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Figure 1: RobuQ enables DiTs to generate competitive results at ultra-low bit setting. We select
256 %256 images from W1.58A3 quantized DiT-XL/2 trained on ImageNet-1K.

ABSTRACT

Diffusion Transformers (DiTs) have recently emerged as a powerful backbone
for image generation, demonstrating superior scalability and performance over
U-Net architectures. However, their practical deployment is hindered by sub-
stantial computational and memory costs. While Quantization-Aware Training
(QAT) has shown promise for U-Nets, its application to DiTs faces unique chal-
lenges, primarily due to the sensitivity and distributional complexity of activa-
tions. In this work, we identify activation quantization as the primary bottle-
neck for pushing DiTs to extremely low-bit settings. To address this, we propose
a systematic QAT framework for DiTs, named RobuQ. We start by establish-
ing a strong ternary weight (W1.58A4) DiT baseline. Building upon this, we
propose RobustQuantizer to achieve robust activation quantization. Our the-
oretical analyses show that the Hadamard transform can convert unknown per-
token distributions into per-token normal distributions, providing a strong founda-
tion for this method. Furthermore, we propose AMPN, the first Activation-only
Mixed-Precision Network pipeline for DiTs. This method applies ternary weights
across the entire network while allocating different activation precisions to each
layer to eliminate information bottlenecks. Through extensive experiments on
unconditional and conditional image generation, our RobuQ framework achieves
state-of-the-art performance for DiT quantization in sub-4-bit quantization con-
figuration. To the best of our knowledge, RobuQ is the first achieving stable
and competitive image generation on large datasets like ImageNet-1K with ac-
tivations quantized to average 2 bits. The code and models will be available at
https://github.com/racoonykc/RobuQ.
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1 INTRODUCTION

Recent advances in quantization-aware training (QAT) have revealed a fundamental asymmetry be-
tween weight and activation quantization in deep neural networks (Zheng et al., 2025; Feng et al.,
2025a; Wang et al., 2025a; He et al., 2024b). In particular, diffusion transformer (DiT) models (Pee-
bles & Xie, 2023), which have demonstrated strong performance in generative tasks, present unique
challenges for efficient quantization due to their deep architectures and the complex distribution of
activation values. While prior studies have shown that ternary quantization of weights can achieve
nearly lossless accuracy (Ma et al., 2024), activation quantization remains substantially more dif-
ficult—especially for large-scale datasets like ImageNet-1K (Russakovsky et al., 2015), where the
lowest reported activation bit-width is still 4 bits (Feng et al., 2025b). This highlights an opportunity
to further reduce activation precision in DiT models without sacrificing generative quality greatly.

In this work, we focus on the quantization of DiT models and conduct a systematic analysis to
identify activation quantization as the principal challenge in ultra-low bit settings. Building on
this observation, we first establish a strong W1.58A4 DiT quantization baseline. We then theoreti-
cally demonstrate that, under our modeling assumptions, the Hadamard transform can consistently
project diverse and irregular activation distributions in DiT into a standard normal form. Exploiting
this property, we propose the RobustQuantizer including the construction of an advanced W1.58A4
baseline, the Hadamard transform and the robust per-token Gauss quantizer, thereby enabling highly
efficient and distribution-agnostic quantization in both uniform and non-uniform quantization.

Mixed-precision quantization has recently emerged as a promising strategy to overcome the limita-
tions of uniform ultra-low-bit quantization (Feng et al., 2025a; Zhao et al., 2024a; Kim et al., 2025;
Feng et al., 2025b). We introduce the first activation-only mixed-precision quantization network
(AMPN) for DiT, and explore activation bit-width allocation strategies within this framework at
ultra-low bit setting. Using AMPN, we achieve SOTA image generation on ImageNet at an ultra-low
precision of W1.58A3 (as seen in Fig. 1), while maintaining stable performance without collapse at
the even lower bit-width of W1.58 A2. Extensive experiments on both unconditional and conditional
generation tasks demonstrate our method’s superior performance over SOTA techniques.

Our main contributions are summarized as follows:

» Through comprehensive study, we identify activation quantization as the central bottleneck
for DiTs to achieve ultra-low bit quantization. Building upon recent work, we establish
a strong baseline for ternary weight quantization with a W1.58A4 DiT model, achieved
through the integration of an SVD-initialized low-rank branch and Hadamard transform.

* We first theoretically demonstrate that the widely used Hadamard transform, under our
modeling assumptions, can convert arbitrary activation distributions in DiT models to a
per-token normal distribution. Leveraging this property, our RobustQuantizer supports
both uniform and non-uniform quantization, achieving SOTA performance on W1.58A4.

* We introduce AMPN, the first DiT quantization scheme to focus exclusively on activation-
only mixed-precision, and conduct a thorough exploration of activation bit-width alloca-
tion. Our method achieves SOTA performance at W1.58A3 and, furthermore, maintains
stable training without collapse at an ultra-low bit setting of W1.58A2.

» Extensive evaluations across unconditional generation and conditional generation with
DiT demonstrate that our quantization framework RobuQ, including RobustQuantizer and
AMPN, consistently surpasses previous SOTA methods in both efficiency and performance,
significantly advancing the feasibility of DiTs under resource constraints.

2 RELATED WORKS
2.1 DIFFUSION TRANSFORMERS

Diffusion Models (DMs) have demonstrated impressive generative capabilities across a wide range
of tasks (Chen et al., 2020; Hu et al., 2022; Rombach et al., 2022; Chen et al., 2023; He et al.,
2023; Li et al., 2023b;a; Liu et al., 2024; Li et al., 2024; He et al., 2024a; Ho et al., 2020; Zhao
et al., 2024b; Peebles & Xie, 2023). Recent research has focused on replacing the conventional
U-Net (Ronneberger et al., 2015) backbone with Transformer-based (Vaswani et al., 2017) architec-
tures to build more powerful generative models (Croitoru et al., 2023; Rombach et al., 2022; Yang
et al., 2023). Among these, Diffusion Transformers (DiTs) (Peebles & Xie, 2023) has achieved



remarkable performance in image generation, exhibiting strong scalability and significant potential
for broader applications. Despite its exceptional performance, DiT still demands substantial com-
putational resources, including high memory usage and processing power, to generate high-quality
images, which significantly hinders its applicability in resource-constrained scenarios.

2.2  QUANTIZATION

Quantization techniques (K Esser et al., 2019; Lv et al., 2024; Zhang et al., 2024; Zhou et al.,
2016) compress and accelerate neural networks by reducing the numerical precision of weights and
activations (e.g., from 32-bit floating-point to 1-8-bit integers). However, applying quantization
to generative tasks presents unique challenges due to the dynamic temporal nature of the diffusion
process and the complex spatial structures involved (Chen et al., 2024; He et al., 2024b).

