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ABSTRACT

Vision foundation models are typically trained as static feature extractors, forcing
the burden of task adaptation onto large downstream models. We propose a different
paradigm: instead of solely feeding visual features into language, we use language
itself to dynamically guide the vision encoder. Our method, Language-Instructed
Vision Embeddings (LIVE), leverages language as high-level guidance to pro-
duce task-centric embeddings at inference time—without requiring task-specific
retraining. This enables the encoder to focus attention on contextually relevant
aspects of the input, yielding more controllable and generalizable representations.
Empirically, LIVE reduces visual hallucinations (+34 points on MMVP), outper-
forms vision–language models with orders of magnitude more parameters on visual
question answering, and generalizes to unseen instructions and tasks—offering a
direct path toward adaptive, instruction-driven visual intelligence.

1 INTRODUCTION

A hallmark of human vision is its active, selective nature. Guided by internal goals or task demands,
we focus on relevant parts of the visual world while ignoring distractions (Posner, 1980; Desimone
et al., 1995). When searching for a specific object or understanding a particular interaction, humans
implicitly “know” where and what to look for. In contrast, today’s leading vision models, despite
producing powerful general-purpose features (Oquab et al., 2023; Zhai et al., 2023; Yu et al., 2022;
Radford et al., 2021), lack this dynamic, intention-driven adaptability. Their representations are
typically static, pre-computed without reference to the specific query they are meant to serve.

This limitation is particularly acute in vision–language models. Existing approaches such as visual
prompting (Bahng et al., 2022; Shtedritski et al., 2023) or fine-tuning (Mao et al., 2022) provide
limited adaptability, but they cannot interpret zero-shot language instructions. Dominant LLM-
centric architectures (Liu et al., 2023; Grattafiori et al., 2024; Alayrac et al., 2022; Team, 2024)
delegate language integration to large downstream modules, incurring high computational cost while
being unable to recover fine-grained details overlooked by the vision encoder, often resulting in
hallucinations (Tong et al., 2024). Recent attempts to modulate vision encoders with paired captions
(Lavoie et al., 2024; Xiao et al., 2025) are restricted by their reliance on descriptive text rather than true
instructions, limiting their versatility and controllability. Thus, the central challenge remains: how to
embed language-driven control into the vision encoder to yield adaptive, task-aware representations.

We address this challenge with LIVE (Language-Instructed Vision Embeddings), a simple and
effective framework for creating language-steered vision embeddings. LIVE enables dynamic,
fine-grained control of a vision encoder by training it to follow textual instructions. Concretely, we
use a large language model (LLM) as the knowledge base to generate synthetic instruction–response
pairs, which we combine with images into contrastive triplets. This teaches the vision encoder to steer
its embeddings based on textual commands, allowing it to highlight relevant attributes or suppress
adversarial cues (e.g., typographical attacks), thereby achieving robust instruction-following at the
representation level (Figure 1).

Once trained, LIVE yields standalone, language-steered embeddings that downstream tasks can use
directly—no large LLMs or task-specific fine-tuning required. Trained on synthetic ImageNet-based
data, LIVE generalizes strongly to real, unseen tasks: it reduces hallucinations by 34 points on
MMVP (Tong et al., 2024), and surpasses LLM-based counterparts on GQA (Hudson & Manning,
2019) by 7 points with less than 10% of their parameters. We also measure and narrow its gap to its
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Figure 1: LIVE (Language-Instructed Vision Embedding). We show state-of-the-art vision
foundation model struggle to distinguish between text and objects. LIVE allows user-guided focus on
specified aspects (e.g., “fruit” v.s. “text”), boosting control and prediction accuracy.

LLM knowledge base by up to 49 points across instruction-following benchmarks. Attention and
retrieval visualizations show precise, instruction-driven control emerging inside the encoder. With
up to 10 times fewer parameters than LLM-heavy methods, our results suggest that embedding task
instructions into the vision encoder—rather than scaling downstream modules—is an efficient path to
generalizable, and controllable visual perception.

2 RELATED WORK

Vision Foundation Models. Recent vision foundation models often use two-tower architectures
and train contrastively with image-text pairs (Radford et al., 2021; Zhai et al., 2023; Tschannen
et al., 2025; Zhai et al., 2022b). While some approaches jointly optimize contrastive and generative
objectives (e.g., CoCa (Yu et al., 2022), Mammut (Kuo et al., 2023)) or use encoder-based captioning
(e.g., Flamingo (Alayrac et al., 2022), Pali (Chen et al., 2022)), the vision embeddings are typically
computed independently or language interaction occurs during late fusion transformers. Similarly,
methods like Q-former (BLIP-2) (Li et al., 2022) use intermediate stages and powerful LLM decoders
for image-to-text tasks, without directly instructing the frozen image encoder with language.

Alternative paradigms like masked image-text modeling (ViLT (Kim et al., 2021)) learn alignments
but are not optimized for retrieval embeddings, therefore they require further finetuning on the target
task and cannot perform prediction in a zero-shot manner. More recent architectures aim to unify
approaches (X-Former (Swetha et al., 2024)) or leverage LLMs as decoders for richer outputs and
supervision (Lin et al., 2021; Liu et al., 2023; Beyer et al., 2024; Team et al., 2025; Grattafiori et al.,
2024; Wan et al., 2024; Tschannen et al., 2023; Lin et al., 2024). However, these methods still
generally do not allow language to directly control the vision embeddings and cannot perform the
target task via retrieval. Alternative vision only models, like Dino (Oquab et al., 2023; Caron et al.,
2021) and JEPA (Assran et al., 2023), cannot handle language inputs. BRAVE (Kar et al., 2024)
ensembles vision encoders for improved accuracy.

Instructed Foundation Models. The growing need for adaptive vision-language models inspired
efforts in fine-tuning (Lin et al., 2023) and prompt engineering (Menon et al., 2022). However, these
approaches typically optimize either the entire model or specific prompts, restricting them to single-
task adaptations such as rationale explanation (Mao et al., 2023) or category classification (Mao et al.,
2022). Methods like (Shtedritski et al., 2023; Zhong et al., 2022) allow querying visual encoders via
explicit markers (e.g., red circles or bounding boxes) but fail in scenarios involving overlapping or
ambiguous visual concepts, as these markers only specify location without clarifying the targeted
attribute (e.g., color, texture). Prior work train top down vision encoder for embodied agent, yet this
is not zero-shot (Eftekhar et al., 2023). Magiclens (Zhang et al., 2024) perform self-supervised image
retrieval based on instructions, yet it does not provide retrieval in semantic, language space, and not
ready for direct visual perception.

