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Abstract

A recurring challenge of crowdsourcing NLP001
datasets at scale is that human writers often002
rely on repetitive patterns when crafting exam-003
ples, leading to a lack of linguistic diversity.004
We introduce a novel approach for dataset cre-005
ation based on worker and AI collaboration,006
which brings together the generative strength007
of language models and the evaluative strength008
of humans. Starting with an existing dataset,009
MultiNLI for natural language inference (NLI),010
our approach uses dataset cartography to auto-011
matically identify examples that demonstrate012
challenging reasoning patterns, and instructs013
GPT-3 to compose new examples with simi-014
lar patterns. Machine generated examples are015
then automatically filtered, and finally revised016
and labeled by human crowdworkers. The re-017
sulting dataset, WANLI, consists of 108,079018
NLI examples and presents unique empirical019
strengths over existing NLI datasets. Remark-020
ably, training a model on WANLI instead of021
MultiNLI (which is 4 times larger) improves022
performance on seven out-of-domain test sets023
we consider, including by 11% on HANS and024
9% on Adversarial NLI. Moreover, combining025
MultiNLI with WANLI is more effective than026
combining it with other NLI augmentation sets.027
Our results demonstrate the potential of natural028
language generation techniques to curate NLP029
datasets of enhanced quality and diversity.030

1 Introduction031

As much as large-scale crowdsourced datasets have032

expedited progress on various NLP problems, a033

growing body of research has revealed fundamen-034

tal limitations in existing datasets: they are often035

flooded with repetitive and spurious patterns, rather036

than covering the broad range of linguistic phenom-037

ena required by the task (Bowman and Dahl, 2021).038

This leads to models that seem to achieve human-039

level performance on in-domain test sets, yet are040

brittle when given out-of-domain or adversarial ex-041

Figure 1: An illustration of our pipeline for creating
WANLI. Starting with a data map (Swayamdipta et al.,
2020) of an existing dataset relative to a trained model,
(1) we automatically identify pockets of data instances
exemplifying challenging reasoning patterns. Next, (2)
we use GPT-3 to generate new instances with the same
pattern. These generated examples are then (3) auto-
matically filtered via a metric we introduce inspired by
data maps, and (4) given to human annotators to assign
a gold label and optionally revise.

amples (Ribeiro et al., 2020; Jia and Liang, 2017; 042

Glockner et al., 2018). 043

We attribute this problem to an inherent chal- 044

lenge in the crowdsourcing design—the prevalent 045

paradigm for creating large-scale NLP datasets— 046

where a relatively small number of workers create 047

a massive number of free text examples. While 048

human annotators are generally reliable for writ- 049

ing correct examples, crafting diverse and creative 050

examples at scale can be challenging. Thus, crowd- 051

workers often resort to a limited set of writing 052

strategies for speed, at the expense of diversity 053
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(Geva et al., 2019; Gururangan et al., 2018). When054

models overfit to such repetitive patterns, they fail055

to generalize to out-of-domain examples where056

these patterns no longer hold (Geirhos et al., 2020).057

On the other hand, there has been remarkable058

progress in open-ended text generation based on059

massive language models (Brown et al., 2020; Raf-060

fel et al., 2020, i.a.). Despite known deficiencies061

such as incoherence or repetition (Dou et al., 2021),062

these models often produce human-like text (Clark063

et al., 2021) and show potential for creative writing064

tasks (Lee et al., 2022). Importantly, these models065

are capable of replicating a pattern given just a few066

examples in context (Brown et al., 2020, GPT-3).067

In this paper, we introduce a novel approach for068

dataset creation which brings together the gener-069

ative strength of language models and the evalua-070

tive strength of humans through human and ma-071

chine collaboration (§2). The key insight of our072

approach is that language models can create new073

examples by replicating linguistic patterns that are074

valuable for training, without necessarily “under-075

standing” the task itself. Illustrated in Figure 1,076

our pipeline starts with an existing dataset. We use077

dataset cartography from Swayamdipta et al. (2020)078

to automatically identify pockets of examples that079

demonstrate challenging reasoning patterns rela-080

tive to a trained model. Using each group as a set081

of in-context examples, we leverage a pretrained082

language model to generate new examples likely083

to have the same pattern (see Table 1). We then084

propose a novel metric, building on dataset cartog-085

raphy, to automatically filter generations that are086

most likely to aid model learning. Finally, we vali-087

date the generated examples by subjecting them to088

human review, where crowdworkers assign a gold089

label and (optionally) revise for quality.090

We demonstrate the effectiveness of our ap-091

proach on the task of natural language inference092

(NLI), which determines whether a premise entails093

(i.e., implies the truth of) a hypothesis, both ex-094

pressed in natural language. Despite being one of095

the most resource-available tasks in NLP, analy-096

sis and challenge sets repeatedly demonstrate the097

limitations of existing datasets and the brittleness098

of NLI models trained on them (Gururangan et al.,099

2018; Poliak et al., 2018; Tsuchiya, 2018). Using100

MultiNLI (Williams et al., 2018) as our original101

dataset, we use our pipeline to create a dataset of102

108,079 examples, which we call Worker-and-AI103

NLI (WANLI).1 104

Remarkably, empirical results demonstrate that 105

replacing MultiNLI supervision with WANLI 106

(which is 4 times smaller) improves performance 107

on seven different out-of-domain test sets, includ- 108

ing datasets that are converted to the NLI format 109

from downstream tasks such as question-answering 110

and fact verification (§3). Moreover, under a data 111

augmentation setting, combining MultiNLI with 112

WANLI is more effective than existing augmenta- 113

tion sets. Finally, including WANLI in the training 114

data can help improve performance on certain in- 115

domain test sets. Our analysis of WANLI reveals 116

that it has fewer previously documented spurious 117

correlations than MultiNLI (§4). 118

Our approach contrasts with previous instruction- 119

based generation of dataset examples (Schick and 120

Schütze, 2021; West et al., 2021), which require 121

the model to understand the task from context, fun- 122

damentally limiting the complexity of generated 123

output to what is accessible by the model. More- 124

over, our human-in-the-loop approach is collabo- 125

rative, rather than adversarial (Dinan et al., 2019; 126

Nie et al., 2020; Bartolo et al., 2020). Overall, 127

we leverage the best of both worlds: a powerful 128

model’s ability to efficiently generate diverse ex- 129

amples, and humans’ ability to discriminate the 130

quality of generations. 131

Our worker-AI collaborative approach is more 132

scalable compared to the traditional crowdsourc- 133

ing framework. Our approach is generalizable, 134

allowing for rejuvenating datasets on many dif- 135

ferent classification tasks, especially when perfor- 136

mance seems to stagnate due to overfitting to pop- 137

ular benchmarks (Recht et al., 2019). Our work 138

shows the promise of leveraging language models 139

in a controlled way to aid the dataset creation pro- 140

cess, and we encourage the community to think of 141

dataset curation as an AI challenge itself. 142

2 Worker-AI Collaborative Dataset 143

Creation for NLI 144

We describe our four-stage approach for dataset 145

creation based on worker and AI collaboration. In 146

this work, we apply it to the task of natural lan- 147

guage inference (NLI), which involves predicting 148

whether a premise entails, contradicts or is neu- 149

tral to a hypothesis. NLI has broad applicability 150

in NLP: it has proven useful for pretraining (Clark 151

1Pronounced wan-li like the Chinese characters万理, as
in ten thousand reasoning.
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Seed MNLI example Generated WANLI Example Label & Reasoning

P: 5 percent probability that each part will be defect free.
H: Each part has a 95 percent chance of having a defect.

