
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VERIFLOW: MODELING DISTRIBUTIONS FOR NEURAL
NETWORK VERIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Formal verification has emerged as a promising method to ensure the safety and
reliability of neural networks. Naively verifying a safety property amounts to
ensuring the safety of a neural network for the whole input space irrespective of
any training or test set. However, this also implies that the safety of the neural
network is checked even for inputs that do not occur in the real-world and have
no meaning at all, often resulting in spurious errors. To tackle this shortcoming,
we propose the VeriFlow architecture as a flow based density model tailored to
allow any verification approach to restrict its search to the some data distribution of
interest. We argue that our architecture is particularly well suited for this purpose
because of two major properties. First, we show that the transformation that is
defined by our model is piecewise affine. Therefore, the model allows the usage
of verifiers based on constraint solving with linear arithmetic. Second, upper
density level sets (UDL) of the data distribution take the shape of an Lp-ball in
the latent space. As a consequence, representations of UDLs specified by a given
probability are effectively computable in the latent space. This property allows for
effective verification with a fine-grained, probabilistically interpretable control of
how (a-)typical the inputs subject to verification are.

1 INTRODUCTION

The outstanding performance of neural networks in tasks such as object detection (Zhao et al.,
2019) image classification (Rawat & Wang, 2017), anomaly detection (Pang et al., 2021) and
natural language processing (Goldberg, 2016) made them a popular solution for many real-world-
applications, including safety-critical ones. With the increasing popularity of neural networks, defects
and limitations of these systems have been witnessed by the general public. The AI incident database1

keeps track of harms and near-harms caused by AI-Systems in the real world.

Ideally, safety and fairness properties of such inherently opaque neural networks should be formally
guaranteed when used in safety-critical applications. As a solution, formal verification can be used to
check whether a neural network satisfies a given safety property for the entire input space, or whether
there exists some (synthetic) input for which the desired property is violated. This is in contrast to the
statistical testing methods classically employed in Machine learning, where the output of the neural
network is checked for a finite set of samples, usually from a held-out test set.

However, state-of-the-art formal verification methods only allow for verifying either global or local
properties. Global properties ensure a specific behaviour of the neural network on the whole input
space. As an example, fairness properties require the neural network to predict the same output for any
two inputs that only differ in some sensitive attribute. Local properties, on the other hand, ensure a
specific behaviour of the neural network only in some part of the input space that is usually restricted
using the training set. One well-studied example for a local property is adversarial robustness which
requires the neural network to classify any point from the data set as the same class as any minor
perturbation of that point. However, both global and local properties have shortcomings limiting their
applicability. Global properties refer to the entire input space, but we may not want or need to verify
the property for noise-inputs or on regions of the input space for which there were no training samples
available (epistemic uncertainty). Local properties, on the other hand, suffer from the same problem
as statistical testing, i.e., they rely on a high-quality data set that the verification property is based on.

1 https://incidentdatabase.ai/

1

https://incidentdatabase.ai/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To overcome these problems, we design a flow model tailored towards the application in neural
network verification and leverage it to restrict the input space of the neural network under verification
to the underlying data distribution. In contrast to generative adversarial networks (GANs) and
variational autoencoders, flow models do not only allow for efficient sampling but also provide
probabilistic interpretability via tractable likelihoods (Papamakarios et al., 2021; Goodfellow et al.,
2014; Rezende & Mohamed, 2015; Dinh et al., 2015; Tabak & Vanden-Eijnden, 2010). This feature
is important to facilitate fine-grained probabilistic control when restricting the input space to typical
inputs when specifying the verification property. This approach makes the verification property less
reliant on the dataset, while still keeping the input space focused on meaningful data.