Multimodal retrieval methods like UniIR (Wei et al., 2024) perform retrieval via late-stage fusion of
features, our work focuses on guiding the vision encoder itself, which could serve as an enhanced
vision component to complement such models. (Kar et al., 2024) combines multiple vision encoders
to obtain better vision representations for language models. Other approaches control vision indi-
rectly through post-hoc modification (Chen et al., 2024a) or in specialized domains like document
retrieval (Zhou et al., 2024; Chen et al., 2024b). A recent trend is fine-tuning vision LLMs for
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Figure 2: Instructive Vision Encoder Design. Prior vision-language models like CLIP (Radford
et al., 2021) and SigLip (Zhai et al., 2023) use two-tower architecture with separate vision and text
encoders. We reuse the text tower to embed the query, apply a projection layer, and feed it into
the vision transformer alongside with the input image. Note that for the text question and the text
answer, while they are feed into the same text encoder, they are processed separately and there is no
feature interaction. The text encoder is frozen; only the vision encoder is trained (yellow). We denote
learnable embeddings in pink.

retrieval (Wei et al., 2024; Jiang et al., 2024; Liu et al., 2025). While powerful, these models inherit
the substantial computational footprint of their underlying LLMs. The most related works that also
modulate the vision encoder directly typically use image captions as the conditioning signal (Lavoie
et al., 2024; Xiao et al., 2025). This strategy risks learning undesirable shortcuts, as the model can
minimize loss by simply matching text features rather than learning true visual grounding. Our
method, LIVE, explicitly decouples the guidance from the target by using task instructions that differ
significantly from the target description. This design forces the model to learn a more sophisticated
mechanism for instruction-based control, enabling precise manipulation of vision embeddings without
the inference overhead of large LLMs or the risk of learning trivial solutions.

3 METHODOLOGY: LEARNING LANGUAGE-INSTRUCTED VISION
EMBEDDINGS

Conventional vision-language models treat the vision encoder as a static feature extractor for a
downstream LLM. We invert this paradigm by distilling knowledge from an LLM back into the vision
encoder itself. Using synthetic image-query-answer triplets, we employ contrastive learning to train
the encoder to produce language-instructed embeddings that align with the answer’s semantics. We
will show a powerful, standalone vision encoder capable of zero-shot perception, eliminating the
need for a computationally expensive LLM at inference.

3.1 LANGUAGE-INSTRUCTED VISUAL EMBEDDINGS

Standard vision-language models like CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023) use
a two-tower architecture with vision E(·) and text encoders T (·), see Figure 2. The vision encoder E
generates a general-purpose embedding z = E(x) intended to capture all relevant information in the
input image x. However, to serve diverse downstream tasks via text queries, these representations
must be versatile and precise. Training such universal embeddings is challenging due to vision
encoder capacity limits.

Visual prompting (Bahng et al., 2022; Jia et al., 2022) aims to adapt visual representations. However,
visual perception is often ambiguous and context-dependent. Simple location prompts (e.g., boxes,
circles (Shtedritski et al., 2023)) offer some control but lack granularity to specify which aspects. For
example, a car region might require focusing on color (”What color?”), make (”What make?”), or
condition (”Is it clean?”). Existing methods struggle with this semantic ambiguity.

To address this, we propose an language-conditioned vision encoder, denoted Elive. Instead of a fixed
embedding, Elive dynamically processes the image x based on the embedding of a textual instruction
q. We reuse the pretrained text encoder T (·). Our instructive visual embedding is computed as:

z(I) = Elive(x, T (q)). (1)

This formulation allows the vision encoder to focus its computation on the aspects of the image
most relevant to the language instruction, producing a targeted, task-specific representation. Model
implementation details are in Section 4.1.
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What is the primary activity taking place in the image? A person is driving a snowmobile with a child passenger.

What type of vehicle is depicted in the image? A vintage snowmobile.

What is the color of the snowmobile? The snowmobile is predominantly blue and white.

What is the color of the child's jacket? Orange

What is the adult wearing on their head? A helmet.

What is visible in the background of the image? Houses, trees, a road, and a bright sun

What is the license plate number on the snowmobile? 542958

What is the color of the mug in the center of the image? The mug in the center is primarily yellow and brown.

What character is featured on the yellow mug? The yellow mug features Donald Duck.

What object is behind the mugs? A coffee maker is behind the mugs.
What is the relative position of the red mug to the yellow? The red mug is to the left of the yellow mug.

Is there coffee in any of the mugs? Yes, there appears to be coffee in the yellow mug.
What kind of surface are the mugs sitting on? The mugs are sitting on a white shelf or counter.
If the foreground is ignored, what is the main 
object in the image?

If the foreground is ignored, the main object in the 
image is the coffee maker

Question Answer

Figure 3: Triplet Training Data from LLM. We apply Gemini-2.0-Flash (Comanici et al., 2025) to
automatically create diversified, open-world triplet data containing image, query, and answer. This
method moves beyond generic questions from existing image-text data, allowing for nuanced and
sophisticated exploration of individual image content.

3.2 TRAINING OBJECTIVE

We train the instruction-conditioned vision encoder Elive by matching its output z(I) with the text
embedding of the corresponding correct answer a. Specifically, we want z(I)i = Elive(xi, T (qi) to
be close to the answer embedding z

(T )
j = T (aj) if and only if (xi,qi) corresponds to answer aj .

Following (Zhai et al., 2023), we employ a sigmoid-based alignment loss, which yields better
performance and stability than standard contrastive losses (Radford et al., 2021). Given a batch of
image-instruction pairs (xi,qi) and their corresponding answers aj , the loss is defined as:

L = −Ei,j

[
log

1

1 + exp(−yij(t(z
(I)
i · z(T )

j ) + b))

]
(2)

yij ∈ {−1, 1} encodes the match (1 for match, −1 for mismatch). The parameters t (temperature)
and b (bias) are learnable parameters for calibration. We minimize this loss via gradient descent to
optimize the visual encoder Elive.

3.3 KNOWLEDGE TRANSFER FROM LLM

Despite the abundant image text paired data (Schuhmann et al., 2022; Byeon et al., 2022), a significant
challenge in training the instruction-guided encoder Elive is the scarcity of large-scale datasets with
image-instruction-answer triplets (x,q,a). Existing visual question answering (VQA) datasets (e.g.,
CC3M-VQA (Changpinyo et al., 2022)) often rely on template-based or rule-generated questions,
which may not capture the breadth and complexity of real-world queries needed to probe deeper
understanding. Our experiments in Figure 7 shows existing datasets cannot train language-instructed
visual embeddings with high accuracy.

