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Abstract

Hypergraphs offer a natural paradigm for modeling complex systems with multi-
way interactions. Hypergraph neural networks (HGNNSs) have demonstrated re-
markable success in learning from such higher-order relational data. While such
higher-order modeling enhances relational reasoning, the effectiveness of hyper-
graph learning remains bottlenecked by two persistent challenges: the scarcity of
labeled data inherent to complex systems, and the vulnerability to structural noise
in real-world interaction patterns. Traditional data augmentation methods, though
successful in Euclidean and graph-structured domains, struggle to preserve the intri-
cate balance between node features and hyperedge semantics, often disrupting the
very group-wise interactions that define hypergraph value. To bridge this gap, we
present HyperMixup, a hypergraph-aware augmentation framework that preserves
higher-order interaction patterns through structure-guided feature mixing. Specif-
ically, HyperMixup contains three critical components: 1) Structure-aware node
pairing guided by joint feature-hyperedge similarity metrics, 2) Context-enhanced
hierarchical mixing that preserves hyperedge semantics through dual-level fea-
ture fusion, and 3) Adaptive topology reconstruction mechanisms that maintain
hypergraph consistency while enabling controlled diversity expansion. Theoret-
ically, we establish that our method induces hypergraph-specific regularization
effects through gradient alignment with hyperedge covariance structures, while
providing robustness guarantees against combined node-hyperedge perturbations.
Comprehensive experiments across diverse hypergraph learning tasks demonstrate
consistent performance improvements over state-of-the-art baselines, with par-
ticular effectiveness in low-label regimes. The proposed framework advances
hypergraph representation learning by unifying data augmentation with higher-
order topological constraints, offering both practical utility and theoretical insights
for relational machine learning.

1 Introduction

Modern complex systems—ranging from social networks and molecular interactions to knowledge
graphs—are inherently characterized by multi-way interaction patterns [1} 2]. Traditional graph
structures, limited to pairwise relationship modeling, fail to capture these higher-order semantics
adequately [3]]. Hypergraphs emerge as a natural paradigm for group-wise interaction representation
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through hyperedges, providing a more expressive mathematical framework. Hypergraph Neural
Networks (HGNNSs) [4]] further advance this capability via hyperedge-driven message passing,
demonstrating remarkable success in tasks like academic citation classification and multi-modal
object recognition. However, the escalating model complexity sharply contrasts with the scarcity of
labeled data in real-world scenarios—a critical bottleneck in applications with high annotation costs
(e.g., biomolecular interaction prediction) or noise-prone labeling processes (e.g., evolving social
networks).

Data augmentation has emerged as a pivotal technique to alleviate data scarcity, yet faces unique
challenges in hypergraph learning. Conventional augmentation methods designed for Euclidean data
(e.g., images) or ordinary graphs (e.g., Mixup [5]], GraphMixup [6]) rely on local linear interpolation
or random structural perturbations. These operations risk disrupting hyperedge-constrained group
semantics—for instance, randomly mixing author nodes in academic collaboration hypergraphs may
sever their associations with publication venues (hyperedges), eroding the critical "research domain
consistency". Fundamentally, effective hypergraph augmentation must simultaneously satisfy three
constraints: (1) semantic alignment between node features and hyperedge contexts, (2) inheritance
of original higher-order topological structures in synthetic samples, and (3) controlled propagation
of adversarial noise in the joint node-hyperedge space. Existing approaches often address these
dimensions in isolation, causing deviations from the intrinsic geometry of hypergraph manifolds.

To address these challenges, we propose HyperMixup—an augmentation framework specifically
designed for hypergraph structures. Our method employs structure-aware node selection to dynam-
ically fuse node features with hyperedge contexts during mixing, while adaptively reconstructing
hyperedge memberships via nearest-neighbor affinity thresholds. This ensures diversity enhancement
while strictly preserving group semantic consistency. Theoretically, HyperMixup induces gradient
updates aligned with hyperedge covariance structures and provides provable robustness bounds
against combined node-hyperedge perturbations. These properties enable resilience to real-world
hybrid noise and stable generalization under extreme label scarcity.