P: 1 percent of the seats were vacant.
H: 99 percent of the seats were occupied.

Entailment
Set complements

P: The artisans, tradespeople, and providers of entertainment
(reputable and not so reputable) lived downtown on the
reclaimed marshlands north and east, in the area still known
as Shitamachi.
H: The only place where artisans, tradespeople and entertainers
could live was in the marshlands to the north and east.

P: At the time of the Revolution, the old port of Marseille
was a great center of shipbuilding and commerce.
H: The only place where ships were built was in the old
port of Marseille.

Neutral
Hypothesis introduces
exclusivity

P: To the south, in the Sea of Marmara, lie the woods and
beaches of the Princes’ Islands.
H: In the north is the Sea of Marmara where there are
mountains to climb.

P: From the park’s southern entrance, follow the avenue
south to the Hotel de Ville.
H: From the park’s northern entrance, follow the avenue
north to the Hotel de Ville.

Contradiction
Reversing cardinal
directions

P: Democrats released documents indicating that Republicans
sold big political donors meals with the party’s leaders in
federal buildings in 1995.
H: It is illegal for a party to solicit products to donors.

P: In the late 1960s, students at a university in Wisconsin
tried to organize a union.
H: It was illegal for the students to organize a union.

Neutral
Illegal things
can happen

P: She ducked and parried the blow.
H: She ducked to miss the blow.

P: She stepped on the brake and the car came to a stop.
H: She stepped on the brake to stop the car.

Entailment
Implied intention

P: To build a worldclass finance organization and help
achieve better business outcomes, each of the organizations
we examined set an agenda for transforming the finance
organization by defining a shared vision -i.e.
H: The transformation was a disaster and the entire
organization had to be scrapped.

P: In order to help improve customer service, I suggested
that they send a representative to our office to discuss
our concerns.
H: The representative sent to our office did not solve
our problems and we lost a lot of business.

Neutral
Intended goals may
not actualize

P: Salinger wrote similar letters to other young female writers.
H: Other young female writers received similar letters from
Salinger as well.

P: The three schools have a number of students who are
from families with no history of financial difficulties.
H: Families with no history of financial difficulties
send their children to the three schools.

Entailment
Substituting a verb
with a different
subcategorization frame

Table 1: Seed MNLI examples, and corresponding WANLI examples which were fully generated by GPT-3. P
stands for premise, H for hypothesis. The seed example is “ambiguous” according to the definitions of Swayamdipta
et al. (2020), discussed in §2. The remaining in-context examples (shown in Appendix C.1) share the same pattern
and are found using distance in [CLS] embeddings of a trained task model. The reasoning is a short description of
the pattern we observe from the group, and which is successfully repeated in the generated example.

et al., 2019; Phang et al., 2018), and can be applied152

to verify candidate answers in question-answering153

(Chen et al., 2021) or factuality of generated sum-154

maries (Maynez et al., 2020).155

Our approach requires as prerequisites an initial156

dataset D0 and a strong task model M trained on157

D0. We use MultiNLI (Williams et al., 2018), a158

large-scale multi-genre NLI dataset, as D0. We159

finetune RoBERTa-large (Liu et al., 2019) on160

MultiNLI for our task model M (training details161

in Appendix B).162

As an overview, we first automatically collect163

groups of examples exemplifying challenging rea-164

soning patterns in D0 relative to M, using data165

maps (Swayamdipta et al., 2020; Stage 1, see §2.1).166

Then we overgenerate similar examples by lever-167

aging the pattern replication capabilities of GPT-3168

(Brown et al., 2020) (Stage 2; §2.2). While GPT-3169

can generate examples efficiently, it may not re-170

liably replicate the desired pattern and its output171

quality will not be uniform. We address this by au-172

tomatically filtering the generated examples using173

a metric derived from data maps (Stage 3; §2.3).174

We finally subject the collected data to human 175

review, in which crowdworkers optionally revise 176

examples and assign gold labels (Stage 4; §2.4). 177

Dataset Cartography. A key component of our 178

pipeline is inspired by data maps (Swayamdipta 179

et al., 2020), which automatically reveals different 180

regions in a dataset, w.r.t. the behavior of a classifi- 181

cation model during training. These include easy- 182

to-learn examples which the model consistently 183

predicts correctly through training, hard-to-learn 184

examples on which it is consistently incorrect, and 185

ambiguous examples for which the model’s confi- 186

dence in the correct answer exhibits high variability 187

across train epochs. Our pipeline focuses on am- 188

biguous examples, which were shown to lead to 189

more robust models. Additionally, ambiguous ex- 190

amples contain fewer spurious correlations (Gard- 191

ner et al., 2021), suggesting that they capture under- 192

represented counterexamples to spurious correla- 193

tions. Indeed, such counterexamples take more 194

epochs of training to learn and are crucial for gen- 195

eralization (Tu et al., 2020), providing a potential 196
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explanation for why they appear ambiguous across197

early epochs and lead to more robust models.198

2.1 Stage 1: Collection of Exemplars199

In this stage, we automatically collect groups of ex-200

amples from D0 which represent linguistic patterns201

we wish to include in the target dataset. We begin202

with a seed example (xi, yi) ∈ D0 belonging to the203

most ambiguous p = 25% relative to M.2204

To generate a new example with the same rea-205

soning pattern, we wish to leverage the ability of206

GPT-3 (Brown et al., 2020) for in-context learning;207

hence, we need to first collect examples that test a208

similar kind of reasoning to xi. To do this, we use209

the [CLS] token representation of each example210

relative to the task model M, and find the k = 4211

nearest neighbors via cosine similarity to xi that212

have the same label. Detailed qualitative inspection213

shows that the nearest neighbors in this represen-214

tation space tend to capture a human-interpretable215

similarity in the reasoning required to solve an ex-216

ample, rather than lexical or semantic similarity217

(examples in Table 1).218

Han and Tsvetkov (2021) give another interpre-219

tation for this approach: for examples with the220

same label, the similarity of [CLS] token embed-221

dings actually represents the similarity of gradient222

updates in the row of the final projection layer cor-223

responding to that label. Thus, two examples are224

close if training on them would “update” the final225

layer of the model similarly.226

By automatically identifying areas for augmenta-227

tion, our method does not require any prior knowl-228

edge of challenging patterns and makes our method229

tractable for building on top of large-scale datasets.230

Nonetheless, exemplar collection could potentially231

be approached in different ways (e.g., through ex-232

pert curation or category labels).233

2.2 Stage 2: Overgeneration234

Given an automatically extracted group of k+1 ex-235

amples from the original dataset D0, we construct a236

natural language context (prompt) for a left-to-right237

language model; in this work, we use GPT-3 Curie238

(the second-largest GPT-3 model). The prompt239

template we use is shown in Figure 2, where we240

2For exemplar collection, we exclude the telephone genre
of MultiNLI, which consists of telephone conversation tran-
scripts, due to their low fluency and ill-defined entailment re-
lationships. During pilots, we found that generated examples
mimicking telephone conversations would require crowdwork-
ers to revise low-quality text for basic fluency.

