WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation

Anonymous ACL submission

Abstract

A recurring challenge of crowdsourcing NLP datasets at scale is that human writers often rely on repetitive patterns when crafting examples, leading to a lack of linguistic diversity. We introduce a novel approach for dataset creation based on worker and AI collaboration, which brings together the generative strength of language models and the evaluative strength of humans. Starting with an existing dataset, MultiNLI for natural language inference (NLI), our approach uses dataset cartography to automatically identify examples that demonstrate challenging reasoning patterns, and instructs GPT-3 to compose new examples with similar patterns. Machine generated examples are then automatically filtered, and finally revised and labeled by human crowdworkers. The resulting dataset, WANLI, consists of 108,079 NLI examples and presents unique empirical strengths over existing NLI datasets. Remarkably, training a model on WANLI instead of MultiNLI (which is 4 times larger) improves performance on seven out-of-domain test sets we consider, including by 11% on HANS and 9% on Adversarial NLI. Moreover, combining MultiNLI with WANLI is more effective than combining it with other NLI augmentation sets. Our results demonstrate the potential of natural language generation techniques to curate NLP datasets of enhanced quality and diversity.

1 Introduction

As much as large-scale crowdsourced datasets have expedited progress on various NLP problems, a growing body of research has revealed fundamental limitations in existing datasets: they are often flooded with repetitive and spurious patterns, rather than covering the broad range of linguistic phenomena required by the task (Bowman and Dahl, 2021). This leads to models that seem to achieve human-level performance on in-domain test sets, yet are brittle when given out-of-domain or adversarial examples (Ribeiro et al., 2020; Jia and Liang, 2017; Glockner et al., 2018).

We attribute this problem to an inherent challenge in the crowdsourcing design—the prevalent paradigm for creating large-scale NLP datasets—where a relatively small number of workers create a massive number of free text examples. While human annotators are generally reliable for writing correct examples, crafting diverse and creative examples at scale can be challenging. Thus, crowdworkers often resort to a limited set of writing strategies for speed, at the expense of diversity.
(Geva et al., 2019; Gururangan et al., 2018). When models overfit to such repetitive patterns, they fail to generalize to out-of-domain examples where these patterns no longer hold (Geirhos et al., 2020).

On the other hand, there has been remarkable progress in open-ended text generation based on massive language models (Brown et al., 2020; Raffel et al., 2020, i.a.). Despite known deficiencies such as incoherence or repetition (Dou et al., 2021), these models often produce human-like text (Clark et al., 2021) and show potential for creative writing tasks (Lee et al., 2022). Importantly, these models are capable of replicating a pattern given just a few examples in context (Brown et al., 2020, GPT-3).

In this paper, we introduce a novel approach for dataset creation which brings together the generative strength of language models and the evaluative strength of humans through human and machine collaboration (§2). The key insight of our approach is that language models can create new examples by replicating linguistic patterns that are valuable for training, without necessarily “understanding” the task itself. Illustrated in Figure 1, our pipeline starts with an existing dataset. We use dataset cartography from Swayamdipta et al. (2020) to automatically identify pockets of examples that demonstrate challenging reasoning patterns relative to a trained model. Using each group as a set of in-context examples, we leverage a pretrained language model to generate new examples likely to have the same pattern (see Table 1). We then propose a novel metric, building on dataset cartography, to automatically filter generations that are most likely to aid model learning. Finally, we validate the generated examples by subjecting them to human review, where crowdworkers assign a gold label and (optionally) revise for quality.

We demonstrate the effectiveness of our approach on the task of natural language inference (NLI), which determines whether a premise entails (i.e., implies the truth of) a hypothesis, both expressed in natural language. Despite being one of the most resource-available tasks in NLP, analysis and challenge sets repeatedly demonstrate the limitations of existing datasets and the brittleness of NLI models trained on them (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018). Using MultiNLI (Williams et al., 2018) as our original dataset, we use our pipeline to create a dataset of 108,079 examples, which we call Worker-and-AI NLI (WANLI).\(^1\)

Remarkably, empirical results demonstrate that replacing MultiNLI supervision with WANLI (which is 4 times smaller) improves performance on seven different out-of-domain test sets, including datasets that are converted to the NLI format from downstream tasks such as question-answering and fact verification (§3). Moreover, under a data augmentation setting, combining MultiNLI with WANLI is more effective than existing augmentation sets. Finally, including WANLI in the training data can help improve performance on certain in-domain test sets. Our analysis of WANLI reveals that it has fewer previously documented spurious correlations than MultiNLI (§4).

Our approach contrasts with previous instruction-based generation of dataset examples (Schick and Schütze, 2021; West et al., 2021), which require the model to understand the task from context, fundamentally limiting the complexity of generated output to what is accessible by the model. Moreover, our human-in-the-loop approach is collaborative, rather than adversarial (Dinan et al., 2019; Nie et al., 2020; Bartolo et al., 2020). Overall, we leverage the best of both worlds: a powerful model’s ability to efficiently generate diverse examples, and humans’ ability to discriminate the quality of generations.

Our worker-AI collaborative approach is more scalable compared to the traditional crowdsourcing framework. Our approach is generalizable, allowing for rejuvenating datasets on many different classification tasks, especially when performance seems to stagnate due to overfitting to popular benchmarks (Recht et al., 2019). Our work shows the promise of leveraging language models in a controlled way to aid the dataset creation process, and we encourage the community to think of dataset curation as an AI challenge itself.

2 Worker-AI Collaborative Dataset Creation for NLI

We describe our four-stage approach for dataset creation based on worker and AI collaboration. In this work, we apply it to the task of natural language inference (NLI), which involves predicting whether a premise entails, contradicts or is neutral to a hypothesis. NLI has broad applicability in NLP: it has proven useful for pretraining (Clark

\(^1\)Pronounced wan-li like the Chinese characters 万理, as in ten thousand reasoning.
Table 1: Seed MNLI examples, and corresponding WANLI examples which were fully generated by GPT-3. P stands for premise, H for hypothesis. The seed example is “ambiguous” according to the definitions of Swayamdipta et al. (2020), discussed in §2. The remaining in-context examples (shown in Appendix C.1) share the same pattern and are found using distance in [CLS] embeddings of a trained task model. The reasoning is a short description of the pattern we observe from the group, and which is successfully repeated in the generated example.