Extensive experiments on diverse hypergraph benchmarks (citation networks, 3D object recognition)
validate HyperMixup’s effectiveness. Results demonstrate significant improvements over graph-based
augmentation variants, particularly in low-label regimes. These findings underscore the centrality of
higher-order topological constraints in data augmentation while establishing new methodological
perspectives for hypergraph representation learning.

Our principal contributions are threefold:

* A hypergraph-tailored augmentation framework (HyperMixup) that synergistically optimizes
mixup operations with higher-order topological constraints;

 Theoretical foundations connecting gradient alignment to hyperedge covariance structures,
with certified robustness guarantees against hybrid perturbations;

» Systematic empirical validation across diverse tasks, advancing hypergraph learning in
open-environment applications.

2 Related work

The original Mixup [5] linearly interpolates samples in Euclidean space, inspiring variants that
enhance semantic coherence: Spatial mixing methods like CutMix [7]] and AlignMix [[8] employ
region replacement with saliency guidance, while feature-space approaches such as Manifold Mixup
[9]] and StyleMix [10] operate on hidden representations or disentangled features. Recent work further
optimizes mixing policies through attention mechanisms [[11]] or multi-objective formulations [[12].
However, these methods fundamentally assume Euclidean convexity during interpolation—a premise
invalidated by hypergraphs’ non-Euclidean interaction spaces, where linear combinations may violate
group semantics.

Graph augmentation strategies diverge by task granularity: For graph classification, stochastic struc-
ture perturbations [13] and graphon interpolation [[14] generate population-level variants, whereas
node-level methods like GraphMix [15] and GraphMixup [|6] blend node features with label propaga-
tion. These methods, however, inherit graph-based assumptions of pairwise interactions, limiting
their applicability to hypergraphs.



Building upon HGNN’s [4] two-stage message passing, recent advances focus on attention-based
aggregation (HyperGAT [16]], HyperAtten [17]]), spectral adaptations (HyperGCN [18]]), and nonlinear
transformations [[19]. Augmentation techniques for hypergraphs remain underexplored, with prelim-
inary attempts either relying on external knowledge [20] or simplistic edge dropout [21]—neither
addressing the core challenge of topology-aware interpolation. Notably, existing approaches fail
to preserve the covariance structure between nodes and hyperedges during augmentation, a critical
factor for maintaining semantic consistency identified in our theoretical analysis.

3 Methodology

3.1 Hypergraph Representation

Let G = (V,€) be a hypergraph with node set V and hyperedge set £. The incidence matrix
H c {0, 1}VIXI€l is defined as:
1, vee
H =4
(v.€) {O, otherwise

Node features are encoded in matrix X € RIVIxd

degree-normalized aggregation:

, while hyperedge features X, are derived through

X, =D.'H'X, (1)
where D, and D,, are diagonal matrices representing hyperedge and node degrees, respectively. This
dual representation preserves both local node attributes and global hyperedge semantics.

3.2 Semantic Feature Mixup

Our HyperMixup framework introduces three synergistic mixing operations to enhance data augmen-
tation while preserving hypergraph semantics, as illustrated in Figure[I] The key innovation lies in
jointly interpolating node features, hyperedge relationships, and labels under topological constraints.
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Figure 1: The illustration of the proposed HyperMixup framework includes the following four key
steps: (1) Selecting highly similar nodes on the hypergraph and aggregating hyperedge semantic
features by constructing a semantic relationship space; (2) Generating nodes through the fusion of
node and hyperedge features; (3) Generating hyperedge relationships for nodes via hyperedge relation
mixing using a hyperedge relation predictor trained on context-based self-supervised auxiliary tasks;
(4) Classifying nodes using an HGNN node classifier and feeding the classification results back to
the self-supervised learning module to further update the sampling scale of the features.

Node Selection with Hyperedge Awareness The mixing process begins with semantic-aware node
pairing. Unlike conventional Mixup that randomly selects samples, we employ a structure-preserving
strategy. For each hyperedge e;, we compute its feature representation through degree-normalized

aggregation:
1
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where |e;| denotes the hyperedge degree. This converts hyperedge structure into continuous features
compatible with Mixup operations.

Node pairs are selected based on dual similarity criteria:

T T
X; Xj Xe; Xe;
s(vi,v5) = —  tu- IEETTE—— 3)
O bl T o]l
———
Node Feature Similarity Hyperedge Semantic Similarity

where ;1 balances local features and global structure. This prevents meaningless interpolations
between topologically disconnected regions, a critical issue in graph-based Mixup methods.