Figure 2: Prompt template instructing GPT-3 to gener-
ate a new example, given a set of in-context examples.
To separate the premise and hypothesis, the word “Im-
plication” is used for entailment examples (shown here),
“Possibility” for neutral examples, and “Contradiction”
for contradiction examples.

order the examples in increasing similarity to the 241

seed example. 242

Note that our method leverages GPT-3 in way 243

that is distinct from its typical usage in few-shot 244

settings, where given examples demonstrating a 245

task, GPT-3 performs the task on a new, unlabeled 246

example. Here, we instead give GPT-3 examples 247

representing a particular subcategory of the task, 248

and ask GPT-3 to generate a new example within 249

the same subcategory. 250

For each context, we sample from GPT-3 to cre- 251

ate n = 5 distinct examples. We use top-p decod- 252

ing (Holtzman et al., 2020) with p = 0.5 (addi- 253

tional details in Appendix C.2). Although gener- 254

ated examples at this stage could be assumed to 255

share label of its k + 1 in-context examples, we 256

instead consider the resulting dataset Dgen = {xi}i 257

at the end of Stage 1 to be unlabeled. 258

2.3 Stage 3: Automatic Filtering 259

In this step, we wish to filter generated examples 260

from Stage 2 to retain those that are the most am- 261

biguous with respect to M. However, computing 262

ambiguity for an example requires that it be a part 263

of the original training set, whereas we wish to esti- 264

mate the ambiguity of an unlabeled example with- 265

out additional training. Thus we introduce a new 266

metric called estimated max variability, which 267

measures the worst-case spread of predictions on an 268

example xi across checkpoints of a trained model. 269

Let E be the total epochs in training, Y the label 270

set, and pθ(e) the probability assigned with parame- 271

ters θe at the end of the e-th epoch. We define the 272
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estimated max variability as:273

σi = max
y∈Y

σ
(
{pθ(e)(y | xi)}e∈E

)
, (1)274

where σ is the standard deviation function.275

Concretely, we retroactively compute the pre-276

diction from each saved epoch of M on xi. The277

only assumption made is that the single example,278

if it had been a part of the training set, would have279

made a negligible difference on each model check-280

point (at least as observed through its posterior281

probabilities).3 In taking a maximum across labels,282

we consider xi to be ambiguous as long as M is283

undecided on any label ∈ Y .284

We first employ simple heuristics to discard ex-285

amples exhibiting observable failure cases of GPT-286

3. Specifically, we discard examples where 1) the287

premise and hypothesis are identical, sans punctua-288

tion or casing, 2) the generated example is an exact289

copy of an in-context example, 3) the example con-290

tains some phrases from the instruction (e.g., “pair291

of sentences”), and 4) the premise or hypothesis is292

shorter than 5 characters. Then, we compute the es-293

timated max variability for the remaining examples294

with respect to M, and retain an equal number of295

examples from each (intended) label class with the296

highest max variability, to create a dataset Dfiltered297

that is a fraction 1/2 of the size of Dgen.298

2.4 Stage 4: Human Review299

As the final stage of our pipeline, we recruit hu-300

man annotators on Amazon Mechanical Turk to301

review each unlabeled example xi ∈ Dfiltered. (De-302

tails about crowdworkers and guidelines in Ap-303

pendix D.) The annotator may optionally revise xi304

to create a higher-quality example x′i, or let x′i = xi.305

Either way, they assign a label yi. When revising306

examples, we asked annotators to preserve the in-307

tended meaning as much as possible through mini-308

mal revisions.4 However, if an example would re-309

quire a great deal of revision to fix or if it could be310

perceived as offensive, they should discard it. This311

results in the labeled dataset Dcollab = {(x′i, yi)}i.312

Crowdworkers annotate a total of 118,724 ex-313

amples, with two distinct workers reviewing each314

example. For examples that both annotators labeled315

without revision, we achieved a Cohen Kappa score316

3Indeed, we find a high correlation between variability and
estimated max variability; see Appendix A.

4In pilots, we found that when annotators exercised too
much freedom in revision, they often re-introduced the same
artifacts that have been well-documented in NLI.

Split Size Label distribution (E/N/C)

Train 103,079 38,608 / 49,053 / 15,418
Test 5,000 1,858 / 2,397 / 745

Table 2: WANLI dataset statistics.

of 0.60, indicating substantial agreement. To create 317

the final dataset, we discard an example if either 318

annotator chose to discard it, and we keep a revi- 319

sion only if both annotators revise an example (and 320

choose a revision uniformly at random). When 321

both annotators label the example as-is but choose 322

different labels, we sample one of the two labels 323

uniformly at random. The rationale for this is dis- 324

cussed in Appendix D.4. This leads to a labeled 325

dataset of 108,079 examples (91.03% of all anno- 326

tated examples, with the remaining discarded). Of 327

the labeled examples, 3.64% were revised. 328

We randomly split the data into a train and test 329

sets. Key dataset statistics are summarized in Ta- 330

ble 2. Unlike MultiNLI and SNLI, WANLI is not 331

label-balanced; see Appendix C.4 for a discussion. 332

In general, we believe the role of revision de- 333

pends on the quality of machine-generated exam- 334

ples. Indeed, we need to strike a balance between 335

leveraging human capabilities and avoiding the re- 336

emergence of annotation artifacts that may come 337

with too much freedom in revision. 338

3 Training NLI Models with WANLI 339

We finetune different copies of RoBERTa-large 340

(Liu et al., 2019) on different training sets, and eval- 341

uate each resulting model’s performance on a large 342

suite of NLI challenge sets. Given the challenge 343

sets were constructed independently of MultiNLI 344

or WANLI, we consider them out-of-distribution 345

for both training datasets. 346

3.1 NLI Test Suite 347

The NLI challenge sets come from a wide array of 348

domains, methodologies (e.g., crowdsourcing, ex- 349

pert curation, generation), and initial task formats 350

(e.g., question-answering, fact verification).5 351

NLI Diagnostics (Wang et al., 2018) is a manually- 352

curated test set that evaluates a variety of linguis- 353

tic phenomena using naturally-occurring sentences 354

from several domains. 355

5We evaluate on the development set for every dataset,
except for Winograd NLI, where we combine the train and
development set for greater statistical power, and Adversarial
NLI, where we use the test set as the labels were not hidden.
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Test Set

Diagnostics HANS* QNLI* WNLI* NQ-NLI* Adversarial NLI FEVER-NLI WANLI
R1 R2 R3

Dataset size → 1104 30K 5266 706 4855 1000 1000 1200 20K 5,000

Tr
ai

ni
ng

Se
t

MultiNLI 68.47 78.08 52.69 56.09 62.34 47.49 26.10 25.00 68.29 64.62
WANLI 72.55 89.40 76.81 65.15 64.03 51.99 35.89 38.08 70.63 75.49

