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ABSTRACT

Self-supervised learning (SSL) is a data-driven learning approach that utilizes the
innate structure of the data to guide the learning process. In contrast to supervised
learning, which depends on external labels, SSL utilizes the inherent characteristics
of the data to produce its own supervisory signal. However, one frequent issue with
SSL methods is representation collapse, where the model outputs a constant input-
invariant feature representation. This issue hinders the potential application of SSL
methods to new data modalities, as trying to avoid representation collapse wastes
researchers’ time and effort. This paper introduces a novel SSL algorithm for time-
series data called Prediction of Functionals from Masked Latents (PFML). Instead
of predicting masked input signals or their latent representations directly, PFML
operates by predicting statistical functionals of the input signal corresponding to
masked embeddings, given a sequence of unmasked embeddings. The algorithm is
designed to avoid representation collapse, rendering it straightforwardly applicable
to different time-series data domains, such as novel sensor modalities in clinical
data. We demonstrate the effectiveness of PFML through complex, real-life classi-
fication tasks across three different data modalities: infant posture and movement
classification from multi-sensor inertial measurement unit data, emotion recogni-
tion from speech data, and sleep stage classification from EEG data. The results
show that PFML is superior to a conceptually similar pre-existing SSL method
and competitive against the current state-of-the-art SSL method, while also being
conceptually simpler and without suffering from representation collapse.

1 INTRODUCTION

Self-supervised learning (SSL) can be described as a data-driven learning paradigm where the training
process is guided by the inherent structure of the data itself. Unlike supervised learning that relies
on externally provided labels, SSL exploits the intrinsic properties of the data to generate its own
supervisory signal (Balestriero et al., 2023). SSL enables the model to learn rich feature representa-
tions from large amounts of unlabeled data that can be used as a starting point for downstream tasks,
either as such or by fine-tuning the feature extractor to be better suited for solving some specific
task (Erhan et al., 2010). Since typically there is an abundance of unlabeled data but a scarcity of
labeled data, the use of SSL has been shown to reduce the need for large, manually annotated datasets
(van den Oord et al., 2018; Baevski et al., 2020; Chen et al., 2020). In addition to SSL algorithms
that have been developed for a single data modality, SSL algorithms that can be applied to multiple
different data modalities have gained popularity in recent years (van den Oord et al., 2018; Akbari
et al., 2021; Baevski et al., 2022; Wang et al., 2023). These methods and their extensions have shown
great success in e.g. audio, image, and text data (van den Oord et al., 2018; Hénaff et al., 2020;
Akbari et al., 2021; Baevski et al., 2022; Wang et al., 2023; Baevski et al., 2023; Yoon et al., 2023;
Zhu et al., 2023; Lian et al., 2023).

However, many SSL algorithms suffer from two issues: First, SSL algorithms are usually complex,
with a plethora of hyperparameters that need careful tuning for the algorithm to work properly. This
hinders the ability of SSL algorithms to be applied to new data domains, where the selection of these
hyperparameters is not self-evident. For example, in contrastive learning-based SSL, the selection
of positive and negative samples during training is essential for the algorithm to work properly.
However, deciding which samples should be assigned to positive and negative categories is not always
apparent (Kalantidis et al., 2020; Robinson et al., 2021; Balestriero et al., 2023). As another example,
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determining the number of clusters for clustering-based SSL algorithms (such as Caron et al. (2020)
and Hsu et al. (2021)) in a new data domain or task can be difficult. Examples of such domains
could include, for instance, different types of medical time-series data (e.g. EEG, ECG, or EMG
recordings) that come in various dataset sizes and from various recording configurations. Second, a
common failure mode during SSL pre-training is representation collapse, where the model ends up
outputting a constant, time-invariant feature representation. Representation collapse is very common
in SSL pre-training (Hua et al., 2021; Jing et al., 2022; Balestriero et al., 2023; Garrido et al., 2023),
and many SSL methods apply different countermeasures to tackle the problem (see Section 3.1).

In the present study, we propose a new SSL algorithm for time-series data called Prediction of
Functionals from Masked Latents (PFML). In PFML, the aim is to predict statistical functionals of the
input signal corresponding to masked embeddings, given a sequence of unmasked embeddings. The
overall methodological aim of our method is to have an SSL algorithm that would be as straightforward
as possible to apply to various time-series data domains with minimal hyperparameter optimization,
and without the risk of representation collapse. The contributions of the present study are as follows:

1. We propose a novel SSL algorithm for time-series data, PFML, that does not suffer from
representation collapse, rendering the method straightforward to apply to new time-series
data domains. To the best of our knowledge, PFML is the first work within the field of SSL
for time-series data where the central idea of reconstructing statistical functionals is utilized.

2. We demonstrate the effectiveness of PFML using three different data modalities with
complex, real-life classification tasks: infant posture and movement classification from
multi-sensor inertial measurement unit (IMU) data, emotion recognition from speech data,
and sleep stage classification from EEG data.

3. We show that PFML obtains both superior results against a conceptually similar pre-existing
SSL method, and competitive results against the current state-of-the-art data modality
agnostic SSL method, while also being conceptually simpler and without suffering from
representation collapse.

2 RELATED WORK

Most of the advances in SSL have focused on developing new, better-performing algorithms with
some specific data modality in mind. For speech data, Baevski et al. (2020) presented an SSL
algorithm where the basic idea is to mask speech embeddings and then solve a contrastive task
that is defined over a quantization of the embeddings which are simultaneously learned during the
pre-training task. Hsu et al. (2021) proposed that instead of solving a contrastive task, they predict
cluster targets of masked embeddings. Furthermore, the SSL method by Chen et al. (2022) also uses
masking of embeddings, but the authors simulate noisy speech inputs and predict pseudo-labels of
the original speech from the masked embeddings.

Similar to the advances in SSL for audio data, there have been significant developments in SSL
for image data as well (Lee et al., 2017; Gidaris et al., 2018; Caron et al., 2018; Grill et al., 2020;
Chen et al., 2020; Radford et al., 2021; He et al., 2022; Bao et al., 2022; Oquab et al., 2024). Grill
et al. (2020) presented an SSL method that uses two neural networks that learn from each other’s
representations of differently augmented views of the same image. He et al. (2022) proposed masked
autoencoders (MAE) that try to reconstruct masked patches of input images using an asymmetric
encoder-decoder architecture. The SSL algorithm by Bao et al. (2022) tokenizes images into visual
tokens, followed by masking some image patches and then trying to recover the original tokens from
the masked patches.

