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Abstract—We investigate the structure and spectrum of
the Gram matrix corresponding to time-frequency shifts
of the second-order B-spline. In particular we show that
under a specific finite sampling of the time-frequency
lattice, the Gram matrix has Toeplitz block structure and
is per-Hermitian, making spectral asymptotics amenable
to classical Szego-type limit theorems. We also study the
relationship between the spectra of the finite-dimensional
Gram matrices as well as their constituent blocks and
the spectrum of the infinite-dimensional Gram operator. A
complete characterization of the spectrum of the Toeplitz
blocks within the Gram matrix is provided as well as
explicit descriptions of the asymptotics of its eigenvalues
and estimates on the corresponding frame bounds. We
expect that the spectral analysis of these Gram matrices
will shed new light on the frame set of higher order B-
splines.

I. INTRODUCTION

Introduced by Duffin and Schaeffer in their seminal
paper [10], frame theory centers around the study of
overcomplete representations of functions via fundamen-
tal building blocks called frame vectors. Whereas a basis
provides a unique representation of a function, frames
and the corresponding frame vectors offer a flexible
alternative and non-unique representations of a function.
This allows for sparsity, redundancy, and stability of the
representation that draws on rich mathematical theory at
the intersection harmonic analysis, numerical analysis,
and sampling theory underpinning applications in signal
processing, quantum information theory, and machine
learning [12], [22] , [23], [24], [6].

We consider a specific family of frames, Gabor
frames, generated by a window g ∈ L2(R) and time-
frequency parameters a, b > 0. The problem of charac-
terizing the pairs (a, b) such that the system of time-
frequency shifts

G(g, a, b) := {MlbTkag = e2πilb·g(·−ka) : (l, k) ∈ Z2}

is a frame for L2(R) is referred to as the frame set
problem and is in general an unsolved and difficult
problem in Gabor analysis [14], [18]. Celebrated results
in the 90’s characterize the frame set when the window is
a Gaussian or in related function classes [15], [25], [9],
[8]. Since then progress has only been made in a handful
of classes including the first-order B-spline, where the
frame set has been completely characterized [7], [21],
[14]. Here, we zero-in on the case where the window
g is a higher order B-spline and take its time-frequency
shifts along the lattice

Λ := aZ× bZ.

This class of B-splines has many advantages as a choice
of window including compact support, partitions of
unity, linear independence, and regularity. Furthermore,
finite subsets of Gabor systems generated by functions
with compact support are a basis for their linear span,
a solved special case of the HRT conjecture [19]. In

applications, B-spline wavelet frame systems are central
to finite element methods and successfully applied in
molecular dynamics simulations, motion smoothing, and
recurrent neural networks [3], [16], [26], [20].

Our approach investigates the structure and spec-
trum of the infinite Gram matrix (operator) G(a, b) :
ℓ2(Z2

+) → ℓ2(Z2
+) with entries given by the inner prod-

ucts ⟨gλ, gλ′⟩L2(R), λ, λ′ ∈ Λ, and the finite submatrices
corresponding to a n2×n2 set of lattice points centered at
the origin. Each of these finite submatrices is viewed as a
finite Gram matrix G(a, b, n) ∈ Cn2×n2

. Ultimately, we
expect that the spectral analysis of these Gram matrices
will shed new light on the frame set of higher order B-
splines. This is due in part to (1) the frame operator
and Gram operator share a spectrum except possibly
at zero: {0} ⊂ Spec

(
G(a, b)

)
⊂ {0} ∪ [A,B] and (2)

the lower frame bound corresponds to the (reciprocal)
operator norm of the pseudo-inverse ||G†(a, b)|| [17] [1].
We summarize our contributions as follows:

1) In Section II, under a specific sampling scheme
of the time-frequency lattice Λ, the Gram matrix
G(a, b, n) has remarkable structure amenable to
spectral analysis such as having Toeplitz blocks.

