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Abstract

We establish new generalisation bounds for multiclass classification by abstracting to a more
general setting of discretised error types. Extending the PAC-Bayes theory, we are hence
able to provide fine-grained bounds on performance for multiclass classification, as well as
applications to other learning problems including discretisation of regression losses. Tractable
training objectives are derived from the bounds. The bounds are uniform over all weightings
of the discretised error types and thus can be used to bound weightings not foreseen at
training, including the full confusion matrix in the multiclass classification case.

1 Introduction

Generalisation bounds are a core component of the theoretical understanding of machine learning algorithms.
For over two decades now, the PAC-Bayesian theory has been at the core of studies on generalisation abilities
of machine learning algorithms. PAC-Bayes originates in the seminal work of McAllester (1998; 1999) and
was further developed by Catoni (2003; 2004; 2007), among other authors—we refer to the recent surveys
Guedj (2019) and Alquier (2021) for an introduction to the field. The outstanding empirical successes of deep
neural networks in the past decade call for better theoretical understanding of deep learning, and PAC-Bayes
emerged as one of the few frameworks allowing the derivation of meaningful (and non-vacuous) generalisation
bounds for neural networks: the pioneering work of Dziugaite & Roy (2017) has been followed by a number
of contributions, including Neyshabur et al. (2018), Zhou et al. (2019), Letarte et al. (2019), Pérez-Ortiz et al.
(2021); Perez-Ortiz et al. (2021) and Biggs & Guedj (2021; 2022a;b), to name but a few.

Much of the PAC-Bayes literature focuses on the case of binary classification, or of multiclass classification
where one only distinguishes whether each classification is correct or incorrect. This is in stark contrast
to the complexity of contemporary real-world learning problems. This work aims to bridge this gap via
generalisation bounds that provide information rich measures of performance at test time by controlling the
probabilities of errors of any finite number of types, bounding combinations of these probabilities uniformly
over all weightings.

Previous results. We believe our framework of discretised error types to be novel. In the particular case
of multiclass classification, little is known from a theoretical perspective and, to the best of our knowledge,
only a handful of relevant strategies or generalisation bounds can be compared to the present paper. The
closest is the work of Morvant et al. (2012) on a PAC-Bayes generalisation bound on the operator norm of
the confusion matrix, to train a Gibbs classifier. We focus on a different performance metric, in the broader
setting of discretised error types. Koço & Capponi (2013) suggest to minimise the confusion matrix norm
with a focus on the imbalance between classes; their treatment is not done through PAC-Bayes. Laviolette
et al. (2017) extend the celebrated C-bound in PAC-Bayes to weighted majority votes of classifiers, to perform
multiclass classification. Benabbou & Lang (2017) present a streamlined version of some of the results from
Morvant et al. (2012) in the case where some examples are voluntarily not classified (e.g., in the case of too
large uncertainty). More recently, Feofanov et al. (2019) derive bounds for a majority vote classifier where
the confusion matrix serves as an error indicator: they conduct a study of the Bayes classifier.

From binary to multiclass classification. A number of PAC-Bayesian bounds have been unified by
a single general bound, found in Bégin et al. (2016). Stated as Theorem 1 below, it applies to binary
classification. We use it as a basis to prove our Theorem 3, a more general bound that can be applied to,

1



Under review as submission to TMLR

amongst other things, multiclass classification and discretised regression. While the proof of Theorem 3
follows similar lines to that given in Bégin et al. (2016), our generalisation to ‘soft’ hypotheses incurring any
finite number of error types requires a non-trivial extension of a result found in Maurer (2004). This extension
(Lemma 5), along with its corollary (Corollary 6) may be of independent interest. The generalisation bound
in Maurer (2004), stated below as Corollary 2, is shown in Bégin et al. (2016) to be a corollary of their bound.
In a similar manner, we derive Corollary 7 from Theorem 3. Obtaining this corollary is significantly more
involved than the analogous derivation in Bégin et al. (2016) or the original proof in Maurer (2004), requiring
a number of technical results found in Appendix B.

Briefly, the results in Bégin et al. (2016) and Maurer (2004) consider an arbitrary input set X , output set
Y = {−1, 1}, hypothesis space H ⊆ YX and i.i.d. sample S ∈ (X ×Y)m. They then establish high probability
bounds on the discrepancy between the risk (probability of error an a new datapoint) of any stochastic classifier
Q (namely, a distribution on H) and its empirical counterpart (the fraction of the sample Q misclassifies).
The bounds hold uniformly over all Q and contain a complexity term involving the Kullback-Leibler (KL)
divergence between Q and a reference distribution P on H (often referred to as a prior by analogy with
Bayesian inference—see the discussion in Guedj, 2019).

There are two ways in which the results in Bégin et al. (2016) and Maurer (2004) can be described as binary.
First, as Y contains two elements, this is obviously an instance of binary classification. But a more interesting
and subtle way to look at this is that only two cases are distinguished—correct classification and incorrect
classification. Specifically, since the two different directions in which misclassification can be made are counted
together, the bound gives no information on which direction is more likely.