To overcome this data bottleneck, we leverage the extensive world knowledge and reasoning capa-
bilities inherent in LLMs. We treat an LLM as an implicit knowledge source capable of identifying
salient aspects of an image and formulating relevant questions about them. We query powerful LLMs
that take visual inputs, and generate question-answer pairs (q,a) conditioned on image. This transfers
the complex understanding capabilities of the LLM from many billions of parameters into the training
data for our vision encoder. Crucially, this computationally intensive LLM inference occurs offline
during dataset creation. At inference, our approach only require the efficient instruction-guided vision
encoder Elive, preserving computational efficiency for real-time perception tasks.

We prompt LLM to generate multiple diverse question-answer pairs for each image simultaneously
with the following prompt structure: Provide a numbered list of interesting visual questions about the
image, followed by the corresponding answers. Figure 3 shows examples of our generated queries
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Figure 4: LIVE Reduces Visual Hallucinations (MMVP Benchmark Tong et al. (2024)). State-
of-the-art vision-only embeddings Zhai et al. (2023) (left column) must perceive the entire scene
without query-specific guidance, making them prone to hallucination when precise details are needed.
By modulating visual computation with the input text query (right column), our method selectively
focuses on relevant information, thereby mitigating hallucinations and improving accuracy.

and answers on ImageNet, which introduce diverse visual attributes and semantic concepts previously
unavailable. This rich, detailed data enables vision models to learn beyond prevalent image-captioning
patterns, fostering more effective, fine-grained visual comprehension. Crucially, as humans often
perform such queried visual tasks spontaneously using System-1 (intuitive) reasoning, our LIVE
encoder is designed to be similarly efficient and sufficient. This avoids the computational overhead
of larger LLMs, especially on direct visual perception applications. Moreover, if the downstream
application is known before deployment, our text embeddings can be pre-computed and cached,
which saves significant computation.

4 EXPERIMENT

This section details our experimental setup, benchmarks, baselines, results, and analysis designed to
evaluate the zero-shot language controllability enabled by our LIVE approach.

4.1 EXPERIMENTAL SETUP

Training Data: We train LIVE using ImageNet training images. We apply the data generation
detailed in Section 3.3 on ImageNet data via the public available Gemini 2.0 Flash (Gemini, 2024;
Comanici et al., 2025), where we generate a total around 16.4 million images-query-answer triplet
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Figure 5: LIVE’s Retrieval based on Language Instructions. Examples 1-5 show examples from
ImageNet, Caltech, SUN, RefCOCO, and GQA, respectively. Instructions provided to the model
during inference are unseen in training and in red. For both our method and the vision-only baseline
(SigLip), we show the top 5 retrieved text responses with bars indicating the predicted sigmoid
probability. Our method demonstrates superior retrieval accuracy, correctly identifies (1) non-visible
elements, (2) follow instructions to ignore, (3) attend to factors asked, (4) do basic spatial reasoning,
(5) perceive relationships.

data since there will be multiple informative queries for each image. In addition, we explore and
compare with available triplet data from PaliGemma (Beyer et al., 2024), specifically leveraging
CC3M-VQA (Changpinyo et al., 2022). We also create a universal instruction, “caption the image”,
for dataset that does not have instructions available like WebLI (Wang et al., 2025) and Open
Images (Piergiovanni et al., 2022).

Evaluation Benchmarks: We target tasks that require explicit language instructions to specify the
goal, in contrast to popular benchmarks that use static vision encoders for universal zero-shot classifi-
cation and thus cannot probe instruction-following or capabilities beyond fixed label taxonomies. We
deduplicate both the image and text instructions to make sure all our evaluations data are novel. For
all datasets, we report the Top 1 retrieval accuracy. MMVP (Tong et al., 2024) is a recent popular
benchmark that evaluate vision language models’ hallucinations. See example in Figure 4. The
images are paired so that the model has to see the nuances to answer the question in the right way.
GQA (Hudson & Manning, 2019) is a challenging question answering benchmark that goes beyond
attribute answering and require reasoning to answer the scene graphs related questions.

Moreover, to measure the gap of LIVE to its LLM knowledge source, we use Gemini 2.0 Flash, to
annotate instruction answers on test data on Caltech101 (Griffin et al., 2007), SUN397 (Xiao et al.,
2010), RefCOCO (Kazemzadeh et al., 2014), and ImageNet (Deng et al., 2009). Therefore Gemini
2.0 Flash has 100% accuracy. We filtered the test and ensured no instruction overlap between training
and test sets. We denote the repurposed dataset with †. Those † datasets’s goal is to measure the
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Image
Size

Params
(M) ☼ Û L � , h Ô k � Average

OpenAI ViT-L-14 (Radford et al., 2021) 2242 427.6 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 (Radford et al., 2021) 3362 427.9 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
DFN ViT-H-14 (Fang et al., 2023) 2242 986.1 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 (Fang et al., 2023) 3782 986.7 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 (Xu et al., 2023) 2242 427.6 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 (Xu et al., 2023) 2242 986.1 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 (Sun et al., 2023) 2242 1136.4 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ (Sun et al., 2023) 2242 5044.9 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3
SigLIP ViT-SO-14 (Zhai et al., 2023) 2242 877.4 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 (Zhai et al., 2023) 3842 878.0 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
InstructBLIP Li et al. (2022) 3362 ∼14200.0 - - - - - - - - - 16.7
LLaVa Liu et al. (2023) 3362 ∼13000.0 - - - - - - - - - 31.3
BRAVE Kar et al. (2024) 3362 ∼10300.0 - - - - - - - - - 42.0

SigLIP ViT-SO-14 (Ours) 3842 891.0 80.0 76.7 73.3 80.0 83.3 86.7 66.7 66.7 73.3 76.3

Table 1: Zero-Shot Accuracy on MMVP-VLM benchmark (Tong et al., 2024). We use bold to
highlight the best accuracy. Baseline methods are vision-only models, numbers are quoted from
MMVP. We symbol the visual patterns following MMVP: ☼: Orientation and Direction, Û: Presence
of Specific Features, L: State and Condition, �: Quantity and Count, ,: Positional and Relational
Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �:
Viewpoint and Perspective. All CLIP-based methods, using vision-only embeddings, struggle on this
benchmarks. Just by instructing the vision embeddings, our method achieves a 34-point zero-shot
accuracy improvement over prior SOTA methods merely, which underscores the importance of our
instructions in guiding the vision encoder to focus on relevant signals and reducing hallucinations.

