measure
in kcal/mol/Å, averaged across dimensions and atoms.

(a) Benzene (b) Aspirin (c) Ethanol (d) Malonaldehyde (e) Toluene

Figure 4: Main results for EGNN when DFT data is viewed as inaccurate.

Table 1: Test MAE of ASTEROID with empirical force field data. The results are measure in
kcal/mol/Å, averaged across dimensions and atoms. The training set for the fine-tuning stage contains
200 molecules labeled at the CCSD(T) level. “Malo." refers to malonaldehyde and “Standard Tr."
refers to standard training.

Aspirin Benzene Malonaldehyde Toluene Ethanol

GemNet
Standard Training 1.554 0.083 0.801 0.591 0.348
ASTEROID 0.843 0.048 0.516 0.337 0.301

EGNN
Standard Training 1.897 0.297 1.466 0.777 0.840
ASTEROID 1.314 0.268 1.341 0.664 0.637

5.4 Enhancing Force Fields with unlabeled Molecules235

We first verify that our proposed score matching approach can learn the forces on unlabeled molecules236

by comparing the prediction accuracy of models trained by score matching with models trained on237

supervised data (DFT and empirical force fields). We measure prediction accuracy on CCSD(T)238

datasets and show the results in Figure 7. Surprisingly, we find that the prediction error of score239

matching is between that of DFT and empirical force fields. This indicates that relatively accurate240

force predictions can be obtained by only solving the unsupervised loss in Eq. 3.241

Next we apply ASTEROID to settings where unlabeled data is available by fine-tuning the model242

obtained from score matching. We present the results in Table 2, where we find that ASTEROID243

can improve prediction accuracy by 18% for GemNet and 4% for EGNN. If unsupervised data can244

be generated cheaply (i.e. through normal mode sampling), then our approach can be used to boost245

the performance of MLFFs with little additional cost.246

6 Discussion247

Related Work. There are several works which we compare ASTEROID with.248

⋄∆-ML [Ramakrishnan et al., 2015, Bogojeski et al., 2020], learns the difference between inaccurate249

(DFT) and accurate (CCSD(T)) force predictions, therefore speeding up MD simulation while250
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Table 2: Accuracy of ASTEROID with unlabeled molecular configurations. The results are measure
in kcal/mol/Å, averaged across dimensions and atoms. The training set for the fine-tuning stage
contains 200 CCSD(T) labeled molecules.

Aspirin Benzene Malonaldehyde Toluene Ethanol

GemNet
Standard Training 1.554 0.083 0.801 0.591 0.348
ASTEROID 0.928 0.093 0.629 0.475 0.314

EGNN
Standard Training 1.897 0.297 1.466 0.777 0.840
ASTEROID 1.756 0.305 1.382 0.740 0.823

maintaining high accuracy. However, this approach requires a DFT calculation to be done during251

inference, greatly increasing inference time compared to ASTEROID or standard MLFFs [Folmsbee252

and Hutchison, 2021].253

⋄ ANI-1ccx [Smith et al., 2019, Deringer et al., 2020] train an MLFF on a huge DFT dataset254

comprised of many molecules, and then finetune on many CCSD(T) labeled molecules with a goal of255

learning a general MLFF. Notably, the method from Smith et al. [2017] only trains on equilibrium256

states and may not work well for MD trajectory data. To compare ANI-1ccx with ASTEROID, we257

evaluate the provided model checkpoint in the zero-shot setting (as in [Smith et al., 2019]) and when258

finetuned on each MD17 molecule. Note that the data generation cost of ANI-1ccx is much more259

expensive than ASTEROID, using 2,500 times more CCSD(T) data and 500 times more DFT data.260

⋄ sGDML [Chmiela et al., 2019] is a kernel-based MLFF method that can perform well when limited261

training data is available by incorporating relevant physical constraints into the MLFF.262

As can be seen in Table 3, ASTEROID trained MLFFs can achieve lower test errors than all of the263

baselines except ∆-ML. However, since ∆-ML requires a DFT calculation during inference, MD264

simulation with ∆-ML will take 100 to 1000 times longer than with ASTEROID [Folmsbee and265

Hutchison, 2021, Gasteiger et al., 2021]. Therefore ASTEROID results in the most useful force266

fields out of all the baselines, while having a smaller or equivalent data generation cost.267

Table 3: Accuracy of ASTEROID compared with competitive baselines with a data budget of 250
CCSD(T) points. FT refers to fine-tuning ANI-1ccx on MD17@CCSD. The model is GemNet.