<table>
<thead>
<tr>
<th>Seed MNLI example</th>
<th>Generated WANLI Example</th>
<th>Label & Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>P: 5 percent probability that each part will be defect free. H: Each part has a 95 percent chance of having a defect.</td>
<td>P: 1 percent of the seats were vacant. H: 99 percent of the seats were occupied.</td>
<td>Entailment Set complements</td>
</tr>
<tr>
<td>P: The artisans, tradespeople, and providers of entertainment (reputable and not so reputable) lived downtown on the reclaimed marshlands north and east, in the area still known as Shitamachi. H: The only place where artisans, tradespeople and entertainers could live was in the marshlands to the north and east.</td>
<td>P: At the time of the Revolution, the old port of Marseille was a great center of shipbuilding and commerce. H: The only place where ships were built was in the old port of Marseille.</td>
<td>Neutral Hypothesis introduces exclusivity</td>
</tr>
<tr>
<td>P: To the south, in the Sea of Marmara, lie the woods and beaches of the Princes’ Islands. H: In the north is the Sea Marmara where there are mountains to climb.</td>
<td>P: From the park’s southern entrance, follow the avenue south to the Hotel de Ville. H: From the park’s northern entrance, follow the avenue north to the Hotel de Ville.</td>
<td>Contradiction Reversing cardinal directions</td>
</tr>
<tr>
<td>P: Democrats released documents indicating that Republicans sold big political donors meals with the party’s leaders in federal buildings in 1995. H: It is illegal for a party to solicit products to donors.</td>
<td>P: In the late 1960s, students at a university in Wisconsin tried to organize a union. H: It was illegal for the students to organize a union.</td>
<td>Neutral Illegal things can happen</td>
</tr>
<tr>
<td>P: She ducked and parried the blow. H: She ducked to miss the blow.</td>
<td>P: She stepped on the brake and the car came to a stop. H: She stepped on the brake to stop the car.</td>
<td>Entailment Implied intention</td>
</tr>
<tr>
<td>P: To build a world-class finance organization and help achieve better business outcomes, each of the organizations we examined set an agenda for transforming the finance organization by defining a shared vision—i.e. H: The transformation was a disaster and the entire organization had to be scrapped.</td>
<td>P: In order to help improve customer service, I suggested that they send a representative to our office to discuss our concerns. H: The representative sent to our office did not solve our problems and we lost a lot of business.</td>
<td>Neutral Intended goals may not actualize</td>
</tr>
<tr>
<td>P: Salinger wrote similar letters to other young female writers. H: Other young female writers received similar letters from Salinger as well.</td>
<td>P: The three schools have a number of students who are from families with no history of financial difficulties. H: Families with no history of financial difficulties send their children to the three schools.</td>
<td>Entailment Substituting a verb with a different subcategorization frame</td>
</tr>
</tbody>
</table>

et al., 2019; Phang et al., 2018), and can be applied to verify candidate answers in question-answering (Chen et al., 2021) or factuality of generated summaries (Maynez et al., 2020).

Our approach requires as prerequisites an initial dataset D_0 and a strong task model M trained on D_0. We use MultiNLI (Williams et al., 2018), a large-scale multi-genre NLI dataset, as D_0. We finetune RoBERTa-large (Liu et al., 2019) on MultiNLI for our task model M (training details in Appendix B).

As an overview, we first automatically collect groups of examples exemplifying challenging reasoning patterns in D_0 relative to M, using data maps (Swayamdipta et al., 2020; Stage 1, see §2.1). Then we overgenerate similar examples by leveraging the pattern replication capabilities of GPT-3 (Brown et al., 2020) (Stage 2; §2.2). While GPT-3 can generate examples efficiently, it may not reliably replicate the desired pattern and its output quality will not be uniform. We address this by automatically filtering the generated examples using a metric derived from data maps (Stage 3; §2.3). We finally subject the collected data to human review, in which crowdworkers optionally revise examples and assign gold labels (Stage 4; §2.4).

Dataset Cartography. A key component of our pipeline is inspired by data maps (Swayamdipta et al., 2020), which automatically reveals different regions in a dataset, w.r.t. the behavior of a classification model during training. These include easy-to-learn examples which the model consistently predicts correctly through training, hard-to-learn examples on which it is consistently incorrect, and ambiguous examples for which the model’s confidence in the correct answer exhibits high variability across train epochs. Our pipeline focuses on ambiguous examples, which were shown to lead to more robust models. Additionally, ambiguous examples contain fewer spurious correlations (Gardner et al., 2021), suggesting that they capture underrepresented counterexamples to spurious correlations. Indeed, such counterexamples take more epochs of training to learn and are crucial for generalization (Tu et al., 2020), providing a potential
explanation for why they appear ambiguous across early epochs and lead to more robust models.

2.1 Stage 1: Collection of Exemplars

In this stage, we automatically collect groups of examples from \(D_0 \) which represent linguistic patterns we wish to include in the target dataset. We begin with a seed example \((x_i, y_i) \in D_0\) belonging to the most ambiguous \(p = 25\% \) relative to \(\mathcal{M} \).²

To generate a new example with the same reasoning pattern, we wish to leverage the ability of GPT-3 \((\text{Brown et al., 2020})\) for in-context learning; hence, we need to first collect examples that test a similar kind of reasoning to \(x_i \). To do this, we use the \([\text{CLS}]\) token representation of each example relative to the \(\text{task}\) model \(\mathcal{M}\), and find the \(k = 4 \) nearest neighbors via cosine similarity to \(x_i \) that have the same label. Detailed qualitative inspection shows that the nearest neighbors in this representation space tend to capture a human-interpretable similarity in the reasoning required to solve an example, rather than lexical or semantic similarity (examples in Table 1).

Han and Tsvetkov \((2021)\) give another interpretation for this approach: for examples with the same label, the similarity of \([\text{CLS}]\) token embeddings actually represents the similarity of gradient updates in the row of the final projection layer corresponding to that label. Thus, two examples are close if training on them would “update” the final layer of the model similarly.

By automatically identifying areas for augmentation, our method does not require any prior knowledge of challenging patterns and makes our method tractable for building on top of large-scale datasets. Nonetheless, exemplar collection could potentially be approached in different ways (e.g., through expert curation or category labels).

2.2 Stage 2: Overgeneration

Given an automatically extracted group of \(k + 1 \) examples from the original dataset \(D_0 \), we construct a natural language context (prompt) for a left-to-right language model; in this work, we use GPT-3 Curie (the second-largest GPT-3 model). The prompt template we use is shown in Figure 2, where we order the examples in increasing similarity to the seed example.

Note that our method leverages GPT-3 in a way that is distinct from its typical usage in few-shot settings, where given examples demonstrating a task, GPT-3 performs the task on a new, unlabeled example. Here, we instead give GPT-3 examples representing a particular subcategory of the task, and ask GPT-3 to generate a new example within the same subcategory.

For each context, we sample from GPT-3 to create \(n = 5 \) distinct examples. We use top-\(p \) decoding \((\text{Holtzman et al., 2020})\) with \(p = 0.5 \) (additional details in Appendix C.2). Although generated examples at this stage could be assumed to share label of its \(k + 1 \) in-context examples, we instead consider the resulting dataset \(D_{\text{gen}} = \{x_i\}_i \) at the end of Stage 1 to be unlabeled.