To further improve the efficiency of neural network quantization, recent research has explored even
lower bit-width regimes, such as ternarization (three-value quantization) (Lu et al., 2024; Ma et al.,
2024; Wang et al., 2025b) and extreme low-bit quantization (e.g., 1-bit, 2-bit) (Zheng et al., 2024;
2025). These approaches significantly reduce both memory footprint and computational complexity,
but they typically struggle to maintain sufficient model expressiveness and high generation quality,
especially in the context of large generative models that require intricate representations.

To address information loss caused by aggressive quantization, orthogonal transformations have
been introduced into quantization pipelines (Hu et al., 2025; Lin et al., 2025; Ashkboos et al.,
2024; Liu et al., 2025b). By decorrelating weights or activations before quantization (e.g., via SVD,
Hadamard, or other orthogonal transforms), these methods redistribute quantization errors and better
preserve information, enabling more accurate low-bit quantization for generative models.

Moreover, mixed-precision quantization has emerged as an effective strategy to balance efficiency
and performance (Feng et al., 2025a; Zhao et al., 2024a; Kim et al., 2025; Feng et al., 2025b). Instead
of assigning a uniform bit-width to all layers or modules, mixed-precision methods allocate higher
precision to sensitive components and lower precision elsewhere, either through heuristic rules or
data-driven optimization. This technique enhances quantization robustness and overall performance.

3 METHOD
3.1 ANALYSIS

Empirical evidence indicates that DiT models (Peebles & Xie, 2023) exhibit inferior performance in
the low bit-width regime compared to U-Net-based (Ronneberger et al., 2015) LDM models (Rom-
bach et al., 2022). Currently, DiT quantization is often limited to a W4A4 configuration (Liu &
Zhang, 2024; Wu et al., 2024; Hwang et al., 2025; Chen et al., 2025), whereas LDM-class models
have advanced to W1A4 and even W1A1 precedents (Zheng et al., 2024; 2025). This significant
gap motivates a thorough investigation into activation quantization for DiTs. We identify three key
challenges that hinder effective low-bit-width activation quantization in DiT models:

o Issue 1: Lack of QAT Exploration for Ultra-low-bit Configurations. Existing methods
have primarily focused on Post-Training Quantization (PTQ) (He et al., 2024b; Wang et al.,
2025a), without a thorough investigation into the boundaries of activation bit-width under
the Quantization-Aware Training (QAT) framework. Compared with PTQ, QAT can ex-
plicitly optimize model parameters during training to compensate for quantization errors,
thereby offering a more promising and effective route to stable ultra-low-bit deployment.

* Issue 2: Diverse and Complex Activation Distributions. Unlike other architectures,
DiTs exhibit highly varied activation distributions across different layers and tokens (Zhao
et al., 2025), posing a significant challenge due to the lack of a unified quantizer.

* Issue 3: Potential Activation Bit-width Bottlenecks. We find the existence of specific
layers within DiT models that are particularly sensitive to activation bit-width compression,
which fundamentally prevents further quantization to lower activation bit-widths.

Based on the above issues, it becomes necessary to conduct a dedicated study on ultra-low-bit acti-
vation quantization for DiT models. Our goal is to address the unique distributional and architectural
challenges of DiT, and to develop strategies that maximize compression while preserving generative
fidelity. Such targeted investigation is essential not only for reducing deployment costs but also for
pushing the practical boundaries of DiT quantization into regimes previously thought unattainable.
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Figure 2: Overall Framework of Our Quantization Pipeline.

3.2 ROBUSTQUANTIZER: LEVERAGING HADAMARD TRANSFORMATION EFFECTIVELY

3.2.1 INITIAL BASELINE AND QUANTIZATION STRATEGY

Building upon the successful W1.58 A4 configuration of BitNetv2 (Wang et al., 2025b), we establish
it as our initial baseline. Specifically, we apply a Hadamard transformation (Yarlagadda & Hershey,
1993), a type of orthogonal transformation to the proj and fc2 layers within the DiT modules. The
Hadamard transformation is applied to both the weights and activations, where W < HW and
X < HX. Here, the Hadamard matrix of order n is defined recursively:

1 (H H
We adopt two distinct strategies for weight and activation quantization. For weight quantization
Quw(-), we use a channel-wise ternarization quantizer based on the principles of BitNetV2. This
maps the FP weights W to discrete values per channel, as shown in the following equation:

w
w(W) = a - RoundClip(——, —1, 1), 2
Qu(W) P L) @
where v = mean(|W|), y = -1 >_i.; IWij|, and € is a small constant to avoid division by zero. The

RoundClip function is defined as RoundClip(x, a,b) = min(max(round(z), a),b). For activation
quantization, we employ a straightforward per-token min—max quantization strategy to determine
the scaling range. The quantized value @, (x) for an activation tensor x is computed as:

Q.(x) = clamp (gJ 0,20 — 1) : 3)
where § = w is the scaling factor, b is the bit-width, |-| denotes the floor operation,
and A = — {%(X)J is the zero-point that enables asymmetric quantization.

3.2.2 ENHANCED BASELINE WITH INTEGRATED TECHNIQUES

Next, we turn our attention to other state-of-the-art methods. By drawing on techniques from SVD-
Quant (Li et al., 2025) and BiMaCoSR (Liu et al., 2025a), we introduce a SVD-initialized low-rank
matrix branch for compensation, which operates in FP. As illustrated in Fig. 2 (left), the initialization
process begins with the FP weights W. First, a Hadamard transform is applied to W. Then, a
truncated SVD is performed on the transformed matrix to construct the low-rank approximation,
which is subsequently factorized into A and B. The decomposition is as follows:

WH ~ AB =U,%, V.. 4)

Here, H denotes the Hadamard matrix. The matrices U,., 3,., and V,. are obtained by retaining the
top r = 16 dominant singular values and their corresponding singular vectors. The main quantized
weight matrix W in the lower branch is also derived from the transformed weights W H:

WQ = Qw(WH - AB) = Qw(Wres)~ (5
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Figure 3: Illustration of how the Hadamard transforms per-token unknown distributions (left) into a
known per-token normal distribution (right). Average NMI is computed across different channels.