SSL has also excelled in natural language processing (Devlin et al., 2019; Brown et al., 2020; Tay et al.,
2023; OpenAI, 2023). Devlin et al. (2019) introduced an SSL method which obtains bidirectional
feature representations from unlabeled text by conditioning on both the left and right textual context.
The method by Brown et al. (2020) uses an autoregressive model which alternates dense and locally
banded sparse attention patterns in their Transformer model. OpenAI (2023) proposed an expanded
version of Brown et al. (2020) by making the model not only larger, but also capable of handling
image inputs in addition to text inputs.

More recently, SSL literature has seen a growing number of work towards SSL algorithms capable of
running the pre-training task on multiple different data modalities. The authors of van den Oord et al.
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(2018) developed an SSL approach that predicts future embeddings based on previous context using
contrastive learning. They showed that their method was able to learn useful feature representations
for audio, image, text, and reinforcement learning in 3D environments. The SSL method by Akbari
et al. (2021) also uses contrastive learning, but their method simultaneously takes audio, video, and
text data as input and creates multimodal feature representations. These features were shown to work
well with multiple different downstream tasks, i.e. video action recognition, audio event classification,
image classification, and text-to-video retrieval. Wang et al. (2023) proposed an SSL method that
performs prediction of masked tokens in a unified manner on images, texts, and image-text pairs.
Their experiments showed that their method achieves state-of-the-art performance on various vision
and vision-language tasks. Baevski et al. (2022) proposed data2vec, an SSL method for audio, image,
and text data. In their approach, the model tries to predict masked latent features of an older version
of itself that are both normalized and averaged over multiple Transformer layers. Their results in
downstream tasks demonstrate the effectiveness of the method in all three data modalities.

For modality agnostic SSL algorithms, objective functions play a crucial role in guiding the learning
process. These functions can be broadly categorized into three types: instance discrimination,
clustering, and masked prediction. Instance discrimination aims to distinguish between different
instances of data, thereby encouraging the model to learn unique features for each instance and
enhancing the discriminative power of the learned representations. Contrastive learning methods,
such as van den Oord et al. (2018); Baevski et al. (2020); He et al. (2020); Akbari et al. (2021);
Pizzi et al. (2022), are an example of instance discrimination-based SSL methods. Clustering, on
the other hand, groups similar instances together in the feature space, fostering the model to learn
common features among instances belonging to the same group. Methods like Caron et al. (2020);
YM. et al. (2020); Hsu et al. (2021) are examples of clustering-based SSL methods. Lastly, masked
prediction involves the task of predicting masked parts of the input data based on the unmasked parts,
thereby encouraging the model to learn contextual relationships within the data. Examples of such
SSL methods include Devlin et al. (2019); Wang et al. (2020); Baevski et al. (2022); He et al. (2022);
Xie et al. (2022).

3 METHOD

3.1 MOTIVATION

One key issue with many SSL methods is the problem of representation collapse, where the model out-
puts a constant, input-invariant feature representation, leading to a trivial solution of the pre-training
task (Jing et al., 2022; Balestriero et al., 2023). This considerably slows down the development
process for novel data domains and/or tasks due to the necessity of operating in uncertainty, when it
is not clear whether the representation collapse is caused by an ill-posed task or by the SSL algorithm.
To avoid this, SSL methods have taken several different countermeasures: Baevski et al. (2020) use the
same target representations in their contrastive learning task in a dual manner, i.e. both as a positive
and a negative example. Grill et al. (2020) both add an additional predictor to their training regime
and use a moving average of their so-called online neural network to avoid representation collapse.
Bardes et al. (2022) add a regularization term to their loss function that both maintains variance of the
embeddings and decorrelates each pair of variables. In data2vec (Baevski et al., 2022), the authors
tackle representation collapse by carefully selecting their model hyperparameters and promoting
target representation variance through feature normalization. Also, in the code implementation of
data2vec1, pre-training is stopped if the variance of either model predictions or training targets falls
below a predefined threshold.

Intuitively, given a trivial task, the model does not learn useful feature representations during pre-
training. In contrast, if the learning objective is too complicated, the model fails to converge to
a useful solution. For time-series data, i.e. a waveform (e.g. audio) or a set of waveforms (e.g.
multi-channel EEG), trying to reconstruct masked parts of the input signal given the unmasked parts
of the signal (as in e.g. MAE (He et al., 2022)) is a very complex task. This is due to the fact that
a time-series signal can have large temporal variation even between short periods of time. While
joint learning of a priori unspecified latent representations and their prediction allows discarding of
this irrelevant variation (as in, e.g., van den Oord et al. (2018) or Baevski et al. (2020)), the problem

1https://github.com/facebookresearch/fairseq/tree/main/examples/
data2vec
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Figure 1: An overview of the PFML pre-training pipeline.

requires learning algorithms that become susceptible to representation collapse and/or may require
careful tuning of the training process. We hypothesize that for SSL pre-training with time-series data,
a model would learn more useful features for downstream tasks if the complex setting of MAE would
be alleviated slightly. Hence, we propose Prediction of Functionals from Masked Latents (PFML), a
novel SSL algorithm for time-series data. Our method builds on the concept of MAE and reduces the
complexity of the pre-training task of MAE in two ways:

1. Instead of aiming to reconstruct the input signal, the model tries to predict a set of statistical
functionals computed from the input signal.

2. Instead of masking the input signal directly, PFML borrows the idea of e.g. wav2vec 2.0
(Baevski et al., 2020) and data2vec (Baevski et al., 2022) and masks the embeddings created
by the encoder model.

Regarding point (1), by making the model predict statistical functionals of masked latent features
instead of predicting the input signal x itself, we relieve the model from the complex task of modelling
the high-dimensional distribution of x in detail. We validate this argument of generating better features
for downstream tasks by reducing the computational complexity of the pre-training task in Section 4,
where we compare our proposed method against MAE. In theory, the set of statistical functionals
can be chosen so that the desired and deterministically calculated statistical properties of the data,
and thereby their variance, are preserved in the target features. Furthermore, regarding point (2), we
show in our experiments in Section 4 that it is more beneficial during pre-training to mask the latent
features instead of masking the input directly. This further alleviates the complexity of the learning
task in particular for the encoder module.