2) In Section III, via the Toeplitz structure and Szego-
type limit theorems, we provide an asymptotic
analysis and complete description of the spectrum
of the blocks within G(a, b, n) which correspond
to samplings of lines on the lattice Λ.

A system {gλ}λ∈Λ ⊂ L2(R) forms a frame for L2(R)
if there exist constants A,B > 0,

A||f ||2 ≤
∑
λ∈Λ

|⟨f, gλ⟩|2 ≤ B||f ||2, ∀f ∈ L2(R).

The constants A,B are called frame bounds, and esti-
mating the optimal frame bounds is generally an unre-
solved problem whose solution can impact the numerical
accuracy and speed of reconstructing and representing a
function through a given frame. The frame inequality
above implies the existence of dual frames {hλ}λ∈Λ ⊂
L2(R) such that each f ∈ L2(R) has the following
representation or reconstruction:

f =
∑
λ∈Λ

⟨f, hλ⟩gλ =
∑
λ∈Λ

⟨f, gλ⟩hλ

Given a window g ∈ L2(R) and real numbers a, b > 0,
the set of time-frequency shifts G(g, a, b) is called a
Gabor frame if it forms a frame for L2(R). The param-
eters (a, b) control the resolution of the time-frequency
lattice that we sample with the hopes of reconstructing
a function from its time-frequency shifts of the window
g. The set

F(g) := {(a, b) ∈ R2
+ : G(g, a, b) is a frame for L2(R)}

is referred to as the frame set of g and the problem of
characterizing the frame set is an open problem for many



classes of window functions g. In the cases where g is
a member of

1) {e−πx2

, 1
cosh x , χ[0,∞)e

−x, e−|x|}
2) a totally positive function of finite type
3) a totally positive function of exponential type

then the frame set has a simple characterization as the
region under the hyperbola ab < 1, F(g) = {(a, b) ∈
R2

+, ab < 1}. Furthermore, if the window is the
indicator function g = χ[0,c], the frame set is also
known (referred to as Janssen’s tie [21]) and completely
described by Dai and Sun [7].

In this paper we study the case where the window is
the second-order B-spline,

g := χ[−1/2,1/2] ∗χ[−1/2,1/2] =

{
1− |x|, x ∈ [−1, 1]

0, x ̸∈ [−1, 1].

Complete knowledge of the regions under the hyper-
bola ab < 1 that belong to the frame set G(g, a, b) is
a fundamental open problem in Gabor analysis. It is
known for example that G(g, a, b) is an open set in R2

[11]. Recent work by Atindehou, Frederick, Kouagou,
and Okoudjou [2] discovered new regions by explic-
itly finding a dual window for the second order B-
spline with these new time-frequency parameters (a, b).
There are few previous works that investigate connection
between the spectrum of the Gram matrix of Gabor
systems and the corresponding frame set problem. In
[1], Adcock and Huybrechs provide a numerical analysis
of regularized SVD decomposition of the finite Gram
matrices G(a, b, n) to get estimates on the frame bounds.
In [17], Harrison characterizes the null space of the
Gram operator for exponential frames and provides a
theoretical and a numerical analysis of its spectrum.

II. LATTICE SAMPLING AND GRAM MATRIX
STRUCTURE

Fix a, b > 0 and consider the time-frequency shifts of
the B-spline,

{gλij}ni,j=1 = {g(x− yj)e
2πiωix}ni,j=1

in which the time-frequency shifts belong to a set Λn2 =
{λij = (yj , ωi)}ni,j=1 of enumerated elements centered
at the origin, where

yj = a(⌊n/2⌋+ j − n), j = 1, 2, . . . , n

ωi = b(⌊n/2⌋+ i− n), i = 1, 2, . . . , n.