(a) Performance of our model variants on GQA.
ViT Model SigLip Fusion Menon et al. Ours

SigLip ViT-T-14 9.8 20.0 10.4 60.6
SigLip ViT-B-16 12.0 12.8 13.0 71.2
SigLip 2 ViT-B-16 14.4 20.8 19.8 67.6
SigLIP 2 ViT-SO-14 16.4 19.6 17.8 68.2

(b) Comparison with state-of-the-art.
Model Accuracy (%)

BLIP-2 44.7
InstructBLIP 49.5
BRAVE 52.7
LLava 63.3
Ours (ViT-B-16) 71.2

Table 2: Zero-Shot Retrieval Accuracy on GQA tasks. We report top-1 accuracy (%).

fidelity of knowledge transfer from the ”teacher” (Gemini) to the ”student” (LIVE), not to benchmark
the accuracy on target tasks, since those tasks is Gemini generated.

Baselines. One family of baselines are static vision-only embeddings and their variants.
SigLip (Tschannen et al., 2025): We use downloaded SigLip models up to size SO400M, rep-
resenting state-of-the-art static, instruction-agnostic visual embeddings. Fusion: We directly add
the embeddings of the image and text query, and the goal is to retrieve the text answer. Menon et
al. (Menon & Vondrick, 2022): Following Menon et al. (Menon & Vondrick, 2022) that achieved
improved retrieval accuracy by adding language descriptions to the text answer, we will append the
language instructions to the answer as the description for the task, which will tell the model’s text
tower the query asked. Moreover, We compare with LLM-based approach LLaVa (Liu et al., 2023)
and late fusion based method InstructBLIP (Li et al., 2022). We also compare with an ensemble-
based state-of-the-art method BRAVE (Kar et al., 2024), that combines five generic vision encoders
EVA-CLIP-g (Sun et al., 2023), CLIP-L/14 (Radford et al., 2021), SILC-G/16 (Naeem et al., 2024),
ViT-e (Chen et al., 2022), and DINOv2-L/14 (Oquab et al., 2023) and further finetune.

Implementation Details. We initialize LIVE’s vision encoder from a pretrained SigLip and SigLip-
v2 (Zhai et al., 2023; Tschannen et al., 2025), since it outperforms CLIP (Radford et al., 2021). All
models are transformer (Vaswani et al., 2017). We use SigLip text encoder to precompute fixed
text embeddings for instructions during training and evaluation. The precomputed instruction text
embedding is projected by a single linear layer which will be input to the vision transformer, which
introduces additionally 13M parameters for ViT-So model. The vision encoder, including the text
projection layer, will be updated during training, while the original text tower remains fixed. We use
the same optimizer as SigLip (Zhai et al., 2022a) with a learning rate of 0.001, batch size of 8192,
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ImageNet† Caltech 101†
ViT Model SigLip Fusion Menon et al. Ours SigLip Fusion Menon et al. Ours

SigLip ViT-T-14 25.10 32.46 33.42 73.28 10.53 11.38 22.05 37.08
SigLip ViT-B-16 30.84 33.23 42.50 86.93 12.08 12.64 24.72 55.75
SigLip 2 ViT-B-16 37.73 40.69 60.52 86.79 14.89 15.31 29.92 51.97
SigLIP2 ViT-SO-14 38.03 40.40 60.86 87.06 14.61 15.87 33.00 55.05

SUN† RefCOCO†
ViT Model SigLip Fusion Menon et al. Ours SigLip Fusion Menon et al. Ours

SigLip ViT-T-14 6.99 8.87 10.90 33.16 8.52 11.74 11.01 42.73
SigLip ViT-B-16 9.26 9.75 16.94 49.83 9.84 10.87 12.78 59.32
SigLip 2 ViT-B-16 12.44 12.96 24.67 49.76 12.04 13.51 17.47 55.95
SigLIP 2 ViT-SO-14 13.00 14.06 25.79 52.94 9.40 10.28 14.98 54.33

Table 3: Closing the gap to the Gemini knowledge source in zero-shot instruction following.
We report top-1 retrieval accuracy on benchmarks† where Gemini’s annotations serve as a 100%
accurate oracle. Our model is evaluated in a strict zero-shot setting—without any fine-tuning on the
downstream Caltech 101, SUN, or RefCOCO datasets, unlike prior work (Beyer et al., 2024; Kim
et al., 2021). All evaluation sets are deduplicated from our synthetic training data. Our approach
narrows the gap to the oracle, outperforming baselines by up to 49 points.

What is the text in 
the image?

Vision-Only Embedding (Baseline) Language-Instructed Vision Embedding (Ours)

Is the minion 
smiling with 
tounge out?

+

What is the fruit in 
the image?

Ours: first layer,  token 5, 8, 

No Instruction.

Input ViT Attention ViT Attention ViT AttentionInput Input

Figure 6: Zero-Shot Language Instructions Steer Visual Attention. Unlike baseline encoders
producing global attention (SigLip, left), our LIVE uses instructions to focus dynamically. Prompting
for ”text” highlights the ”iPod” label; prompting for ”fruit” highlights only the apple, ignoring the
label. This demonstrates emergent, instruction-driven control over visual encoding.

and train for 122k steps. We use 256 TPUv3 for training. Following SigLip, we apply only resize
augmentation during training.

4.2 RESULTS

We first evaluated LIVE on the MMVP-VLM benchmark (Tong et al., 2024). As shown in Table 1,
our model achieves a 34-point accuracy gain over prior established methods, including LLM and
ensemble counterparts that are 10 times more larger. Qualitative examples in Figure 4 illustrate
how language instructions can guide the vision model to focus on end-task requirements, thereby
mitigating hallucinations, such as the erroneous perception of a minion’s tongue. On question
answering that requires relationship reasoning GQA dataset, we outperform LLMs and prior best
generic vision models, by 7 points, with 10 times fewer parameters.

We then assessed our LIVE’s acucracy gap to its LLM knowledge source, Gemini 2.0 Flash. Results
in Table 3 demonstrate that LIVE, while still has 23 point to 41 points gap from Gemini Oracle,
attains superior top-1 retrieval accuracy compared to established vision-only embeddings on these
targeted tasks, despite considerable domain shifts in both images and query types.