3.2 PREDICTION OF FUNCTIONALS FROM MASKED LATENTS

Figure 1 depicts an overview of the PFML pre-training pipeline. First, a single- or multi-channel
signal x is framed into a sequence of short-term frames {x0,x1, ...}, xn = {xt, xt+1, ..., xt+N−1},
of N samples each. Then, a set of m functionals, F = {F0, F1, ..., Fm−1}, is computed for each
frame xn to produce corresponding functional values fn = {F0(xn), F1(xn), ..., Fm−1(xn)}. Here,
functionals are defined as mathematical operations which map a time series of arbitrary length into a
single value, such as the mean or variance of the signal. The frames xn are also fed to an encoder
model, which converts the framed signals into embeddings zn. Some of these embeddings are masked
randomly at time steps M (for example, M ∈ {1, 2} in Figure 1), after which all zn are used as an
input for a Transformer-based model to obtain outputs yn. Finally, a prediction loss is computed
between the outputs of masked time steps yM and their functional counterparts fM . As a result,
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PFML pre-training optimizes the prediction of functionals of input signal frames corresponding to
the masked embeddings, given the unmasked embeddings from the temporal context of these frames.

In PFML, predicting only one or a few functionals of a framed signal can be a trivial task, and will
most probably lead to learning feature representations that are not very useful for downstream tasks.
However, as the number of functionals that each describe some property of the framed signal grows,
a more accurate description of the signal can be obtained (see e.g. McDermott & Simoncelli (2011)
for representing perceptual properties of sound textures with functionals). Therefore, as the number
of different functionals grows, the PFML algorithm is getting closer to predicting all of the nuances
of the input signal.

Let us assume the following in PFML pre-training:

• Assumption 1: There is temporal variability across the frames xn. This assumption is
reasonable as real-world data typically exhibits temporal variability.

• Assumption 2: Given Assumption 1, a set of non-trivial functionals F computed from
xn also contains variance across the frames. This follows naturally since non-constant
functionals derived from variable data also exhibit variability.

Under these assumptions, as the model is trying to predict the computed functionals fn given the
embeddings zn, good model predictions yn that lead to low prediction loss values also inherently
contain variance. On the contrary, if yn were to contain zero variance across the frames while fn
contains variance, the prediction loss would be high. Consequently, PFML pre-training does not
converge to collapsed feature representations, as long as Assumptions 1 and 2 hold true. For a more
detailed formulation, see Appendix A. Empirical results (see Section 4.4) support this theoretical
claim, showing that PFML maintains variance in predictions across various datasets.

In the present study, we selected 11 mathematical operations as our set of functionals: mean,
variance, skewness, kurtosis, minimum value, maximum value, zero-crossing rate (ZCR), and the
mean, variance, skewness, and kurtosis of the autocorrelation function (ACF). The ZCR for a signal
x = {x0, x1, ..., xN−1} is defined as

ZCR(x) =
1

N − 1

N−1∑
k=1

|sgn(xk)− sgn(xk−1)| , (1)

where sgn denotes the sign function (Rabiner & Schafer, 2007). The ACF for a signal x at lag τ is
defined as

ACF(x, τ) =
1

(N − τ)σ2

N−τ−1∑
k=0

(xk+τ − µ)(xk − µ) , (2)

where τ < N , µ is the mean of x, and σ2 is the variance of x (Rabiner & Schafer, 2007). Note that
Equation 2 returns a vector of measurements when applied to all lags τ < N .

For masking the embeddings, in each training and validation minibatch we randomly select frames
with a probability of pm to be mask starting indices, and we mask the embedding of that frame and
ml − 1 subsequent frames, resulting in a minimum mask length of ml frames. We replace each
embedding that is selected for masking with a vector of ones. Masks can overlap, enabling longer
mask spans than ml frames (especially with high pm). Furthermore, we also define that each training
and validation sequence needs to have at least one mask starting index during PFML pre-training.

Note that the PFML pre-training process is not restricted to any specific type of neural networks.
In the present study, we used convolutional neural networks (CNNs) as our encoder model, and
T Transformer encoder blocks as the temporal model. However, any type of encoder could be
used for PFML, as long as the encoder can convert time-series data into a sequence of embeddings.
Furthermore, other temporal models, such as conformer-based models (Gulati et al., 2020) or
bidirectional recurrent neural networks (Hochreiter & Schmidhuber, 1997; Cho et al., 2014), could
also be used for PFML, as long as the model is able to take contextual information into account.

4 EXPERIMENTS

We evaluate our PFML method using three different datasets of time-series data with complex clas-
sification tasks: infant posture and movement classification from multi-sensor IMU data, emotion
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recognition from speech data, and sleep stage classification from EEG data. For each dataset, we first
run SSL pre-training with unlabeled data using PFML, after which we fine-tune our models for down-
stream classification tasks using labeled data. We compare PFML against three different baselines:
MAE (He et al., 2022), data2vec (Baevski et al., 2022), and not using pre-training at all. We selected
MAE for our experiments since it is conceptually very similar to PFML, and we chose data2vec since
it is the current state-of-the-art data modality agnostic SSL method. In order to make the prediction
of functionals directly comparable with predicting the input signal, we use a slightly modified version
of MAE where we mask embeddings instead of masking inputs.

For PFML pre-training, our models consist of a modality-specific frame-level encoder
(detailed in Sections 4.1, 4.2, and 4.3 for IMU, speech, and EEG data, respec-
tively) and a Transformer network consisting of T Transformer encoder blocks. Be-
tween the encoder and Transformer networks there is a CNN-based relative posi-
tional encoder followed by a GeLU (Hendrycks & Gimpel, 2016) activation and layer
normalization (Ba et al., 2016). We frame our input signals before feeding the data into an en-
coder model, and we compute functionals from these frames as our training targets. For multi-channel
data, we compute functionals separately for each channel. The functionals are then z-score normalized
across the entire pre-training dataset. For computational efficiency, we pre-compute the functionals
of each signal frame before the pre-training process. After the Transformer encoder blocks, we add
a linear projection to convert the Transformer outputs into predicted functionals. Pre-training is
run until validation loss convergence, and we use the model with the lowest validation loss as our
pre-trained model. Starting from an initial learning rate, we gradually reduce the learning rate during
model training with a reduction factor of 0.5 based on the plateauing of the validation loss.