To illustrate this idea, consider a neural network trained to classify images of handwritten digits.
Assume we want the classifier to always be confident about it’s classification of a certain digit. More
precisely, our verification property is that the neural network’s confidence is high if it classifies
an image as 7 or 8, respectively. If the neural network does not satisfy the verification property,
the verification tool will return an image that is classified as 7 or 8 with low confidence. Such
counterexamples are illustrated in Figure 2. The two counterexamples on the left side in Figure 2
were found with a traditional (constraint-based) verifier without leveraging our flow model. These
counterexample are noise images without any meaning and come from a region of the input space
with high epistemic uncertainty. However, the counterexamples on the right side of Figure 2 were
obtained by leveraging our flow model to restrict the input space of the verification property to typical
inputs. In the context of Figure 2, the right side restricts the input space to a UDL of given probability
and therefore, the counterexamples come from within the data distribution and provide better insights
into the classifiers’ weakness when used in a real-world scenario. We refer to Section 4 for more
details on this experiment.

We briefly list our main theoretical results. We design a novel flow model with L1-radially monotonic
base distributions that provides the following theoretical properties crucial for the verification domain
while outperforming its normalizing counterparts in nearly all benchmarks. Specifically, we design a
flow model that:

1. Maps upper/lower (log-)density level sets of the target distribution to upper/lower
(log-)density level sets of the base distribution allowing for fine-grained probabilistic control
during sampling.

2. Allows the definition of the pre-image of a density level set in the latent space via linear
constraints.

These properties enable us to restrict the verification to a probabilistically meaningful subset of the
input space and differentiate VeriFlow from generic flow architectures. Indeed, density level sets of
flow models generally do not have tractable pre-images in latent space.

We identify sufficient conditions for a flow layer to have the aforementioned properties, survey the
literature, and present a collection of layers - with its most representative members being additive
coupling layers and bijective affine layers - that can be arbitrarily combined to yield a flow with the
desired properties.

2 BACKGROUND AND ORGANIZATION

Verifying neural networks involves checking if a network f satisfies a semantic property P , often
expressed as ϕ(x) =⇒ ψ(f(x)), where ϕ and ψ are pre- and postconditions. In this paper, we
use two conceptually different verification approaches: constraint-based verification and abstract
interpretation. We briefly explain the core idea of each verification approach and refer to Albarghouthi
(2021) for an in-depth explanation.

Constraint-based Verification This approach translates f and P into a logical formula Ψf,P ,
whose validity implies f satisfies P . Efficient SMT solvers like Marabou 2 (Wu et al., 2024) handle
these formulas for networks with linear components such as ReLU activations. Verifying Ψf,P

involves checking the unsatisfiability of ¬Ψf,P . If ¬Ψf,P is satisfiable, a counterexample exists.
These methods are complete and provide counterexamples when the property is violated, though their
runtime can be high for positive proofs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Abstract Interpretation Abstract interpretation symbolically executes a neural network using
geometric abstract domains like zonotopes, which over-approximate input sets. By propagating these
through the network, the procedure over-approximates possible outputs. Verification succeeds if the
output lies entirely within the "safe space" defined by the semantic property ψ. If outputs are outside,
the property fails; partial overlap leaves the result inconclusive due to over-approximation.

Organization On a high level, we propose a flow model that piecewise linear and thus, can be
encoded into the semantic property P and used as part of the specification for the downstream
verification task. In the next section, we present our flow model architecture. To the best of our
knowledge, all propositions in Section 3 are novel contributions. In the consequent Section 4, we
show our experimental results and showcase, how the flow model can be leveraged for enhancing the
verification of a global property.

3 FLOW MODELS

Flow models provide an elegant way to represent a density estimator and a generative model by a
single network. More precisely, we train a flow to transform a simple base (or latent) distribution B
into the data (or target) distribution D using a continuous invertible map with continuous inverse, i.e.
a diffeomorphism 2. The map F is implemented by an invertible neural network. We obtain a density
estimator and a generative model by applying the flow in both directions:

1. Sampling is performed by first sampling z ∼ B and then computing the map F (z).
2. The likelihood pD(x) is computable with the change of variables formula (Folland, 1999):
pD(x) =

∣∣∣det∂F
−1

∂xT

∣∣∣ pB(F−1(x)).