More generally, the aforementioned bounds can be applied in the context of multiclass classification provided
one maintains the second binary characteristic by only distinguishing correct and incorrect classifications
rather than considering the entire confusion matrix. However, note that these bounds will not give information
on the relative likelihood of the different errors. In contrast, our new results can consider the entire confusion
matrix, bounding how far the true (read “expected over the data-generating distribution”) confusion matrix
differs from the empirical one, according to some metric. In fact, our results extend to the case of arbitrary
label set Y, provided the number of different errors one distinguishes is finite.

Formally, we let
⋃M

j=1 Ej be a user-specified disjoint partition of Y2 into a finite number of M error types,
where we say that a hypothesis h ∈ H makes an error of type j on datapoint (x, y) if (h(x), y) ∈ Ej (by
convention, every pair (ŷ, y) ∈ Y2 is interpreted as a predicted value ŷ followed by a true value y, in that
order). It should be stressed that some Ej need not correspond to mislabellings—indeed, some of the Ej

may distinguish different correct labellings. We then count up the number of errors of each type that a
hypothesis makes on a sample, and bound how far this empirical distribution of errors is from the expected
distribution under the data-generating distribution (Theorem 3). Thus, in our generalisation, the (scalar) risk
and empirical risk (RD(Q) and RS(Q), defined in the next section) are replaced by M -dimensional vectors
(RD(Q) and RS(Q)), and our discrepancy measure d is a divergence between discrete distributions on M
elements. Our generalisation therefore allows us to bound how far the true distribution of errors can be from
the observed distribution of errors. If we then associate a loss value ℓj ∈ [0,∞) to each Ej we can derive a
bound on the total risk, defined as the sum of the true error probabilities weighted by the loss values. In fact,
the total risk is bounded with high probability uniformly over all such weightings. The loss values need not
be distinct; we may wish to understand the distribution of error types even across error types that incur the
same loss.

For example, in the case of binary classification with Y = {−1, 1}, we can take the usual partition into
E1 = {(−1,−1), (1, 1)} and E2 = {(−1, 1), (1,−1)} and loss values ℓ1 = 0, ℓ2 = 1, or the fine-grained
partition Y2 = {(0, 0)} ∪ {(1, 1)} ∪ {(0, 1)} ∪ {(1, 0)} and the loss values ℓ1 = ℓ2 = 0, ℓ3 = 1, ℓ4 = 2. More
generally, for multiclass classification with N classes and Y = [N ], one may take the usual coarse partition
into E1 = {(ŷ, y) ∈ Y2 : ŷ = y} and E2 = {(ŷ, y) ∈ Y2 : ŷ ̸= y} (with ℓ1 = 0 and ℓ2 = 1), or the fully refined
partition into Ei,j = {(i, j)} for i, j ∈ [N ] (with correspondingly greater choice of the associated loss values),
or something in-between. Note that we still refer to Ej as an “error type” even if it contains elements that
correspond to correct classification, namely if there exists y ∈ Y such that (y, y) ∈ Ej . As we will see later, a
more fine-grained partition will allow more error types to be distinguished and bounded, at the expense of a
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looser bound. As a final example, for regression with Y = R, we may fix M strictly increasing thresholds
0 = λ1 < λ2 < · · · < λM and partition Y2 into Ej = {(y1, y2) ∈ Y2 : λj ≤ |y1 − y2| < λj+1} for j ∈ [M − 1],
and EM = {(y1, y2) ∈ Y2 : |y1 − y2| ≥ λM}.

Outline. We set our notation in Section 2. In Section 3 we state and prove generalisation bounds in the
setting of discretised error types: this significantly expands the previously known results from Bégin et al.
(2016) by allowing for generic output sets Y. Our main results are Theorem 3 and Corollary 7. To make our
findings profitable to the broader machine learning community we then discuss how these new bounds can be
turned into tractable training objectives in Section 4 (with a general recipe described in greater detail in
Appendix A). The paper closes with perspectives for follow-up work in Section 5 and we defer to Appendix B
the proofs of technical results.

2 Notation

For any set A, let M(A) be the set of probability measures on A. For any M ∈ Z>0, define
[M ] := {1, 2, . . . , M}, the M -dimensional simplex △M := {u ∈ [0, 1]M : u1 + · · · + uM = 1}
and its interior △>0

M := △M ∩ (0, 1)M . For m, M ∈ Z>0, define the integer counterparts Sm,M :={
(k1, . . . , kM ) ∈ ZM

≥0 : k1 + · · ·+ kM = m
}

and S>0
m,M := Sm,M ∩ ZM

>0. The set Sm,M is the domain of the
multinomial distribution with parameters m, M and some r ∈ △M , which is denoted Mult(m, M, r) and has
probability mass function for k ∈ Sm,M given by

Mult(k; m, M, r) :=
(

m

k1 k2 · · · kM

) M∏
j=1

r
kj

j , where
(

m

k1 k2 · · · kM

)
:= m!∏M

j=1 kj !
.