MultiNLI + Tailor 67.75 79.03 54.89 56.23 63.83 46.99 27.70 25.41 68.75 64.27
MultiNLI ⋄ ANLI 67.75 79.90 68.74 60.48 62.49 72.69 47.20 45.66 72.30 65.96
MultiNLI + ANLI 66.84 77.94 62.41 57.08 62.84 71.20 47.20 44.91 72.30 65.93
MultiNLI ⋄ FEVER-NLI 66.75 76.50 56.70 57.08 61.81 54.19 28.49 26.16 76.83 63.31
MultiNLI + FEVER-NLI 67.57 76.05 52.90 54.95 63.02 54.69 28.49 25.00 76.93 64.53
MultiNLI ⋄ WANLI 70.19 82.25 72.38 61.33 63.70 50.70 29.10 28.41 71.07 75.49
MultiNLI + WANLI 71.73 82.98 64.69 60.76 63.91 52.30 28.40 28.33 71.22 75.45

ANLI 65.67 80.58 81.25 66.00 62.03 72.79 47.79 46.75 72.74 63.85
WANLI + ANLI 72.10 88.50 81.88 67.28 63.39 74.00 50.59 48.58 73.54 76.48

Table 3: Empirical comparison of different training sets for RoBERTa-large. Test sets with * contain two label
classes: entailment and non-entailment. We consider two data combination strategies, 1) augmentation (+), and 2)
random replacement (⋄), where the resulting dataset size is unchanged. Top: Comparison of MultiNLI and WANLI
as standalone training sets. Middle: Comparison of combination schemes with MultiNLI. In the top two sections,
we compare generalization to out-of-domain (OOD) challenge sets; gray cells mark settings that do not represent an
OOD challenge. Bottom: Comparison of whether including WANLI in the training data improves performance on
in-domain test data. Within each section, the highest accuracy on each test set (excluding gray cells) is bolded.

HANS (McCoy et al., 2019) targets unreliable syn-356

tactic heuristics based on lexical overlap between357

the premise and hypothesis.358

QNLI was adapted from the Stanford Question-359

Answering Dataset (Rajpurkar et al., 2016) by the360

GLUE benchmark (Wang et al., 2018). Each exam-361

ple consists of a premise that is a sentence, and a362

hypothesis that is a question, which is entailed if363

the question is answered by the premise.364

Winograd NLI was adapted by the GLUE bench-365

mark from the Winograd Schema Challenge366

(Levesque et al., 2011), which tests correct corefer-367

ence via common sense. To convert this dataset to368

NLI, an entailed hypothesis is formed by substitut-369

ing a correct referent and a non-entailed hypothesis370

is formed by substituting an incorrect referent.371

Adversarial NLI (ANLI; Nie et al., 2020) is372

an adversarially-constructed dataset where crowd-373

workers are instructed to write examples that stump374

existing models. Examples are collected in three375

rounds that progressively increase in difficulty,376

with model adversaries trained on MultiNLI, SNLI377

(Bowman et al., 2015), FEVER-NLI (discussed378

below), as well as ANLI sets from earlier rounds.379

Natural Questions NLI (NQ-NLI, Chen et al.,380

2021) is created from the Natural Questions QA381

dataset (Kwiatkowski et al., 2019). The premise382

is a decontextualized sentence from the original383

context; the hypothesis consists of a question and384

answer candidate converted into declarative form.385

FEVER NLI is adapted from the FEVER fact 386

verification dataset (Thorne et al., 2018), and in- 387

troduced along with ANLI. In each example, the 388

premise is a short context from Wikipedia, and the 389

hypothesis is a claim that is either supported (en- 390

tailed), refuted (contradicted), or neither (neutral). 391

3.2 Training Datasets 392

In addition to stand-alone WANLI and MultiNLI, 393

we consider two schemes for combining datasets 394

A and B: 1) augmentation (A+ B), in which the 395

two datasets are concatenated, and 2) random re- 396

placement (A ⋄ B), where |B| examples from A 397

are randomly swapped out and replaced with an 398

equal number of examples from B. Under each 399

scheme, we compare WANLI to other recent NLI 400

datasets: the train sets of ANLI and FEVER-NLI as 401

well as the augmentation set generated via TAILOR 402

(Ross et al., 2021), which used linguistic perturba- 403

tion strategies on SNLI hypotheses (Bowman et al., 404

2015) to create examples with high lexical overlap 405

between the premise and hypothesis. 406

Finally, we investigate whether combining 407

WANLI with ANLI can help improve in-domain 408

performance on ANLI. 409

3.3 Results 410

Results are shown in Table 3. When comparing 411

MultiNLI and WANLI alone, training a model on 412

WANLI instead of MultiNLI leads to better perfor- 413

mance on every test set we consider, including by 414
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4% on Diagnostics, 11% on HANS, and 9% on Ad-415

versarial NLI. This is remarkable considering the416

smaller size of WANLI (by a factor of 4) and the417

fact that examples are dominantly machine-written.418

Perhaps surprisingly, training on WANLI419

alone performs consistently better than combin-420

ing WANLI with MultiNLI, reinforcing that more421

data is not necessarily better, especially when it422

comprises predominantly of easy-to-learn exam-423

ples. Nonetheless, both MultiNLI + WANLI and424

MultiNLI ⋄ WANLI improve performance upon425

the baseline MultiNLI-trained model for every test426

set. In addition, WANLI is more effective than427

ANLI on every test set that is out-of-domain for428

both datasets (i.e., other than ANLI’s own test set429

and FEVER-NLI, which was used to train adver-430

saries for the ANLI dataset creation process). This431

result is substantial because the creation pipeline432

for Adversarial NLI posed a much greater chal-433

lenge for human workers and used more existing434

resources to train model adversaries.435

We then consider whether WANLI can further436

improve performance on ANLI by using the corre-437

sponding training set. Indeed, augmenting ANLI’s438

train set with WANLI improves test accuracy in439

ANLI by 2% (averaged over three rounds), while440

also improving out-of-domain test performance.441

4 Artifacts in WANLI442

We next investigate whether WANLI contains443

similar artifacts to MultiNLI. We find that while444

WANLI contains fewer previously known spurious445

correlations, it has a distinct set of lexical correla-446

tions that may reflect artifacts in GPT-3 output.447

4.1 Partial Input Models448

Given that the task requires reasoning with both449

the premise and the hypothesis, a model that sees450

only one of the two inputs should have no infor-451

mation about the correct label. We reproduce the452

methodology from Gururangan et al. (2018) and453

train fastText classifiers to predict the label us-454

ing partial input. After first balancing WANLI, a455

model trained on just the hypotheses of WANLI456

achieves 41.6% accuracy compared to 49.6% for457

MultiNLI, when restricted to the same size. A458

premise-only model trained on WANLI achieves459

an accuracy of 42.9%.6460

6Unlike WANLI, each MultiNLI premise is associated
with hypotheses from all three labels; a premise-only baseline
is thus guaranteed to have no information about the label.

Figure 3: Competency problem-style statistical correla-
tion plot between individual words and particular class
labels, where the y-axis is the probability of label y
given the presence of the word xi, and the x-axis is the
number of times word xi appears in the data. All points
representing (word, label) pairs above the blue line have
detectable correlations (Gardner et al., 2021).