![Figure 2: Prompt template instructing GPT-3 to generate a new example, given a set of in-context examples. To separate the premise and hypothesis, the word “Implication” is used for entailment examples (shown here), “Possibility” is used for neutral examples, and “Contradiction” for contradiction examples.

2.3 Stage 3: Automatic Filtering

In this step, we wish to filter generated examples from Stage 2 to retain those that are the most ambiguous with respect to \(\mathcal{M}\). However, computing ambiguity for an example requires that it be a part of the original training set, whereas we wish to estimate the ambiguity of an unlabeled example without additional training. Thus we introduce a new metric called estimated max variability, which measures the worst-case spread of predictions on an example \(x_i \) across checkpoints of a trained model. Let \(E \) be the total epochs in training, \(\mathcal{Y}\) the label set, and \(p_{\theta(\cdot)} \) the probability assigned with parameters \(\theta^e\) at the end of the \(e \)-th epoch. We define the

²For exemplar collection, we exclude the telephone genre of MultiNLI, which consists of telephone conversation transcripts, due to their low fluency and ill-defined entailment relationships. During pilots, we found that generated examples mimicking telephone conversations would require crowdworkers to revise low-quality text for basic fluency.
estimated max variability as:

\[\sigma_i = \max_{y \in \mathcal{Y}} \sigma \left\{ \{ p_{\theta(y)}(y \mid x_i) \}_{y \in \mathcal{E}} \right\}, \]

where \(\sigma \) is the standard deviation function.

Concretely, we retroactively compute the prediction from each saved epoch of \(\mathcal{M} \) on \(x_i \). The only assumption made is that the single example, if it had been a part of the training set, would have made a negligible difference on each model checkpoint (at least as observed through its posterior probabilities).\(^3\) In taking a maximum across labels, we consider \(x_i \) to be ambiguous as long as \(\mathcal{M} \) is undecided on any label \(\in \mathcal{Y} \).

We first employ simple heuristics to discard examples exhibiting observable failure cases of GPT-3. Specifically, we discard examples where 1) the premise and hypothesis are identical, sans punctuation or casing, 2) the generated example is an exact copy of an in-context example, 3) the example contains some phrases from the instruction (e.g., “pair of sentences”), and 4) the premise or hypothesis is shorter than 5 characters. Then, we compute the estimated max variability for the remaining examples with respect to \(\mathcal{M} \), and retain an equal number of examples from each (intended) label class with the highest max variability, to create a dataset \(\mathcal{D}_{\text{filtered}} \) that is a fraction 1/2 of the size of \(\mathcal{D}_{\text{gen}} \).

2.4 Stage 4: Human Review

As the final stage of our pipeline, we recruit human annotators on Amazon Mechanical Turk to review each unlabeled example \(x_i \in \mathcal{D}_{\text{filtered}} \). (Details about crowdworkers and guidelines in Appendix D.) The annotator may optionally revise \(x_i \) to create a higher-quality example \(x_i' \), or let \(x_i' = x_i \). Either way, they assign a label \(y_i \). When revising examples, we asked annotators to preserve the intended meaning as much as possible through minimal revisions.\(^4\) However, if an example would require a great deal of revision to fix or if it could be perceived as offensive, they should discard it. This results in the labeled dataset \(\mathcal{D}_{\text{collab}} = \{(x_i', y_i)\}_i \).

Crowdworkers annotate a total of 118,724 examples, with two distinct workers reviewing each example. For examples that both annotators labeled without revision, we achieved a Cohen Kappa score of 0.60, indicating substantial agreement. To create the final dataset, we discard an example if either annotator chose to discard it, and we keep a revision only if both annotators revise an example (and choose a revision uniformly at random). When both annotators label the example as-is but choose different labels, we sample one of the two labels uniformly at random. The rationale for this is discussed in Appendix D.4. This leads to a labeled dataset of 108,079 examples (91.03% of all annotated examples, with the remaining discarded). Of the labeled examples, 3.64% were revised.

We randomly split the data into a train and test sets. Key dataset statistics are summarized in Table 2. Unlike MultiNLI and SNLI, WA NLI is not label-balanced; see Appendix C.4 for a discussion.

In general, we believe the role of revision depends on the quality of machine-generated examples. Indeed, we need to strike a balance between leveraging human capabilities and avoiding the re-emergence of annotation artifacts that may come with too much freedom in revision.

3 Training NLI Models with WA NLI

We finetune different copies of RoBERTa-large (Liu et al., 2019) on different training sets, and evaluate each resulting model’s performance on a large suite of NLI challenge sets. Given the challenge sets were constructed independently of MultiNLI or W ANLI, we consider them out-of-distribution for both training datasets.

3.1 NLI Test Suite

The NLI challenge sets come from a wide array of domains, methodologies (e.g., crowdsourcing, expert curation, generation), and initial task formats (e.g., question-answering, fact verification).\(^5\) NLI Diagnostics (Wang et al., 2018) is a manually-curate test set that evaluates a variety of linguistic phenomena using naturally-occurring sentences from several domains.

\[\text{Table 2: WA NLI dataset statistics.} \]

<table>
<thead>
<tr>
<th>Split</th>
<th>Size</th>
<th>Label distribution (E/N/C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>103,079</td>
<td>38,608 / 49,053 / 15,418</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>5,000</td>
<td>1,858 / 2,397 / 745</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Indeed, we find a high correlation between variability and estimated max variability; see Appendix A.

\(^2\)In pilots, we found that when annotators exercised too much freedom in revision, they often re-introduced the same artifacts that have been well-documented in NLI.

\(^3\)We evaluate on the development set for every dataset, except for Winograd NLI, where we combine the train and development set for greater statistical power, and Adversarial NLI, where we use the test set as the labels were not hidden.
Table 3: Empirical comparison of different training sets for RoBERTa-large.