For q,p ∈ △M , let kl(q∥p) denote the KL-divergence of Mult(1, M, q) from Mult(1, M,p), namely kl(q∥p) :=∑M
j=1 qj ln qj

pj
, with the convention that 0 ln 0

x = 0 for x ≥ 0 and x ln x
0 = ∞ for x > 0. For M = 2 we

abuse notation and abbreviate kl((q, 1− q)∥(p, 1− p)) to kl(q∥p), which is then the conventional definition of
kl(·∥·) : [0, 1]2 → [0,∞] found in the PAC-Bayes literature (as in Seeger, 2002, for example).

Let X and Y be arbitrary input (e.g., feature) and output (e.g., label) sets respectively. Let
⋃M

j=1 Ej be a
partition of Y2 into a finite sequence of M error types, and to each Ej associate a loss value ℓj ∈ [0,∞). The
only restriction we place on the loss values ℓj is that they are not all equal. This is not a strong assumption,
since if they were all equal then all hypotheses would incur equal loss and there would be no learning problem:
we are effectively ruling out trivial cases.

Let H ⊆ YX denote a hypothesis class, D ∈M(X × Y) a data-generating distribution and S ∼ Dm an i.i.d.
sample of size m drawn from D. For h ∈ H and j ∈ [M ] we define the empirical j-risk and true j-risk of h
to be Rj

S(h) := 1
m

∑
(x,y)∈S 1[(h(x), y) ∈ Ej ] and Rj

D(h) := E(x,y)∼D[1[(h(x), y) ∈ Ej ]], respectively, namely,
the proportion of the sample S on which h makes an error of type Ej and the probability that h makes an
error of type Ej on a new (x, y) ∼ D.

More generally, suppose H ⊆ M(Y)X is a class of soft hypotheses of the form H : X → M(Y), where,
for any A ⊆ Y, H(x)[A] is interpreted as the probability according to H that the label of x is in A. It
is worth stressing that a soft hypothesis is still deterministic since a prediction is not drawn from the
distribution it returns. We then define the empirical j-risk of H to be Rj

S(H) := 1
m

∑
(x,y)∈S H(x)

[
{ŷ ∈ Y :

(ŷ, y) ∈ Ej}
]
, namely the mean—over the elements (x, y) of S—probability mass H assigns to predictions

ŷ ∈ Y incurring an error of type Ej when labelling each x. Further, we define the true j-risk of H to be
Rj

D(H) := E(x,y)∼D

[
H(x)

[
{ŷ ∈ Y : (ŷ, y) ∈ Ej}

]]
, namely the mean—over (x, y) ∼ D—probability mass H

assigns to predictions ŷ ∈ Y incurring an error of type Ej when labelling each x. We will see in Section 4
that the more general hypothesis class H ⊆M(Y)X is necessary for constructing a differentiable training
objective.

To each ordinary hypothesis h ∈ YX there corresponds a soft hypothesis H ∈ M(Y)X that, for each
x ∈ X , returns a point mass on h(x). In this case, it is straightforward to show that Rj

S(h) = Rj
S(H) and

Rj
D(h) = Rj

D(H) for all j ∈ [M ], where we have used the corresponding definitions above for ordinary and
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soft hypotheses. Since, in addition, our results hold identically for both ordinary and soft hypotheses, we
henceforth use the same notation h for both ordinary and soft hypotheses and their associated values Rj

S(h)
and Rj

D(h). It will always be clear from the context whether we are dealing with ordinary or soft hypotheses
and thus which of the above definitions of the empirical and true j-risks is being used.

We define the empirical risk and true risk of a (ordinary or soft) hypothesis h to be RS(h) :=
(R1

S(h), . . . , RM
S (h)) and RD(h) := (R1

D(h), . . . , RM
D (h)), respectively. It is straightforward to show that

RS(h) and RD(h) are elements of △M . Since S is drawn i.i.d. from D, the expectation of the empirical risk
is equal to the true risk, namely ES [Rj

S(h)] = Rj
D(h) for all j and thus ES [RS(h)] = RD(h). Finally, we

generalise to stochastic hypotheses Q ∈ M(H), which predict by first drawing a deterministic hypothesis
h ∼ Q and then predicting according to h, where a new h is drawn for each prediction. Thus, we define the
empirical j-risk and true j-risk of Q to be the scalars Rj

S(Q) := Eh∼Q[Rj
S(h)] and Rj

D(Q) := Eh∼Q[Rj
D(h)],

for j ∈ [M ], and simply the empirical risk and true risk of Q to be the elements of △M defined by
RS(Q) := Eh∼Q[RS(h)] and RD(Q) := Eh∼Q[RD(h)]. As before, since S is i.i.d., we have (using Fubini this
time) that ES [RS(Q)] = RD(Q). Finally, given a loss vector ℓ ∈ [0,∞)M , we define the total risk of Q by
the scalar RT

D(Q) :=
∑M

j=1 ℓjRj
D(Q). As is conventional in the PAC-Bayes literature, we refer to sample

independent and dependent distributions on M(H) (i.e. stochastic hypotheses) as priors (denoted P ) and
posteriors (denoted Q) respectively, even if they are not related by Bayes’ theorem.