4.2 Lexical Correlations 461

Gardner et al. (2021) posits that all correlations be- 462

tween single words and output labels are spurious. 463

We plot the statistical correlation for every word 464

and label in Figure 3, after balancing WANLI and 465

downsampling MultiNLI. We observe that WANLI 466

also contains words with detectable correlations, 467

suggesting that GPT-3 may have some artifacts of 468

its own due to the slightly different templates and 469

different sets of in-context examples for each label. 470

Interestingly, the correlations tend to be a different 471

set of words than for MultiNLI (other than “not” 472

and “no”), with less interpretable reasons for corre- 473

lating with a certain label (e.g., “second”, “was”). 474

4.3 Premise-Hypothesis Semantic Similarity 475

We explore the semantic similarity between the 476

premise and hypothesis within each label class 477

using Sentence-BERT (Reimers and Gurevych, 478

2019); these distributions are shown in Figure 4. 479

In both MultiNLI and WANLI, entailed hypothe- 480

ses are naturally most semantically similar to the 481

premise. In MultiNLI, this is followed by neutral 482

examples and then contradiction examples. In con- 483

trast, in WANLI there is much greater overlap in 484

the three distributions, and those for neutral and 485

contradiction examples are nearly indistinguish- 486

able. This suggests in WANLI, the semantic simi- 487
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Figure 4: Semantic similarity between the premise
and hypothesis, computed based on SBERT embed-
dings (Reimers and Gurevych, 2019). The distributions
for each label class are much more well-separated in
MultiNLI than in WANLI.

larity between the premise and hypothesis provides488

less signal of the label.489

5 Related Work490

Crowdsourcing The scalability and flexibility of491

crowdsourcing has enabled the creation of founda-492

tional NLP benchmarks across a wide range of sub-493

problems, and made it the dominant paradigm for494

data collection (Mihaylov et al., 2018; Rajpurkar495

et al., 2016; Huang et al., 2019; Talmor et al., 2019,496

i.a.). Nonetheless, a growing body of research497

shows that resulting datasets may not isolate the498

key linguistic phenomena (Jia and Liang, 2017;499

Chen et al., 2016; Sugawara et al., 2020).500

For crowdsourcing NLI datasets, where the anno-501

tator is given a premise and asked to write a hypoth-502

esis of each label (Bowman et al., 2015; Williams503

et al., 2018), the presence of annotation artifacts is504

especially well-studied (Gururangan et al., 2018;505

McCoy et al., 2019; Glockner et al., 2018). Recent506

work attempted to remedy this through different507

data collection protocols but found negative results508

(Vania et al., 2020; Bowman et al., 2020), showing509

this is a hard problem requiring greater innovation.510

Adversarial data collection In this paradigm, an-511

notators are asked to produce examples on which512

current systems fail (Kiela et al., 2021; Talmor513

et al., 2021; Zellers et al., 2019, i.a.). Beyond514

increasing annotator effort (Bartolo et al., 2020),515

adversarial methods have been challenged for not516

leading to better generalization on non-adversarial517

test sets (Kaushik et al., 2021) and decreasing518

data diversity (Bowman and Dahl, 2021). More-519

over, the resulting data has been shown to depend520

strongly on the adversaries, inhibiting a fair evalua-521

tion (Phang et al., 2021). Finally, these approaches522

may produce examples beyond the scope of the523

task. For example, in Adversarial NLI (Nie et al.,524

2020), an estimated 58% of examples required “rea- 525

soning from outside knowledge or additional facts,” 526

which is arguably separate from the underlying 527

problem of understanding semantic entailments. 528

We argue that we can better leverage the strengths 529

of machines and humans by having them collabo- 530

rate rather than act as adversaries. 531

Dataset generation Another recent approach 532

leverages language models toward fully automatic 533

dataset creation (Schick and Schütze, 2021; Anony- 534

mous, 2021; West et al., 2021; Bartolo et al., 2021a, 535

i.a.). Removing human input may fundamentally 536

limit the complexity of examples to phenomena 537

already accessible by the model, when our goal is 538

precisely to teach models more diverse phenom- 539

ena. The most similarly-motivated work to ours, 540

Lee et al. (2021), trains a data generator on “data- 541

rich slices” of an existing dataset, and applies it to 542

under-represented slices. However, they use labels 543

or metadata to represent slices, leaving automatic 544

methods of identifying slices to future work. 545

Human-machine collaboration In terms of 546

human-machine collaboration, Tekiroğlu et al. 547

(2020) and Yuan et al. (2021) employ a language 548

model to generate counter-narratives to hate speech 549

and biographies, respectively, which are validated 550

and revised by humans. This was for a generative 551

task, and we complement their findings by show- 552

ing that human-machine collaboration can also be 553

useful for generating labeled datasets for robust 554

classification models. Contemporary work (Bar- 555

tolo et al., 2021b) finetunes a generative annotation 556

assistant to produce question-answer pairs that hu- 557

mans can revise for extractive QA. 558

6 Conclusion 559

At the heart of dataset creation is distilling hu- 560

man linguistic competence into data that models 561

can learn from. The traditional crowdsourcing 562

paradigm takes the view that the best approach 563

for this is to solicit people to write free-form ex- 564

amples expressing their capabilities. In this work, 565

we present a worker-and-AI collaborative approach 566

and apply it to create WANLI, whose empirical 567

utility suggests that a better way of eliciting human 568

intelligence at scale is to ask workers to revise and 569

evaluate content. To this end, we hope to encour- 570

age more work in developing generative algorithms 571

to aid the dataset creation process. 572
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7 Ethics Statement573

We acknowledge that text generated from large pre-574

trained language models is susceptible to perpetu-575

ating social harms and containing toxic language576

(Sheng et al., 2019; Gehman et al., 2020). To par-577

tially remedy this, we ask annotators to discard578

any examples that may be perceived as offensive.579

Nonetheless, it is possible that harmful examples580

(especially if they contain subtle biases) may have581

been missed by annotators and included in the fi-582

nal dataset. Specifically due to the above harms,583

we additionally caution readers and practitioners584

against fully automating any data creation pipeline.585

In addition, we are cognizant of the asymmet-586

rical relationship between requesters and workers587

in crowdsourcing. We took great care to pay fair588

wages, and were responsive to feedback and ques-589

tions throughout the data collection process (see590

Appendix D for details). The only personal infor-591

mation we collect is the worker IDs from Amazon592

Mechanical Turk, which we will not release. The593

annotation effort received IRB approval.594
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Serra Sinem Tekiroğlu, Yi-Ling Chung, and Marco940
Guerini. 2020. Generating counter narratives against941
online hate speech: Data and strategies. In Proceed-942
ings of the 58th Annual Meeting of the Association943
for Computational Linguistics, pages 1177–1190, On-944
line. Association for Computational Linguistics.945

James Thorne, Andreas Vlachos, Christos946
Christodoulopoulos, and Arpit Mittal. 2018.947
FEVER: a large-scale dataset for fact extraction948
and VERification. In Proceedings of the 2018949
Conference of the North American Chapter of950
the Association for Computational Linguistics:951
Human Language Technologies, Volume 1 (Long952
Papers), pages 809–819, New Orleans, Louisiana.953
Association for Computational Linguistics.954

Masatoshi Tsuchiya. 2018. Performance impact caused955
by hidden bias of training data for recognizing tex-956
tual entailment. In Proceedings of the Eleventh In-957
ternational Conference on Language Resources and958
Evaluation (LREC 2018), Miyazaki, Japan. European959
Language Resources Association (ELRA).960