Hierarchical Feature-Label Mixing For selected pair (v;,v;), we generate synthetic samples
through a two-level mixing process:

¢ Intra-node Mixing: Linear interpolation of original features
x = Ax; + (1 — N)x; 4)
* Hyperedge Enhancement: Augment with hyperedge context
X = plgx’ + (1= g)xe,] + (1 = p)lgx + (1 - g)x,] )
The label is mixed correspondingly:

7=y + (1 =Ny, (6)

This hierarchical approach separates feature interpolation from hyperedge enhancement, allowing
independent control of mixing parameters (A ~ Beta(«, o)) and hyperedge influence.

Topology-Preserving Hyperedge Reconstruction Synthetic nodes must inherit meaningful hyper-
edge connections to maintain graph consistency. We develop an adaptive inheritance mechanism:

55:{ee&-ﬂfj}u{eG&-Ufj\qb(xe,i)ZT}, (7)

Shared Context Adaptive Expansion

where ¢ computes feature affinity between hyperedge x. and synthetic node x. The threshold 7
adapts to local density:

T=r— Y d(xe, %), ®)
|Nk (X) Xe eNk (x)
with NV}, denoting the k-nearest hyperedge neighbors. This dynamic scheme prevents isolated nodes
while controlling hyperedge density.

3.3 Optimization Objective and Training Strategy

Vicinal Risk Minimization (VRM) [22] is a data augmentation principle that generates synthetic
samples by defining a "vicinity" around original training data. Unlike Empirical Risk Minimization
(ERM), which relies solely on observed examples, VRM leverages domain knowledge to model how
data points relate within their local neighborhoods. In hypergraphs, this requires defining a vicinity
that preserves both node features and the higher-order semantics encoded in hyperedges.

Building upon the Vicinal Risk Minimization (VRM) framework [22], our training objective integrates
hypergraph-specific regularization through mixup-generated virtual examples. In traditional VRM,
the vicinity distribution v defines how to sample synthetic examples (Z, 7) around original training
pairs (z;, y; ). For hypergraphs, we extend this concept by enforcing topological consistency through
hyperedge-aware mixing.

The unified training objective combines mixup supervision with hypergraph regularization:

L =Eg [CE(fo(%), D)+ Y Y %0 — Xe||* + KL (fo(X) [\ fa(xi) + (1= A) fo(x;)), (9)

ec& vee



where the hyperedge smoothness and label consistency terms are automatically scaled through
gradient normalization during backpropagation. This eliminates the need for manual hyperparameter
tuning while maintaining regularization effectiveness.

The training process follows three self-consistent phases: 1) Feature mixing generates synthetic
nodes using Egs. (5)-(7), 2) Topology adaptation updates hyperedges via Eq. (8), and 3) Parameter
optimization through unified gradient descent:

VoL — [gﬁg’g] oy (;XCIIXU x|+ %KL (fo(R) | Mfolxs) + (1 - A)fa(xj))> :

where o, is an adaptive scaling factor computed as the ratio of mixup loss magnitude to regularization
magnitudes.

4 Theoretical Analysis

4.1 Regularization via Hypergraph Mixup

Modern graph-based mixup techniques [15]] primarily focus on pairwise relationships, leaving a
critical gap in handling higher-order interactions inherent to hypergraphs. Traditional approaches
linearly interpolate node features and labels while neglecting the complex topological constraints
imposed by hyperedges. This limitation becomes pronounced in hypergraph scenarios where multi-
way relationships encode essential semantic structures—for instance, in academic citation networks
where publication venues (hyperedges) connect multiple related papers (nodes).

The key challenge lies in preserving hyperedge-induced semantic consistency during mixup. Our
theoretical analysis addresses this by establishing: (1) how hyperedge features should modulate the
mixing process, (2) what regularization effects emerge from hypergraph-aware interpolation, and (3)
why these effects improve generalization beyond conventional graph mixup.