This sampling creates a finite square sub-lattice cen-
tered at the origin of the y − ω time-frequency plane.
With this sampling scheme, natural block structure forms
in the Gram matrix G(a, b, n) ∈ Cn2×n2

, due to a fixed
phase factor e−2πi(ωi−ωi′ )x that appears in the inner
product seen in equation (1). The blocks are notated
Gii′(a, b, n) for i, i′ ∈ {1 . . . n} and to index into each
block we notate for j, j′ ∈ {1, . . . , n}, so that each entry
Gii′

jj′ = ⟨gλij
, gλi′j′ ⟩L2(R) is the integral:∫

R
g(x− yj)g(x− yj′)e

−2πi(ωi−ωi′ )xdx. (1)

The ordering of (λij)
n
i,j=1 can be done without loss of

generality when considering the spectrum of G(a, b, n).
This is because other orderings will be permutations of
the rows and columns of G(a, b, n) that are simple sim-
ilarity relations that leave the spectrum unchanged. The
blocks Gii′(a, b, n) have the phase factor e−2πi(ωi−ωi′ )x

in the integrand and the entries Gii′

jj′ are a function of
the shifting parameters yj and yj′ , see Figure 1. We
first justify the choice of centering the finite sub-lattice
at the origin by showing that if one were to consider
a square sub-lattice centered at another location in the
time-frequency plane, the entries of G(a, b, n) change in
a predictable way by a potential phase factor. The proof

(a) |(G( 1
4
, 2, 7))|

(b) Arg
(
G( 1

4
, 2, 7)

)
Fig. 1: The magnitude and phase of the finite Gram
matrix G( 14 , 2, 7) ∈ C49×49 with blocks Gii′( 14 , 2, 7) ∈
C7×7 for i, i′ ∈ {1, 2 . . . , 7}.

is a simple change-of-variables in the inner product seen
in equation (1).

Proposition II.1. Suppose we have a square subset of
the lattice ΛM ⊂ Λn2 ⊂ aZ×bZ where |ΛM | =M . Let

λ̃ij = (yj + sa, ωi + tb) = λij + (sa, tb)

λ̃i′j′ = (yj′ + sa, ωi′ + tb) = λi′j′ + (sa, tb)

for j, j′ ∈ {1, 2, . . . , n} and i, i′ ∈ {1, 2, . . . , n} and
s, t ∈ Z. This shift ΛM + (sa, tb) introduces entry-
wise phase factors into G(a, b, n). The shifting factor
s and the parameter b can be chosen so that G(a, b, n)
is unchanged. Furthermore, the Gershgorin discs remain
unchanged independent of (a, b) and (s, t).

In the Section III we study the asymptotics of the
eigenvalues of G(a, b, n) and the spectrum of G(a, b)
that builds on Toeplitz structure seen below in Proposi-
tion II.2.

Proposition II.2. Each of the blocks Gii(a, b, n) ∈
Cn×n for i ∈ {1, 2, . . . , n} within the finite Gram matrix
G(a, b, n) ∈ Cn2×n2

are identical, real-valued, banded,
and Toeplitz. Further, G(a, b, n) itself is block-Toeplitz
and its magnitude-squared |G(a, b, n)|2 is Toeplitz-
block-Toeplitz.

The Toeplitz structure extends to the infinite blocks
Gii(a, b) in the infinite Gram matrix G(a, b). This allows
us to associate a finite Fourier series constructed from the
bands of Gii(a, b) which provides complete information
about the spectrum.

III. SPECTRAL ASYMPTOTICS

Due to the Toeplitz structure in the finite Gram ma-
trices G(a, b, n) seen in Section II, we can understand
the asymptotic behavior of its eigenvalues and spectrum.
This is due to a Fourier series one can construct from
the Toeplitz bands and a class of asymptotically equiva-
lent circulant matrices whose eigenvalues we explicitly
provide. In this section we focus on the spectrum of the
finite and infinite blocks Gii(a, b, n) and Gii(a, b) for



i ∈ {1, 2, . . .} to make conclusions about the spectra
of the finite and infinite Gram matrices G(a, b, n) and
G(a, b), respectively. For example, since the Gii(a, b, n)
are principle sub-matrices of G(a, b, n), the eigenvalues
interlace and we can obtain upper and lower estimates on
the minimum and maximum eigenvalues γ1(a, b, n) and
γn(a, b, n) of G(a, b, n). Consequently, these provide up-
per and lower estimates on the frame bounds associated
with the finite Gabor frame G(g, a, b, n),

G(g, a, b, n) = {MlbTkag = e2πilb·g(·−ka) : (lb, ka) ∈ Λn2}.