The original weight W is then approximated as follows:
W = WHH' = (AB+W,os)H' ~ ABH' + Q,(Wies)H'. (6)

During the forward pass, the input X is passed through a Hadamard transform and then into the @,
as shown in Eq. 8. Here Q¢ Here @) refers to the Per-token Gauss Quantizer introduced in Section
3.2.4. The final output is the sum of the outputs from the FP low-rank branch and the main quantized
branch. Although BitNetv2 restricted the Hadamard transform to proj and fc2 layers, extending it to
all layers, as we do here, stabilizes activation distributions and mitigates residual imbalances.

3.2.3 HADAMARD TRANSFORM CREATES A PER-TOKEN NORMAL DISTRIBUTION

We argue that the Hadamard transform provides more than simple activation smoothing (Kolb et al.,
2023): it converts per-token activations from arbitrary distributions into predictable, approximately
normal ones. This property, visualized in Fig. 3, motivates our RobustQuantizer.

Formally, consider the input X € R7*“. We have observed the following three properties:

(i) Token-wise: Activations across tokens within a layer share a distribution shape but differ in mean
and variance, and these distributions vary significantly across layers, leading to quantization errors.

(ii) Channel-wise: Channels are nearly independent, with low normalized mutual information
(NMI), which is a key property to satisfy the CLT assumptions (Gnedenko & Kolmogorov, 1954).

(iii) Hadamard Matrix Property: The normalized Hadamard matrix H¢ has entries of 1/ VC,
which ensures an equal variance across the resulting transformed channels in one token.

Thus, per-token activations Xy = (Xy1,..., Xt o), with X; o ~ Pt o(pit,c, 07, 2 ), become
c
Yie= Y (Ho)jeXej, Var(Yie) =& Z% 207, @)
j=1

By the Generalized CLT, Y; converges to A'(0, 0?), i.e., an identically distributed Gaussian for each
token. This insight provides a principled theoretical foundation for achieving robust and effective
per-token quantization. Further information and a formal derivation can be found in Appendix A.

3.2.4 FROM HADAMARD NORMALIZATION TO PER-TOKEN GAUSS QUANTIZATION

Building upon our prior analysis of how the Hadamard transform produces a per-token normal distri-
bution, we now design the Per-token Gauss Quantizer ()¢ (-) to maximally leverage this property.
We present two versions of our quantizer, a uniform and a non-uniform variant. The complete
process involves per token normalization using dynamically computed mean and variance and quan-
tization with a precomputed optimal quantizer as shown in Fig. 2 (left lower). We obtain this optimal
quantizer, denoted as Qop, by using the Lloyd-Max algorithm (Lloyd & Laboratories, 1982). The
complete quantization and dequantization process for an activation vector x can be expressed as:

r =~ QG’(m) HT Qopt <I—Itx> ®)
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Figure 4: An illustration of why PTQ sensitivity metrics fail for ultra-low-bit QAT mixed-precision.
Left: Visualization of accuracy loss for different linear layers with W1.58A2 quantization under
PTQ and QAT (1,000 training steps). Right: Mixed-precision configurations derived from more
QAT steps achieve a worse initial loss but a better final convergence loss.

Therefore, the forward of the quantized and low-rank FP branches can be expressed as:

Wz ~ ABHz + Qw(Wres) ' Qopt(%) * Ot . 9
—— -
FP quantized

3.3 ACTIVATION-ONLY MIXED-PRECISION NETWORK
3.3.1 NAIVE PIPELINE DESIGN

We design a simple activation-only mixed-precision network (AMPN) pipeline to alleviate bot-
tlenecks caused by uniform bit-width quantization, as shown in Fig. 2 (right). All weights are
fixed to ternary (W1.58), while each activation layer ¢ € {1,..., L} selects a bit-width b, € B =
{1,2,3,4}. The goal is to minimize accuracy loss under a target average activation bit-width Bigy.

To build a layer-wise sensitivity profile, we randomly sample 1,000 validation examples across
timesteps and compute the mean loss gap ALy (b;) between the quantized and full-precision models
at bit-width b. This metric enables a fast estimation of per-layer degradation. We then formulate bit
allocation as a Dynamic Programming (DP) problem, where the objective is to minimize total loss
under a resource budget. Here, wy is the layer-wise weight that adjusts the bitwidth contribution of
each layer according to its FLOPs proportion in DiT-Block (e.g., the w, of mlp.fcl is 1.334).

Among these layers, certain components are fixed for stability: the attention scores are quantized to
8 bits, and the adalLN layer to 4 bits, due to their high sensitivity yet negligible FLOPs cost (together
accounting for about 2-3% of the total block computation). The optimization can be written as

L
1 _
min E ALg(bz) S.t. W E wzbeSBtgty (10)
— tot ,—;

where Wy = Zle wy is the total FLOPs. We solve this with DP. Let DP[¢][w] be the minimal
cumulative loss after assigning bits to the first £ layers with accumulated weighted cost w. For the
purpose of discretization, each individual layer’s FLOPs and the target budget can be written as

M= |p o] B=|Buw), an

tot

where [ is a resolution factor controlling granularity (e.g. 5 =1,000) and Wﬁ? = e Lap W is the
FLOPs of layers optimized by DP. The recurrence relation is formally defined as follows,

DP[(][w + Awg - by] = min {Dp[z][w + Awg - b], DP[¢ — 1][w] + ALZ(bg)}, be € B. (12)
We initialize DP[0][0] = 0 and DP[0][w > 0] = +o00. The optimal cost can be formulated as
. .
w* = argoémwlgB DP[L][w], (13)
from which the optimal allocation {b}} is recovered by backtracking through the solution space.

6
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Figure 5: Visualization of the performance and efficiency of RobuQ and comparative approaches.
Left: Our proposed RobuQ and baseline significantly outperform previous methods on W1.58A4.
Middle: RobuQ maintains stable generation under A3 and A2 compared to collapsed baseline.
Right: The RobuQ series achieve higher Inception Scores under the same FLOPs.

3.3.2 ULTRA-LOW-BIT QAT

Mixed-precision methods (Feng et al., 2025a; Zhao et al., 2024a; Kim et al., 2025; Feng et al.,
2025b) have traditionally employed PTQ to collect parameters, as they are often applied in mid-bit
configurations. However, our work targets ultra-low-bit quantization under the QAT framework.
In this setting, even if a layer exhibits large quantization errors during PTQ, the model can still
compensate for these errors during training, making QAT more adaptable, as shown in Fig. 4 (left).
On the other hand, a low quantization error observed in PTQ does not necessarily ensure a consistent
or further reduction in quantization errors during the subsequent QAT process.