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Diagnosis</th>
<th>HANS*</th>
<th>QNLI*</th>
<th>WNLI*</th>
<th>NQ-NLI*</th>
<th>Adversarial NLI</th>
<th>FEVER-NLI</th>
<th>WANLI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1104</td>
<td>30K</td>
<td>5266</td>
<td>706</td>
<td>4855</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>MultiNLI</td>
<td>68.47</td>
<td>79.08</td>
<td>52.69</td>
<td>56.09</td>
<td>62.34</td>
<td>47.49</td>
<td>26.10</td>
<td>25.00</td>
</tr>
<tr>
<td>ANLI</td>
<td>70.55</td>
<td>79.40</td>
<td>76.81</td>
<td>65.15</td>
<td>64.03</td>
<td>51.99</td>
<td>35.89</td>
<td>38.08</td>
</tr>
<tr>
<td>MultiNLI + Tailor</td>
<td>67.75</td>
<td>79.03</td>
<td>54.89</td>
<td>56.23</td>
<td>63.83</td>
<td>46.99</td>
<td>27.70</td>
<td>25.41</td>
</tr>
<tr>
<td>MultiNLI + ANLI</td>
<td>67.75</td>
<td>79.90</td>
<td>68.74</td>
<td>60.48</td>
<td>62.49</td>
<td>72.69</td>
<td>47.20</td>
<td>45.66</td>
</tr>
<tr>
<td>MultiNLI + ANLI</td>
<td>66.84</td>
<td>77.94</td>
<td>62.41</td>
<td>57.08</td>
<td>62.84</td>
<td>71.20</td>
<td>47.20</td>
<td>44.91</td>
</tr>
<tr>
<td>MultiNLI + FEVER-NLI</td>
<td>66.75</td>
<td>76.50</td>
<td>56.70</td>
<td>57.08</td>
<td>61.81</td>
<td>54.19</td>
<td>28.49</td>
<td>26.16</td>
</tr>
<tr>
<td>MultiNLI + FEVER-NLI</td>
<td>67.57</td>
<td>76.05</td>
<td>52.90</td>
<td>54.95</td>
<td>63.02</td>
<td>54.69</td>
<td>28.49</td>
<td>25.00</td>
</tr>
<tr>
<td>MultiNLI + ANLI</td>
<td>70.19</td>
<td>72.25</td>
<td>72.38</td>
<td>61.33</td>
<td>63.70</td>
<td>50.70</td>
<td>29.10</td>
<td>28.41</td>
</tr>
<tr>
<td>MultiNLI + WANLI</td>
<td>71.73</td>
<td>82.98</td>
<td>64.69</td>
<td>60.76</td>
<td>63.91</td>
<td>52.30</td>
<td>28.40</td>
<td>28.33</td>
</tr>
<tr>
<td>ANLI</td>
<td>65.67</td>
<td>80.58</td>
<td>81.25</td>
<td>66.00</td>
<td>62.03</td>
<td>72.79</td>
<td>47.79</td>
<td>46.75</td>
</tr>
<tr>
<td>WANLI + ANLI</td>
<td>72.10</td>
<td>88.50</td>
<td>81.88</td>
<td>67.28</td>
<td>63.39</td>
<td>74.00</td>
<td>50.59</td>
<td>48.58</td>
</tr>
</tbody>
</table>

HANS (McCoy et al., 2019) targets unreliable syntactic heuristics based on lexical overlap between the premise and hypothesis.

QNLI was adapted from the Stanford Question-Answering Dataset (Rajpurkar et al., 2016) by the GLUE benchmark (Wang et al., 2018). Each example consists of a premise that is a sentence, and a hypothesis that is a question, which is entailed if the question is answered by the premise.

Winograd NLI was adapted by the GLUE benchmark from the Winograd Schema Challenge (Levesque et al., 2011), which tests correct coreference via common sense. To convert this dataset to NLI, an entailed hypothesis is formed by substituting a correct referent and a non-entailed hypothesis is formed by substituting an incorrect referent.

Adversarial NLI (ANLI; Nie et al., 2020) is an adversarially-constructed dataset where crowd-workers are instructed to write examples that stump existing models. Examples are collected in three rounds that progressively increase in difficulty, with model adversaries trained on MultiNLI, SNLI (Bowman et al., 2015), FEVER-NLI (discussed below), as well as ANLI sets from earlier rounds.

Natural Questions NLI (NQ-NLI, Chen et al., 2021) is created from the Natural Questions QA dataset (Kwiatkowski et al., 2019). The premise is a decontextualized sentence from the original context; the hypothesis consists of a question and answer candidate converted into declarative form.

FEVER NLI is adapted from the FEVER fact verification dataset (Thorne et al., 2018), and introduced along with ANLI. In each example, the premise is a short context from Wikipedia, and the hypothesis is a claim that is either supported (entailed), refuted (contradicted), or neither (neutral).

3.2 Training Datasets

In addition to stand-alone WANLI and MultiNLI, we consider two schemes for combining datasets A and B: (1) augmentation $(A + B)$, in which the two datasets are concatenated, and (2) random replacement $(A \circ B)$, where $|B|$ examples from A are randomly swapped out and replaced with an equal number of examples from B. Under each scheme, we compare WANLI to other recent NLI datasets: the train sets of ANLI and FEVER-NLI as well as the augmentation set generated via TAILOR (Ross et al., 2021), which used linguistic perturbation strategies on SNLI hypotheses (Bowman et al., 2015) to create examples with high lexical overlap between the premise and hypothesis.

Finally, we investigate whether combining WANLI with ANLI can help improve in-domain performance on ANLI.

3.3 Results

Results are shown in Table 3. When comparing MultiNLI and WANLI alone, training a model on WANLI instead of MultiNLI leads to better performance on every test set we consider, including by...
4% on Diagnostics, 11% on HANS, and 9% on Adversarial NLI. This is remarkable considering the smaller size of WANLI (by a factor of 4) and the fact that examples are dominantly machine-written.

Perhaps surprisingly, training on WANLI alone performs consistently better than combining WANLI with MultiNLI, reinforcing that more data is not necessarily better, especially when it comprises predominantly of easy-to-learn examples. Nonetheless, both MultiNLI + WANLI and MultiNLI ◦ WANLI improve performance upon the baseline MultiNLI-trained model for every test set. In addition, WANLI is more effective than ANLI on every test set that is out-of-domain for both datasets (i.e., other than ANLI’s own test set and FEVER-NLI, which was used to train adversaries for the ANLI dataset creation process). This result is substantial because the creation pipeline for Adversarial NLI posed a much greater challenge for human workers and used more existing resources to train model adversaries.

We then consider whether WANLI can further improve performance on ANLI by using the corresponding training set. Indeed, augmenting ANLI’s train set with WANLI improves test accuracy in ANLI by 2% (averaged over three rounds), while also improving out-of-domain test performance.

4 Artifacts in WANLI

We next investigate whether WANLI contains similar artifacts to MultiNLI. We find that while WANLI contains fewer previously known spurious correlations, it has a distinct set of lexical correlations that may reflect artifacts in GPT-3 output.

4.1 Partial Input Models

Given that the task requires reasoning with both the premise and the hypothesis, a model that sees only one of the two inputs should have no information about the correct label. We reproduce the methodology from Gururangan et al. (2018) and train fastText classifiers to predict the label using partial input. After first balancing WANLI, a model trained on just the hypotheses of WANLI achieves 41.6% accuracy compared to 49.6% for MultiNLI, when restricted to the same size. A premise-only model trained on WANLI achieves an accuracy of 42.9%.6

6Unlike WANLI, each MultiNLI premise is associated with hypotheses from all three labels; a premise-only baseline is thus guaranteed to have no information about the label.