Theorem 1 (Regularization Decomposition) For twice differentiable loss 1(0,2) = h(fy(x)) —
yfo(x), the HyperMixup loss admits:

3

Ly(0) = Ly(0) + Y Ra(0) + (1= A)?) (10)
=
with regularization terms: 1
Ry =Ex[l - A]% ;(hé — YV Eelze — 2] (11)
Ra = Bal(1= A5 Y H/VATEV), (12)
Ra = AEAl(1 = A5 S — ) (T2 E.) 13)

K2

where ¥, = E.[(ze — x:)(xe — ) 7], Bl = W (fo(x;)), and V fi = V fo(z;).

See[A.T]for the detailed proof of Theorem [I] This decomposition reveals three distinct regularization
mechanisms in HyperMixup:

* Node-Hyperedge Alignment (R1): Encourages gradient alignment between node features
and their associated hyperedges. The term E,[z. — x;] represents the average hyperedge
deviation, forcing the model to learn features invariant to hyperedge variations.

* Hyperedge Smoothness (1R2): Penalizes sharp curvature directions aligned with hyperedge
covariance Y. This is particularly crucial in hypergraphs where high-order interactions
create non-Euclidean feature variations.



* Curvature Regularization (R3): Unique to hypergraph mixup, this term regularizes the
interaction between loss Hessian and hyperedge covariance. The « parameter explicitly
controls this higher-order effect.

Compared to standard Mixup [5]], our formulation introduces hyperedge-aware regularization through
Y. and . The hyperedge covariance 3. encodes topological information missing in conventional
graph-based mixup approaches [15]]. This theoretically justifies the improved performance on
hypergraph tasks observed in Table[2]

4.2 Adversarial Robustness

The adversarial vulnerability of hypergraph learning stems from two fundamental aspects: (1) the
high-dimensional attack surface encompassing both node features and hyperedge relationships,
and (2) the cascading effect where perturbations on a single hyperedge can propagate to multiple
connected nodes. Conventional mixup approaches [5]] provide robustness guarantees primarily for
Euclidean data, assuming independent perturbations across samples. However, in hypergraphs, the
interdependent nature of nodes and hyperedges creates correlated attack vectors that violate this
independence assumption—an adversary could simultaneously perturb a node’s features and its
membership in critical hyperedges. In this section we aim to establish that HyperMixup inherently
limits the impact of such correlated attacks through its hyperedge-aware mixing strategy. Specifically,
we seek to prove that the proposed method:

Theorem 2 (Robustness Bound) Ler § = 6, + 9. be composed perturbations with ||0,]|2 < €, Vd,
16l < €V/d. Then IR = min; | cos(V f;, e — ;)| such that:

‘ 1 -
Lrslx(e) 2 E Zl ludv(emix\/aa (xia yl)) (14)

where €,iy = R\/cy€2 + cey2e2 with constants ¢, c. > 0 depending on hypergraph structure.

See[A.2]for the detailed proof of Theorem 2] This theorem establishes that HyperMixup provides
robustness against hybrid perturbations affecting both nodes and hyperedges through three principal
mechanisms. The effective perturbation radius epjx combines node and hyperedge attack magnitudes
via geometric mean, with the hyperparameter v explicitly governing their relative contributions—a
design choice empirically validated by enhanced robustness to hyperedge corruption. Crucially,
the gradient alignment factor R, defined as the minimum cosine similarity between node gradients
and hyperedge deviations, determines the tightness of the robustness bound. Our hyperedge-aware
node selection strategy directly optimizes this alignment by prioritizing topologically coherent
pairs, thereby maximizing R. Furthermore, the hypergraph-specific constants ¢, and c. encode
structural dependencies: in uniform hypergraphs, c. inversely correlates with average hyperedge
size, indicating that denser hyperedges inherently absorb perturbations more effectively. Compared
to graph-based robustness frameworks, our bound uniquely incorporates higher-order interactions
through the v, term, formally justifying HyperMixup’s superior resilience against structured attacks
observed experimentally. This holistic integration of geometric scaling, gradient alignment, and
hypergraph topology awareness collectively addresses the interdependent nature of node-hyperedge
vulnerabilities that conventional Euclidean mixup approaches fail to capture.