To investigate this, we explored training the quantized layers for different numbers of steps while
collecting quantization errors. Specifically, we trained for 1, 10, 100, and 1,000 steps, using the
same learning rate as standard training. Our findings revealed that while schemes with fewer training
steps (such as 1 and 10 steps) initially exhibited lower quantization errors, those trained with more
steps (such as 1,000 steps) achieved a significantly lower final convergence loss, as shown in Fig. 4
(right). This aligns with our hypothesis that additional QAT steps allow the model to better adjust to
the quantization process, gradually improving its performance and robustness over time.

4 EXPERIMENTS
4.1 SETUP

Datasets and Evaluation Metrics. We evaluate pre-trained class-conditional DiT-XL/2 models at
256 %256 resolution on ImageNet-1K (Russakovsky et al., 2015) and FFHQ (Karras et al., 2019).
The DDPM solver (Ho et al., 2020) with 250 sampling steps is employed for the generation pro-
cess. For all methods under evaluation, we uniformly sample a total of 10,000 generated images
for both the ImageNet-1K 256 x256 and FFHQ 256 x 256 benchmarks. We use four metrics to as-
sess generated image quality: Fréchet Inception Distance (FID) (Heusel et al., 2017), spatial FID
(sFID) (Salimans et al., 2016; Nash et al., 2021), Inception Score (IS) (Salimans et al., 2016; Barratt
& Rharma, 2018), and Precision, all computed using the ADM toolkit (Dhariwal & Nichol, 2021).

Compared Methods. We compare our RobuQ series (where RobuQ (w/o AMP) denotes using only
the RobustQuantizer) with SOTA quantization approaches, covering both PTQ and QAT paradigms.
These include BitNetv2 (Wang et al., 2025b) and QueST (Wang et al., 2025a) for ultra-low-bit QAT,
PTQ4DiT (Wu et al., 2024) and Q-DiT (Chen et al., 2025) as DiT-specific PTQ methods, and Bina-
ryDM (Zheng et al., 2025) for QAT binarized diffusion models. We also incorporate Quarot (Ashk-
boos et al., 2024) and SVD-Quant (Li et al., 2025) as components of our strong baseline.

Training and Quantization Details. All experiments are conducted with PyTorch (Paszke et al.,
2019) on a single NVIDIA RTX A6000-48GB GPU. For all QAT methods, we use the AdamW
optimizer (Loshchilov & Hutter, 2019) (learning rate=10~5, weight decay=0) with a batch size of
8 and train for 350k iterations. We keep the embedding and final layer in full precision across all
methods, and maintain 8-bit precision for activation-activation matrix multiplication operations, as
they constitute a small fraction of the computation and exhibit high sensitivity to quantization.



Table 1: Performance on ImageNet-1K 256 x 256 and FFHQ 256 x 256 under different settings.

Setting Method Bit-width (W/A) ISt FID| sFID, Precision
FP 32/32 239.50 6.62 21.10 0.7849
QueST 4/4 4.87 21506  72.15 0.0529
PTQ4DiT 4/4 3.05 231.80  106.42 0.1003
QDIT A 201 24811 40444 00138
””” BinaryDM’ 1.58/4 2563 62.91 3828 0.3765
ImageNet Bitnetv2 1.58/4 4432 41.59 34.09 0.5002
steps= 50 Baseline 1.58/4 95.07 20.82 27.53 0.6152
cfe=1.5 RobuQ (w/o AMP) 1.58/4 10324  17.97 26.95 0.6577
Baseline 1.58/3 51.31 40.23 35.64 0.4946
RobuQ (w/o AMP) 1.58/3 83.84 24.44 29.18 0.6001
RobuQ 1.58/3 93.75 21.40 26.99 0.6190
Baseline 1.58/2 10.63 12049  62.29 0.2091
RobuQ (w/o AMP) 1.58/2 45.65 4331 38.89 0.4917
RobuQ 1.58/2 66.74 30.30 30.66 0.5680
FP 32/32 47835  19.11 21.61 0.9298
QueST 4/4 42.07 84.20 45.67 0.2651
PTQ4DiT 4/4 5.64 144.07  85.83 0.1078
! Qpir 44 823 14113 279.26  0.1272
BinaryDM" 1.58/4 11552~ 17.08 2315 0.7230
ImageNet Bitnetv2 1.58/4 196.78  11.69 21.44 0.8370
steps= 50 Bascline 1.58/4 34207 12.82 20.05 0.9092
ofg = 4.0 RobuQ (w/o AMP) 1.58/4 34922 12.64 19.69 0.9186
Baseline 1.58/3 25492  10.83 21.68 0.8585
RobuQ (w/o AMP) 1.58/3 32556 1231 19.94 0.9053
RobuQ 1.58/3 34294 1271 19.87 0.9129
Baseline 1.58/2 20.65 75.02 35.81 0.2812
RobuQ (w/o AMP) 1.58/2 200.00  11.97 21.73 0.8188
RobuQ 1.58/2 27358  11.06 21.57 0.8751
FP 32/32 47972 19.67 22.94 0.9301
QueST 4/4 49.55 76.55 43.26 0.2876
PTQ4DiT 4/4 5.07 148.17  95.02 0.0982
Q-DiT 4/4 1074 12448 28699  0.1598
””” BinaryDM™ ~ ~ T 158/4 T 12478 15.50 21.66 0.7575
ImageNet Bitnetv2 1.58/4 20628  11.72 20.62 0.8591
steps= 150 Baseline 1.58/4 34443 13.92 20.75 0.9167
cfe = 4.0 RobuQ (w/o AMP) 1.58/4 34840  13.82 20.32 0.9225
Baseline 1.58/3 27127  11.55 20.76 0.8876
RobuQ (w/o AMP) 1.58/3 333.62  13.65 20.75 0.9180
RobuQ 1.58/3 34273 14.27 20.63 0.9247
Baseline 1.58/2 2322 68.04 30.84 0.2999
RobuQ (w/o AMP) 1.58/2 22047 1117 20.10 0.8573
RobuQ 1.58/2 28173  11.86 21.94 0.8922
FP 32/32 N/A 11.71 28.88 0.7526
QueST 4/4 N/A 7288 8556  0.1897
””” Bitnetv2 ~ 1584 " N/A 66.55 64.49 0.3499
FFHQ Baseline 1.58/4 N/A 3432 4437 0.5771
steps= 50 RobuQ (w/o AMP) 1.58/4 N/A 25.62 3715 0.6228
Uncondition Baseline 1.58/3 N/A 35.11 43.07 0.5988
RobuQ 1.58/3 N/A 28.11 38.43 0.6128
Baseline 1.58/2 N/A 59.50 62.58 0.4159
RobuQ 1.58/2 N/A 38.13 42.29 0.5568

T For fairness, we swapped BinaryDM’s binarization for ternarization.
4.2 MAIN RESULT

As shown in Table 1, on both ImageNet-1K 256 x 256 with low classifier-free guidance (Ho &
Salimans, 2022) (cfg=1.5, 50 steps) and FFHQ 256 x 256 under unconditional generation (50 steps),
our quantized models demonstrate comprehensive superiority across all bit-widths, which solidly
validates the effectiveness of our approach. However, when employing a higher guidance scale
(cfg=4.0), although our method achieves better metrics, FID exhibits anomalous behavior: all quan-
tized methods surprisingly outperform the FP model, showing an inverse relationship with other
metrics. This phenomenon suggests the need for more precise evaluation metrics in low-bit set-
ting. Increasing sampling steps from 50 to 150 maintains consistent trends. Fig. 5 (left and middle)
provides visually comparative results across diverse methods and different bit-widths.