4.2 Lexical Correlations

Gardner et al. (2021) posits that all correlations between single words and output labels are spurious. We plot the statistical correlation for every word and label in Figure 3, after balancing WANLI and downsampling MultiNLI. We observe that WANLI also contains words with detectable correlations, suggesting that GPT-3 may have some artifacts of its own due to the slightly different templates and different sets of in-context examples for each label. Interestingly, the correlations tend to be a different set of words than for MultiNLI (other than “not” and “no”), with less interpretable reasons for correlating with a certain label (e.g., “second”, “was”).

4.3 Premise-Hypothesis Semantic Similarity

We explore the semantic similarity between the premise and hypothesis within each label class using Sentence-BERT (Reimers and Gurevych, 2019); these distributions are shown in Figure 4. In both MultiNLI and WANLI, entailed hypotheses are naturally most semantically similar to the premise. In MultiNLI, this is followed by neutral examples and then contradiction examples. In contrast, in WANLI there is much greater overlap in the three distributions, and those for neutral and contradiction examples are nearly indistinguishable. This suggests in WANLI, the semantic simi-
Figure 4: Semantic similarity between the premise and hypothesis, computed based on SBERT embeddings (Reimers and Gurevych, 2019). The distributions for each label class are much more well-separated in MultiNLI than in WNLI.

5 Related Work

Crowdsourcing The scalability and flexibility of crowdsourcing has enabled the creation of foundational NLP benchmarks across a wide range of sub-problems, and made it the dominant paradigm for data collection (Mihaylov et al., 2018; Rajpurkar et al., 2016; Huang et al., 2019; Talmor et al., 2019, i.a.). Nonetheless, a growing body of research shows that resulting datasets may not isolate the key linguistic phenomena (Jia and Liang, 2017; Chen et al., 2016; Sugawara et al., 2020).

For crowdsourcing NLI datasets, where the annotator is given a premise and asked to write a hypothesis of each label (Bowman et al., 2015; Williams et al., 2018), the presence of annotation artifacts is especially well-studied (Gururangan et al., 2018; McCoy et al., 2019; Glockner et al., 2018). Recent work attempted to remedy this through different data collection protocols but found negative results (Vania et al., 2020; Bowman et al., 2020), showing this is a hard problem requiring greater innovation.

Adversarial data collection In this paradigm, annotators are asked to produce examples on which current systems fail (Kiela et al., 2021; Talmor et al., 2021; Zellers et al., 2019, i.a.). Beyond increasing annotator effort (Bartolo et al., 2020), adversarial methods have been challenged for not leading to better generalization on non-adversarial test sets (Kaushik et al., 2021) and decreasing data diversity (Bowman and Dahl, 2021). Moreover, the resulting data has been shown to depend strongly on the adversaries, inhibiting a fair evaluation (Phang et al., 2021). Finally, these approaches may produce examples beyond the scope of the task. For example, in Adversarial NLI (Nie et al., 2020), an estimated 58% of examples required “reasoning from outside knowledge or additional facts,” which is arguably separate from the underlying problem of understanding semantic entailments. We argue that we can better leverage the strengths of machines and humans by having them collaborate rather than act as adversaries.

Dataset generation Another recent approach leverages language models toward fully automatic dataset creation (Schick and Schütze, 2021; Anonymous, 2021; West et al., 2021; Bartolo et al., 2021a, i.a.). Removing human input may fundamentally limit the complexity of examples to phenomena already accessible by the model, when our goal is precisely to teach models more diverse phenomena. The most similarly-motivated work to ours, Lee et al. (2021), trains a data generator on “data-rich slices” of an existing dataset, and applies it to under-represented slices. However, they use labels or metadata to represent slices, leaving automatic methods of identifying slices to future work.

Human-machine collaboration In terms of human-machine collaboration, Tekiroğlu et al. (2020) and Yuan et al. (2021) employ a language model to generate counter-narratives to hate speech and biographies, respectively, which are validated and revised by humans. This was for a generative task, and we complement their findings by showing that human-machine collaboration can also be useful for generating labeled datasets for robust classification models. Contemporary work (Bartolo et al., 2021b) finetunes a generative annotation assistant to produce question-answer pairs that humans can revise for extractive QA.

6 Conclusion

At the heart of dataset creation is distilling human linguistic competence into data that models can learn from. The traditional crowdsourcing paradigm takes the view that the best approach for this is to solicit people to write free-form examples expressing their capabilities. In this work, we present a worker-and-AI collaborative approach and apply it to create WNLI, whose empirical utility suggests that a better way of eliciting human intelligence at scale is to ask workers to revise and evaluate content. To this end, we hope to encourage more work in developing generative algorithms to aid the dataset creation process.
7 Ethics Statement

We acknowledge that text generated from large pre-trained language models is susceptible to perpetuating social harms and containing toxic language (Sheng et al., 2019; Gehman et al., 2020). To partially remedy this, we ask annotators to discard any examples that may be perceived as offensive. Nonetheless, it is possible that harmful examples (especially if they contain subtle biases) may have been missed by annotators and included in the final dataset. Specifically due to the above harms, we additionally caution readers and practitioners against fully automating any data creation pipeline.

In addition, we are cognizant of the asymmetrical relationship between requesters and workers in crowdsourcing. We took great care to pay fair wages, and were responsive to feedback and questions throughout the data collection process (see Appendix D for details). The only personal information we collect is the worker IDs from Amazon Mechanical Turk, which we will not release. The annotation effort received IRB approval.

References

Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3407–3412, Hong Kong, China. Association for Computational Linguistics.

A Estimated Max Variability

In order to test the correlation between variability and estimated max variability on a dataset D, we would have to repeatedly hold out a single example x, train a model on $D \setminus \{x\}$, and evaluate how well the estimated max variability from the model trained on $D \setminus \{x\}$ correlates with the true variability from the model trained on D, which saw x during training.

Unfortunately, this would be a very expensive experiment. Instead, we split the MNLI train set into 99% for training and 1% (3928 examples) for evaluation. For each of the held-out examples, we calculate the variability under M_{MNLI} and estimated max variability under $M_{\text{MNLI} \ 99\%}$. The correlation is shown in Figure 5, and has a Pearson’s correlation coefficient of 0.527 with a p-value of 7×10^{-281}.

B Modeling Details

All model training is implemented with the HuggingFace (Wolf et al., 2020) library and uses the original hyperparameters from the RoBERTa paper for finetuning on GLUE (Liu et al., 2019). We train the model for five epochs and evaluate the final model. We choose not to use an early stopping scheme in order to isolate the training data as the object of study and control for training length as a confounding factor. This is important since Tu et al. (2020) showed that counter-examples can be learned better with longer training.