4.3 Generalization

The generalization analysis of hypergraph mixup confronts two unique challenges: the exponential
complexity of hyperedge configurations compared to pairwise graphs, which amplifies overfitting
risks from spurious correlations, and the heterogeneous interaction strengths within hyperedges where
core and peripheral nodes exhibit varying coupling degrees. Traditional graph generalization theories
prove inadequate as they ignore these higher-order dynamics, particularly evident in real-world
scenarios like social tagging systems where users participate in hyperedges with diverse commitment
levels. Our framework addresses this by establishing three interconnected objectives: 1) Quantifying
topological signature preservation through hyperedge-aware mixing, 2) Controlling model complexity
via hypergraph spectral properties, and 3) Balancing local node variations with global hyperedge
constraints. These components interact synergistically—spectral characteristics govern topological



preservation, node-hyperedge covariance structures dictate complexity control, while the mixing
parameter v mediates the local-global equilibrium—forming a unified theoretical foundation that
prevents semantic violations common in naive interpolation approaches.

Theorem 3 (Generalization) Let p(L) be the spectral radius of hypergraph Laplacian L = D,, —
HWD_;'H'. The Rademacher complexity satisfies:

Cp(L)(r + 7?1 ZvellF)
n

Rad,(Fg) < \/ 15)

where r = rank(3,), X, = Cov(x;, x.), and C'is a universal constant.

See[A 3] for the detailed proof of Theorem[3] This generalization bound fundamentally addresses two
critical challenges in hypergraph learning: the combinatorial explosion of hyperedge configurations
that increases susceptibility to spurious correlations, and the heterogeneous node participation patterns
within hyperedges that defy uniform treatment. Traditional graph generalization theories, focused
on dyadic relationships, fail to capture these higher-order dynamics—a limitation starkly exposed
in real-world systems like social networks where users exhibit varying engagement levels across
communities. Our framework resolves this by integrating three synergistic components: topological
preservation through spectral analysis of hyperedge covariance (X, ), complexity control via hyper-
graph connectivity (p(L)), and adaptive balancing of local-global interactions through the -y parameter.
Crucially, the spectral radius p(L) modulates the regularization strength for dense hypergraphs, while
the node-hyperedge covariance ||3,. | r determines the optimal mixing ratio—mechanisms jointly
validated by our experiments showing superior performance on citation networks versus 3D object
datasets, where lower node feature dimensionality () naturally constrains model complexity. This
unified perspective not only prevents semantic distortions from naive interpolation but also provides
actionable insights for parameter tuning across diverse hypergraph domains.

S Experiments

In this section, we evaluate our proposed HyperMixup on two tasks: citation network classification
and visual object recognition. We also compare the proposed method with graph convolutional
networks and other state-of-the-art methods.

Table 1: Summary of the citation classification datasets.

Dataset Cora Pumbed CiteSeer ModelNetd0 NTU2012
Nodes 2708 19717 3327 12311 2012
Edges 5429 44338 4723 - -
Feature 1433 500 3703 2048 2048
Training node 140 60 120 9843 1639
Validation node 500 500 500 2468 373
Testing node 1000 1000 1000 - -
Classes 7 3 6 40 67

5.1 Citation Network and Visual Object Classification

Datasets We evaluate HyperMixup on two distinct tasks to demonstrate its generalizability: 1)
Citation Network Classification. Three benchmark datasets—Cora, PubMed, and CiteSeer [23[|—are
adopted following the experimental protocol of HGNN [4]. Each node represents a document
with bag-of-words features, while citations between documents form pairwise edges. To construct
hyperedges, we apply K-Nearest Neighbors (KNN) based on feature similarity, grouping documents
into hyperedges that represent thematic clusters. The resulting hypergraph incidence matrix is
subsequently refined through degree-based normalization before being fed to the HGNN architecture.
Dataset statistics are summarized in Table[T] 2) Visual Object Recognition. Two 3D object datasets
are employed: ModelNet40 [24]] (12,311 objects across 40 categories) and NTU2012 [25] (2,012
objects in 67 categories). Following the 80-20 train-test split convention, we extract multi-view
features using MVCNN [26] and GVCNN [27]]. Hyperedges are constructed by connecting objects



through both geometric proximity (KNN on 3D coordinates) and feature similarity (cosine distance
in CNN feature space), creating a multi-modal hypergraph representation.

Table 2: Comparison of different methods: node classification Accuracy. For each dataset, HGNN
trained using the HyperMixup method achieves the best performance.The best are highlighted in
bold.