Figure 5 shows visualizations of images, queries, and top-5 retrieved instances. All are deduplicated
from training set. Our LIVE model exhibits emergent capabilities not present in its training. For
instance, as illustrated by image (4) in Figure 5, the model correctly interprets bounding boxes to infer
the color of a specified motorcycle, despite no exposure to bounding box annotations during training.
Furthermore, Figure 5 image (1) demonstrates the model’s ability to discern nuanced visual details,
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0%

22.5%

45%

67.5%

90%

ImageNet† Caltech101† SUN† RefCOCO† VQAv2 GQA ImageNet OCR

Baseline Open Images WebLi CC3M LIVE (Ours)

Figure 7: Impact of Triplet Training Data on LIVE Method’s Accuracy. We train SigLip v2
ViT-B-16 with four triplet datasets, Open Images, WebLI, CC3M, and ours. Ours achieves broader
improvements across benchmarks. While OI showed no gain, WebLI increases OCR, and CC3M
offered slight improvements on some tasks, our approach highlights the benefit of using LLMs to
overcome traditional data limitations for training transferable vision encoders.

such as recognizing that an ink color is not visible, rather than defaulting to the image’s dominant red
color (baseline vision-only embedding). Such fine-grained understanding and contextual inference
were previously unattainable with vision-only embeddings.

4.3 ANALYSIS

Impact of Training Data. We benchmarked our model by training it individually on established
vision-language datasets—Open Images (Piergiovanni et al., 2022), WebLI (Wang et al., 2025), and
CC3M-VQA (Changpinyo et al., 2022)—and on our novel Imagenet triplet dataset. For pre-existing
datasets lacking explicit textual queries (unlike CC3M-VQA, which uses rule-extracted query-answer
pairs), we employed generic queries (e.g., ”caption the image”) for a comparable training setup.
As shown in Figure 7, models trained with our Imagenet triplet dataset significantly outperform
those trained on existing image-language datasets across diverse benchmarks. These results strongly
suggest that the scarcity of large-scale, diversified, and targeted image-query-answer data has been a
key bottleneck for advancing instructed vision embeddings. While prior work often fix vision model
and improves LLM, we reverse this paradigm and show the power of LLM can also facilitating more
effective training of vision models.

Impact of Vision Encoder Size. As detailed in Table 3, we varied the vision encoder from ViT-T
(5.4M parameters) to ViT-B (86.6M) and SO400M (891M). While larger model sizes generally
yield better performance, even the compact ViT-T model achieves reasonable accuracy, which shows
potential to be deployed on edge devices.

Attention Map Visualization. Figure 6 visualizes how language instructions modulate visual
attention. We use heatmap to plot the attention from our language input token to the visual tokens. We
contrast a baseline vision-only transformer (SigLip ViT-SO-14, left) with ours (right). Given the same
input image (e.g., an apple with an ”iPod” label), the baseline’s attention is instruction-agnostic since
it does not take instructions. In contrast, LIVE dynamically adjusts its focus: when instructed to find
”the text”, attention localizes on the ”iPod” label; when asked for ”the fruit”, attention isolates the
apple itself. This demonstrates that LIVE learns to steer its visual processing based on the language
query, enabling focused computation on instruction-relevant regions.

Generalization to Out-of-Distribution (OOD) Instructions Groups. To perform a stricter test of
generalization, we train and evaluate our model on semantically disjoint instruction groups. This
introduces a more significant distributional shift than the deduplication used in prior experiments.
The results in Table 4 show robust performance even in this challenging OOD setting.

5 CONCLUSION

We introduce a new paradigm for vision representation: instructing the encoder with knowledge
from language models. Reversing the typical workflow of freezing a generic vision encoder, we
demonstrate that injecting task-specific guidance directly into the visual system yields significant
benefits. Our approach produces an efficient, lightweight encoder that enhances perceptual precision

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Training Groups SVD FVD FSD FSV FSVD
Testing Groups F S V D FSVD

SigLIP 2 ViT-B/16 74.05 82.48 83.40 83.28 86.93

Table 4: Leave-One-Group-Out Generalization. To test generalization to novel instruction types,
we partition our data into four categories: Fundamental Properties (F), Spatial-Textual (S), Viewpoint
(V), and Dynamic Reasoning (D). We train the model while holding out each category in turn,
demonstrating LIVE’s ability to generalize to semantically distinct, unseen instructions.

and mitigates hallucinations without costly retraining. Our findings suggest that the key to advancing
vision models on targeted tasks lies not just in scaling them, but in making them instruction-aware.
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6 ETHICS STATEMENT

Our work introduces instruction-aware vision encoders that accept natural-language task speci-
fications. While this can reduce hallucination and improve task precision, it also raises ethical
considerations: Instruction following could be repurposed for harmful objectives (e.g., surveillance,
targeted profiling). In our training, we do not include any harmful objectives, therefore the risk shall
be minimized in our model perspective.

7 REPRODUCIBILITY STATEMENT

Code and data will be released upon acceptance, and the paper already contains the implementation
details needed for reproduction. If any discrepancies arise, we will update the repository with
clarifications and minimal patches.
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A APPENDIX

A.1 LIMITATIONS

Our approach enhances the controllability of visual representations using language instructions.
However, its practical application and further development are subject to certain limitations, which
also open avenues for future research.

Optimizing Query Design for Downstream Tasks: A primary challenge lies in the formulation of
effective textual queries to maximize performance on specific downstream applications. The process
of identifying the optimal phrasing, level of detail, and linguistic structure for queries that elicit
the desired visual representation changes remains an empirical endeavor. It may require significant
tuning for each new task or dataset. This is compounded by the inherent ambiguity and richness of
natural language, where subtle variations in a query can lead to different steering outcomes, not all of
which may be beneficial for the target application’s accuracy. We conducted initial experiments in
Figure 12, yet a principled way to discovery effective prompt is still missing.

Handling of Complex and Compositional Queries. The reliance on a pretrained text encoder
constrains the complexity of queries our method can effectively interpret. Current pretrained text
encoders, while powerful, often struggle with deeply compositional or abstract textual prompts. Their
encoding of nuanced relationships between multiple concepts, or negation, might not be robust. Our
method, therefore, performs best with relatively simple, direct queries.

Potential for Undesired Steering Outcomes. Depending on how the users provide the instructions,
the model has a risk of generating biased, unsafe, or undesirable content.