All training was performed on a single Nvidia Quadro RTX 6000 GPU. The duration of training varied depending on the size of the training data, from 3 hours for WANLI to 14 hours for MultiNLI + WANLI.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>RoBERTa-large</td>
</tr>
<tr>
<td>Number of parameters</td>
<td>345M</td>
</tr>
<tr>
<td>Number of epochs</td>
<td>5</td>
</tr>
<tr>
<td>Learning rate</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>Batch size</td>
<td>32</td>
</tr>
<tr>
<td>Weight decay</td>
<td>0.1</td>
</tr>
<tr>
<td>Learning rate decay</td>
<td>linear</td>
</tr>
<tr>
<td>Warmup ratio</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 4: Training hyperparameters for RoBERTa-large.

C WANLI Details and Discussion

C.1 Example GPT-3 Context

We include some examples of full GPT-3 contexts in Table 8, 9, 10, 11.

C.2 GPT-3 Generation Hyperparameters

We queried the GPT-3 Curie model available through the OpenAI API\footnote{https://openai.com/api} on the dates November 3 to November 5, 2021. In total, the generation cost $677.89. Hyperparameters for generation\footnote{described at https://beta.openai.com/docs/api-reference/completions/create} are shown in Table 5.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top p</td>
<td>0.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>1</td>
</tr>
<tr>
<td>Max tokens</td>
<td>120</td>
</tr>
<tr>
<td>Stop string</td>
<td>\n\n</td>
</tr>
<tr>
<td>Presence penalty</td>
<td>0.0</td>
</tr>
<tr>
<td>Frequency penalty</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 5: Hyperparameters for generation from GPT-3.

C.3 Dataset sizes at each stage

In Stage 1, we collect the top 25% most ambiguous examples from each label class in MultiNLI as our set of seed examples. This leads to 98,176 seed examples, where each seed example corresponds to a unique context for GPT-3. We generate $n = 5$ examples per seed example, and skip examples that are not properly formatted with a distinct

\begin{verbatim}
https://openai.com/api
\end{verbatim}
premise and hypothesis following the context-template (Figure 2). At the end of Stage 2, the size of \(\mathcal{D}_{\text{gen}} \) is 372,404. After applying the filtering heuristics described in §2.3 on \(\mathcal{D}_{\text{gen}} \), the remaining dataset size is 287,241. Of the examples discarded, 79,278 generated examples had identical premise and hypothesis (sans punctuation and casing), and 4,732 had copied an in-context example. Next, we keep the half with the highest estimated max variability by sourcing an equal number of examples from each (intended) label class for a balanced dataset, resulting in \(\mathcal{D}_{\text{filtered}} \) with size 143,619. However, we do not actually recruit human review on all of \(\mathcal{D}_{\text{filtered}} \), and instead annotate a total of 118,724 examples. Since some of these examples are discarded, the final WANLI dataset contains 108,079 examples. These correspond to 57,825 seed examples from MultiNLI.

C.4 How reliably does GPT-3 reproduce the in-context pattern?

One characteristic of WANLI is its imbalanced label distribution: even though the set of seed examples for generation was constructed to be balanced, after undergoing human labeling, only 14.95% of examples are given the contradiction label. We observe that contradiction patterns in in-context examples are generally much more challenging for GPT-3 to copy, likely because it was trained on (mostly) coherent sentences of sentences. More broadly, we find that more abstract reasoning patterns are harder for GPT-3 to mimic than patterns that involve simpler transformations.

Nonetheless, even when GPT-3 does not successfully copy the examples, the diverse set of in-context examples leads to a variety of creative output that may be challenging for human crowdworkers to achieve.

D Human Review

Screenshots of the instructions, guidelines, and annotation interface are shown in Tables 6, 7, and 8. The guidelines take inspiration from the design of the NLI Diagnostics dataset (Wang et al., 2018). To collect a pool of qualified workers, we designed a qualification task with examples testing each of these categories. NLI is a challenging task, and many generated examples are especially challenging by design. Therefore, instructing annotators in how to think about the task and resolve common issues is key to collecting high-quality, label-consistent data.

D.1 The Annotators

Annotators were required to have a HIT approval rate of 98%, a total of 10,000 approved HITs, and be located in the United States.

300 Turkers took our qualification test, of which 69 passed. Turkers who were later found to produce extremely careless annotations were removed from the qualification list (and oftentimes, their annotations were discarded, though they were still paid for their work). The number of workers who contributed to the final dataset is 62.

Throughout the data collection process, the authors would review annotations and write individualized emails to Turkers with feedback, as well as group emails to clarify common challenging cases of NLI (such as examples involving questions). This follows the recommended crowdsourcing protocol from Nangia et al. (2021).

D.2 Compensation

In designing the task, we aimed for a pay rate of at least $15 per hour. Workers were paid $0.12 for each example that they annotate. At the end of data collection, we aggregate the earning and time spent from each crowdworker, and find that the median hourly rate was $22.72, with 85% of workers being paid over the $15/hour target.

D.3 Revision Analysis

We find that revisions fall broadly into two categories: improving the fluency of the text, and improving the clarity of the entailment relationship. Fluency revisions often target well-documented issues with text generation, such as redundancy and self-contradiction. Clarity revisions often resolve ambiguities in the example that make the entailment relationship difficult (or impossible) to determine, such as ambiguous coreference or temporal references. We provide examples of revisions in Table 6.

We find that revisions are generally targeted yet effective. The majority of revisions change the length only slightly, with 74% of both premise revisions and hypothesis revisions changing the word count between −1 and +2 words. A very large proportion, 11.6% of premise revisions and 20.6% of hypothesis revisions, changed the set of pronouns present in the text, often to clarify coreference.

We instructed annotators to revise examples only when it would make the example more “interesting”
in some sense, or more clear without removing what’s interesting. Nonetheless, we still observed a large number of revisions that greatly simplified the example, oftentimes re-introducing the same artifacts that have been documented in prior work. Therefore, we ultimately chose to include revisions only when both annotators revised the example, indicating that the revision was necessary to improve the quality of the example.

D.4 Disagreement Analysis

In order to investigate the utility of collecting a third annotation, we randomly sampled 80 examples where the two annotators disagreed on the label (and neither revised nor discarded), and two of the authors separately annotated each one. Shockingly, the two authors agreed on the label only 49% of the time. Furthermore, in 12% of cases, all three labels were present among the four annotations. This suggests that disagreement is often due to true ambiguity rather than careless mislabeling, and a third annotation would be unlikely to have high payoff in terms of “correcting” the label. As a result, we choose not to collect a third annotation in this work. Instead, we believe that the doubly-annotated examples in WANLI have flagged many interesting cases of ambiguity in NLI, and we encourage future work to design richer annotation frameworks to uncover the source(s) of ambiguity. We provide examples where the two annotators disagreed in Table 7.