3 Inspiration and Main Results

We first state the existing results in Bégin et al. (2016) and Maurer (2004) that we will generalise from just
two error types (correct and incorrect) to any finite number of error types. These results are stated in terms
of the scalars RS(Q) := 1

m

∑
(x,y)∈S 1[h(x) ̸= y] and RD(Q) := E(x,y)∼D1[h(x) ̸= y] and, as we demonstrate,

correspond to the case M = 2 of our generalisations.
Theorem 1. (Bégin et al., 2016, Theorem 4) Let X be an arbitrary set and Y = {−1, 1}. Let D ∈M(X ×Y)
be a data-generating distribution and H ⊆ YX be a hypothesis class. For any prior P ∈ M(H), δ ∈ (0, 1],
convex function d : [0, 1]2 → R, sample size m and β ∈ (0,∞), with probability at least 1− δ over the random
draw S ∼ Dm, we have that simultaneously for all posteriors Q ∈M(H)

d
(
RS(Q), RD(Q)

)
≤ 1

β

[
KL(Q∥P ) + ln Id(m, β)

δ

]
,

with Id(m, β) := supr∈[0,1]

[∑m
k=0 Bin(k; m, r) exp

(
βd
(

k
m , r

) )]
, where Bin(k; m, r) is the binomial probability

mass function Bin(k; m, r) :=
(

m
k

)
rk(1− r)m−k.

Note the original statement in Bégin et al. (2016) is for a positive integer m′, but the proof trivially generalises
to any β ∈ (0,∞). One of the bounds that Theorem 1 unifies—which we also generalise—is that of Seeger
(2002), later tightened in Maurer (2004), which we now state. It can be recovered from Theorem 1 by setting
β = m and d(q, p) = kl(q∥p) := q ln q

p + (1− q) ln 1−q
1−p .

Corollary 2. (Maurer, 2004, Theorem 5) Let X be an arbitrary set and Y = {−1, 1}. Let D ∈M(X × Y)
be a data-generating distribution and H ⊆ YX be a hypothesis class. For any prior P ∈M(H), δ ∈ (0, 1] and
sample size m, with probability at least 1− δ over the random draw S ∼ Dm, we have that simultaneously for
all posteriors Q ∈M(H)

kl
(
RS(Q), RD(Q)

)
≤ 1

m

[
KL(Q∥P ) + ln 2

√
m

δ

]
.

We wish to bound the deviation of the empirical vector RS(Q) from the unknown vector RD(Q). Since
in general the stochastic hypothesis Q we learn will depend on the sample S, it is useful to obtain bounds
on the deviation of RS(Q) from RD(Q) that are uniform over Q, just as in Theorem 1 and Corollary 2.
In Theorem 1, the deviation d(RS(Q), RD(Q)) between the scalars RS(Q), RD(Q) ∈ [0, 1] is measured by
some convex function d : [0, 1]2 → R. In our case, the deviation d(RS(Q),RD(Q)) between the vectors
RS(Q),RD(Q) ∈ △M is measured by some convex function d : △2

M → R. In Section 3.2 we will derive
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Corollary 7 from Theorem 3 by selecting β = m and d(q,p) := kl(q∥p), analogous to how Corollary 2 is
obtained from Theorem 1.

3.1 Statement and proof of the generalised bound

We now state and prove our generalisation of Theorem 1. The proof follows identical lines to that of Theorem
1 given in Bégin et al. (2016), but with additional non-trivial steps to account for the greater number of error
types and the possibility of soft hypotheses.
Theorem 3. Let X and Y be arbitrary sets and

⋃M
j=1 Ej be a disjoint partition of Y2. Let D ∈M(X × Y)

be a data-generating distribution and H ⊆M(Y)X be a hypothesis class. For any prior P ∈M(H), δ ∈ (0, 1],
jointly convex function d : △2

M → R, sample size m and β ∈ (0,∞), with probability at least 1− δ over the
random draw S ∼ Dm, we have that simultaneously for all posteriors Q ∈M(H)

d
(
RS(Q),RD(Q)

)
≤ 1

β

[
KL(Q∥P ) + ln Id(m, β)

δ

]
, (1)

where Id(m, β) := supr∈△M

[∑
k∈Sm,M

Mult(k; m, M, r) exp
(
βd
(
k
m , r

))]
. Further, the bounds are unchanged

if one restricts to an ordinary hypothesis class, namely if H ⊆ YX .

The proof begins on the following page after a discussion and some auxiliary results. One can derive multiple
bounds from this theorem, all of which then hold simultaneously with probability at least 1− δ. For example,
one can derive bounds on the individual error probabilities Rj

D(Q) or combinations thereof. It is this flexibility
that allows Theorem 3 to provide far richer information on the performance of the posterior Q on unseen
data. For a more in depth discussion of how such bounds can be derived, including a recipe for transforming
the bound into a differentiable training objective, see Section 4 and Appendix A.