While most neural networks are intrinsically differentiable, they do not represent bijections in general.
One needs to design specific architectures that restrict the hypothesis space to diffeomorphisms. Note
that the existence of an inverse does not necessarily imply that the inverse can be easily computed.
There are flow architectures that allow only one of the above operations to be efficiently performed
(Kobyzev et al., 2020; Papamakarios et al., 2021). However, it is also not uncommon that both
operation have the same complexity (Dinh et al., 2015). The major goal of this work is to design a
flow architecture that does not only allow to perform both operations efficiently, but it also allows
an efficient analysis of the flow in a verification context. For the latter, it is often required to not
only sample individually, but verify on a space of sampled objects. We define the spaces containing
high-density and low-density samples as upper- and lower density level sets.

Definition 1. Given the density of the input distribution pD : Rd → R+. The set of points whose
density exceeds a given threshold t is called the upper density level set (UDL) and is defined as
L↑
D(t) := {x ∈ Rd | pD(x) > t}. Respectively, the lower density level set (LDL) contains the set of

points deceeding the density threshold: L↓
D(t) := {x ∈ Rd | pD(x) ≤ t} = Rd \ L↑

D. If for q ∈ [0, 1]
there is a unique UDL of D with probability q, then we denote this set by UDLD(q).

Upper density level sets naturally capture the center of the distribution while LDLs capture the
tail. Note that the existence and uniqueness of the UDL with given probability is guaranteed if
PD({x | p(x)D = t}) = 0 for all t > 0, where PD denoted the probability induced by pD, i.e.
P (x ∈ S) :=

∫
S
pD(x)dx.

Base Distributions An isotropic Gaussian is by far the most common choice for the base distribution
of a flow model. In this case, we refer to the model as a normalizing flow. A normal distribution might
seem to be the natural choice, but it is definitely not the only option. In fact, the Knothe-Rosenblatt
Rearrangement Theorem (Knothe, 1957; Rosenblatt, 1952) guarantees that any two absolutely
continuous distributions can be transformed into one another via a diffeomorphism between their
supports. In the next section, we will show that under certain conditions p-radial monotonic base

2 Note that we define the flows in the direction from base distribution to data distribution. This is inverse to the
direction suggested by the common name “Normalizing Flow”, but better suited for our analysis. Apart from
that, the two definitions are equivalent.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

distributions with p ∈ {1,∞}, especially the Laplacian distributions, provide some merits that allow
efficient analysis of our flow model in verification scenarios. In our case, it even turned out that
changing the base distribution boosted the performance of the model and the stability of the training.

Definition 2. Let k ∈ N>0∪∞ and letX be a random variable over Rd. We say thatX is k-radially
distributed if there is a function p̂ : R+ → R+ such p(x) = p̂(|x|p). If p̂ is also strictly monotonically
decreasing, then we say that X is k-radial monotonic.

Moreover, k-radial distributions are easily definable starting from the corresponding distribution of
k-norms. In the following, let V d

k (r) is the hyper volume of the Lk-ball of radius r in Rd.

Definition 3. Let ρ : R+ → R+ be a probability density and k ∈ N>0 ∪ {∞}. Then we call Rρ,k,d

the k-radial distribution with k-norm distribution ρ in d-dimensional space, which is given by the

probability density function pRρ,k,d
(x) = ρ(|x|k)

(
∂V d

k (r)
∂r (|x|k)

)−1

.

In other words, a k-radial distribution is completely determined by the distribution of the k-norm.
Note that if X is radial monotonic, it does not imply that p|X|k is monotonic. For instance, if X is
a d-dimensional standard Gaussian, then X is 2-radial monotonic but |X|2 is χ(d) distributed and
hence not monotonic for d > 1.

The following observation is crucial for our application: The density level sets of a k-radial monotonic
distribution are Lk-balls. By choosing r(q) := quantile|X|p (q), we obtain the following result:

Proposition 1. Let X be a k-radial monotonic random variable on Rd. Then there is a function
r : [0, 1) → R+ such that for any q ∈ [0, 1), the upper density level set of probability q is given by
UDLX(q) = Bd

k(r(q)), where Bd
k(r) is the Lk-ball of radius r with center at the origin.