We pre-train our models using MAE and data2vec in a similar manner as for PFML, and we use the
same model architecture for all three pre-training algorithms. MAE pre-training is run in a similar
manner as PFML pre-training, with the only exception of predicting the input signal frames instead
of functionals. For data2vec pre-training, we used the instance-normalized (Ulyanov et al., 2016) and
averaged outputs of each feed-forward part of all Transformer encoder blocks as our training targets.
If we observed that a representation collapse occurred during data2vec pre-training, we restarted the
pre-training process. For further details on the data2vec algorithm, see Baevski et al. (2022). We
used mean squared error loss for all pre-training processes except for PFML with speech data, where
we found L1 loss to work better.

We fine-tune our pre-trained models in two stages. In the first stage, two randomly initialized fully-
connected GeLU layers followed by a softmax function are added after the Transformer model. Then,
these layers are fine-tuned separately as the weights of the encoder and Transformer are frozen. In the
second stage, the entire model is fine-tuned with the same hyperparameters as in the first fine-tuning
stage with one exception: The learning rate LR is linearly increased from 0.001 · LR to LR during a
warm-up period of 20 training epochs, followed by reduction by a factor of 0.5 based on validation
loss plateauing. We use weighted categorical cross-entropy loss by weighting the loss of each sample
by its class’ inverse frequency.

We also test the linear separability of the features learned by our pre-trained models. In this case,
we only add one linear layer after the Transformer model, and we fine-tune this single layer while
the weights of the encoder and Transformer are frozen. As a baseline, we perform the same linear
evaluation for a randomly initialized model without any pre-training.

For pre-training and fine-tuning, we use the RAdam (Liu et al., 2020) and Adam (Kingma & Ba,
2015) optimizers, respectively. For the “no pre-training” condition, we simply omit pre-training,
the first fine-tuning stage, and the learning rate warm-up period of the second fine-tuning stage. We
used an NVIDIA Tesla V100 GPU to train our models, and we implemented the code using PyTorch
version 1.13.1. Our implementation is publicly available on GitHub.2

In order to demonstrate the superiority of PFML against the state-of-the-art SSL method for multiple
data modalities, data2vec, in terms of representation collapse, we ran PFML, MAE, and data2vec
pre-training 10 times using the best hyperparameter combinations for each SSL method and for
each data modality. We defined representation collapse to have occurred if the variance of either the
embeddings or model outputs fell below 0.01 for 10 consecutive pre-training epochs, during which
the validation loss was decreasing. In our preliminary experiments, we found that this condition was

2(Here will be a link to our GitHub repository.)
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a good indicator of an upcoming representation collapse: A systematic decrease in the variance of a
model’s embeddings or outputs indicates impending representation collapse in SSL methods where
the model can invent its own training targets.

4.1 INFANT POSTURE AND MOVEMENT CLASSIFICATION

For infant posture and movement classification, we use the multi-sensor IMU data from Airaksinen
et al. (2022). The data contains 24-channel signals from infants (three gyroscope and three accelerom-
eter channels, four limbs) with a sampling rate of 52 Hz. We window the signals into 120-sample
frames (approx. 2.3 seconds) with 50% overlap. For further details about the dataset, see Airaksinen
et al. (2022).

For model pre-training, we use a 387-hour set of unlabeled IMU data from infant free-form play that
has been automatically screened for signal quality (Vaaras et al., 2023b). This subset contains 4669
sequences of 260 consecutive frames, each corresponding to five minutes of data. As the encoder,
we use the same four-layer CNN-based encoder architecture as in Airaksinen et al. (2022) with
three minor modifications that were found to improve training efficiency and system performance
when replicating the experiments of Airaksinen et al. (2022): We added layer normalization after
the last two convolutions to make the pre-training process more stable, the kernel size of the second
convolutional layer of the CNN encoder was changed from [4,5] to [3,5], and the originally temporally
asymmetrical padding was set to [1,2] to make it symmetric. The pre-training data is randomly split
into a training and validation set in a ratio of 80:20 sequences, and we input 260-frame sequences
into the model.

For fine-tuning our pre-trained models, we use a 29-hour (91,449 frames) labeled dataset of IMU data
(41 recordings and distinct participants) for two separate tasks: posture classification and movement
classification. The data contains nine annotated movement categories (still, roll left/right, pivot
left/right, proto/elementary/fluent movement, transition) and seven annotated posture categories
(prone, supine, left/right side, crawl posture, sitting, standing) for each 2.3-second frame. For model
training, we use all annotated data, but we only use the frames in which all annotators agreed on
the label for model testing. We train our models separately for both classification tasks using the
so-called iterative annotation refinement labels from Airaksinen et al. (2020).

Model fine-tuning is run using recording-level 10-fold cross-validation on the 41 distinct recordings
of the labeled dataset. We split each training fold into separate training and validation sets in a ratio
of 80:20 recordings. The unweighted average F1 score (UAF1) on the validation set is used as the
training criterion, and we select the best-performing model based on validation set UAF1 score. We
use random sensor dropout (p = 0.3) for data augmentation during model fine-tuning. The final
UAF1 score of fine-tuning is computed from an aggregate confusion matrix across all test folds. For
further details regarding the pre-training and fine-tuning hyperparameters, see Appendix B.

4.2 SPEECH EMOTION RECOGNITION

We use the 56-hour subset of Finnish speech of the NICU-A corpus (Vaaras et al., 2023a) for our
speech emotion recognition experiments. This subset contains 129,007 utterances with a sampling
rate of 16 kHz, of which 5198 and 345 belong to annotated training and testing sets, respectively. Each
annotated utterance in NICU-A contains binary labels for emotional valence (positive/non-positive)
and arousal (high/low). We window each speech signal into 30-ms frames with a 20-ms overlap.
Each sequence is z-score normalized, and we zero-pad or truncate each normalized sequence into
3-second segments (301 frames). See Vaaras et al. (2023a) for further details on NICU-A.

For model pre-training, we use all 129,007 utterances, and we input 301-frame sequences to our model.
We use a four-layer CNN encoder with output channels [128, 128, 128, 128], kernel sizes [10, 8, 4, 4],
strides of [5, 4, 2, 2], and paddings of [3, 2, 1, 1]. Each layer is followed by layer normalization, a
GeLU nonlinearity, and dropout. The last CNN layer is followed by average pooling with a kernel
size of 6 before dropout. The pre-training utterances are randomly split into a training and validation
set in a ratio of 80:20 sequences.