To see that Theorem 3 is a generalisation of Theorem 1, note that we can recover it by setting Y = {−1, 1},
M = 2, E1 = {(−y, y) : y ∈ Y} and E2 = {(y, y) : y ∈ Y}. Then, for any convex function d : [0, 1]2 → R,
apply Theorem 3 with the convex function d′ : △2

M → R defined by d′((u1, u2), (v1, v2)) := d(u1, v1) so that
Theorem 3 bounds d′(RS(Q),RD(Q)

)
= d
(
R1

S(Q), R1
D(Q)

)
which equals d(RS(Q), RD(Q)) in the notation

of Theorem 1. Further,

∑
k∈Sm,2

Mult(k; m, 2, r) exp
(

βd′( k
m , r

) )
=

m∑
k=0

Bin(k; m, r1) exp
(

βd
(

k
m , r1

) )
,

so that the supremum over r1 ∈ [0, 1] of the right hand side equals the supremum over r ∈ △2 of the left
hand side, which, when substituted into (1), yields the bound given in Theorem 1.

Our proof of Theorem 3 follows the lines of the proof of Theorem 1 in Bégin et al. (2016), making use of
the change of measure inequality Lemma 4. However, a complication arises from the use of soft classifiers
h ∈ M(Y)X . A similar problem is dealt with in Maurer (2004) when proving Corollary 2 by means of a
Lemma permitting the replacement of [0, 1]-valued random variables by corresponding {0, 1}-valued random
variables with the same mean. We use a generalisation of this, stated as Lemma 5 (Lemma 3 in Maurer, 2004
corresponds to the case M = 2), the proof of which is not insightful for our purposes and thus deferred to
Appendix B.1. An immediate consequence of Lemma 5 is Corollary 6, which is a generalisation of the first
half of Theorem 1 in Maurer (2004). While we only use it implicitly in the remainder of the paper, we state
it as it may be of broader interest.

The consequence of Lemma 5 is that the worst case (in terms of bounding d(RS(Q),RD(Q))) occurs when
R{(x,y)}(h) is a one-hot vector for all (x, y) ∈ S and h ∈ H, namely when H ⊆ M(Y)X only contains
hypotheses that, when labelling S, put all their mass on elements ŷ ∈ Y that incur the same error type1. In
particular, this is the case for hypotheses that put all their mass on a single element of Y, equivalent to the
simpler case H ⊆ YX as discussed in Section 2. Thus, Lemma 5 shows that the bound given in Theorem 3
cannot be made tighter only by restricting to such hypotheses.

1More precisely, when ∀h ∈ H ∀(x, y) ∈ S ∃j ∈ [M ] such that h(x)[{ŷ ∈ Y : (ŷ, y) ∈ Ej)}] = 1.
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Lemma 4. (Change of measure, Csiszár, 1975, Donsker & Varadhan, 1975) For any set H, any P, Q ∈M(H)
and any measurable function ϕ : H → R, E

h∼Q
ϕ(h) ≤ KL(Q∥P ) + ln E

h∼P
exp(ϕ(h)).

Lemma 5. (Generalisation of Lemma 3 in Maurer, 2004) Let X1, . . . ,Xm be i.i.d △M -valued random
vectors with mean µ and suppose that f : △m

M → R is convex. If X ′
1, . . . ,X ′

m are i.i.d. Mult(1, M,µ) random
vectors, then E[f(X1, . . . ,Xm)] ≤ E[f(X ′

1, . . . ,X ′
m)].

Corollary 6. (Generalisation of Theorem 1 in Maurer, 2004) Let X1, . . . ,Xm be i.i.d △M -valued random
vectors with mean µ, and X ′

1, . . . ,X ′
m be i.i.d. Mult(1, M,µ). Define X̄ := 1

m

∑m
i=1 Xi and X̄ ′ :=

1
m

∑m
i=1 X

′
i. Then E[exp(mkl(X̄∥µ)] ≤ E[exp(mkl(X̄ ′∥µ)].

Proof. (of Corollary 6) This is immediate from Lemma 5 since the average is linear, the kl-divergence is
convex and the exponential is non-decreasing and convex.

Proof. (of Theorem 3) The case H ⊆ YX follows directly from the more general case by taking H′ := {h′ ∈
M(Y)X : ∃h ∈ H such that ∀x ∈ X h′(x) = δh(x)}, where δh(x) ∈M(Y) denotes a point mass on h(x). For
the general case H ⊆M(Y)X , using Jensen’s inequality with the convex function d(·, ·) and Lemma 4 with
ϕ(h) = βd(RS(h),RD(h)), we see that for all Q ∈M(H)

βd
(
RS(Q),RD(Q)

)
= βd

(
E

h∼Q
RS(h), E

h∼Q
RD(h)

)
≤ E

h∼Q
βd
(
RS(h),RD(h)

)
≤ KL(Q∥P ) + ln

(
E

h∼P
exp

(
βd
(
RS(h),RD(h)

)))
= KL(Q∥P ) + ln(ZP (S)),

where ZP (S) := Eh∼P exp
(
βd(RS(h),RD(h))

)
. Note that ZP (S) is a non-negative random variable, so that

by Markov’s inequality P
S∼Dm

(
ZP (S) ≤ ES′∼Dm ZP (S′)

δ

)
≥ 1− δ. Thus, since ln(·) is strictly increasing, with

probability at least 1− δ over S ∼ Dm, we have that simultaneously for all Q ∈M(H)