Piecewise Affine Transformations A function f : X → Y is piecewise affine, if there is a
partition of the domain X = X1 ∪ · · · ∪Xn such that f restricted to Xi is affine for all i. We call
X1, . . . , Xn affine regions of f . As we argued earlier, piecewise affinity is crucial for efficient SMT
based verification. For the usage of our flow model this means that the transformation model should
be piecewise affine. A natural approach to start off is therefore the use of piecewise affine networks,
represented e.g. by ReLU networks. If we can ensure that the defined function is bijective, then
we obtain a continuous piecewise affine bijection where the affine regions can be represented as
intersections of open and closed half-spaces (Moser et al., 2022). Hence, the regions are contained in
the Borel algebra B(Rd). It is straight forward to show that the change of variables formula applies
piecewise. We include a proof in the supplementary material for the sake of self-containedness.
Intuitively, Proposition 2 states that the change of variables formula is valid for piecewise affine
functions, if the affine regions are Borel sets and the determinant is computed piecewise.

Proposition 2. Let F : Rd → Rd be a piecewise affine bijection with affine partition R1, . . . , Rn ∈
B(Rd) of the input space and corresponding affine functions f1, . . . , fn. Let X be an absolutely

continuous random variable. Then pF (X)(y) = pX(F−1(y))
∣∣∣det ∂F−1

∂y

∣∣∣, where the Jacobian of F−1

is evaluated piecewise. More precisely,
∣∣∣det ∂F−1

∂y

∣∣∣ =∑i

∣∣∣det ∂f−1
i

∂y

∣∣∣ · I [F−1(x) ∈ Ri

]
, where I is

the indicator function.

Uniformly Scaling Flows If we restrict the flow model to be uniformly scaling, i.e. demand that the
Jacobian determinant of the transformation is constant, then we obtain an intriguing way of defining
density level sets of the data distribution.

Proposition 3. If the determinant of the Jacobian of a flow F on Rd is constant, then F maps upper
density level sets of the target distribution to upper density level sets of the base distribution. Hence, if
B is a k-radial monotonic distribution over the domain of F , then there is a function r : [0, 1) → R+

such that UDLF (B)(q) = F (Bd
k(r(q))).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Latent UDL

Flow

Data UDL

UDLD(q)Bd
p(r(q)) Classifier

Classifier
Range

1

0

Exact Set

Over-approximation

C(UDLD(q))

Fig. 1: Visualization of an abstract interpretation approach to in-distribution verification of a classifier using a
flow model with constant Jacobian determinant and a p-radial monotonic base distribution. The procedure starts
by defining the UDL exactly in the latent space. The true classification range w.r.t. the UDL equals the result of
pushing the set consecutively through the flow and the classifier. An over-approximation can be obtained via
abstract interpretation.

The proposition is especially attractive for abstract interpretation methods. For a radial monotonic
base distribution w.r.t. the 1- or the ∞-norm, density level sets are definable by linear constraints.
They can therefore act as an initial set that is propagated through the flow to obtain an approximation
of the upper density level set of the data distribution. As we can derive from Proposition 1, the
function r is simply the quantile function of the k-norm distribution of B. Hence, Proposition 3
yields an effective way to define an upper density level sets with a given probability. The approach
is summarized in Figure 1. A major challenge in the application, however, will be the tightness of
the approximation of the non-linearity. There is a delicate trade off to be made between tightness of
approximation and complexity of the description. Interesting work in this direction has been done by
Bak (2021b).

Regarding SMT based methods, it might also be of interest whether the log-density function of
the model is piecewise affine, since this would allow us to address the density freely within neuro-
symbolic specifications. We mention here that it is indeed the case for piecewise affine flows and
log-piecewise affine base densities such as the Laplacian.

Interestingly, it turns out that restricting the popular coupling layers to piecewise affine operations
naturally leads to uniformly scaling flows. We shortly summarize our findings in the remaining of
this section and refer to the extended architectural survey in the supplementary material for more
information.

We survey the literature to identify learnable components that satisfy our needs. Most prominently,
additive conditioning layers, like additive coupling, turn out to yield exactly the networks that we
envision. This encompasses the seminal NICE architecture (Dinh et al., 2015), additive auto-regressive
layers (Kingma et al., 2017; Huang et al., 2018; Papamakarios et al., 2017), and masked additive
convolutions (Ma et al., 2019).