E Data Map of WANLI

In Figure 9, we show a data map of MultiNLI relative to RoBERTa-large trained on MNLI, and of WANLI relative to RoBERTa-large trained on WANLI.
Figure 6: Instructions provided to crowdworkers on Amazon Mechanical Turk.

Before assigning a label, you may optionally revise the example in order to improve its quality. In these cases, you should preserve the intended meaning of the example as much as possible by making minimal revisions. Do not insert words that drastically change the meaning of the sentence, or delete entire spans of text unless they affect the fluency of the example. The goal is to ensure that the relationship is well-defined but not trivially easy; imagine you are writing challenging but unambiguous examples that could potentially be used in a classroom setting to teach or test understanding of the task.

Here are some guidelines to help you with determining the relationship between the premise and hypothesis. Remember to consult these when you are unsure.

- **Presuppositions:** X knows that Y, X recognizes that Y, X reveals that Y all entail Y, since Y is a presupposition in the premise. However, X thinks that Y or X said that Y is neutral with respect to Y, since X can be wrong. For example, I said I would be on time does not imply I was on time.

 However, you can assume that I said that Y is an honest reflection of what X thinks. For example, She said that all apples are red entertains She believes that all apples are red, and is neutral with respect to All apples are red.

- **Conditionals:** If X then Y is neutral with respect to both X and Y. For example, If the water level is low, then the engine will not start does not imply The water level is low or The engine will not start, since the premise does not say anything about whether the water level is actually high or low.

- **Background knowledge:** A minimal amount of background knowledge is okay. For example, I visited Mt Fuji entertains I visited Japan, and I am watching an nth game contradicts I am watching basketball. There may be some ambiguous cases here, and you will have to use your best judgment.

- **Common sense:** We should use a common sense interpretation of the text, when it strongly dominates a conflicting literal interpretation. For example, we can take When I was young, I was obsessed with the supernatural to entertain I am not obsessed with the supernatural anymore, because it is the only commonsense way of reading the premise.

- **Coreference:** We can assume that expressions in the premise and hypothesis are referring to the same entity when there is a reasonable amount of corroborating information. For example, The music building has 55 rooms entails The building has 55 rooms and contradicts The building has only one room, by assuming “the building” in the hypothesis is referring to “the music building” in the premise. However, The couple is talking to each other is neutral with respect to The redheads are talking to each other, even though the couple and redheads might be the same two people, because there is not enough information to suggest this.

- **Questions:** As a rule of thumb, if the premise or hypothesis is a question (or both), consider whether saying the premise and hypothesis in sequence would add any information (entailment) or be contradictory (contradiction). For example, saying “Jane is coming at 6. When is Jane coming?” is nonsensical because the question does not need to be asked (it is already entailed). On the other hand, saying “Jane is coming at 6. Why isn’t Jane coming?” is clearly contradictory. More precisely:

 - If the premise is a question and the hypothesis is a statement, we take the premise to entail its presuppositions (i.e., what is assumed in asking the question). For example, When is Jane coming? presupposes and therefore entails Jane is coming, and also contradicts Jane is not coming.

 - If the premise is a statement and the hypothesis is a question, it is an entailment if the premise answers the hypothesis, and a contradiction if the premise contradicts the presupposition of the hypothesis. For example, Jane is coming at 6 entails When is Jane coming?, and contradicts Why isn’t Jane coming?.

 - When the premise and hypothesis are both questions, it is an entailment if an answer to the premise also answers the hypothesis, and a contradiction if they make contradictory presuppositions. For example, When is Jane coming? entails (but is not entailed by) Will Jane come before 6?, and contradicts Why isn’t Jane coming? (since the premise assumes Jane is coming, and the hypothesis assumes she isn’t).

- **Point of view:** The premise and hypothesis should be read from the same point of view. When there is a shift in perspective that makes it seem like the premise and hypothesis are about different people, it is preferable to revise this when possible to keep the perspective consistent. For example, given the premise I don’t know if I’ll ever be able to do that and hypothesis You can do it, it would be preferable to revise the hypothesis to become I can do it. This way, the premise and hypothesis are both about I.

Figure 7: Guidelines provided to crowdworkers in the human review stage.
1) **Premise:** He claimed that he had been pressured into giving a false confession.
Hypothesis: He had been pressured into giving a false confession.

(Optimal) **Revise the example below.**

Premise:
He claimed that he had been pressured into giving a false confession.

Hypothesis:
He had been pressured into giving a false confession.

Given the premise, the hypothesis is...

<table>
<thead>
<tr>
<th>Definitely correct</th>
<th>Maybe correct, maybe not correct</th>
<th>Definitely incorrect</th>
<th>Contradiction</th>
<th>Discard</th>
</tr>
</thead>
</table>

Figure 8: The interface on Amazon Mechanical Turk used for collecting human annotations. Annotators are given free text boxes that are pre-populated with the original premise and hypothesis, to ease the work of revision. Then, they either select an entailment class or discard the example.