Table 2: Ablation studies on ImageNet-1K 256 x256. Timesteps are 50 and cfg is 1.5.

Method ISt FID] sFID] Precisionf Method ISt FIDJ sFID] Precisionf
BitNetv2 44.32 41.59 34.09 0.5002 Baseline 95.07 20.82 27.53 0.6152
+LRB 68.82 29.59 31.35 0.5807 +Non-uniform Quantizer 96.19 20.33 27.52  0.6262
+ LRB + All Hadamard 95.07 20.82 27.53 0.6152 +Uniform Quantizer 103.24 17.97 26.95 0.6577
(a) Baseline construction at W1.58A4. (b) Per-token Gauss Quantizer at W1.58 A4.
QAT-step Method ISt FID] sFID] Precisiont Training-time
N/A RobustQuantizer  45.65 43.31 38.89 0.4917 126.0h
1 50.67 41.06 34.58 0.5028 3.1h+126.0h
10 52.12 39.01 32.50 0.5092 3.7h+126.0h
100 +AMP 56.31 37.45 32.61 0.5097 9.5h+126.0h
500 57.93 36.57 33.46 0.5213 36.0h+126.0h
1,000 66.74 30.30 30.66 0.5680 78.5h+126.0h
1,500 66.23 30.56 30.23 0.5701 121.0h+126.0h

(c) AMPN at W1.58A2. Training-time comprises metric collection and actual training.
Table 3: Inference efficiency of our proposed RobuQ of DiT-XL/2 on ImageNet-1K 256 x 256.

cfg=4.0 step=50 FP QueST BinaryDM Bitnetv2 Baseline RobuQ RobuQ RobuQ
W/A 32/32 4/4 1.58/4 1.58/4 1.58/4 1.58/4 1.58/3 1.58/2
Size (MB) | 2,575.4 341.22 148.13 148.13 194.75 194.75 194.75 194.75
FLOPs (G) | 114.52 14.94 8.04 8.04 10.07 10.07 8.34 6.61

ISt/ Precision T 478.35/0.9298 42.07/0.2651 115.52/0.7230 196.78/0.8370 342.07/0.9092 349.22/0.9186 344.29/0.9083 273.58/0.8751

4.3 ABLATION STUDY

Baseline Construction. We first conducted ablation studies on our baseline components, as shown
in Table 2a. Starting with BitNetv2, adding a low-rank matrix branch (LRB) significantly improves
performance and accelerates convergence, with the FID dropping from 41.59 to 29.59. Applying a
full Hadamard transformation to all linear layers in DiT pushes the FID even lower to 20.82, demon-
strating the crucial role of both components in establishing a robust foundation for our method.

Per-token Gauss Quantizer. As shown in Table 2b, while the theoretically optimal non-uniform
quantizer only provides a slight performance gain with its FID dropping from 20.82 to 20.33, uni-
form quantizer achieves a much lower FID of 17.97 and a higher IS of 103.24. This is because the
uniform quantizer is more robust to the small approximation errors inherent in real-world activations,
proving to be more effective and stable in practice. Therefore, considering both the performance and
the ease of deployment, we have adopted the uniform quantizer as final choice.

QAT Steps in AMP. As shown in Table 2c, we determined the optimal number of QAT steps to
collect metrics in our AMP method. Performance consistently improved with an increasing number
of QAT steps. For example, the FID dropped from 41.06 at one step to 39.01 at 10 steps, and then
further to 30.30 at 1,000 steps. The optimal balance between quality and cost was found at 1,000
steps, which yielded the best FID of 30.30. Increasing the steps to 1,500 offered only negligible gains
at a significant additional cost. Therefore, we adopted the 1,000-step approach for all evaluations.

4.4 EFFICIENCY ANALYSIS

Table 3 demonstrates that the RobuQ series achieves the best efficiency-accuracy trade-off. Notably,
our RobuQ at W1.58A2 even surpasses BinaryDM and Bitnetv2 at W1.58 A4, while providing a
17.3 x theoretical speedup ratio and a 13.2x model compression ratio compared to the FP model.
The visual comparisons in Fig. 5 (right) further corroborate these results. More details including the
model FLOPs breakdown and computation are provided in Appendix C.

5 CONCLUSION

We revisit quantization for Diffusion Transformers and identify the activation pathway as the pri-
mary bottleneck for ultra-low-bit deployment. Building on a strong W1.58A4 baseline featur-
ing an SVD-initialized low-rank branch and all-layer Hadamard mixing, we demonstrate that the
Hadamard transform effectively Gaussianizes per-token activations. This enables the development
of a distribution-agnostic RobustQuantizer. Its hardware-friendly uniform implementation, when
integrated with an activation-only mixed-precision network (AMPN), achieves stable training and
delivers significant quality improvements. Together, these advancements establish new state-of-the-
art results for quantized DiTs, ultimately pushing their capabilities to the W1.58 A2 configuration.
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A  FORMAL PROOF: HADAMARD TRANSFORM PRODUCES APPROXIMATELY
NORMAL PER-TOKEN COORDINATES

Notation aligned with the main text. Let a single token’s activation vector be denoted by x € R®
(token index ¢ suppressed for clarity). We use the normalized Hadamard transform (Yarlagadda &
Hershey, 1993)

C><C

He{+ H'H=HH' = I, (14)

veli
and define the transformed coordinates y = Hx. For channel j, set
wi =Elz;], Z;:=x; — puj, 0']2 = Var(z;), (15)

and define the per-token average variance

c
2
=5 Z o2 (16)
We also write the Hadamard coefficients as agc) =H, == \lf, so that
e}
ye = > ala;,  e=1,....C (17)
j=1
A.1 EXACT SECOND-MOMENT IDENTITIES
By linearity and orthogonality (distribution-free), for each coordinate c,
c
Elye] = > ol pj, (18)
j=1
¢ 1
Var(ye) = Y (a))’0f = 5> of = o, (19)
j:l j=1
1 c ’ ’
Cov(Ye, yer) Zagc a; o~ =G ng-c’c ) UJQ», sg-c’c) =sign(Hq;Hejy) € {£1}. (20)
j=1

Equation 19 shows exact variance equalization across transformed channels; equation 20 expresses
off-diagonals as signed averages of per-channel variances.