A.2 FUTURE WORK

Principled Query Optimization and Discovery: Developing systematic methods or even learnable
components to automatically discover or refine queries for optimal downstream performance would
significantly enhance usability. This could involve techniques from prompt engineering, reinforcement
learning, or semantic search to bridge the gap between user intent and effective query formulation.

Enhancing Complex Query Understanding: Future work should focus on strategies to decompose
complex textual queries into simpler, manageable sub-queries that our current framework can process.
Alternatively, exploring new architectures or fine-tuning regimes for the text encoder to better handle
compositional semantics and logical operations directly within the query embedding space would be
a valuable pursuit. This could involve incorporating structured knowledge or symbolic reasoning
alongside neural representations.

Visual Grounding with Instructions: Our method can mitigate visual hallcuinations, which can be
used as a component in RAG systems, to help verify, ground the reasoning and prediction of LLM.

Language-Instructed Vision Generation: Our method is a language-instructed vision encoder,
which can be used as the backbone that encode semantic information in generative models, such as
Diffusion. For example, by using language-instructed vision embeddings, one can train image editing
models based on the instructions.

A.3 BROADER IMPACT

Our research on language-steered vision embeddings has the potential for considerable positive
societal impact, primarily by offering novel approaches to creating more equitable and robust AI
systems. By enabling vision embeddings to be guided by language instructions, we introduce a
mechanism for actively mitigating biases present in training datasets. This zero-shot bias mitigation
capability is a significant step towards fairer AI representations, as it allows for targeted adjustments
without the need for extensive retraining or dataset curation, making the development of equitable
models more accessible.

Furthermore, our method enhances the robustness of vision embeddings. By training models on
detailed, instructed triplets, they learn to capture nuanced, fine-grained signals from an image, moving
beyond a single, holistic embedding. This improved granularity can lead to models that are more
adaptable and less susceptible to being misled by irrelevant or superficial features. An important
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application of this enhanced instructional control is the ability to direct the model to defend against
typographical attacks. This contributes to making vision models safer and more resilient to adversarial
manipulations aimed at ”jailbreaking” or deceiving them.

However, we also recognize potential negative societal impacts. The same linguistic steerability that
allows for bias mitigation and robustness enhancement could, if misused, be employed to intentionally
introduce or amplify biases. A malicious actor could craft instructions to make the vision embeddings
unfairly prejudiced against certain groups or characteristics. Currently, our work does not include a
mechanism to automatically discriminate between benign and malicious instructions, nor a system
to refuse potentially harmful guidance. This creates a risk of misuse, where the technology could
be exploited to generate unfair or harmful representations, potentially leading to discriminatory
outcomes if deployed in sensitive applications.

Future work should prioritize the development of safeguards against such misuse. This could involve
research into methods for detecting and rejecting biased or malicious instructions, establishing proto-
cols for the responsible deployment of steerable vision models, and fostering a deeper understanding
of the societal implications as this technology matures.

A.4 SAFEGUARDS

Since our training set is repurposed from Imagenet dataset and other established benchmarks that
has been extensively used by the field, they shall not contain image data with NSFW. For language
instructions, one can implement a classifier for the instructions to classify if it is benign or malicious
as a straightforward safeguard.

A.5 PSEUDO CODE

We provide pseudo code for implementing our LIVE encoder and training loss.

1 # Assuming text_query, image, text_answer are input batches
2 # Assuming t (temperature) and b (bias) are parameters
3 # Models: text_query_model, image_model, text_answer_model
4

5 # Precomputed query:
6 _zquery_raw, out_query = text_query_model(text_query)
7 zquery = jax.lax.stop_gradient(_zquery_raw)
8

9 # Image embeddings steered by query:
10 zimg, out_img = image_model(image, query_tokens=zquery)
11

12 # Text answer embeddings:
13 _ztxt_raw, out_txt = text_answer_model(text_answer) # **kw omitted
14 ztxt = jax.lax.stop_gradient(_ztxt_raw)
15

16 # Compute logits:
17 logits = jnp.dot(zimg, ztxt.T) # (batch_size, batch_size)
18 logits = logits * t + b
19

20 # Contrastive loss calculation:
21 batch_size = zimg.shape[0]
22 eye = jnp.eye(batch_size)
23 m1_diag1 = -jnp.ones_like(logits) + (2 * eye)
24

25 loglik = jax.nn.log_sigmoid(m1_diag1 * logits)
26 nll = -jnp.sum(loglik, axis=-1) # NLL per sample
27 loss = jnp.mean(nll) # Average loss for the batch

Figure 8: Pseudo JAX code for language-steered vision embedding model.
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1 # ViT Input: Image + Language Query Tokens (Concise)
2 # Assumes: self (Flax Module), nn (flax.linen), jnp (jax.numpy)
3 # Config: self.T, self.dtype_mm, self.width, self.patch_size, self.posemb
4 # Helper: get_posemb() for positional embeddings
5

6 # 1. Image to Patch Embeddings
7 img_in = jnp.asarray(image, dtype=self.dtype_mm)
8 patches = nn.Conv(features=self.width,
9 kernel_size=(self.patch_size, self.patch_size),

10 strides=(self.patch_size, self.patch_size),
11 padding="VALID", name="patch_conv",

dtype=self.dtype_mm)(img_in)↪→
12 n, h, w, c = patches.shape
13 patch_emb = jnp.reshape(patches, (n, h * w, c))
14 # Add positional embeddings to patch embeddings
15 patch_emb += get_posemb(self, self.posemb, (h,w), c, "patch_pos",

patch_emb.dtype)↪→
16

17 # 2. Process Query Tokens
18 # query_tokens input, e.g., (batch, query_feat_dim)
19 q_proj = nn.Dense(features=c * self.T, name="query_proj",
20 dtype=self.dtype_mm)(query_tokens)
21 q_proj = jnp.reshape(q_proj, (n, self.T, c))
22 q_pos_emb = self.param("query_pos_emb", nn.initializers.zeros,
23 (1, self.T, c), self.dtype_mm)
24 query_emb = q_proj + q_pos_emb
25

26 # 3. Concatenate query and patch embeddings for ViT Encoder
27 # Typically, sequence_axis=1 for (batch, seq_len, features)
28 encoder_input = jnp.concatenate([query_emb, patch_emb], axis=1)
29

30 # 'encoder_input' is then fed into the main ViT Encoder layers

Figure 9: Concise pseudo JAX code for ViT input processing with language queries. The self.T is
number of language tokens feed into the Vit.