βd
(
RS(Q),RD(Q)

)
≤ KL(Q∥P ) + ln

E
S′∼Dm

ZP (S′)

δ
. (2)

To bound ES′∼DmZP (S′), let Xi := R{(xi,yi)′}(h) ∈ △M for i ∈ [m], where (xi, yi)′ is the i’th element of the
dummy sample S′. Noting that each Xi has mean RD(h), define the random vectors X ′

i ∼ Mult(1, M,RD(h))
and Y :=

∑m
i=1 X

′
i ∼ Mult(m, M,RD(h)). Finally let f : △m

M → R be defined by f(x1, . . . , xm) :=
exp

(
βd
( 1

m

∑m
i=1 xi,RD(h)

))
, which is convex since the average is linear, d is convex and the exponential is

non-decreasing and convex. Then, by swapping expectations (which is permitted by Fubini’s theorem since
the argument is non-negative) and applying Lemma 5, we have that ES′∼DmZP (S′) can be written as

ES′∼DmZP (S′) = E
S′∼Dm

E
h∼P

exp
(

βd
(
RS′(h),RD(h)

))
= E

h∼P
E

S′∼Dm
exp

(
βd
(
RS′(h),RD(h)

))
= E

h∼P
E

X1,...,Xm

exp
(

βd

(
1
m

m∑
i=1

Xi,RD(h)
))

≤ E
h∼P

E
X′

1,...,X′
m

exp
(

βd

(
1
m

m∑
i=1

X ′
i,RD(h)

))

= E
h∼P

E
Y

exp
(

βd

(
1
m
Y ,RD(h)

))
= E

h∼P

∑
k∈Sm,M

Mult
(
k; m, M,RD(h)

)
exp

(
βd
(
k
m ,RD(h)

))

6
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≤ sup
r∈△M

 ∑
k∈Sm,M

Mult
(
k; m, M, r

)
exp

(
βd
(
k
m , r

)) .

Which is the definition of Id(m, β). Inequality (1) then follows by substituting this bound on ES′∼DmZP (S′)
into (2) and dividing by β.

3.2 Statement and proof of the generalised corollary

We now apply our generalised theorem with β = m and d(q,p) = kl(q∥p). This results in the following
corollary, analogous to Corollary 2 (although the multi-dimensionality makes the proof much more involved,
requiring multiple lemmas and extra arguments to make the main idea go through). We give two forms of
the bound since, while the second is looser, the first is not practical to calculate except when m is very small.
Corollary 7. Let X and Y be arbitrary sets and

⋃M
j=1 Ej be a disjoint partition of Y2. Let D ∈M(X × Y)

be a data-generating distribution and H ⊆M(Y)X be a hypothesis class. For any prior P ∈M(H), δ ∈ (0, 1]
and sample size m, with probability at least 1− δ over the random draw S ∼ Dm, we have that simultaneously
for all posteriors Q ∈M(H)

kl
(
RS(Q)∥RD(Q)

)
≤ 1

m

KL(Q∥P ) + ln

 m!
δmm

∑
k∈Sm,M

M∏
j=1

k
kj

j

kj !

 (3)

≤ 1
m

[
KL(Q∥P ) + ln

(
1
δ

√
πe1/(12m)

(m

2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)z/2 Γ
(

M−z
2
))] , (4)

where the second inequality holds provided m ≥M . Further, the bounds are unchanged if one restricts to an
ordinary hypothesis class, namely if H ⊆ YX .

While analogous corollaries can be obtained from Theorem 3 by other choices of convex function d, the
kl-divergence leads to convenient cancellations that remove the dependence of Ikl(m, β, r) on r, making
Ikl(m, β) := supr∈△M

Ikl(m, β, r) simple to evaluate. Note (4) is logarithmic in 1/δ (typical of PAC-Bayes
bounds) and thus the confidence can be increased very cheaply. Ignoring logarithmic terms, (4) is O(1/m),
also as expected. As for M , a simple analysis shows that (4) grows only sublinearly in M , meaning M can be
made quite large provided one has a reasonable amount of data. To prove Corollary 7 we require Lemma 8,
the proof of which is deferred to Appendix B.2.

Lemma 8. For integers M ≥ 1 and m ≥M ,
∑

k∈S>0
m,M

1∏M

j=1

√
kj

≤ π
M
2 m

M−2
2

Γ( M
2 ) .

Proof. (of Corollary 7) Applying Theorem 3 with d(q,p) = kl(q∥p) (defined in Section 2) and β = m gives that
with probability at least 1−δ over S ∼ Dm, simultaneously for all posteriors Q ∈M(H), kl

(
RS(Q)∥RD(Q)

)
≤

1
m [KL(Q∥P ) + ln Ikl(m,m)

δ ], where Ikl(m, m) := supr∈△M
[
∑

k∈Sm,M
Mult(k; m, M, r) exp

(
mkl( k

m , r
)
)]. Thus,

to establish the first inequality of the corollary, it suffices to show that

Ikl(m, m) ≤ m!
mm

∑
k∈Sm,M

M∏
j=1

k
kj

j

kj ! . (5)

To see this, for each fixed r = (r1, . . . , rM ) ∈ △M let Jr = {j ∈ [M ] : rj = 0}. Then Mult(k; m, M, r) = 0 for
any k ∈ Sm,M such that kj ̸= 0 for some j ∈ Jr. For the other k ∈ Sm,M , namely those such that kj = 0 for all
j ∈ Jr, the probability term can be written as Mult(k; m, M, r) = m!∏M

j=1
kj !