A.2 CENTRAL LIMIT THEOREM AND ASYMPTOTIC INDEPENDENCE
Assumptions (A1-A3).
* (A1) The centered variables Z; are independent (or weakly dependent in a manner admit-

ting triangular-array CLTs (Gnedenko & Kolmogorov, 1954)).

* (A2) There exists x > 0 with sup; E[|Z;|>T"] < oo; in particular sup; E[|Z;]*] < M3 <
0.

* (A3) No adversarial alignment of {y;}, {0]2-} with Hadamard sign patterns (practically,
variance deviations are not aligned with a single Hadamard row/column).

Univariate CLT (Berry-Esseen). Fix c and consider the triangular-array terms fj(-c) = agc) Z;.

Their variance sum is

c c
s¢ = ZVar(ﬁj(»C)) = Z(aéc))Qaf = o?. (21)
j=1

j=1
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Because \a§6)| =1/VC,

SEIEOP] = LS R < M 22)
3 2 JC

Berry—Esseen for non-identical summands yields an absolute constant Kpg such that

C (C)
sup Pr(ﬁ < 33) _ @(m)‘ <
t

z€R o

j=1

Kgp M;
o3V C
Thus each scalar coordinate (after centering and normalization) converges to A/(0,1) with Kol-

mogorov error O(C~1/2) (Bobkov, 2023; Bentkus, 1997).

(23)

Finite-Dimensional Gaussian Convergence. For fixed indices cy, ..., ¢, (with m independent
of C) and any A € R™,
i Z]'C:1 a;‘cr)i"j 1 (e ~
Lo(\) = ;ATT - Ut;(;xraj )@, (24)

where the inner coefficients are O(C'~'/2) uniformly in j. Standard Lyapunov/Lindeberg conditions
hold, implying

Le(N) 5 N (0, ATAN), (25)

with limit covariance A determined by equation 20. By Cramér-Wold, (y,,. .., Y., ) converges
to a multivariate Gaussian whose diagonal entries equal o2 (Billingsley, 1995; Lyons & Zumbrun,
2017).

A.3 OFF-DIAGONAL COVARIANCE DECAY AND ASYMPTOTIC INDEPENDENCE

Write variance deviations 0; := o — ¢7. From equation 20,

c
1 c,c'
Cov(Ye,Yer) = ° E sg’ )5]-. (26)
i=1

Orthogonality of Hadamard rows implies near-cancellation of the £1 signs in the average; two
practical sufficient conditions ensuring Cov(y.,y.) — 0 as C' — oo are:
* Uniform small deviations: max; |0;| — 0 = |Cov(ye, Yo )| < max; |6;] — O.

« (,-small deviations: letting w(e) = (5! ey,

yo o SO
|Cov(ye, yer )| = l|<<5,w(“’>>| < ”5”2, = [|6]]2 = o(v/C) = Cov(ye,yer) — 0.
C Ve

27)

Combined with the finite-dimensional CLT, this yields asymptotic joint Gaussianity with diagonal
covariance o 1,,; hence the transformed coordinates become asymptotically independent Gaussians.

A.4 QUANTITATIVE CLOSENESS TO A PRODUCT GAUSSIAN: KL AND TV BOUNDS

Let X, be the covariance of (y.,, - . -, Y.,, ) and decompose
S = 02T + Fy, (28)
where E,,, has zeros on the diagonal and off-diagonals e;; = Cov(ye,, yc,). Then
KL (N (ttm, Em) || N (bms 071m) ) = =2 Indet (I, + 07 *Ep). (29)
If [|o; *Epplop < & (Petersen & Pedersen, 2012), expand Indet(I + A) to obtain
KL = jo; 1BnlE + O(|Eml#/07)- (30)
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Using || Ep||3: < m(m — 1) max;x; €2, and |e;| < ||6]|2/+/C from Section A3,

2 2
KL = 0(’” ”5”2). 31)

3
C oy

By Pinsker (Csiszar & Korner, 2011; Canonne, 2022), TV < % KL, hence

TV(N (11, S, 02L) = O 7””5”2) 32
(N Gt B )s At 021 (@Ug (32)

The total deviation of the true law of (y.,, . .., y.,, ) from a product Gaussian equals the multivariate
non-Gaussianity error (Berry—Esseen/Bentkus type, O(C -1/ 2)) plus equation 32. Thus, for fixed
m,

_ 4|2
TV = O(CY2) + 0<m” ) 33
total ( ) VCo? (33)

which vanishes at rate O(C'~'/2) when ||8||2 = o(v/C).

A.5 QUANTIZATION AND MEAN-SQUARED ERROR

Under the mean-squared error (MSE) metric, applying the Hadamard transform for quantization
does not change the final quantization error. This conclusion follows from the orthogonality of the
Hadamard matrix (after normalization).

Let the activation vector be X, and the transformed vector be ¥ = HX. If we quantize Y to
get Q(Y) and then recover the vector via the inverse transform, the resulting vector is Xy =
HTQ(Y) = HT Q(HX).

The MSE of the quantization error is:

MSE = E[| X — Xec|3] = E[| X — H' Q(HX)][3] (34)

Since an orthogonal transform preserves the Euclidean norm (length) of a vector, we have:

MSE = E[||H(X ~H " Q(HX))|3] = E[|HX -HHTQ(HX)|}3] = E[| HX-Q(HX)]|3] (35

This shows that MSE = E[||Y —Q(Y")||3]. This identity demonstrates that the mean-squared error of
quantizing the original vector X is identical to the mean-squared error of quantizing the transformed
vector Y. This means our objective can shift from “how to quantize X to “how to quantize Y.”

As proven in this document, the coordinates of Y are approximately Gaussian and nearly indepen-
dent. This provides a great convenience for designing a quantizer. We can now transform a complex
multivariate quantization problem into quantizing a series of approximately independent Gaussian
variables.

The Gaussian distribution has the highest entropy among all continuous distributions with a given
variance (Cover & Thomas, 2006; Jaynes, 1957). From an information-theoretic perspective, this
means it contains the maximum randomness or “uncertainty.” Therefore, for a given number of
quantization bits, quantizing a Gaussian distribution is the “most difficult” task and typically results
in the largest quantization error. Our method effectively prepares for this “worst-case” scenario.