Lifu Tu, Garima Lalwani, Spandana Gella, and He He.961
2020. An empirical study on robustness to spuri-962
ous correlations using pre-trained language models.963

Transactions of the Association for Computational 964
Linguistics, 8:621–633. 965

Clara Vania, Ruijie Chen, and Samuel R. Bowman. 2020. 966
Asking Crowdworkers to Write Entailment Exam- 967
ples: The Best of Bad options. In Proceedings of 968
the 1st Conference of the Asia-Pacific Chapter of the 969
Association for Computational Linguistics and the 970
10th International Joint Conference on Natural Lan- 971
guage Processing, pages 672–686, Suzhou, China. 972
Association for Computational Linguistics. 973

Alex Wang, Amanpreet Singh, Julian Michael, Felix 974
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: 975
A multi-task benchmark and analysis platform for nat- 976
ural language understanding. In Proceedings of the 977
2018 EMNLP Workshop BlackboxNLP: Analyzing 978
and Interpreting Neural Networks for NLP, pages 979
353–355, Brussels, Belgium. Association for Com- 980
putational Linguistics. 981

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D. 982
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, 983
Sean Welleck, and Yejin Choi. 2021. Symbolic 984
knowledge distillation: from general language mod- 985
els to commonsense models. arXiv. 986

Adina Williams, Nikita Nangia, and Samuel Bowman. 987
2018. A broad-coverage challenge corpus for sen- 988
tence understanding through inference. In Proceed- 989
ings of the 2018 Conference of the North American 990
Chapter of the Association for Computational Lin- 991
guistics: Human Language Technologies, Volume 992
1 (Long Papers), pages 1112–1122, New Orleans, 993
Louisiana. Association for Computational Linguis- 994
tics. 995

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 996
Chaumond, Clement Delangue, Anthony Moi, Pier- 997
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 998
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 999
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 1000
Teven Le Scao, Sylvain Gugger, Mariama Drame, 1001
Quentin Lhoest, and Alexander Rush. 2020. Trans- 1002
formers: State-of-the-art natural language processing. 1003
In Proceedings of the 2020 Conference on Empirical 1004
Methods in Natural Language Processing: System 1005
Demonstrations, pages 38–45, Online. Association 1006
for Computational Linguistics. 1007

Ann Yuan, Daphne Ippolito, Vitaly Nikolaev, Chris 1008
Callison-Burch, Andy Coenen, and Sebastian 1009
Gehrmann. 2021. Synthbio: A case study in human- 1010
ai collaborative curation of text datasets. In Neural 1011
Information Processing Systems Track on Datasets 1012
and Benchmarks. 1013

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 1014
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma- 1015
chine really finish your sentence? In Proceedings of 1016
the 57th Annual Meeting of the Association for Com- 1017
putational Linguistics, pages 4791–4800, Florence, 1018
Italy. Association for Computational Linguistics. 1019

12

https://doi.org/10.1609/aaai.v34i05.6422
https://doi.org/10.1609/aaai.v34i05.6422
https://doi.org/10.1609/aaai.v34i05.6422
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/2020.emnlp-main.746
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=qF7FlUT5dxa
https://openreview.net/forum?id=qF7FlUT5dxa
https://doi.org/10.18653/v1/2020.acl-main.110
https://doi.org/10.18653/v1/2020.acl-main.110
https://doi.org/10.18653/v1/2020.acl-main.110
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://aclanthology.org/L18-1239
https://aclanthology.org/L18-1239
https://aclanthology.org/L18-1239
https://aclanthology.org/L18-1239
https://aclanthology.org/L18-1239
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://aclanthology.org/2020.aacl-main.68
https://aclanthology.org/2020.aacl-main.68
https://aclanthology.org/2020.aacl-main.68
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://arxiv.org/abs/2110.07178
https://arxiv.org/abs/2110.07178
https://arxiv.org/abs/2110.07178
https://arxiv.org/abs/2110.07178
https://arxiv.org/abs/2110.07178
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/pdf/2111.06467.pdf
https://arxiv.org/pdf/2111.06467.pdf
https://arxiv.org/pdf/2111.06467.pdf
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472


A Estimated Max Variability1020

In order to test the correlation between variability1021

and estimated max variability on a dataset D, we1022

would have to repeatedly hold out a single exam-1023

ple x, train a model on D \ {x}, and evaluate how1024

well the estimated max variability from the model1025

trained on D \ {x} correlates with the true vari-1026

ability from the model trained on D, which saw x1027

during training.1028

Unfortunately, this would be a very expensive1029

experiment. Instead, we split the MNLI train set1030

into 99% for training and 1% (3928 examples) for1031

evaluation. For each of the held-out examples,1032

we calculate the variability under MMNLI and es-1033

timated max variability under MMNLI 99%. The1034

correlation is shown in Figure 5, and has a Pear-1035

son’s correlation coefficient of 0.527 with a p-value1036

of 7× 10−281.1037

Figure 5: Correlation between variability of examples
on a model that trains on the full MNLI dataset, and
estimated max variability of the same examples when
they are held out of the training set.

B Modeling Details1038

All model training is implemented with the Hug-1039

gingFace (Wolf et al., 2020) library and uses the1040

original hyperparameters from the RoBERTa paper1041

for finetuning on GLUE (Liu et al., 2019). We train1042

the model for five epochs and evaluate the final1043

model. We choose not to use an early stopping1044

scheme in order to isolate the training data as the1045

object of study and control for training length as1046

a confounding factor. This is important since Tu1047

et al. (2020) showed that counter-examples can be1048

learned better with longer training.1049

All training was performed on a single Nvidia1050

Quadro RTX 6000 GPU. The duration of training1051

varied depending on the size of the training data,1052

from 3 hours for WANLI to 14 hours for MultiNLI 1053

+ WANLI. 1054

Hyperparameter Assignment

Model RoBERTa-large
Number of parameters 345M

Number of epochs 5
Learning rate 10−5

Batch size 32
Weight decay 0.1

Learning rate decay linear
Warmup ratio 0.06

Table 4: Training hyperparameters for RoBERTa-large.

C WANLI Details and Discussion 1055

C.1 Example GPT-3 Context 1056

We include some examples of full GPT-3 contexts 1057

in Table 8, 9, 10, 11. 1058

C.2 GPT-3 Generation Hyperparameters 1059

We queried the GPT-3 Curie model available 1060

through the OpenAI API7 on the dates November 1061

3 to November 5, 2021. In total, the generation 1062

cost $677.89. Hyperparameters for generation8 are 1063

shown in Table 5. 1064

Hyperparameter Assignment

Top p 0.5
Temperature 1
Max tokens 120
Stop string \n\n

Presence penalty 0.0
Frequency penalty 0.0

Table 5: Hyperparameters for generation from GPT-3.