Let T := {t ∈ C : |t| = 1} be the complex unit
circle. The Wiener algebra W is the set of functions
f : T → C with absolutely convergent Fourier series.
Thus, each function f ∈ W has the representation and
norm:

f(t) =

∞∑
n=−∞

f̂nt
n, ||f ||W =

∞∑
n=−∞

|f̂n| <∞.

The Fourier coefficients {f̂n}∞n=−∞ are of course com-
puted as:

f̂n =
1

2π

∫ 2π

0

f(eiθ)e−inθdθ,

where the identification t ∼ eiθ, θ ∈ [0, 2π) is made.
We can associate f ∈W with an infinite Toeplitz matrix
built from the coefficients {fn}∞n=−∞,

T (f) =


f̂0 f̂−1 f̂−2 . . .

f̂1 f̂0 f̂−1 . . .

f̂2 f̂1 f̂0 . . .
. . . . . . . . . . . .

 .
It is known that T (f) is a bounded linear operator,
T (f) ∈ B

(
lp(Z+)

)
, with estimate ||T ||p ≤ ||f ||W [5].

Furthermore, a classic result [4] in analysis of Toeplitz
operators is that the spectrum of T (f) is completely and
beautifully characterized by the range of the function
f ∈W ,

sp T (f) = f(T) ∪ {λ ∈ C− f(T) : wind(f − λ) ̸= 0}.

As seen in Theorem II.2, the infinite blocks Gii(a, b)
for i ∈ {1, 2, . . .} within G(a, b) are not just Toeplitz
but real-valued and banded with only finitely many non-
zero off-diagonal entries. Therefore, the corresponding
Fourier series has only finitely many non-zero coeffi-
cients. These banded Toeplitz matrices correspond to
Laurent polynomials g ∈ W , i.e. the functions repre-
sented by a finite Fourier series,

g(t) =

s∑
j=−r

gjt
j , t ∈ T.

When T (g) is banded and real-valued, we get a further
refinement on its spectrum: it has no eigenvalues and
the spectrum is the line segment [min g,max g] [4]. This
leads to Theorem III.1.

Theorem III.1. The infinite blocks Gii(a, b) ∈
B
(
l2(Z+)

)
for i ∈ Z+ on the diagonal of G(a, b) have

no eigenvalues and their spectrum is the interval

Spec
(
Gii(a, b)

)
= [inf

x
gii(x), sup

x
gii(x)]

and gii ∈W is

gii(x) = 2/3 +

⌊1/a⌋∑
k=1

gk cos(2πkx)

+
1

3

⌊2/a⌋∑
k=⌊1/a⌋+1

gk cos(2πkx)

where the coefficients gk are the inner products
Gii

jj′ = Gii
|j−j′|⟨gλij

, gλij′ ⟩L2(R) on the Toeplitz bands

of Gii(a, b) indexed by k = |j − j′|. These coefficients
have the form,

gk =


(ak)3 − 2(ak)2 + 4

3 , k ≤ ⌊ 1
a⌋

(2− ak)3, ⌊ 1
a⌋ < k ≤ ⌊ 2

a⌋
0, k > ⌊ 2

a⌋.

For example, if we take a = 1/4 and b = 2, then
gii(x) (Figure 2) has the form:

gii(x) = 2/3 +

4∑
k=1

(
k3

64
− k2

8
+

4

3
) cos(2πkx)

+
1

3

8∑
k=5

(2− k

4
)3 cos(2πkx).