We fine-tune and test our models separately for both classification tasks (valence/arousal) using the
labeled 5198- and 345-utterance training and testing sets, respectively. The training set is randomly
split into a training and validation set in a ratio of 80:20 utterances, and we select the best-performing
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Table 1: Downstream task fine-tuning results for PFML, data2vec, MAE, and not using pre-training
at all for the five different classification tasks across the three different data modalities (IMU, speech,
and EEG data).

 
Multi-sensor IMU data 

(infant motility assessment) 
Speech data 

(speech emotion recognition) 

EEG data 
(sleep stage 

classification) 
 Movement Posture Valence Arousal Sleep stage 

No pre-training 80.6 94.9 68.2 65.5 69.1 
MAE 81.0 95.6 69.9 68.1 70.5 

data2vec 81.9 95.8 70.7 68.5 69.8 
PFML (ours) 81.8 95.7 70.7 68.6 71.2 

 UAF1 (%) UAR (%) UAF1 (%) 
 

model of the fine-tuning process based on the unweighted average recall (UAR) performance score
on the validation set. This model is then used to compute the UAR performance score of the test set.
See Appendix B for further details regarding the pre-training and fine-tuning hyperparameters.

4.3 SLEEP STAGE CLASSIFICATION

For sleep stage classification, we use the pre-processed expanded Sleep-EDF Database (Kemp et al.,
2000; Goldberger et al., 2000) from a study by Eldele et al. (2021). The dataset contains 30-second
segments of the Fpz-Cz channel with a sampling rate of 100 Hz, comprising a total of 195,479
segments of EEG data. Each 30-second segment belongs to one of five annotated categories: wake,
rapid eye movement (REM), non-REM stage 1, non-REM stage 2, or non-REM stages 3 and 4
combined. We z-score normalize each 30-second segment, and we window each segment into
4-second frames with 2 seconds of overlap, resulting into 14 frames for each segment.

We pre-train our models using all 195,479 EEG segments. We use the 14-frame sequences as our
input for a three-layer CNN encoder with output channels [128, 128, 128, 128], kernel sizes [10, 8, 4],
strides of [5, 5, 3], and paddings of [3, 2, 1]. Each convolution is followed by layer normalization, a
GeLU nonlinearity, and dropout. The third CNN layer is followed by average pooling with a kernel
size of 5 before dropout. We randomly split the EEG segments for pre-training into a training and
validation set in a ratio of 80:20 segments.

We fine-tune our models for sleep stage classification using 10-fold cross-validation at the test subject-
level on the 78 test subjects of the dataset. Each training fold is split into training and validation sets at
the test subject-level in a ratio of 80:20 test subjects. Similar to Sec. 4.1, we use the validation UAF1
score as our training criterion, and the testing UAF1 score is computed from an aggregate confusion
matrix across all test folds. For further details on the training hyperparameters, see Appendix B.

4.4 RESULTS

Table 1 presents the fine-tuning results of the comparison of our PFML method against MAE,
data2vec, and not using pre-training at all. Across all three data modalities and five classification
tasks, the results show that PFML outperformed MAE and achieved highly comparable results to
data2vec. Using pre-training with any SSL method provided superior results as opposed to not using
pre-training at all. For the classification of posture from IMU data, there were only minor differences
in performance between different SSL methods. In sleep stage classification from EEG data, both
MAE and PFML outperformed data2vec by a large margin. The comparison between PFML and
MAE showcases that it is more beneficial to predict functionals than to predict the input signal.

Table 2 shows the results of the linear evaluation experiments. Similar to the results of Table 1,
PFML outperformed MAE and was comparable to data2vec when using the pre-trained models as
feature extractors for linear classifiers. Again, both MAE and PFML outperformed data2vec by a
large margin in sleep stage classification from EEG data. In the case of using a randomly initialized
model as a feature extractor for linear classifiers, the classification accuracy was at chance-level in all
cases except when classifying posture for IMU data.

The results of representation collapse experiments are shown in Table 3. As can be seen from the
results, it is very common for representation collapse to occur with data2vec across all data modalities.
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Table 2: Linear evaluation results for PFML, data2vec, MAE, and a randomly initialized model.
 

Multi-sensor IMU data 
(infant motility assessment) 

Speech data 
(speech emotion recognition) 

EEG data 
(sleep stage 

classification) 
 Movement Posture Valence Arousal Sleep stage 
Random initialization 10.8 45.9 51.4 50.8 20.6 

MAE 39.9 87.2 60.9 58.8 43.7 
data2vec 41.7 87.1 61.8 59.3 41.5 

PFML (ours) 43.8 87.4 61.6 59.2 44.1 
 UAF1 (%) UAR (%) UAF1 (%) 

 

Table 3: Frequency of representation collapse across 10 runs of PFML, data2vec, and MAE for each
tested data modality.

 Multi-sensor 
IMU data 

Speech data EEG data 

MAE 0/10 0/10 1/10 
data2vec 9/10 8/10 8/10 

PFML (ours) 0/10 0/10 0/10 
 

On the contrary, the results indicate that MAE and PFML do not suffer from representation collapse:
PFML did not experience representation collapses at all, and MAE had a representation collapse only
once. Furthermore, we attribute this single representation collapse of MAE to bad luck in model
weight initialization, as in this particular case the model loss started diverging from the beginning of
the pre-training process. The results showcase that methods like MAE and PFML, whose training
targets inherently contain variance, are less prone to representation collapse compared to methods
like data2vec that learn their own prediction targets.

4.5 ADDITIONAL HYPERPARAMETER EXPERIMENTS

In order to demonstrate that it is more beneficial during pre-training to mask the latent features
instead of masking the input directly, we ran PFML pre-training for all three datasets twice: either by
masking the inputs or by masking the embeddings. Subsequently, we fine-tuned our models for all
five classification tasks, and the results are shown in Table 6 of Appendix C. As can be observed from
the results, it is more beneficial for downstream tasks if we alleviate the complexity of the pre-training
task for the encoder by masking the embeddings instead of masking the inputs. The only exception
was with EEG data, where it did not make a difference whether inputs or embeddings were masked.