Aspirin Benzene Malonaldehyde Toluene Ethanol
ANI-1 1.897 0.297 1.466 0.777 0.840
ANI-1 (FT) 1.314 0.268 1.341 0.664 0.637

∆-ML 0.801 − 0.182 0.350 −
sGDML 1.727 0.097 0.923 0.478 0.902

ASTEROID 0.908 0.059 0.338 0.306 0.176

Ablation. We conduct a detailed ablation study in Appendix A.3, which shows ASTEROID is fairly268

robust to hyperparameter selection.269

MD Simulation We show the results of MD simulation results in Appendix A.2, where we observe270

ASTEROID can result in stable simulation.271

Asteroid with Multiple Molecules. We try ASTEROID on multiple molecules simultaneously in272

Appendix A.1. We find mixed results, indicating this could be an exciting direction to explore further.273
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A Appendix368

A.1 ASTEROID with Multiple Molecules369

Table 4: Accuracy of ASTEROID when the inaccurate data is comprised of multiple molecules.

Aspirin Benzene Malonaldehyde Toluene Ethanol
Standard Training 1.554 0.074 0.776 0.566 0.351
ASTEROID (Multi) 0.716 0.05 0.480 0.237 0.269
ASTEROID 0.908 0.059 0.338 0.306 0.176

To explore the generality of ASTEROID, we further investigate the setting where the inaccurate370

data for ASTEROID is comprised of multiple molecules. After training such a general purpose (but371

inaccurate) MLFF, we separately fine-tune the MLFF on each of the MD17 molecules labeled at the372

CCSD(T) level of accuracy. This setting is very intriguing, since it means that only one network373

must be pre-trained per molecule. This approach could potentially allow for a large reduction in the374

memory requirement and pre-training time of ASTEROID.375

The results for a total budget of 250 CCSD(T) data points can be seen in Table 4. From Table 4376

we can see that training ASTEROID over multiple molecules can significantly reduce the test error377

compared to standard training. On Aspirin, Benzene, and Malonaldehyde, ASTEROID trained over378

multiple molecules can perform better than ASTEROID for just a single molecule, likely due to the379

fact that these molecules all share common structures. However for Malonaldehyde and Ethanol,380

training over multiple molecules harms performance. Given the mixed performance and the simplicity381

of single molecule pre-training, it is expected that single molecule pre-training would be favored in382

most scenarios.383

A.2 MD simulation384

It has been observed that low test errors are not sufficient for obtaining stable MD simulation385

dynamics [Stocker et al., 2022]. To ensure that ASTEROID can be used for MD simulations, we386

evaluate the performance of MLFFs trained by ASTEROID in downstream MD simulation tasks.387

First, we demonstrate that ASTEROID-trained MLFFs can produce stable dynamics, while MLFFs388

trained on DFT data and empirical force fields diverge. Using the Atomic Simulation Environment389

(ASE) [Larsen et al., 2017], we simulate the behavior of a benzene molecule using forces calculated390

by a MLFF trained with ASTEROID, an MLFF trained on DFT data only, and the Lennard-Jones391

empirical force field. We simulate the molecule with Langevin dynamics, where the steps size is 0.5392

femtoseconds, the temperature is 500K, the friction coefficient is 0.002, and the maximum number of393

time steps is 10000. The results of these simulations can be seen in Figure 5a, where ASTEROID is394

able to produce stable dynamics. On the other hand, the error compounding of the DFT trained MLFF395

and the Lennard-Jones potential results in diverged simulations and unlikely molecular configurations.396

We also compare the MD simulations generated using ASTEROID with those generated using397

standard training, where both MLFFs are trained with a data budget equivalent to 250 CCSD(T)398

points. Inspired by Stocker et al. [2022], we run MD simulations with varying step sizes on the aspirin399

molecule to evaluate robustness. In Figure 5b we plot the proportion of simulations that converge400

with varying simulation step sizes. We define a simulation as converged if the maximum pairwise401

distance between atoms remains within a specified threshold. For each step size, we report the result402

over 20 Langevin dynamics simulations, each with a length of one picosecond. The ASTEROID403

framework is able to maintain steady performance across step sizes, and almost all the simulations404

converge. In contrast, the simulations powered by standard MLFFs fail with larger step sizes.405

Figures 5a and 5b show the advantages of ASTEROID go beyond reducing test error and allow for406

stable simulations to be run over 3 times as fast as standard MLFFs. Interestingly, Stocker et al.407

[2022] find that to train robust MLFFs, much more training data than the amount needed for low test408
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(a) Benzene molecule during MD simulation. (b) Proportion of converged simulations (Aspirin).