A.6 COMPARISON WITH EXISTING WORK

We list a comparison with existing vision language models in the followings, and visualize their
architecture in Figure 10.

• A) CLIP Radford et al. (2021), SigLip Zhai et al. (2023), LiT Zhai et al. (2022b)

• B) Llava Liu et al. (2023), Gemma Team et al. (2025), Paligemma Beyer et al. (2024),
Llama Grattafiori et al. (2024)

• C) CoCA Yu et al. (2022), Cappa Tschannen et al. (2023)

• D) VILT Kim et al. (2021)

• E) Falmingo Alayrac et al. (2022), BLIP Li et al. (2022), X-former Swetha et al. (2024)

• (F) Ours

Our work introduces the first vision-centric encoder that uses language to modulate visual computation
for encoding target tasks. We address the scarcity of high-quality image, query, and answer triplet
data by transferring the knowldge from LLM such as Gemini, and we demonstrate how language can
directly control the vision encoder.

A.7 THE IMPACT OF LANGUAGE INSTRUCTIONS FOR LIVE

Since our method allows feeding text instructions to the vision encoder, we have the potential to
serve the final task better by improving the query. We investigated the impact of prompt text on the
ImageNet classification accuracy of our SigLIP So400M model variant. We show the classification
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Figure 10: Comparison with existing methods. Note that B, C, E requires large language model based
decoders. D does not have a embedding to perform zero-shot retrieval.
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Figure 11: Illustration for baselines compared with in our paper. We take the two tower architecture
(A), add the text query embedding to the embedding (B), and adding query to the text answer as
description following Menon et al. (C).

accuracy of different prompt in Figure 12. Due to our model’s training on more sophisticated image
queries, the ImageNet classification accuracy dropped to 49.32% when no query prompt was used in
retrieval tasks. Interestingly, by leveraging Gemini to evolve and generate different text prompts Yang
et al. (2023), we improved the ImageNet accuracy to 68.18% using the instruction query: ”Classify
the main object.” We believe this demonstrates the potential of our instructive vision foundation
model for future work in prompt optimization to achieve even higher accuracy.

A.8 ADDITIONAL EXPERIMENTAL RESULTS.

Results on Steering Visual Representations for Text Recognition. We repurposed the ImageNet
dataset for a text recognition task by rendering text from one ImageNet category onto an image
of another. A visual representation that ignores this text and instead predicts the original image’s
category would result in 0% accuracy. Therefore, higher accuracy directly indicates the model’s ability
to follow instructions and perform OCR retrieval. As shown in Table 5, our approach demonstrates
significant effectiveness.

Robustness Against Typographical Attacks. Vision-language models like CLIP and SigLip are
known to be vulnerable to typographical attacks, where target text is appended to an image to mislead
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What is the category of the foreground object

Main object classification label?

Name the category of the central subject

Classify the main object

Provide the category of the main object

State the category of the main object.

Output the classification of the main object

Perform Classification for the main object

Classify the most prominent object

Classify the key object.

Figure 12: Impact of Different Language Instructions for ImageNet classification task. The
y-axis shows the ImageNet classification accuracy in %. The x-axis shows the language instructions
for the vision encoder. By improving the query prompts, we can improve the downstream task
accuracy by up to 20 points.

OCR Accuracy
ViT Model Baseline Ours

SigLIP 2 ViT-SO-14 10.48 38.99

Table 5: Zero-shot accuracy to recognizing the text on Imagenet dataset. We evaluate OCR
performance when text in words, potentially of different categories to the ImageNet image, is
rendered in the image. If the model only perceive the original imagenet image without attending
to the added text, the accuracy will be 0. While vision-only representations has a low accuracy
on recognizing the text, our instructive visual embeddings allow embedding either image or text
information based on instructions.

the model’s representations. This vulnerability poses a significant concern for critical applications
such as autonomous driving and facial authentication.

To evaluate this, we rendered a text sticker in the middle of ImageNet images, with the text explicitly
stating a different class name than the original image. If the model attends to this text sticker, its
accuracy drops to 0%. As shown in Table 6, baseline models exhibited a reduced ImageNet accuracy
of 48.31% under these attacks. However, simply by adding the prompt, ”Ignoring text, what is the
object?”, we observed a significant increase in robust accuracy, demonstrating our approach’s ability
to disregard typographical attacks.

Robustness Against Typographical Attacks
ViT Model Baseline Ours

SigLIP 2 ViT-SO-14 48.31 51.48

Table 6: Zero-Shot test accuracy on ImageNet with typographical attacks. When providing text
sticker on top of the image, original image classification model has the tendency to be mislead by the
text. By using text prompt to let the model to ignore the text, we can increase the robustness against
typographical attack.

Instructive Visual Benchmark on All Language Instructions. In the main paper, we present the
results on testing on unseen instructions, where we exclude all the language instructions that appear
in the training. In Table 7, we also show the results on all instructions, which includes also language
instructions that appear in the training. Our method consistently improves accuracy on the instructive
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ImageNet Caltech 101

ViT Model SigLip Fusion Menon et al. Ours SigLip Fusion Menon et al. Ours

SigLip T/14 7.84 10.85 7.93 71.72 7.52 6.64 9.49 26.50
SigLip B/16 8.45 9.35 8.17 83.51 8.83 7.56 12.3 38.74
SigLip 2 B/16 9.29 10.91 9.50 84.54 8.18 8.05 14.8 37.12
SigLip 2 So400m 9.21 10.46 9.43 85.00 8.08 8.18 15.04 37.64

SUN RefCOCO

ViT Model SigLip Fusion Menon et al. Ours SigLip Fusion Menon et al. Ours

SigLip T/14 6.13 5.50 6.72 26.87 5.72 5.72 5.72 33.52
SigLip B/16 8.41 8.06 9.68 41.55 6.93 6.94 7.09 47.24
SigLip 2 B/16 10.08 10.02 14.41 41.41 7.75 7.75 9.72 45.42
SigLip 2 So400m 10.81 10.54 15.26 44.68 6.63 6.68 7.65 47.80

Table 7: Zero-Shot Accuracy on Instructive Visual Benchmark repurposed from ImageNet,
Caltech 101, SUN, and RefCOCO. We directly test our model on these datasets without any training
on them. This is in contrast to prior work that require finetuning on those downstream tasks Mao
et al. (2023); Beyer et al. (2024) to do them.

visual benchmark. Despite some instructions being encountered during training, the task’s difficulty
persists. This is attributed to the new image and data domains, and the fact that many tasks remain
non-trivial even with instruction familiarity.