For each data modality, we also experimented with different configurations of masking probability
pm and the length of the masks ml. We ran PFML pre-training using different configurations of
pm and ml, and then we fine-tuned the pre-trained models. For IMU and speech data, we only
experimented with one classification task each, namely classification of movement from IMU data
and classification of valence from speech data. The results for different configurations of pm and ml

for IMU, speech, and EEG data are shown in Appendix C in Tables 7, 8, and 9, respectively. For IMU
data, the differences between different masking strategies are rather small, whereas for speech and
EEG data the selection of masking hyperparameters has a notable effect on fine-tuning performance.

We also experimented with the effect of discarding some of the functionals in PFML pre-training
for IMU data. After pre-training, we fine-tuned our model for movement classification, and the
results are presented in Table 10 of Appendix C. The results indicate that using the full set of 11
functionals during PFML pre-training provides the best outcome. As the number of discarded
functionals increases, the prediction task becomes simpler and the training targets are able to capture
less information of the input signal frames, leading to worse fine-tuning performance.

Finally, we tested different mask types for PFML pre-training using IMU data. We either replaced
the masked embeddings with a fixed vector of zeros, ones, random Gaussian noise (as in e.g. Baevski
et al. (2023)), or a learnable mask token (as in e.g. Baevski et al. (2022)). After PFML pre-training
using the four different mask types, we fine-tuned the pre-trained models for movement classification.
Table 11 of Appendix C presents the comparison results for different mask types. As can be observed,
the choice between a mask of ones or random Gaussian noise does not have a notable impact on the
performance. However, using a learnable mask token yielded slightly worse results than a vector
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of ones or random Gaussian noise, and a vector of zeros yielded the worst results. We observed
that either using a vector of ones, random Gaussian noise, or learnable mask tokens for masking the
embeddings promoted embedding variance, whereas using a vector of zeros provided a smaller level
of variance for the embedding representations during pre-training. This lower level of variance for
embeddings might potentially hinder the fine-tuning process, resulting into a lower performance in
downstream tasks.

5 CONCLUSION

In this paper, we presented PFML, a novel SSL algorithm for time-series data that avoids the common
SSL issue of representation collapse. PFML operates by predicting statistical functionals of the
input signal corresponding to masked embeddings, given a sequence of unmasked embeddings. We
demonstrated the effectiveness of PFML using five different classification tasks across three different
data modalities: infant posture and movement classification from multi-sensor IMU data, emotion
recognition from speech data, and sleep stage classification from EEG data. Our results show that
PFML is superior to a conceptually similar SSL method, MAE. Our results also show that PFML is
competitive against the current state-of-the-art data modality agnostic SSL method, data2vec, while
being conceptually simpler and without suffering from representation collapse. The fact that PFML
matches the performance of data2vec while also avoiding the issue of representation collapse renders
PFML more straightforward to apply to new time-series data domains, such as in the case of clinical
time-series data. The present work may also be extended to other domains than time-series data, such
as images where functionals could be computed of, e.g., image patches.

Limitations We selected the present set of 11 functionals for their effectiveness across the three
data modalities used in the present study, aiming for potential generalizability and a robust start-
ing point to other data domains and downstream tasks. However, carefully selecting the number
and type of functionals specifically for different modalities may lead to better results than pre-
sented here. Also, we did not include data augmentation in our pre-training processes to save
computational time for PFML pre-training, as we wanted to pre-compute the functionals before
the model training. As shown in e.g. Chen et al. (2020); Grill et al. (2020); He et al. (2022);
Balestriero et al. (2023), data augmentation during pre-training may lead to improved performance
on downstream tasks. Nonetheless, performing masking for randomly sampled frames is already
a form of data augmentation in itself. Furthermore, other model architectures besides CNN-based
encoders or Transformer encoder blocks could also be used, and this may improve PFML pre-
training performance. Lastly, we acknowledge that typically SSL pre-training is run with very large
minibatch sizes using multiple GPUs, and the results of the present experiments might improve
with larger minibatch sizes. However, to promote reproducibility and encourage other researchers
to try PFML, we deliberately pre-trained our models using relatively small minibatches so that
the pre-training processes could be run on a single GPU with 16 GB of VRAM. As detailed in
Appendix D, our method used only a moderate amount of computational resources.

Broader Impacts Since the main goal of PFML is to make the algorithm straightforwardly applica-
ble to different time-series data domains, our method makes it easier to apply SSL pre-training for
time-series data without complex tuning of hyperparameters or the need to profoundly understand
the target data domain. As an example, properties of different medical time-series data, such as
those obtained with EEG, ECG, or EMG, can be dependent on the clinical environment, the specific
measurement equipment and setup, or clinical population being measured (Watson et al., 2019). This
limits the applicability of ’universal’ pre-trained models predominant in computer vision and speech
technology. In a similar manner, various industrial sensor setups, such as those for system monitoring
and predictive maintenance (accelerometers, magnetometers etc.), can result in data unique to a
particular environment or machine type. In these cases, the use of PFML pre-training can be practical,
since applying modality-specific SSL algorithms or fine-tuning pre-trained models from other data
modalities might not generalize well to novel time-series data domains. Hence, PFML may promote
the use of machine learning as an assisting tool in e.g. clinical healthcare or other limited-data
domains. However, as with all classifiers, machine-learning models trained using PFML might make
errors. Incorrect model-based decisions, such as incorrect diagnoses, may be detrimental in some
cases. Lastly, any bias, private information, or harmful content in the pre-training data can, in theory,
be reflected to the feature representations that are learned by PFML.
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REPRODUCIBILITY STATEMENT

In order to promote reproducibility, we provide the implementation of the PFML algorithm for all
three data modalities that were used in the present study (IMU, speech, and EEG data) in GitHub:
(link here). Also, all experimental steps are described in detail in Section 4, and the hyperparameters
used in both model pre-training and fine-tuning are listed in Appendix B. Furthermore, to encourage
other researchers to try PFML, we pre-trained our models using relatively small minibatches so that
the pre-training processes could be run using single-GPU setups. We will provide a link to an
anonymous repository containing our code implementation for the reviewers and ACs once the
discussion forums are opened in OpenReview.
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A PROOF OF NON-COLLAPSED FEATURE REPRESENTATIONS IN PFML
PRE-TRAINING

This section provides a more detailed mathematical formulation for the proof that PFML pre-training
does not converge to collapsed feature representations.