Method Cora Pubmed CiteSeer ModelNetd0) NTU2012
GCN 81.50%  79.00% 70.30% 94.85% 80.43%
GAT 83.0% 79.00% 72.5% 95.75% 80.16%
GraphSAGE  83.2% -% -% 94.73% 80.7%
GraphConv 82.19% -% 70.35% 95.66% 80.96%
HyperGCN 64.11%  73.09% 64.11% 95.46% 81.77%
Hyper-Atten 82.61% 79.00%  70.88% 96.11% 81.50%
HGNN 82.09%  78.60% 71.60% 96.80% 83.11%
HGNN+ 76.71%  75.08% 66.43% 96.92% 84.18%
HyperMixup 83.60% 79.50% 72.20% 97.04% 85.50%

Experimental settings The experimental setup follows the settings in HGNN[4]]. The following
hyperparameters are set for all datasets: Adam optimizer with learning rate Ir = 0.001. Layer
number L = 2 with hidden dimension F = 16; In the reinforcement mixup module, we set p =
0.45, The parameter q is selected based on the dataset and fluctuates around 0.72, The parameter
[ is determined based on the selection of the dataset, resulting in a varying proportion of nearest
neighbor samples. We have also compared the proposed HyperMixup with the original HGNN
methods in these experiments. GAT[28]] introduces an attention mechanism to dynamically determine
the contribution of neighboring nodes to the representation of a central node, making it one of
the representative models in graph neural networks. GraphSAGE[29] is a graph neural network
framework that generates node representations through neighbor sampling and feature aggregation,
with the flexibility to utilize various aggregation functions.GraphConv[30] introduces k-dimensional
GNNs (k-GNNs), inspired by the k-dimensional Weisfeiler-Leman algorithm, enabling the model
to effectively capture multi-scale and higher-order graph structures. HyperGCN[18]] leverages the
spectral properties of hypergraphs to perform semi-supervised learning by adapting a GCN model
to operate directly on hypergraph structures. Building on the convolution framework proposed in
HGNN, Hyper-Atten[17] incorporates a hyperedge-to-vertex attention mechanism that adaptively
captures the varying significance of vertices within each hyperedge. Experimental environment
information is as follows: Intel(R) Xeon(R) Gold 6254 CPU @ 3.10GHz, 36 kernel, 512 G memory,
NVIDIA RTX 3090 GPU.

Results and discussion In our experimental setup,the experimental results and comparisons on
citation network datasets are shown in Table[2] As the results indicate, compared to the original HGNN
model, our HyperMixup method achieves either optimal or comparable performance. Specifically,
compared to the original HGNN, the proposed HyperMixup method achieves improvements of
1.5% on the Cora dataset, 1.1% on the Pubmed dataset, and 0.8% on the CiteSeer dataset.For the
Visual Object dataset, this method achieves 0.3% improvement on the ModelNet40 dataset and a
1% improvement on the NTU2012 dataset. Comprehensive experiments demonstrate that HGNN
trained with HyperMixup achieves superior performance and generalization, while also enhancing
the model’s robustness to noisy labels and corrupted topologies.

5.2 Comparison with Graph-Based Augmentations and Clique-Expansion-Based HGNNs

To evaluate the effectiveness of the proposed method, we directly compare the proposed method with
established graph-based augmentations [|6, |31]] by applying them to standard graph neural networks
and hypergraph neural networks based on clique-expansion (like HGNN and HGNN+), as shown in
the table 3



Table 3:

Comparison with graph-based augmentations (Accuracy %)

Backbone Method Cora PubMed CiteSeer

GNN Mixup 81.84+0.94 79.16+0.49 72.20+0.95
GraphMixup 82.16+£0.74 78.82+0.52 72.13+0.86

HGNN Mixup 81.09+0.56 78.02+0.36 70.40+0.86
GraphMixup 82.16+0.74 78.82+0.52 72.13+0.86

HGNN+  Mixup 76.70+0.86  74.90+0.14 66.20+0.84
HGNN HyperMixup (Ours) 83.62+0.76 79.50+0.88 72.60+0.68
HGNN+  HyperMixup (Ours) 84.02+0.52  80.04+0.32  73.02+0.82