Figure 5: MD simulation analysis for ASTEROID.

error should be used. ASTEROID provides a cost-efficient way to increase the size of the dataset,409

therefore enhancing robustness at a low data cost.410

A.3 Analysis411

⋄ Ablation Study We study the effectiveness of each component of ASTEROID. Specifically, we412

investigate the importance of bias-aware training (BAT) and fine-tuning (FT) when compared with413

standard training. The results for Gemnet can be seen in Table 5. As shown in Table 5, each of414

ASTEROID’s components is effective and complementary to one another. We find that bias-aware415

training is most helpful with GemNet, where it reduces test error by 6.5% on average, possibly due416

to the fact that GemNet has more capacity to overfit harmful data points than EGNN.417

Table 5: Ablation study for ASTEROID on Gemnet. The inaccurate data is DFT labeled configurations
and the accurate dataset contains 200 CCSD(T) labeled configurations. “AST." refers to ASTEROID.

Aspirin Benzene Malonaldehyde Toluene Ethanol
Standard Training 1.554 0.074 0.776 0.566 0.351
AST. w/o FT 4.670 3.252 2.726 3.342 5.107
AST. w/o BAT 1.095 0.064 0.347 0.309 0.183
ASTEROID 0.908 0.059 0.338 0.306 0.176

⋄ Sensitivity We also investigate the sensitivity of ASTEROID to the hyperparameters γ. We use a418

data budget of 250 CCSD(T) points. From Figure 6a we can see that ASTEROID is robust to the419

choice of hyperparameters, outperforming standard training in every setting.420

⋄ Size of inaccurate data. To demonstrate that ASTEROID can exploit varying amounts of inaccurate421

data, we plot the performance of ASTEROID with different cost ratios. This can be seen in Figure 6b,422

where a budget of 250 CCSD(T) points is used. ASTEROID performs best when large amounts of423

inaccurate data are available but still increases the accuracy by 20% when the cost ratio is small.424

A.4 Accuracy of Score Matching425

A.5 Derivation of Score Matching for Forces426

For a given molecule with conformations x1, .., xn, let us denote energy as E(x). Then the the
Boltzmann/Equilibrium distribution for the molecule is given by

p(x) =
1

Z
exp(−βE(x)),
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(a) Sensitivity study for γ (ethanol). The red line
represents standard training.

(b) Performance with different cost ratios between
DFT and CCSD(T) (ethanol).

Figure 6: Ablation and sensitivity studies for ASTEROID.

Figure 7: Prediction errors of models tested on CCSD(T) data. Models are not fine-tuned on the
CCSD(T) data.

where Z is a normalizing constant, β = 1
kβT

, kβ is the Boltzmann constant, and T is the temperature
under which the simulation is run. Then we can see that the force on a conformation x is equivalent to
the score, i.e. F (x) = −∇xE(x) = 1

β∇xlog p(x). Therefore learning the force F (x) is equivalent
to learning the score 1

β∇xlog p(x). Suppose we parameterize the MLFF to directly predict the force
as Fθ(x). Then the force matching loss can be written as

L(θ) = 1

2
Ex∼p(x)∥Fθ(x)−F (x)∥22 =

1

2
Ex∼p(x)∥F (x)∥22−Ex∼p(x) [⟨Fθ(x), F (x)⟩]+1

2
Ex∼p(x)∥Fθ(x)∥22.
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The middle term can then be expanded as427

Ex∼p(x) [⟨Fθ(x), F (x)⟩] =
∫
x

p(x)⟨Fθ(x), F (x)⟩dx Integration over x.

=

∫
x

p(x)

d∑
i=1

(
1

β

dlog p(x)

dxi
Fθ(x)i)dx Expansion of inner product.

=
1

β

d∑
i=1

∫
x

dp(x)

dxi
Fθ(x)idx Simplify and move summation.

=
1

β

d∑
i=1

∫
xi−

∫
xi

Fθ(x)idp(x)dxi−
Integrate over xi.

=
1

β

d∑
i=1

∫
xi−

(
Fθ(x)idp(x)|+∞

−∞ −
∫
xi

p(x)dFθ(x)i

)
dxi−

Partial inegration.

= − 1

β

d∑
i=1

∫
xi−

∫
xi

p(x)
dFθ(x)i
dxi

dxidxi−
Normality assumption.