By designing a quantizer optimized for the Gaussian distribution, we ensure that the quantization
scheme is robust and effective for the Hadamard-transformed activations under the MSE metric.
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Fundamental Insight: Distribution-Agnostic Quantization via Whitening

Core Idea:We note that a lot existing quantization works focus on observing data distribu-
tions to extract prior knowledge and design corresponding quantizers, but what if we erase
prior knowledge instead?

The RobustQuantizer Paradigm:

* No Prior Assumptions: Instead of modeling input statistics, we use random or-
thogonal projections to actively transform inputs into the worst-case distribution —
Gaussian noise

* Embracing the Hardest Case: While (0, 1) has minimal information (maximum
entropy), its perfect knownness allows pre-computing optimal quantization param-
eters

* Theoretical Guarantee: This establishes a rigorous lower-bound for quantization
performance without requiring any prior knowledge about input distributions
Future Work:

Exploring alternative transformation methods to other known distributions and in-
vestigating their trade-offs between information preservation and quantization effi-
ciency will be our key focus for future work.

B ACTIVATION MIXED PRECISION NETWORK PIPELINE

We summarize the AMPN pipeline succinctly and provide compact pseudocode for the major al-
gorithmic components. Here, L is the number of activation layers, b, € B = {1,2,3,4} is the
chosen activation bit-width for layer ¢, weights are frozen to ternary (W1.58), and w, denotes
the FLOPs-based cost weight for layer ¢ with Wit = > , we. For a single-layer QAT run let
ALy(b;) = Ly, — Lep be the validation loss gap after short training; the constrained objective is

L

> " wiby < Bigy. (36)
(=1

1
Wtot

L
i ALy(be) st
T 2 A1

The pipeline is as follows:

1. Run Algorithm 1 to obtain the QAT-based sensitivity table AL,(b;). This involves briefly
training each layer individually at a given bit-width while all other layers are frozen in FP.

2. Generate the optimal bit-width allocation Cyp, by running Algorithm 2 with the sensitivity
table from the previous step.

3. Train the selected allocation Cqp, end-to-end with a full QAT schedule.

C EFFICIENCY ANALYSIS AND DEPLOYMENT

C.1 FLOPS AND MEMORY BREAKDOWN IN DIT-XL/2 MODEL

Here we provide an analysis of the FLOPs and memory usage for the DiT-XL/2 model (Peebles &
Xie, 2023), as shown in Figure 6. As illustrated, the DiT block accounts for the vast majority of
FLOPs and memory consumption (> 99%). Therefore, we keep the embedding section and the final
layer at FP without quantization. Within the DiT block, the MLP and adalLN-zero modules occupy
most of the memory(> 77%), while the MLP and attention components dominate the FLOPs(>
99%). When categorized by computation type, the primary computations occur between weights
and activations(> 96%). In contrast, operations between activations and activations constitute a
small proportion but have a significant impact, so we maintain these operations at 8-bit precision.
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Algorithm 1 QAT-based Sensitivity Profiling

Require: FP model M, validation pool V.01, training data Di,,in, bit set 3, short QAT steps Tynors
Ensure: sensitivity table AL, (b;) for all £, b;

I: Lpp < Eval(/\/l, Vpool)

2: for eachlayer ¢ =1,..., L do

3: foreachb, € Bdo

4: My < Copy(M)

5: Quantize layer £ of M to b; bits.

6: Freeze parameters of all layers ¢’ # £ in M.
7: Train Mg for Tynort steps on Dirain.

8: Lé,bl — Eval(/\/lq, Vpool)-

9: ALy(by) + L¢y, — Lrp.
10:  end for
11: end for

12: return AL,(b;)

Algorithm 2 Discretized DP for Bit-Width Allocation

Require: sensitivity table AL (b;) for £ € Lqp, layer costs wy, resolution 3, target Etgt
Ensure: DP-optimal allocation Cgy, on Lqp,

1: Compute total DP cost WI» « 3° teLa, We
2: for each / € Lg,, do

3:  Discretize layer cost: Awy < {ﬂ e J

Wee
4: end for o
5: Discretize target budget: B < |8 Byg |
6: Initialize DP[0. .. |L4p|][0. .. B] <= 4o00; DP[0][0] <~ 0
7: for i =1to |Lqp| do
8:  Let £ be the i-th layer in Lqp,
9: forw=0to Bdo

10: for each b; € Bdo

11: w < w+ Awy - by

12: if w’ < B then

13: DP[i|[w'] + min(DP[:][w'], DP[i — 1][w] + AL¢(b;))
14: end if

15: end for

16:  end for

17: end for

18: Backtrack from arg min,,< g DP[|Lqp|][w] to recover allocation Clp.
19: return Cg,

C.2 CALCULATE FLOPs orF RoBUQ W1.58 A4 MODEL

We employ FLOPs as metrics for evaluating theoretical inference efficiency. For quantization oper-
ations, we define the weighted FLOPs as follows:

FLOPs(W = 1.58, A= N) = % FLOPs(W = N, A= N) = 3—]\; - FLOPs (37)

For the Hadamard transform, since it possesses a fast algorithm with O(n? log n) complexity (Yates,
1968; Fino & Algazi, 1976) and can be absorbed into the weight matrix within a DiT block—
ultimately requiring only four online Hadamard transforms—its theoretical computational cost is
negligible. We provide FLOPs breakdown in RobuQ (w/o AMP) W1.58A4 model as Table 4 shown.
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X embedding .
4X32%X32 Attention MLP

X Final layer
Label embedding
¢ Timestep embedding kv QK Adath=Zero
y il i@ Unpatchify
Position embedding proj N4
GFLOPs 0.0016 36.71 4.053 36.71 36.71 0.2026 0.1268
MB 11.79 567.4 0 567.4 567.4 851.1 10.27
Figure 6: FLOPs and Memory Breakdown in DiT-XL/2 Model.
Table 4: Flops breakdown in RobuQ (w/o AMP) W1.58A4 DiT-XL/2 model.