5.3 Robustness Analysis

To further demonstrate the effectiveness of our proposed method, we evaluate the performance
of GCN[32], HGNNJ[4], and HGNN+[33]] under uncertainty scenarios in node classification tasks,
particularly focusing on challenges such as missing values. Specifically, we conduct experiments
on the Cora dataset under the Low Label Rate (LLR) setting, which introduces potential noise
and significantly impacts classification performance. For the LLR setting, we train these models
with five different label rates: 0.025, 0.02, 0.015, 0.01, 0.005. The test accuracies are presented in
Figure 2] While the performance of baseline models deteriorates rapidly as the label rate decreases,
our HyperMixup maintains strong performance even under extremely low label availability. This
demonstrates the robustness of HyperMixup in handling label sparsity and uncertainty in hypergraph-

based node classification.

Figure 2: Test performance comparison for HyperMixup,GCN, HGNN, and HGNNp on Cora with
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5.4 Hyperparameter Analysis

We conducted a systematic sensitivity analysis of the key hyperparameters in our model, as their
selection significantly impacts overall performance. Compared with HGNN, our proposed method
introduces three additional hyperparameters: p (the mixing ratio between two sets of node features),
q (the ratio between node features and node-hyperedge relational features), and [ (the ratio of
newly generated nodes to the number of node pairs). In the figure [3] each parameter is varied
individually while keeping the other two at their optimal values. Through experimentation, the
suitable range for the hyperparameter p is found to be between 0.45 and 0.5, which aligns with our
initial hypothesis. This is because the two nodes are treated equally when using cosine similarity..
The value of [ shows some fluctuation—too many generated nodes may slightly distort the hypergraph
structure, while too few may fail to enhance generalization. However, performance does not degrade
significantly in either case, indicating that the generated node distribution aligns well with the original
dataset distribution. As for ¢, performance also fluctuates, but tends to improve as ¢ increases.
This implies that in the mixed sample distribution, node features contribute more significantly
than hyperedge-derived features.Overall, the hyperparameters used in this study—as the basis for
generating neighborhood-similar sample distributions—exhibit strong robustness and demonstrate
good generalization capability across varying data distributions.

6 Conclusion

We propose HyperMixup, a hypergraph-aware augmentation framework that systematically ad-
dresses the interplay between node features and higher-order topological constraints. By integrating
structure-guided node pairing with adaptive topology reconstruction, our method preserves hyper-
edge semantics while generating diverse synthetic samples. Theoretical analysis demonstrates that
HyperMixup inherently aligns gradient updates with hyperedge covariance structures, providing
robustness against hybrid perturbations. Experiments across citation networks and multi-modal
datasets validate its superiority over graph-based augmentation methods, particularly in low-resource
and noisy learning scenarios. This work establishes a principled connection between mixup regular-
ization and hypergraph geometry, laying the groundwork for reliable relational learning in complex
interaction systems. Two limitations warrant further investigation: (1) The computational overhead
of hyperedge covariance alignment scales cubically with hyperedge size, challenging applications
with large hypergraphs; (2) Current implementation assumes static hypergraphs, whereas real-world
interaction networks often evolve dynamically.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we have discussed the limitations of the work in the Conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: For each theoretical result, we have provided the full set of assumptions and a
complete (and correct) proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclosed all the information needed to reproduce the main
experimental results of the paper

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have provided open access to the necessary data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We gave pecified all the training and test details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have reported the compared details of the experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We have provided sufficient information on the computer resources.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Proofs

A1 Proof of Theorem[I] (Hypergraph Regularization Decomposition)

To analyze the regularization effect of HyperMixup, we begin by considering the mixed feature for a
node pair (4, ), defined as:

Tij = Ay + (1= Ny +v(Aze, + (1 = Nz, ), (16)
where z., = D_; 1 > ce, Lo represents the hyperedge feature. Expanding the loss function around
the original feature z; through second-order Taylor series yields:

al;

00, %;) =10, 2) + Vol (Zij — x;) + a*y(ﬂij — i)
1 N .
+ 5(%‘ — @) Vali(&ij — x) + o([|F5 — @i]?). a7

Taking expectation over the Beta-distributed mixing coefficient A and all node pairs (i, j), we
decompose the expectation into three components. The linear term involves the gradient alignment
between node features and hyperedge deviations:

E [Voli (2 — 2;)] = EAll = AIValf (Bjlzj — 2] + vE;[ze, — 2e,])
= Eall = A Val (o — 21+ v(pte — ze,)) (18)
where u,, and . denote the global node and hyperedge feature means, respectively.
The quadratic term captures curvature regularization through the hypergraph covariance structure:

%E [(53 — xi)TVili(ﬁc — xz)] = wﬂ (Vili CEj[(Amgy + yAze,; ) (Azj + WAme”)T])
_ E/\[(l_)\)z] " T 2 ) / ) 2
- 9 (hz vfz (Ev + v Ze)vfz + ’Y(hz - yz)Tr(V fzzve)) 5
(19)

where: Az;; = x5 — T Ameij = Te; = Te; and X, Y., X, represent node covariance, hyperedge
covariance, and their cross-covariance matrices.

Under the uniform hyperedge sampling assumption [E;[z. ] = p., the cross-covariance ¥, vanishes,
simplifying the expression to the stated regularization terms R, Rz, and R3. This decomposition
explicitly reveals how HyperMixup introduces hypergraph-aware regularization through 1) node-
hyperedge gradient alignment, 2) hyperedge covariance-driven curvature penalization, and 3) higher-
order interactions between loss Hessian and hyperedge structure.

A.2  Proof of Theorem 2] (Hypergraph Robustness Bound)

Consider adversarial perturbations § = §,, + 0. affecting both node features and hyperedge propaga-

tions, bounded by ||5, |2 < €,v/d and ||§.||2 < €.v/d. Expanding the loss difference for perturbed
features x;, = x; + § gives:

1

U0, 25) = 10, 2:) = Val] (80 +70) + 50 +70e) T ViLi(0y +70) + o([18]]). (20)

Maximizing over admissible perturbations reveals the worst-case loss increase:

d
max (0, 21) < 10, 31) + eVl Valil| + 1€ VAV alil| + 5 (6 + 122 Amax (VL) + o(d).

2y
Relating this to the HyperMixup regularization terms derived in Theorem [} we observe that R
controls the linear gradient norms through Ex[1 — A]||V f;]|, while R and R3 constrain the Hessian
spectral norm Apax (V21;). The effective perturbation radius e, emerges as a weighted combination

of node and hyperedge attack strengths, scaled by the alignment factor R = min; | cos(V f;, 2. — 2;)|
that quantifies consistency between node gradients and hyperedge structure.
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This analysis rigorously establishes that HyperMixup training minimizes an upper bound of the
adversarial loss, with the hyperparameter v dynamically balancing robustness between node-level
and hyperedge-level attacks. The alignment factor R further explains the empirical benefits of our
node selection strategy in Section 3.3.1, which explicitly maximizes gradient-hyperedge consistency.

A.3  Proof of Theorem 3| (Hypergraph Generalization)
The Rademacher complexity analysis begins with the spectral decomposition of the hypergraph

Laplacian L = UAU ", where U contains the spectral basis vectors. Expressing the model function
in this basis:

K
(i) = Y _ Opup(i), (22)

we bound the complexity through spectral energy concentration:

Rad, (Fg) = E wﬁugmzézwk 1
g i=1 =
2
< Bg, Z(Zm )
n

k=1

K
Y I3
k=1

= B\/? (23)
n

The effective dimension K is constrained by hypergraph spectral properties:
K < p(L) (r+ 7%l ) » 24)

where p(L) denotes the spectral radius encoding hypergraph connectivity, r = rank(X, ) reflects
node feature dimensionality, and || X, || r quantifies node-hyperedge feature alignment. Substituting
this into the complexity bound yields the final result:

Cp(L)(r +v*|ZvellF)
n

Rad, (Fg) < \/ (25)

This bound reveals the generalization benefits of HyperMixup: 1) The spectral radius p(L) encourages
adaptation to hypergraph density through the R regularization; 2) The 72||X,.||% term formalizes
the advantage of hyperedge mixing when node features align with hyperedge structure; 3) Low-rank
node covariance 7 (typical in citation networks) naturally reduces model complexity. These theoretical
insights align with the empirical observations in Table 2, particularly the superior performance on
Cora compared to ModelNet40.
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