Fig. 2: The Laurent polynomial gii(x) ∈ W associated
to the Toeplitz block Gii(a, b) ∈ B

(
l2(Z+)

)
. The spec-

trum of Gii(a, b) is the interval [inf gii(x), sup gii(x)],
numerically and analytically computed to be [0, 4] in the
case where a = 1/4.

As all of the coefficients gk are positive, the gii(x)
attains its maximum when cos(2πkx) = 1. Using a
standard counting argument we can for certain cases ex-
plicitly compute the maximum and minimum of gii(x).

Corollary III.1.1. When ⌊ 1
a⌋ =

1
a , the Laurent polyno-

mial gii(x) associated to the Toeplitz Gii(a, b, n) has a
maximum at x = k for k ∈ Z,

||Gii(a, b)|| = max
x

gii(x) = gii(k) = ⌊1
a
⌋.

The upper frame bound for G(g, a, b) is therefore
B(a, b) = 1

a . Furthermore, the gii(x) has a minimum
at x = k/2 for k ∈ Z odd,

min
x
gii(x) = gii(

k

2
) = 0.

The spectrum of the Gii(a, b) is therefore the interval

Spec
(
Gii(a, b)

)
= [g(

k

2
), g(k)] = [0, ⌊1

a
⌋].

Analysis of the Laurent polynomial gii(x) including
its maximum and minimum provides information on the
spectrum of the infinite Gram matrix G(a, b) and its
finite counterpart G(a, b, n), and hence information on
their frame bounds. This is summarized in Corollary
III.1.2 and is due to:

1) classic Szego-type limit theorems [13]
that state the minimum and maximum
eigenvalues, γii1 (a, b, n) and γiin (a, b, n), of
the Toeplitz Gii(a, b, n) belong to the interval
[infx g

ii(x), supx g
ii(x)] with

lim
n→∞

γii1 (a, b, n) = inf
x
gii(x)

lim
n→∞

γiin (a, b, n) = sup
x
gii(x)



2) the blocks Gii(a, b, n) are principle sub-
matrices and hence the eigenvalues interlace with
G(a, b, n),

γ1(a, b, n) ≤ γii1 (a, b, n) ≤ . . .

. . . ≤ γiin (a, b, n) ≤ γn(a, b, n).

Corollary III.1.2. Let A(a, b, n) = γ1(a, b, n) ∈ R
and B(a, b, n) = γn(a, b, n) ∈ R be the lower and
upper frame bounds associated to the finite Gabor frame
G(g, a, b, n). There exists an N ∈ N such that ∀n ≥ N ,
we have the upper and lower estimates on A(a, b, n) and
B(a, b, n):

A(a, b, n) ≤ inf
x
gii(x) ≤ γii1 (a, b, n)

γiin (a, b, n) ≤ sup
x
gii(x) ≤ B(a, b, n).

This analysis can be further refined with the introduc-
tion of a family of circulant matrices that are asymptoti-
cally equivalent to the Toeplitz block Gii(a, b) and allow
estimates on the eigenvalues γ1(a, b, n) and γn(a, b, n)
and hence on the frame bounds A(a, b, n), B(a, b, n).
Two sequences of matrices {Gn}∞n=1, {Hn}∞n=1 are said
to be asymptotically equivalent, Gn ∼ Hn, if:

1) Gn and Hn are uniformly bounded in the || · ||2
norm, ||Gn||2, ||Hn||2 ≤M <∞

2) |Gn −Hn| → 0, where | · | is the scaled Hilbert-
Schmidt norm |Gn| = ( 1n

∑n
i,j=1 |gij |2)1/2

Asymptotically equivalent sequences of matrices have
eigenvalues that behave similarly for large n. Indeed,
for a continuous function f(x), we have

lim
n→∞

1

n

n−1∑
m=0

|f(γm)− f(ψm)| = 0

and the eigenvalues are said to be asymptotically abso-
lutely equally distributed; the average difference in the
eigenvalues of asymptotically equivalent matrices tends
to zero [13]. In the special case where {Gn}∞n=1 is
a sequence of banded Toeplitz matrices and {Hn}∞n=1

is a sequence of circulant matrices constructed from
the Toeplitz {Hn}∞n=1, we have that the eigenvalues
individually converge [27]. These circulant matrices are
constructed by padding the rows of the banded Toeplitz
matrix appropriately [13]. The advantage of working
with circulant matrices to study the spectrum of a banded
Toeplitz matrix is that their eigenvalues {ψm}nm=1 can
be computed explicitly as the discrete Fourier transform
of a row of the Hn,