Ablation Study on Cross-Instruction Generalization We investigate the ability of our learned
embeddings to generalize to unseen instruction families after training on a distinct set. Utilizing
Gemini, we automatically categorize ImageNet instructions into four broad families: fundamental
properties (F), spatial-textual symbolic tasks (S), viewpoint composition aesthetics tasks (V), and
dynamic inferential interpretive reasoning tasks (D).

Table 4 presents our results where a SigLip 2 B/16 model is trained on three of these instruction
groups and evaluated on the deliberately held-out fourth group on ImageNet. While training and
testing on all groups yields 86.93% accuracy, testing on our hold-out subgroups results in only a 1-2
percentage point accuracy drop for three of our studies. Notably, when not training on F (fundamental
properties), the model experiences a significant accuracy drop, underscoring the importance of
training on instructions related to fundamental properties.

A.9 TRAINING DATASET

We conducted an in-depth analysis to understand the distribution of language instructions generated
by our LLM for the ImageNet dataset. Our process involved two key steps: First, we used Gemini
Flash 2.0 to define 66 distinct subcategories for vision-related questions, which are depicted in
Figure 13. Second, we employed Gemini Flash 2.0 to assign each question within our expansive
16-million synthetic image-query-answer triplet dataset to one of these 66 categories, or to an ”others”
category if it didn’t fit.

The resulting distribution, visualized in Figure 13, reveals significant variations in instruction fre-
quency. ”Material identification via Visual Properties” was by far the most common, accounting for
roughly 2.2 million data entries. In contrast, ”Fractal Properties/Self-Similarity Analysis” was rarely
observed, with only 140 associated queries.

A.10 TESTING DATASET

A.10.1 ESTABLISHED BENCHMARKS

MMVP. In this paper, we use the MMVP-VLM benchmark, which are divided into 9 visual patterns.
The benchmark consists of image pairs with corresponding answer pairs to retrieve. The original
MMVP only comes with text answers, no text queires. Yet since they are divided into 9 categories
with answers that has a good description for the task to ask about. We create text quries, which itself,
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Figure 13: The Histogram of Query Categories Generated in our Language-Instructed ImageNet.
We first use LLM to generate a taskonomy of visual queries. We then use LLM to label each
instructions we generate to one of the categories. We show the counting plot. The data generated
show a long tail distribution.

does not offer any additional information to distinguish the text answer, since for example, the answer
pair to discriminate is ”A minion smiling with tounge out” and ”A minion smiling without tounge
out”, our added query: ”Is the minion smiling with tounge out” does not offer additional information

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

on the tounge’s status, but a repeat of the answer context. Note the chance prediction accruracy on
MMVP is 50% due to the binary choice.

VQA v2, GQA. While our target is to evaluate how language can steer the visual representations, as
benchmarked by our above datasets that designed to evaluate this, like having rich query and answer
pair for the same image. We also use existing visual question answering tasks like VQAv2 and GQA,
which often has single query and ansewr for the same image. We subsample the first 500 samples
from GQA to validate our approach for all our experiments. By adding our instructions, we achieve
significantly higher accuracy than vanilla models. Note that for VQA task, the query tend to already
contain a lot of information about the image, therefore, the Menon et al achieve higher accuracy
largely due to the query allows better retrieval for the image.

A.10.2 OUR BENCHMARKS

For the following repurposed dataset to evaluate this language-instructed vision embeddings, we use
the same prompt to generate the test answer and query:

Provide a numbered list of interesting visual questions about the image,
followed by the corresponding answers.

Note since those are unseen images, and new domains for four of them, the Gemini generate questions
are often very different, allowing us to perform zero-shot evaluation on both: 1) novel data category
and domain but instructions could be seen before, 2) novel data category, domain, and unseen
instructions. We report the (2)’s results in the main paper due to the space limitation. We will also
report the accuracy for (1) in later section.

ImageNet. ImageNet validation was originally designed for evaluating classification tasks. We
repurpose it to also benchmark instructive visual embeddings. The queries are generated by gemini
condition on the Image. In the main paper, we remove all instructions are appear in the training.
Therefore, the numbers shown is on unforeseen, new instructions. In addition, in the appendix, we
also show the retrieval on all the instructions generated without removing the ones that overlap with
the training queries. There are 145549 data for the validation data in the paper after removing the
ones with instructions appear in the training. Before removing the data with seeing instructions, is
551514. We retrieve the answer from 1000 answers, which contains the groundtruth and 999 random
others.

Caltech101 We repurpose the test set via Gemini, to generate open quries and corresponding answers.
In the main paper we remove queries that overlap with training. We also show the results for the set
without removing the overlapping ones.

SUN We repurpose the test set via Gemini, to generate open quries and corresponding answers. In
the main paper we remove queries that overlap with training. We also show the results for the set
without removing the overlapping ones.

RefCOCO We use the images with rendered bounding box to to create the test datasets. We feed the
image with bounding box to LLM to generate open quries and corresponding answers. Note that the
task is zero-shot because bounding box is not given in ImageNet.

ImageNet OCR Test We render text on the ImageNet validation images, where the text are the name
of a different category. Therefore, the model will have different predictions by looking at the text or
the image object category itself.

A.11 ATTENTION VISUALIZATIONS

We provide more attention visualizations of our encoder in Figure 14. Guided by language instructions,
without supervision on where the model shall look at, our LIVE encoder learns to focus on the part of
the image that is corresponding to the language instructions.
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LIVE Attention Map (Ours)

What is the color of 
the floor?

What is the texture of the 
ground beneath the bird?

What color is the football helmet? Is there a collar on the gray dog?

Is there any stem visible on 
the butternut squash?

What is the bird perched on?

Where is the “LIFE” logo 
located in the image?

What is inside the 
left bucket?

What is the man wearing? What action is the person in 
the background performing?

LIVE Attention Map (Ours)Input Image + Instruction Input Image + Instruction

Figure 14: Attention Visualizations of Our LIVE Encoder. Guided by language instructions,
the ViT model learn to focus on relevant parts, effectively prioritizing information and ignoring
distractions. This is achieved without any direct supervision on the region the model shall focus on,
showing the active, selective capabilities can be automatically learned by our encoder. Examples are
randomly draw from ImageNet validation set that was not trained on.
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