<table>
<thead>
<tr>
<th>Example</th>
<th>Label</th>
<th>Purpose of Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>P: The power plant is the only source of continuous electric power for the city.</td>
<td>Entailment</td>
<td>Coreference resolution</td>
</tr>
<tr>
<td>H: The power plant is very important for the city.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: It was a well-known fact that it was a well-known fact that the solution was well-known.</td>
<td>Entailment</td>
<td>Redundancy</td>
</tr>
<tr>
<td>H: The solution was well-known.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: This will be the first time the king has met the queen in person.</td>
<td>Contradiction</td>
<td>Clarity</td>
</tr>
<tr>
<td>H: The king has met the queen in person before.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: She walked with a light step, as if she were floating on air.</td>
<td>Contradiction</td>
<td>Coherence</td>
</tr>
<tr>
<td>H: She was floating on air, as if she were walking on air.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: There is a slight possibility that, if the same temperature data are used, the temperature of the Earth’s surface in 1998 will be lower than the temperature of the Earth’s surface in 1998, now.</td>
<td>Neutral</td>
<td>Self-contradiction</td>
</tr>
<tr>
<td>H: The Earth’s surface in 1998 was lower than the Earth’s surface in 1998, now.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: I’ve never been able to figure out how the system works.</td>
<td>Entailment</td>
<td>Coherence</td>
</tr>
<tr>
<td>H: I still don’t know The system is how the system works.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: This year’s spring break was a disaster for most of the students.</td>
<td>Entailment</td>
<td>Clarity</td>
</tr>
<tr>
<td>H: The students were not all able to have a good time during spring break.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: She had to go to the library to find out what the name of the street was.</td>
<td>Contradiction</td>
<td>Ambiguous temporal reference</td>
</tr>
<tr>
<td>H: She already knew the name of the street.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: A number of theories have been proposed to explain the decline of violence in modern society.</td>
<td>Entailment</td>
<td>Consistent tense</td>
</tr>
<tr>
<td>H: Violence will decline has declined in modern society.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Some examples of revisions that were done by annotators on examples generated by GPT-3.
Example	Labels	Ambiguity
P: According to the most recent statistics, the rate of violent crime in the United States has dropped by almost half since 1991. | Entailment | Does “almost half” mean “not half” or “basically half”? |
H: The rate of violent crime has not dropped by half since 1991. | Contradiction |
P: The Commission did not consider the costs of this rule. | Contradiction | Does “considering the costs” imply that the costs are non-zero? |
H: The rule will not cost anything. | Neutral |
P: The original draft of the treaty included a clause that would have prohibited all weapons of mass destruction. | Entailment | Does the premise imply that the clause is no longer in the treaty? |
H: The clause was removed in the final version of the treaty. | Neutral |
P: He’d made it clear that he was not going to play the game. | Contradiction | Can we assume intention behind actions? |
H: He didn’t want to play the game. | Neutral |
P: If you can’t handle the heat, get out of the kitchen. | Entailment | Is the premise to be interpreted literally or figuratively? |
H: If you can’t handle the pressure, get out of the situation. | Neutral |
P: After two hours of discussion, the group decided to meet again the next day. | Entailment | Can we assume follow-through on a decision? |
H: The group will meet again on the next day. | Neutral |
P: He felt as if he were watching a movie and was having a hard time distinguishing between the actors and the real people. | Entailment | Is the hypothesis a metaphorical statement? |
H: He was watching a movie and could not tell the difference between the actors and the real people. | Contradiction |
P: As a result of the disaster, the city was rebuilt and it is now one of the most beautiful cities in the world. | Entailment | Do indirect consequences count? |
H: A disaster made the city better. | Neutral |

Table 7: Examples where two annotators assigned different labels. We find that many examples represent genuinely ambiguous cases rather than careless mislabels, echoing previous findings (Pavlick and Kwiatkowski, 2019).

Figure 9: **Left**: Data map for MultiNLI train set, based on a RoBERTa-large classifier trained on MultiNLI. **Right**: Data map for WANLI train set, based on a RoBERTa-large classifier trained on WANLI. A comparison of the distribution in variability (which determines example ambiguity) is remarkable—we see that MNLI is overwhelmingly dominated by easy-to-learn examples with variability close to 0. In contrast, the distribution in variability is much more spread out in WANLI, suggesting that the dataset contains more valuable examples overall.
Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. In six states, the federal investment represents almost the entire contribution for providing civil legal services to low-income individuals. Implication: In 44 states, the federal investment does not represent the entire contribution for providing civil legal services for people of low income levels.

2. But if it’s at all possible, plan your visit for the spring, autumn, or even the winter, when the big sightseeing destinations are far less crowded. Implication: This destination is most crowded in the summer.

3. 5 percent of the routes operating at a loss. Implication: 95 percent of routes are operating at either profit or break-even.

4. 30 About 10 percent of households did not Implication: Roughly ninety percent of households did this thing.

5. 5 percent probability that each part will be defect free. Implication: Each part has a 95 percent chance of having a defect.

Table 8: Context corresponding to row 1 in Table 1, which contains Entailment examples from MultiNLI found via nearest neighbors in [CLS] token embedding space. All examples require reasoning about set complements, including from the universe of 100 percent, the 50 U.S. states, as well as the four seasons.

Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Small holdings abound, and traditional houses sit low on the treeless hillsides. Possibility: The hills were the only place suitable to build traditional houses.

2. The inner courtyard has a lovely green and blue mosaic of Neptune with his wife Amphitrite. Possibility: The only colors used in the mosaic of Neptune and Amphitrite are green and blue.

3. Nathan Road, Central, and the hotel malls are places to look. Possibility: The only places to look are Nathan Road, Central and hotel malls.

4. Make your way westward to the Pont Saint-Martin for a first view of the city’s most enchanting quarter, the old tannery district known as Petite France. Possibility: The only place to the west of Pont Saint-Martin is the old tannery district.

5. The artisans, tradespeople, and providers of entertainment (reputable and not so reputable) lived downtown on the reclaimed marshlands north and east, in the area still known as Shitamachi. Possibility: The only place where artisans, tradespeople and entertainers could live was in the marshlands to the north and east.

Table 9: Context corresponding to row 2 in Table 1, which contains Neutral examples where the hypothesis introduces an exclusivity that is not implied by the premise.
Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Dun Laoghaire is the major port on the **south coast**.
 Contradiction: Dun Laoghaire is the major port on the **north coast**.

2. Leave the city by its **eastern Nikanor Gate** for a five-minute walk to Hof Argaman (Purple Beach), one of Israel’s finest beaches.
 Contradiction: Leave the city by its **western Nikanor Gate** for a fifty five minute walk to Hof Argaman.

3. **Southwest of the Invalides** is the Ecole Militaire, where officers have trained since the middle of the 18th century.
 Contradiction: **North of the Invalides** is the Ecole Militaire, where officers have slept since the early 16th century.

4. Across the courtyard on the **right-hand side** is the chateau’s most distinctive feature, the splendid Francois I wing.
 Contradiction: The Francois I wing can be seen across the courtyard on the **left-hand side**.

5. **To the south**, in the Sea of Marmara, lie the woods and beaches of the Princes’ Islands.
 Contradiction: **In the north** is the Sea of Marmara where there are mountains to climb.

Table 10: Context corresponding to row 3 in Table 1, which contains [Contradiction] examples that flip cardinal directions between the premise and hypothesis.

Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Vendors and hair braiders are sure to **approach** you.
 Implication: You’re likely to be **solicited by** vendors or hair braiders.

2. The Carre d’Art, an ultramodern building opposite the Maison Carre, **exhibits** modern art.
 Implication: Pieces of modern art **can be found** in the Carre d’Art, a structure which stands across from the Maison Carre.

3. But they also take pains not to dismiss the trauma the Holocaust visited and continues to visit upon Jews.
 Implication: The Holocaust visited trauma upon Jews, and they are careful not to dismiss this.

4. One fortunate **result** of this community’s influence has been the proliferation of good restaurants and interesting bars from which to choose.
 Implication: The influence of this community has **led to** an increase in the number of intriguing bars and good dining establishments.

5. Salinger **wrote** similar letters **to** other young female writers.
 Implication: Other young female writers **received** similar letters **from** Salinger as well.

Table 11: Context corresponding to row 7 in Table 1, which contains [Entailment] examples that substitute a verb in the premise with one in the hypothesis that has a different subcategorization frame. Note that the third in-context example does not share quite the same pattern, but GPT-3 is still able to replicate the pattern present in other examples.