ψm =

n−1∑
k=0

hke
−2πimk/n, m ∈ {1, 2, . . . , n}.

Let Comb(x) =
∑∞

l=−∞ δ(x− l) be the Dirac comb.
We use the following relation between the discrete
Fourier transform (DFT) of a sampled function f :=(
fχComb

)
(m) for m ∈ {0, 1, . . . , n − 1} and samples

of the Fourier transform F{f} of f :

DFT{f}(m) =
(
F{f} ∗ sinc ∗ Comb

)
(
m

n
)

=

∞∑
l=−∞

(
F{f} ∗ sinc

)
(
m

n
− l).

Theorem III.2. Let Hii(a, b, n) ∈ Cn×n be the
circulant matrix constructed from the Toeplitz block
Gii(a, b, n). Then, the eigenvalues {ψii

m(a, b, n)}nm=1 of
Hii(a, b, n) have the form

ψii
m(a, b, n) =

1

a

( ∞∑
l=−∞

sinc2
(1
a
(
m

n
− l)

))2

and are the square of the discrete Fourier transform of
an a-dilated B-spline and correspond to samples of the
Laurent polynomial gii(x) from Theorem III.1.

Because the eigenvalues of the finite blocks
Gii(a, b, n) interlace those of G(a, b, n), it must be
the case that if the minimum eigenvalue of Gii(a, b, n)
tends to zero, so does that of G(a, b, n). The minimum
eigenvalue of Gii(a, b, n) tends to zero when Hii(a, b, n)
has an eigenvalue of zero and corresponds to when gii(x)
has a zero, see Figure 3. We see that, for example, if
a = 1

4 and n = 1024, then

ψii
m(a, b, n) =

1

4

∞∑
l=−∞

sinc2(
m

256
− 4l) (2)

has zeros at m = 256, 512, and 768. Hence, when
a = 1

4 it must be that the eigenvalue and frame bound
γ1(a, b, n) = A(a, b, n) → 0 as n → ∞. It is known
that for finite Gabor frames, the lower frame bound must
tend to zero [1]. Thus, Corollary III.2.1 can be viewed as
generalizing this result to Gabor systems in general and
tying them to the eigenvalues of their Gram matrices.

Corollary III.2.1. If the minimum eigenvalue γii1 (a, b, n)
of the finite block Gii(a, b, n) ∈ Cn×n tends to zero as
n→ ∞, then (1) a ∈ Q and (2) the minimum eigenvalue
γ1(a, b, n) of the finite Gram matrices G(a, b, n) tend to
zero as n→ ∞.

(a) Samples of the Laurent polynomial gii(x) (red), samples
1√
a

∑∞
l=−∞ sinc2( 1

a
(m
n

− l)) (orange), and the DFT of an a-
dilated B-spline

√
ag(ax) (blue) for a = 1/4, b = 2. Theorem

III.2 states that these three quantities are equal; hence the three
curves are indistinguishable.

(b) Average and maximum difference in eigenvalues between
the Toeplitz block Gii(a, b, n) and circulant Hii(a, b, n) tends
to zero as the size n of the matrices grow. Since ψii

m(a, b, n) can
be explicitly computed (Equation (2)), we can study the frame
bounds of the Gabor system G(a, b, n).

Fig. 3
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[4] A. Böttcher and S. M. Grudsky. Toeplitz matrices, asymptotic
linear algebra and functional analysis, volume 67. Springer,
2000.
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