∏M
j=1 r

kj

j = m!∏
j ̸∈Jr

kj !

∏
j ̸∈Jr

r
kj

j ,

and (recalling the convention that 0 ln 0
0 = 0) the term exp(mkl( k

m , r)) can be written as

exp

m

M∑
j=1

kj

m ln
kj

m

rj

 = exp

∑
j ̸∈Jr

kj ln kj

mrj

 =
∏

j ̸∈Jr

(
kj

mrj

)kj

= 1
mm

∏
j ̸∈Jr

(
kj

rj

)kj

,

7
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where the last equality is obtained by recalling that the kj sum to m. Substituting these two expressions into
the definition of Ikl(m, m) and only summing over those k ∈ Sm,M with non-zero probability, we obtain∑

k∈Sm,M

Mult(k; m, M, r) exp
(
mkl

(
k
m , r

))
=

∑
k∈Sm,M :

∀j∈Jr kj=0

Mult(k; m, M, r) exp
(
mkl

(
k
m , r

))

=
∑

k∈Sm,M :

∀j∈Jr kj=0

m!∏
j ̸∈Jr

kj !
∏

j ̸∈Jr

r
kj

j

1
mm

∏
j ̸∈Jr

(
kj

rj

)kj

= m!
mm

∑
k∈Sm,M :

∀j∈Jr kj=0

∏
j ̸∈Jr

k
kj

j

kj !

= m!
mm

∑
k∈Sm,M :

∀j∈Jr kj=0

M∏
j=1

k
kj

j

kj ! (because 00

0! = 1)

≤ m!
mm

∑
k∈Sm,M

M∏
j=1

k
kj

j

kj ! .

Since this is independent of r, it also holds after taking the supremum over r ∈ △M of the left hand side.
We have thus established (5) and hence (3). Now, defining f :

⋃∞
M=2 Sm,M → R by f(k) =

∏|k|
j=1 k

kj

j /kj !, we
see that to establish inequality (4) it suffices to show that

m!
mm

∑
k∈Sm,M

f(k) ≤
√

πe1/12m
(m

2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)z/2 Γ
(

M−z
2
) . (6)

We show this by upper bounding each f(k) individually using Stirling’s formula: ∀n ≥ 1
√

2πn
(

n
e

)n
< n! <√

2πn
(

n
e

)n
e

1
12n . Since we cannot use this to upper bound 1/kj ! when kj = 0, we partition the sum above

according to the number of coordinates of k at which kj = 0. Let z index the number of such coordinates.
Since f is symmetric under permutations of its arguments,

∑
k∈Sm,M

f(k) =
M−1∑
z=0

(
M

z

) ∑
k∈S>0

m,M−z

f(k). (7)

For k ∈ S>0
m,M Stirling’s formula yields f(k) ≤

∏M
j=1

k
kj
j√

2πkj

( kj
e

)kj
=
∏M

j=1
ekj√
2πkj

= em

(2π)M/2

∏M
j=1

1√
kj

. An

application of Lemma 8 now gives

∑
k∈S>0

m,M−z

f(k) ≤ em

(2π)M/2

∑
k∈S>0

m,M−z

M∏
j=1

1√
kj

≤ em

(2π) M
2

π
M−z

2 m
M−z−2

2

Γ
(

M−z
2
) = emm

M−2
2

2 M
2 (πm)z/2 Γ

(
M−z

2
) .

Substituting this into equation (7) and bounding m! using Stirling’s formula, we have

m!
mm

∑
k∈Sm,M

f(k) ≤
√

2πme1/12m

em

M−1∑
z=0

(
M

z

)
emm

M−2
2

2M/2 (πm)z/2 Γ
(

M−z
2
)

=
√

πe1/12m
(m

2

)M−1
2

M−1∑
z=0

(
M

z

)
1

(πm)z/2 Γ
(

M−z
2
)

which is (6), establishing (4) and therefore completing the proof.

8
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4 Implied Bounds and Construction of a Differentiable Training Objective

As already discussed, a multitude of bounds can be derived from Theorem 3 and Corollary 7, all of which then
hold simultaneously with high probability. For example, suppose after a use of Corollary 7 we have a bound
of the form kl(RS(Q)||RD(Q)) ≤ B. The following proposition then yields the bounds Lj ≤ Rj

D(Q) ≤ Uj ,
where Lj := inf{p ∈ [0, 1] : kl(Rj

S(Q)∥p) ≤ B} and Uj := sup{p ∈ [0, 1] : kl(Rj
S(Q)∥p) ≤ B}. Moreover,

since in the worst case we have kl(RS(Q)||RD(Q)) = B, the proposition shows that the lower and upper
bounds Lj and Uj are the tightest possible, since if Rj

D(Q) ̸∈ [Lj , Uj ] then kl(Rj
S(Q)∥Rj

D(Q)) > B implying
kl(RS(Q)||RD(Q)) > B. For a more precise version of this argument and a proof of Proposition 9, see
Appendix B.3.
Proposition 9. Let q,p ∈ △M . Then kl(qj∥pj) ≤ kl(q∥p) for all j ∈ [M ], with equality when pi = 1−pj

1−qj
qi.

for all i ̸= j.