= − 1

β

d∑
i=1

Ex∼p(x)

[
dFθ(x)i
dxi

]
= − 1

β
Ex∼p(x) [Tr [∇xFθ(x)]] .

Therefore we have the loss

L(θ) = Ex∼p(x)

[
1

β
Tr [∇xFθ(x)] +

1

2
∥Fθ(x)∥22

]
.

The first term in the loss disappears as it is not dependent on θ.428

A.6 Experimental Details429

In this section, we go over the experimental details.430

GemNet Training Details. To train the bias identification method, we train a freshly initialized431

model with a batch size of 10 on the accurate dataset for 2000 epochs. To train the inaccurate model,432

we train a freshly initialized model with the bias aware loss function and batch size 16 over the433

inaccurate dataset. Finally, to finetune the inaccurately trained model, we train a model with a batch434

size of 10 on the accurate dataset for 2000 epochs. In each stage of training, we use the following435

hyperparamers:436

• Evaluation Interval: 1 epoch437

• Decay steps: 1200000438

• Warmup steps: 10000439

• Decay patience: 50000440

• Decay cooldown: 50000441

The rest of the parameters are the same as used in Gasteiger et al. [2021].442

EGNN Training Details. The EGNN training setup is similar to GemNet. To train the bias443

identification method, we train a freshly initialized model with a batch size of 10 on the accurate444

dataset for 2000 epochs. To train the inaccurate model, we train a freshly initialized model with445

the bias aware loss function and batch size 32 over the inaccurate dataset. Finally to finetune the446

inaccurately trained model, we train a with a batch size of 10 on the accurate dataset for 2000 epochs.447

In each stage of training we use the following hyperparamers:448

• Evaluation Interval: 1 epoch449
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• Learning rate: 10−4 for inaccurate training, 10−5 for finetuning450

• num_layers: 5451

• embedding_size: 128452

A.7 Additional Results453

Here we include additional results for ASTEROID when empirical force field data is viewed as454

inaccurate. For the baseline model we use GemNet. The ASTEROID framework again leads to455

consistent gains across all amounts of data.456

(a) Benzene (b) Aspirin (c) Malonaldehyde

(d) Toluene (e) Ethanol

Figure 8: Main results for GemNet when empirical force field data is viewed as inaccurate.

A.8 Baseline Implementations457

⋄ ANI1-ccx. In order to have a fair comparison with Smith et al. [2019], we consider two ANI-1ccx458

based baselines. In the first baseline, we take the provided ANI-1ccx checkpoint and analyze its zero-459

shot performance on the MD17 dataset. For the second ANI-1ccx baseline, we finetune ANI-1ccx460

separately on each molecule in MD17 until the validation loss has converged.461

⋄∆-ML for GemNet. For a fair comparison with ASTEROID, we implement ∆-ML on GemNet462

and the MD17 molecules. Given a molecular configuration x, it’s corresponding DFT force labels f i,463

and the CCSD(T) force labels fa, optimize the supervised loss464

min
θ

L∆(x, θ) = ℓf (f
a, f i +∇xE(x; θ)). (4)

We then optimize this loss over all train configurations for a given molecule, using an energy loss465

similar to (1). During inference, we predict the CCSD(T) force labels as f i +∇xE(x; θ), which466

requires the DFT force label to be computed.467

Since the mapping between DFT labeled configurations and MD-17 labeled configurations is not468

explicitly given, we must find it ourselves. For every point in the CCSD(T) dataset, we find the469

closest point to it in the DFT dataset. For each of the molecules listed in Section 6, the difference470

between the CCSD(T) configuration and closest DFT configuration is 1× 10−5. For Benzene and471

Ethanol, we find that such a mapping is not available.472
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A.9 ASTEROID Toy Example473

We have added a new result using a two-layer MLP with 128 hidden units each and synthetic data.474

This experiment shows that ASTEROID can significantly improve generalization error in more general475

settings. In this experiment, we generate a biased dataset of 2000 points according to Y = AX + b,476

where where X ∼ N(0, 1) has dimension 16, b is the bias, and A is a randomly generated Gaussian477

matrix of dimension 16 × 16. The bias b is chosen uniformly from the set [0, 2, 4, 8, 16]. We also478

generate varying levels of accurate data according to Y = AX , where X ∼ N(0, 1). We then479

evaluate the test MAE of ASTEROID and standard training over a variety of accurate data sizes. We480

find that ASTEROID significantly outperforms standard training.481

Figure 9: Asteroid toy example.
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