C.3 Dataset sizes at each stage 1065

In Stage 1, we collect the top 25% most ambigu- 1066

ous examples from each label class in MultiNLI 1067

as our set of seed examples. This leads to 98,176 1068

seed examples, where each seed example corre- 1069

sponds to a unique context for GPT-3. We generate 1070

n = 5 examples per seed example, and skip exam- 1071

ples that are not properly formatted with a distinct 1072

7https://openai.com/api
8described at https://beta.openai.com/docs/

api-reference/completions/create

13

https://openai.com/api
https://beta.openai.com/docs/api-reference/completions/create
https://beta.openai.com/docs/api-reference/completions/create


premise and hypothesis following the context tem-1073

plate (Figure 2). At the end of Stage 2, the size1074

of Dgen is 372,404. After applying the filtering1075

heuristics described in §2.3 on Dgen, the remaining1076

dataset size is 287,241. Of the examples discarded,1077

79,278 generated examples had identical premise1078

and hypothesis (sans punctuation and casing), and1079

4,732 examples had copied an in-context exam-1080

ple. Next, we keep the half with the highest esti-1081

mated max variability by sourcing an equal number1082

of examples from each (intended) label class for1083

a balanced dataset, resulting in Dfiltered with size1084

143,619. However, we do not actually recruit hu-1085

man review on all of Dfiltered, and instead annotate1086

a total of 118,724 examples. Since some of these1087

examples are discarded, the final WANLI dataset1088

contains 108,079 examples. These correspond to1089

57,825 seed examples from MultiNLI.1090

C.4 How reliably does GPT-3 reproduce the1091

in-context pattern?1092

One characteristic of WANLI is its imbalanced la-1093

bel distribution: even though the set of seed exam-1094

ples for generation was constructed to be balanced,1095

after undergoing human labeling, only 14.95% of1096

examples are given the contradiction label. We1097

observe that contradiction patterns in in-context1098

examples are generally much more challenging for1099

GPT-3 to copy, likely because it was trained on1100

(mostly) coherent sequences of sentences. More1101

broadly, we find that more abstract reasoning pat-1102

terns are harder for GPT-3 to mimic than patterns1103

that involve simpler transformations.1104

Nonetheless, even when GPT-3 does not suc-1105

cessfully copy the examples, the diverse set of1106

in-context examples leads to a variety of creative1107

output that may be challenging for human crowd-1108

workers to achieve.1109

D Human Review1110

Screenshots of the instructions, guidelines, and an-1111

notation interface are shown in Tables 6, 7, and1112

8. The guidelines take inspiration from the de-1113

sign of the NLI Diagnostics dataset (Wang et al.,1114

2018). To collect a pool of qualified workers, we1115

designed a qualification task with examples test-1116

ing each of these categories. NLI is a challenging1117

task, and many generated examples are especially1118

challenging by design. Therefore, instructing an-1119

notators in how to think about the task and resolve1120

common issues is key to collecting high-quality,1121

label-consistent data. 1122

D.1 The Annotators 1123

Annotators were required to have a HIT approval 1124

rate of 98%, a total of 10,000 approved HITs, and 1125

be located in the United States. 1126

300 Turkers took our qualification test, of which 1127

69 passed. Turkers who were later found to pro- 1128

duce extremely careless annotations were removed 1129

from the qualification list (and oftentimes, their 1130

annotations were discarded, though they were still 1131

paid for their work). The number of workers who 1132

contributed to the final dataset is 62. 1133

Throughout the data collection process, the au- 1134

thors would review annotations and write individ- 1135

ualized emails to Turkers with feedback, as well 1136

as group emails to clarify common challenging 1137

cases of NLI (such as examples involving ques- 1138

tions). This follows the recommended crowdsourc- 1139

ing protocol from Nangia et al. (2021). 1140

D.2 Compensation 1141

In designing the task, we aimed for a pay rate of 1142

at least $15 per hour. Workers were paid $0.12 for 1143

each example that they annotate. At the end of data 1144

collection, we aggregate the earning and time spent 1145

from each crowdworker, and find that the median 1146

hourly rate was $22.72, with 85% of workers being 1147

paid over the $15/hour target. 1148

D.3 Revision Analysis 1149

We find that revisions fall broadly into two cate- 1150

gories: improving the fluency of the text, and im- 1151

proving the clarity of the entailment relationship. 1152

Fluency revisions often target well-documented is- 1153

sues with text generation, such as redundancy and 1154

self-contradiction. Clarity revisions often resolve 1155

ambiguities in the example that make the entail- 1156

ment relationship difficult (or impossible) to deter- 1157

mine, such as ambiguous coreference or temporal 1158

references. We provide examples of revisions in 1159

Table 6. 1160

We find that revisions are generally targeted yet 1161

effective. The majority of revisions change the 1162

length only slightly, with 74% of both premise revi- 1163

sions and hypothesis revisions changing the word 1164

count between −1 and +2 words. A very large pro- 1165

portion, 11.6% of premise revisions and 20.6% of 1166

hypothesis revisions, changed the set of pronouns 1167

present in the text, often to clarify coreference. 1168

We instructed annotators to revise examples only 1169

when it would make the example more “interesting” 1170

14



in some sense, or more clear without removing1171

what’s interesting. Nonetheless, we still observed1172

a large number of revisions that greatly simplified1173

the example, oftentimes re-introducing the same1174

artifacts that have been documented in prior work.1175

Therefore, we ultimately chose to include revisions1176

only when both annotators revised the example, in-1177

dicating that the revision was necessary to improve1178

the quality of the example.1179

D.4 Disagreement Analysis1180

In order to investigate the utility of collecting a1181

third annotation, we randomly sampled 80 exam-1182

ples where the two annotators disagreed on the la-1183

bel (and neither revised nor discarded), and two of1184

the authors separately annotated each one. Shock-1185

ingly, the two authors agreed on the label only 49%1186

of the time. Furthermore, in 12% of cases, all three1187

labels were present among the four annotations.1188

This suggests that disagreement is often due to true1189

ambiguity rather than careless mislabeling, and a1190

third annotation would be unlikely to have high1191

payoff in terms of “correcting” the label. As a re-1192

sult, we choose not to collect a third annotation1193

in this work. Instead, we believe that the doubly-1194

annotated examples in WANLI have flagged many1195

interesting cases of ambiguity in NLI, and we en-1196

courage future work to design richer annotation1197

frameworks to uncover the source(s) of ambigu-1198

ity. We provide examples where the two annotators1199

disagreed in Table 7.1200

E Data Map of WANLI1201

In Figure 9, we show a data map of MultiNLI1202

relative to RoBERTa-large trained on MNLI, and1203

of WANLI relative to RoBERTa-large trained on1204

WANLI.1205
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Figure 6: Instructions provided to crowdworkers on Amazon Mechanical Turk.

Figure 7: Guidelines provided to crowdworkers in the human review stage.
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Figure 8: The interface on Amazon Mechanical Turk used for collecting human annotations. Annotators are given
free text boxes that are pre-populated with the original premise and hypothesis, to ease the work of revision. Then,
they either select an entailment class or discard the example.

Example Label Purpose of Revision

P: The power plant It is the only source of continuous electric power for
the city.
H: The power plant is very important for the city.

Entailment
Coreference
resolution

P: It was a well-known fact that it was a well-known fact that the solution
was well-known.
H: The solution was well-known.

Entailment Redundancy

P: This will be the first time the king has met the queen in person.
H: The king has met the queen in person before. Contradiction Clarity

P: She walked with a light step, as if she were floating on air.
H: She was floating on air , as if she were walking on air . Contradiction Coherence

P: There is a slight possibility that, if the same temperature data are used,
the temperature of the Earth’s surface in 1998 will be lower than the
temperature of the Earth’s surface in 1998 now .
H: The Earth’s surface in 1998 was lower than the Earth’s surface in 1998
now .