Let x be a single- or multi-channel time-series signal, framed into a sequence of short-term frames
{x0,x1, ...} of N samples each, where xn = {xt, xt+1, ..., xt+N−1}. We define a set of m func-
tionals, F = {F0, F1, ..., Fm−1}, to be computed for each frame xn to produce a set of computed
functionals fn. Here, we refer to functionals as mathematical operations which map a time series of
arbitrary length into a single value, such as the mean or variance of the signal. Also, let zn be the
output embeddings of an encoder model given the input xn, and let yn denote the output predictions
of a Transformer-based model given the input zn.

To formalize the relationships between inputs and outputs, let us define the following functions:

• Let F be the set of functionals that maps the input frames xn to the computed functionals
fn, i.e., fn = F(xn) = {F0(xn), F1(xn), ..., Fm−1(xn)}.

• Let g be the function that maps the embeddings zn to the predictions yn, i.e., yn = g(zn).

Let us assume the following in PFML pre-training:

• Assumption 1: There is temporal variability across the frames xn. Formally, let σ2(xn)
denote the variance of xn across the frames, and σ2(xn) > 0.

• Assumption 2: Given Assumption 1, the set of non-trivial functionals F computed from
xn also contains variance across the frames. Formally, let σ2(fn) denote the variance of fn
across the frames, and σ2(fn) > 0.

Under these assumptions, we aim to show that the predictions yn also contain variance across the
frames, i.e., σ2(yn) > 0.

In PFML pre-training, the model learns to predict the computed functionals fn given the embeddings
zn. The prediction loss L is defined as

L =
1

N

N∑
n=1

(fn − yn)
2 (3)

for the MSE loss and

L =
1

N

N∑
n=1

|fn − yn| (4)

for the L1 loss.

To minimize either the MSE or L1 loss functions (Equations 3 and 4, respectively), the predictions
yn must closely match the computed functionals fn. If yn were to contain zero variance across the
frames, i.e., σ2(yn) = 0, while fn contains variance, i.e., σ2(fn) > 0, the prediction loss L would be
high. This is because the constant predictions yn would not be able to capture the temporal variability
in fn.

Therefore, to achieve low prediction loss values, the predictions yn must also contain variance across
the frames, i.e., σ2(yn) > 0. Consequently, PFML pre-training does not converge to collapsed
feature representations, as long as Assumptions 1 and 2 hold true. □

Given that real-world time-series data generally shows temporal variability, and computed functionals
derived from such data are expected to reflect this variability, Assumptions 1 and 2 are valid for most
real-world datasets.
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B PRE-TRAINING AND FINE-TUNING HYPERPARAMETERS

This section provides details on the pre-training (Table 4) and fine-tuning (Table 5) hyperparameters
of the present experiments.

Table 4: The pre-training hyperparameters for PFML, data2vec, and MAE pre-training for each data
modality (IMU, speech, and EEG data).

 Multi-sensor IMU data Speech data EEG data 
 PFML data2vec MAE PFML data2vec MAE PFML data2vec MAE 

Patience (epochs) 100 100 100 25 25 25 25 25 25 
Initial LR 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 

LR scheduler patience (epochs) 40 40 40 10 10 10 10 10 10 
LR scheduler reduction factor 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Optimization algorithm RAdam RAdam RAdam RAdam RAdam RAdam RAdam RAdam RAdam 
Minibatch size 64 64 64 64 64 64 1024 1024 1024 
Loss function MSE MSE MSE L1 MSE MSE MSE MSE MSE 

Dropout (encoder) 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 
Dropout (Transformer) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Activation function (Transformer) GeLU GeLU GeLU GeLU GeLU GeLU GeLU GeLU GeLU 
Input/output dim (Transformer) 160 160 160 128 128 128 128 128 128 

Num encoder blocks (Transformer) 6 6 6 6 6 6 6 6 6 
Feed-forward inner dim 

(Transformer) 
640 640 640 512 512 512 512 512 512 

Num attention heads 
(Transformer) 10 10 10 8 8 8 8 8 8 

Relative positional encoding kernel 
size (Transformer) 13 13 13 25 25 25 9 9 9 

Relative positional encoding padding 
(Transformer) 6 6 6 12 12 12 4 4 4 

Relative positional encoding stride 
(Transformer) 1 1 1 1 1 1 1 1 1 

Masking start prob (𝒑𝒎) 0.15 0.15 0.15 0.065 0.065 0.065 0.1 0.1 0.1 
Mask length (𝒎𝒍) 3 3 3 10 10 10 3 3 3 

Teacher model, initial weight update 
rate (𝝉𝟎) 

N/A 0.9998 N/A N/A 0.9995 N/A N/A 0.9995 N/A 

Teacher model, final weight update 
rate (𝝉𝒆𝒏𝒅) 

N/A 0.99999 N/A N/A 0.99999 N/A N/A 0.99999 N/A 

Teacher model, num weight update 
rate transitions (𝝉𝒏) 

N/A 10,000 N/A N/A 10,000 N/A N/A 20,000 N/A 

 

Table 5: The fine-tuning hyperparameters for PFML, data2vec, and MAE pre-trained models for each
data modality (IMU, speech, and EEG data).

 Multi-sensor 
IMU data 

Speech data EEG data 

Patience (epochs) 100 50 50 
Initial LR 4e-5 4e-5 4e-5 

LR scheduler patience (epochs) 30 15 15 
LR scheduler reduction factor 0.5 0.5 0.5 

Optimization algorithm Adam Adam Adam 
Minibatch size 1 16 128 

Loss function Weighted 
cross-entropy 

Weighted 
cross-entropy 

Weighted 
cross-entropy 

Dropout (encoder) 0.3 0.3 0.1 
Dropout (Transformer) 0.4 0.3 0.2 
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C RESULTS ON ADDITIONAL HYPERPARAMETER EXPERIMENTS

This section provides the result tables for the additional hyperparameter experiments in Section
4.5. Table 6 presents the fine-tuning results for the comparison between masking either the model
inputs or embeddings during PFML pre-training. Tables 7, 8, and 9 show the fine-tuning results for
different configurations of masking probabilities (pm) and mask lengths (ml) for multi-sensor IMU,
speech, and EEG data, respectively. Table 10 shows the fine-tuning results for discarding some of
the 11 functionals in PFML pre-training for multi-sensor IMU data. Finally, Table 11 presents the
fine-tuning results for different mask types for PFML pre-training for multi-sensor IMU data.