As a second much more interesting example, suppose we can quantify how bad an error of each type is
by means of a loss vector ℓ ∈ [0,∞)M , where ℓj is the loss we attribute to an error of type Ej . We
may then be interested in bounding the total risk RT

D(Q) ∈ [0,∞) of Q which, recall, is defined by
RT

D(Q) :=
∑M

j=1 ℓjRj
D(Q). Indeed, given a bound of the form kl(RS(Q)||RD(Q)) ≤ B, we can derive

RT
D(Q) ≤ sup{

∑M
j=1 ℓjrj : r ∈ △M , kl(RS(Q)||r) ≤ B}. This motivates the following definition of kl−1

ℓ (u|c).
To see that this is indeed well-defined (at least when u ∈ △>0

M ), see the discussion at the beginning of
Appendix B.4.
Definition 10. For u ∈ △M , c ∈ [0,∞) and ℓ ∈ [0,∞)M , define kl−1

ℓ (u|c) = sup{
∑M

j=1 ℓjvj : v ∈
△M , kl(u∥v) ≤ c}.

Can we calculate kl−1
ℓ (u|c) and hence fℓ(kl−1

ℓ (u|c)) in order to evaluate the bound on the total risk?
Additionally, if we wish to use the bound on the total risk as a training objective, can we calculate the
partial derivatives of f∗

ℓ (u, c) := fℓ(kl−1
ℓ (u|c)) with respect to the uj and c so that we can use gradient

descent? Our Proposition 11 answers both of these questions in the affirmative, at least in the sense that it
provides a speedy method for approximating these quantities to arbitrary precision provided uj > 0 for all
j ∈ [M ] and c > 0. Indeed, the only approximation step required is that of approximating the unique root
of a continuous and strictly increasing scalar function. Thus, provided the uj themselves are differentiable,
Corollary 7 combined with Proposition 11 yields a tractable and fully differentiable objective that can be
used for training. More details on how this can be done, including an algorithm written in pseudocode, can
be found in Appendix A. While somewhat analogous to the technique used in Clerico et al. (2022) to obtain
derivatives of the one-dimensional kl-inverse, our proposition directly yields derivatives on the total risk by
(implicitly) employing the envelope theorem (see for example Takayama & Akira, 1985). Since the proof of
Proposition 11 is rather long and technical, we defer it to Appendix B.4.
Proposition 11. Fix ℓ ∈ [0,∞)M such that not all ℓj are equal, and define fℓ : △M → [0,∞) by
fℓ(v) :=

∑M
j=1 ℓjvj. For all ũ = (u, c) ∈ △>0

M × (0,∞), define v∗(ũ) := kl−1
ℓ (u|c) ∈ △M and let µ∗(ũ) ∈

(−∞,−maxj ℓj) be the unique solution to c = ϕℓ(µ), where ϕℓ : (−∞,−maxj ℓj)→ R is given by ϕℓ(µ) :=
ln(−

∑M
j=1

uj

µ+ℓj
)+
∑M

j=1 uj ln(−(µ+ℓj)), which is continuous and strictly increasing. Then v∗(ũ) = kl−1
ℓ (u|c)

is given by

v∗(ũ)j = λ∗(ũ)uj

µ∗(ũ) + ℓj
for j ∈ [M ], where λ∗(ũ) =

 M∑
j=1

uj

µ∗(ũ) + ℓj

−1

.

Further, defining f∗
ℓ : △>0

M × (0,∞)→ [0,∞) by f∗
ℓ (ũ) := fℓ(v∗(ũ)), we have that

∂f∗
ℓ

∂uj
(ũ) = λ∗(ũ)

(
1 + ln uj

v∗(ũ)j

)
and ∂f∗

ℓ

∂c
(ũ) = −λ∗(ũ).

5 Perspectives

By abstracting to a general setting of discretised error types, we established a novel type of generalisation
bound (Theorem 3) providing far richer information than existing PAC-Bayes bounds. Through our Corollary

9
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7 and Proposition 11, our bound inspires a training algorithm (see Appendix A) suitable for many different
learning problems, including structured output prediction (as investigated by Cantelobre et al., 2020, in
the PAC-Bayes setting), multi-task learning and learning-to-learn (see e.g. Maurer et al., 2016). We will
demonstrate these applications and our bound’s utility for real-world learning problems in an empirical
follow-up study. Note we require i.i.d. data, which in practice is frequently not the case or is hard to verify.
Further, the number of error types M must be finite. While in continuous scenarios it would be preferable to
be able to quantify the entire distribution of loss values without having to discretise into finitely many error
types, in the multiclass setting our framework is entirely suitable.
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