Neutral Self-contradiction

P: I’ve never been able to figure out how the system works.
H: I still don’t know The system is how the system works. Entailment Coherence

P: This year’s spring break was a disaster for most of the students.
H: The students were not all able to have a good time during spring break.

Entailment Clarity

P: She had to go to the library to find out what the name of the street was.
H: She already knew the name of the street. Contradiction

Ambiguous temporal
reference

P: A number of theories have been proposed to explain the decline of
violence in modern society.
H: Violence will decline has declined in modern society.

Entailment Consistent tense

Table 6: Some examples of revisions that were done by annotators on examples generated by GPT-3.
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Example Labels Ambiguity

P: According to the most recent statistics, the rate of violent crime
in the United States has dropped by almost half since 1991.
H: The rate of violent crime has not dropped by half since 1991.

Entailment
Contradiction

Does “almost half” mean “not
half” or “basically half”?

P: The Commission did not consider the costs of this rule.
H: The rule will not cost anything.

Contradiction
Neutral

Does “considering the costs”
imply that the costs are non-zero?

P: The original draft of the treaty included a clause that would have
prohibited all weapons of mass destruction.
H: The clause was removed in the final version of the treaty.

Entailment
Neutral

Does the premise imply that the
clause is no longer in the treaty?

P: He’d made it clear that he was not going to play the game.
H: He didn’t want to play the game.

Contradiction
Neutral

Can we assume intention behind
actions?

P: If you can’t handle the heat, get out of the kitchen.
H: If you can’t handle the pressure, get out of the situation.

Entailment
Neutral

Is the premise to be interpreted
literally or figuratively?

P: After two hours of discussion, the group decided to meet again
the next day.
H: The group will meet again on the next day.

Entailment
Neutral

Can we assume follow-through
on a decision?

P: He felt as if he were watching a movie and was having a hard
time distinguishing between the actors and the real people.
H: He was watching a movie and could not tell the difference
between the actors and the real people.

Entailment
Contradiction

Is the hypothesis a
metaphorical statement?

P: As a result of the disaster, the city was rebuilt and it is
now one of the most beautiful cities in the world.
H: A disaster made the city better.

Entailment
Neutral

Do indirect consequences
count?

Table 7: Examples where two annotators assigned different labels. We find that many examples represent genuinely
ambiguous cases rather than careless mislabels, echoing previous findings (Pavlick and Kwiatkowski, 2019).

Figure 9: Left: Data map for MultiNLI train set, based on a RoBERTa-large classifier trained on MultiNLI.
Right: Data map for WANLI train set, based on a RoBERTa-large classifier trained on WANLI. A comparison
of the distribution in variability (which determines example ambiguity) is remarkable – we see that MNLI is
overwhelmingly dominated by easy-to-learn examples with variability close to 0. In contrast, the distribution in
variability is much more spread out in WANLI, suggesting that the dataset contains more valuable examples overall.
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Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. In six states, the federal investment represents almost the entire contribution for providing civil legal services
to low-income individuals.
Implication: In 44 states, the federal investment does not represent the entire contribution for providing civil
legal services for people of low income levels.

2. But if it’s at all possible, plan your visit for the spring, autumn, or even the winter, when the big sightseeing
destinations are far less crowded.
Implication: This destination is most crowded in the summer.

3. 5 percent of the routes operating at a loss.
Implication: 95 percent of routes are operating at either profit or break-even.

4. 30 About 10 percent of households did not
Implication: Roughly ninety percent of households did this thing.

5. 5 percent probability that each part will be defect free.
Implication: Each part has a 95 percent chance of having a defect.

6.

Table 8: Context corresponding to row 1 in Table 1, which contains Entailment examples from MultiNLI found
via nearest neighbors in [CLS] token embedding space. All examples require reasoning about set complements,
including from the universe of 100 percent, the 50 U.S. states, as well as the four seasons.

Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Small holdings abound, and traditional houses sit low on the treeless hillsides.
Possibility: The hills were the only place suitable to build traditional houses.

2. The inner courtyard has a lovely green and blue mosaic of Neptune with his wife Amphitrite.
Possibility: The only colors used in the mosaic of Neptune and Amphitrite are green and blue.

3. Nathan Road, Central, and the hotel malls are places to look.
Possibility: The only places to look are Nathan Road, Central and hotel malls.

4. Make your way westward to the Pont Saint-Martin for a first view of the city’s most enchanting quarter,
the old tannery district known as Petite France.
Possibility: The only place to the west of Pont Saint-Martin is the old tannery district.

5. The artisans, tradespeople, and providers of entertainment (reputable and not so reputable) lived downtown
on the reclaimed marshlands north and east, in the area still known as Shitamachi.
Possibility: The only place where artisans, tradespeople and entertainers could live was in the marshlands to
the north and east.

6.

Table 9: Context corresponding to row 2 in Table 1, which contains Neutral examples where the hypothesis
introduces an exclusivity that is not implied by the premise.
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Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Dun Laoghaire is the major port on the south coast.
Contradiction: Dun Laoghaire is the major port on the north coast.
2. Leave the city by its eastern Nikanor Gate for a five-minute walk to Hof Argaman (Purple Beach), one
of Israel’s finest beaches.
Contradiction: Leave the city by its western Nikanor Gate for a fifty five minute walk to Hof Argaman.

3. Southwest of the Invalides is the Ecole Militaire, where officers have trained since the middle of the
18th century.
Contradiction: North of the Invalides is the Ecole Militaire, where officers have slept since the early 16th
century.

4. Across the courtyard on the right-hand side is the chateau’s most distinctive feature, the splendid
Francois I wing.
Contradiction: The Francois l wing can be seen across the courtyard on the left-hand side.

5. To the south, in the Sea of Marmara, lie the woods and beaches of the Princes’ Islands.
Contradiction: In the north is the Sea of Marmara where there are mountains to climb.

6.

Table 10: Context corresponding to row 3 in Table 1, which contains Contradiction examples that flip cardinal
directions between the premise and hypothesis.

Write a pair of sentences that have the same relationship as the previous examples. Examples:

1. Vendors and hair braiders are sure to approach you.
Implication: You’re likely to be solicited by vendors or hair braiders.

2. The Carre d’Art, an ultramodern building opposite the Maison Carre, exhibits modern art.
Implication: Pieces of modern art can be found in the Carre d’Art, a structure which stands
across from the Maison Carre.

3. But they also take pains not to dismiss the trauma the Holocaust visited and continues to visit upon Jews.
Implication: The Holocaust visited trauma upon Jews, and they are careful not to dismiss this.

4. One fortunate result of this community’s influence has been the proliferation of good restaurants
and interesting bars from which to choose.
Implication: The influence of this community has led to an increase in the number of intriguing bars and
good dining establishments.

5. Salinger wrote similar letters to other young female writers.
Implication: Other young female writers received similar letters from Salinger as well.

6.

Table 11: Context corresponding to row 7 in Table 1, which contains Entailment examples that substitute a verb in
the premise with one in the hypothesis that has a different subcategorization frame. Note that the third in-context
example does not share quite the same pattern, but GPT-3 is still able to replicate the pattern present in other
examples.
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