Table 6: The fine-tuning results for the comparison between masking either inputs or embeddings for
PFML pre-training.

 Multi-sensor IMU data Speech data EEG data 
 Movement Posture Valence Arousal Sleep stage 

Inputs masked 81.4 95.6 69.8 67.9 71.2 
Embeddings masked 81.8 95.7 70.7 68.6 71.2 

 UAF1 (%) UAR (%) UAF1 (%) 
 

Table 7: The fine-tuning results for different PFML pre-training masking hyperparameter configura-
tions for multi-sensor IMU data. The results are shown both with a fixed mask length and varying
masking probability (left), and vice versa (right).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Masking start 
prob (𝑝𝑚) 

Mask 
length (𝑚𝑙) 

Movement 
(UAF1 %) 

0.11 6 81.3 
0.08 6 81.3 
0.05 6 81.3 
0.16 5 81.3 
0.13 5 81.5 
0.10 5 81.1 
0.15 4 81.6 
0.12 4 81.6 
0.09 4 81.4 
0.20 3 81.4 
0.15 3 81.8 
0.10 3 81.5 
0.29 2 81.5 
0.22 2 81.6 
0.15 2 81.2 
0.59 1 81.3 
0.49 1 81.6 
0.39 1 81.4 

Masking start 
prob (𝑝𝑚) 

Mask 
length (𝑚𝑙) 

Movement 
(UAF1 %) 

0.08 7 81.0 
0.08 6 81.3 
0.08 5 81.1 
0.13 6 81.1 
0.13 5 81.5 
0.13 4 81.5 
0.12 5 81.4 
0.12 4 81.6 
0.12 3 81.6 
0.15 4 81.6 
0.15 3 81.8 
0.15 2 81.2 
0.22 3 81.3 
0.22 2 81.6 
0.22 1 81.2 
0.49 2 80.9 
0.49 1 81.6 
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Table 8: The fine-tuning results for different PFML pre-training masking hyperparameter configu-
rations for speech data. The results are shown both with a fixed mask length and varying masking
probability (left), and vice versa (right).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Masking start 
prob (𝑝𝑚) 

Mask 
length (𝑚𝑙) 

Valence 
(UAR %) 

0.053 14 69.2 
0.048 14 69.7 
0.043 14 69.7 
0.061 12 70.1 
0.055 12 70.6 
0.049 12 70.5 
0.072 10 70.5 
0.065 10 70.7 
0.058 10 70.4 
0.08 8 70.4 
0.07 8 69.4 
0.06 8 69.3 
0.11 6 69.8 
0.09 6 70.1 
0.07 6 70.0 
0.25 4 69.8 
0.20 4 70.2 
0.15 4 69.8 

Masking start 
prob (𝑝𝑚) 

Mask 
length (𝑚𝑙) 

Valence 
(UAR %) 

0.048 16 69.0 
0.048 14 69.7 
0.048 12 70.4 
0.055 14 69.1 
0.055 12 70.6 
0.055 10 70.3 
0.065 12 70.1 
0.065 10 70.7 
0.065 8 69.4 
0.07 10 70.5 
0.07 8 69.4 
0.07 6 70.0 
0.09 8 70.5 
0.09 6 70.1 
0.09 4 69.5 
0.20 6 69.5 
0.20 4 70.2 
0.20 2 69.6 

Table 9: The fine-tuning results for different PFML pre-training masking hyperparameter config-
urations for EEG data. The results are shown both with a fixed mask length and varying masking
probability (left), and vice versa (right).

Masking start 
prob (𝑝𝑚) 

Mask 
length (𝑚𝑙) 

Sleep stage 
(UAF1 %) 

0.10 4 70.3 
0.07 4 70.6 
0.04 4 70.1 
0.15 3 70.8 
0.10 3 71.2 
0.05 3 71.0 
0.32 2 70.9 
0.25 2 71.0 
0.18 2 70.8 
0.49 1 70.4 
0.40 1 70.6 
0.31 1 70.4 

 

 

 

 

 

 

  

 

Masking start 
prob (𝑝𝑚) 

Mask 
length (𝑚𝑙) 

Sleep stage 
(UAF1 %) 

0.07 5 70.0 
0.07 4 70.6 
0.07 3 71.0 
0.10 4 70.3 
0.10 3 71.2 
0.10 2 70.6 
0.25 3 70.5 
0.25 2 71.0 
0.25 1 70.3 
0.40 2 70.8 
0.40 1 70.6 

Table 10: The fine-tuning results for discarding some of the functionals in PFML pre-training for
IMU data.

Num functionals Functionals left out Movement (UAF1 %) 
11 ‒ 81.8 
9 min, max 81.7 
7 min, max, ACF skewness, ACF kurtosis 81.4 
5 min, max, ACF variance, ACF skewness, ACF kurtosis, ZCR 81.0 

 

Table 11: The fine-tuning results for different mask types for PFML pre-training for IMU data.

 

Mask type Movement 
(UAF1 %) 

zeros 81.2 
ones 81.8 

Gaussian noise 81.7 
learnable mask 81.5 
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D ADDITIONAL INFORMATION ON COMPUTATIONAL RESOURCES

All computations were run on a computing cluster operating on the SLURM environment. For both
model pre-training and fine-tuning, we used an NVIDIA Tesla V100 GPU with 16 GB of VRAM,
four CPU cores, and 16 GB of RAM. Table 12 shows the pre-training durations for each data modality
(multi-sensor IMU data, speech data, and EEG data). Note that due to RAM constraints, samples of
each minibatch were separately loaded from a disk to RAM. The possibility to load the entire training
dataset into RAM would speed up the pre-training process substantially.

Table 12: The PFML pre-training durations for each data modality (IMU, speech, and EEG data).

 

Data modality Pre-training 
time (hours) 

Multi-sensor IMU data 21.6 
Speech data 32.7 

EEG data 16.1 

The research project required more computations than what is reported in the present paper: For
each data modality and pre-training algorithm, preliminary experiments were conducted in order to
find suitable hyperparameters for both the pre-training and fine-tuning processes (Tables 4 and 5,
respectively).
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