Embedding Low rank branch A-A Matrix Multiplication W-A Matrix Multiplication Final Layer Total
bits/bits 32/32 32/32 8/8 1.58/4 32/32 N/A
GFLOPs (G)  0.0016 2.0312 1.0133 6.9213 0.1268  10.07

C.3 DEPLOYMENT

Our proposed RobuQ scheme is primarily motivated by the pursuit of enhanced deployment effi-
ciency. To validate its effectiveness, we conducted comparative experiments on DiT-XL/2 under
two precision settings: full-precision and a quantized configuration with W1.58 A4. In the quantized
implementation, we employ a weight-packing strategy that compacts five ternary weights into a
Int8, with real-time unpacking to 4-bit weights during inference using SVDQuant’s (Li et al., 2025)
Nunchaku framework, while additionally introducing an online Hadamard transform following the
approach illustrated in Fig 7.As shown in Table 5, our method achieves a model compression ratio
of 15.2x, reduces peak GPU memory usage by 7.1 x, and accelerates inference by 3.5x compared
to the FP baseline. However, due to hardware limitations and the lack of specialized optimization
in current quantization libraries, the acceleration potential has not been fully realized. We believe
that as the community continues to refine and develop dedicated low-bit computing frameworks, our
approach will demonstrate even greater advantages.

D ADDITIONAL ANALYSIS
D.1 EXPERIMENTS WITH EQUAL BIT-WIDTH (W=A)

We further evaluate our method in an equal bit-width setting, where both weights and activations are
quantized to the same precision. For these experiments, we adopted the same configuration as our
main experiments, but trained for a shorter duration of 25k steps. As shown in Table 6, our approach
consistently surpasses existing baselines across different configurations. In the W4A4 regime, our
method significantly improves generative quality over strong competitors such as QueST (Wang
et al., 2025a), demonstrating that our quantizer provides tangible benefits even in relatively high-
bit settings. More importantly, in the more challenging W3A3 case, our method achieves the best
results across all evaluation metrics, confirming its robustness in ultra-low-bit regimes. These results
highlight our framework’s versatility and SOTA performance under diverse quantization constraints.

D.2 MIXED-PRECISION ANALYSIS

Setup. With adalN fixed to 4-bit, we examine activation bit allocation only on learnable layers.
Fig. 8 (left) shows per-block heatmaps for the four ops (attn.gkv, attn.proj, mip.fcl, mlp.fc2) under
two activation budgets, W1.58 A2 and W1.58A3. Fig. 8 (right) summarizes the mean per-op alloca-
tion via pie charts, while Fig. 9 (top) and Fig. 9 (bottom) plot, respectively, the per-block average
activation bits and the normalized per-block activation share.

Findings.

» Attention consumes the budget first. From the heatmaps (Fig. 8 (left)), attention paths
(attn.gkv, attn.proj) retain higher bitwidths in mid and late blocks under W1.58A2. When
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Figure 7: Schematic diagram of actual deployment. For simplicity, we have omitted the AdalLN-
zero components to highlight the sections accounting for the majority of FLOPs.

Table 5: Deployment on NVIDIA RTX 4090. Iteration Speed is calculated with batchsize=1.
Method W/A FLOPs  Checkpoint Size =~ Max Memory Allocated  Iteration Speed

FP 32/32 114.52 2.58GB 3,914MB 44.09 iter/s
RobuQ 1.58/4 10.07 0.17GB 554MB 155.37 iter/s

moving from A2 to A3, the bit-width allocation becomes more balanced across all ops,
with extra capacity used to maintain higher precision, although attention still dominates.

* attn.proj is the largest sink under tight budgets. The pies in Fig. 8 (right) show that at
A2, attn.proj receives the largest share (32.0%), with attn.qgkv and mlip.fcl close behind. At
A3, the distribution becomes more even, but attention still takes the largest share.

* Depth matters: later blocks require more bits. The per-block curves (Fig. 9 (top)) in-
crease with depth for both budgets, and the share curves (Fig. 9 (bottom)) peak in the
middle-to-late stages, indicating that deeper layers need more precision for stability.

* A3 mainly lifts the floor. Upgrading from A2 to A3 shifts the entire per-block curve
upward (Fig. 9 (top)), reducing the number of low-precision stretches in both attention and
MLP. This suggests a robustness effect: more bits can smooth the activation statistics.

Practical rules-of-thumb. These observations can guide activation mixed precision policies.

* Prioritize attention first, projection before QKV under tight budgets. If only a small
headroom is available, raise attn.proj and then attn.gkv.

* Bias budget to mid/late blocks. Allocate extra bits to the second half of the network,
where attention—attention interactions accumulate and feature distributions widen.
D.3 VISUALIZATION RESULTS COMPARISONS

We present additional visualization results from our DiT-XL/2 model at a 256 x 256 resolution, using
250 sampling steps (Ho et al., 2020) and a cfg of = 4.0 (Ho & Salimans, 2022). Figure 10 compares
three activation precision configurations (A4, A3, and A2) across different quantization methods,
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Table 6: Performance comparison on ImageNet 256 x256. Timesteps are 50 and cfg is 1.5.

Method Bits (W/A) ISt FID| sFID| Precisiont
FP w32/w32 23950 6.62 21.10 0.7849
QueST 4.87 215.06 72.15 0.0529
Baseline wéad 162.27 1247 25.16  0.6825
RobuQ (w/o AMP) 184.51 991 2296 0.7183
Baseline w3a3 78.78 30.33 3424  0.5604
RobuQ (w/o AMP) 143.82 14.67 26.8 0.6844
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Figure 8: Visualization of Activation Bit-Width Distribution
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Figure 9: Per-Block Activation Statistics. Top: average activation bits per block; Bottom: normal-
ized per-block share (sums to 1).

displaying W1.58 DiT-XL/2 samples for ImageNet (Russakovsky et al., 2015). More visualizations
can be found in the supplementary materials.

E STATEMENT ON LARGE LANGUAGE MODEL USAGE

In preparing this manuscript, the authors used GPT-5 solely for language editing to improve read-
ability and clarity. Typical interactions included suggestions on grammar, syntax, style, and conci-
sion; harmonization of terminology and notation across sections; and minor rephrasings to enhance
narrative flow. All suggested edits were reviewed by the authors line by line, and acceptance required
human verification for factual accuracy and technical fidelity.

The model was not used for research ideation, experiment design, data processing or analysis, figure
or table generation, or drawing scientific conclusions. No code was authored, debugged, or executed
by the model, and no images were created or altered using generative tools. All methods and results
reported here were developed, implemented, and validated independently by the authors.

Throughout the writing process, the authors maintained control over scientific content and ensured
that any language edits did not alter the technical meaning. No confidential or proprietary infor-
mation beyond the manuscript text itself was provided to the model. The authors remain fully
responsible for the integrity and correctness of the paper and for any errors or omissions therein.
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RobuQ (w/o AMP)-A4

(a) Activation precision A4.

k. NI
RobuQ-A2
(c) Activation precision A2.

Figure 10: W1.58 DiT-XL/2 samples at 256 x256. Labels = [360, 985, 309, 207, 387, 279, 417,
973]. Cfg = 4.0, sampling steps = 250.
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