Additionally, bijective affine transformations represented by LU-decomposed affine layers (LUNets
by Chan et al. (2023)) turn out to be equally well suitable. These layers also constitute a powerful
replacement for the permutations or masks that are usually employed before a coupling-like layer.
Although this addition turned out to be very beneficial, we note that the number of parameters scales
quadratically with the dimension, which can be a performance bottleneck on high dimensional data.

Finally, we summarize the good properties of flows build from these layers in the following proposi-
tion, which also defines our proposed architecture. A more in-depth treatment of the layer architectures
can be found in the supplementary material.

Proposition 4 (VeriFlow). Let F be a network that is purely built from the layer types (masked)
additive coupling, additive autoregression, masked additive convolution, LU layers, component-wise
scaling, and permutation of input dimensions. If the first three layer types only use piecewise affine
conditioning networks, then F is a uniformly scaling piecewise affine flow.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

The goal of our experiments is twofold. Firstly, in Section 4.1, we show that the VeriFlow architecture
can be integrated with common verification frameworks for scalable verification and better coun-
terexamples when unsafe. Secondly, in Section 4.2 we show that combining LU-layers with additive
coupling greatly improves over the baseline performance of the NICE architecture and that certain
1-radial base distributions outperform their normalizing counterparts in the majority of benchmarks.

4.1 VERIFICATION EXPERIMENTS

We conduct our verification experiments on a downscaled version of the MNIST dataset, where the
original 28× 28 pixel images have been reduced to 10× 10 pixels. This downsizing was necessitated
by the limitations of the constraint-based verifier Marabou, which struggles to scale to large networks.
It is essential to note that this constraint is specific to the verifier used and not an inherent restriction
of our approach. In fact, our subsequent results demonstrate that by leveraging abstract interpretation,
our methodology successfully scales to larger networks. Nonetheless, to maintain comparability
across our results, we also used the downscaled MNIST dataset for our scalability experiments.

We trained a total of 10 flow models independently from each other. Each flow model is trained on
a specific MNIST class representing a digit. We denote a flow model for digit i on our downscaled
MNIST dataset (MNIST10×10

i), which we denote by g0, . . . , g9. Each flow model in our experiments
has 3 additive coupling layers with 100 neurons and ReLu activation functions. Furthermore, we
trained classifiers with varying depth fℓ, where ℓ corresponds to the number of layers 1 ≤ ℓ ≤ 15,
with each layer consisting of a matrix multiplication, addition and ReLU activation, in the network.
We trained the networks with Adam-optimizer obtaining an accuracy score of around 90% for all
classifiers. We did not aim at making the classifiers particularly safe or unsafe w.r.t. the verification
tasks at hand. The final classification then corresponds to the respective digit with the highest score.

As verification tools, we use the Python interface of the C++ implemented verification framework
Marabou 2 (Wu et al., 2024) for deductive verification and ERAN for abstract interpretation (ERAN).
Since both verifiers only allow for one network to be parsed, we merge both networks together by
piping the output of the flow model gτ into the classifier fℓ, resulting in one neural network computing
the composition fℓ ◦ gτ : R10×10 → R10. We run all our verification-experiments on a Ubuntu 22.04
machine with an i7-1365U CPU at 1.80 GHz, 32 GB RAM and Intel Iris Xe Graphics.

Use Case: Better Counterexamples As a representative use case of our flow model, this section
demonstrates the effectiveness of our approach in generating more realistic counterexamples during
verification, as compared to those obtained without our model. To illustrate this, we consider a simple
yet illustrative verification condition in which the classifier f1 is required to have a high confidence
on all images classified as a specific digit τ (the classifier f1 was chosen randomly). Counterexamples
to this property consist of images classified as τ , yet with a confidence lower than δ. Examples of
such images are presented in Figure 2.

The top row of Figure 2 shows the preconditions, assignments, and postconditions used in our
experiments. The postcondition ψ is the same for all experiments: if the network f1 classifies an input
as class τ , then its “confidence” is higher than a fixed threshold δ. We follow Xie et al. (2022) and
define a network’s confidence as conf (y, τ) := (|y|·y[τ]−

∑
j ̸=τ y[j]))/|y|, where |y| denotes the number

of elements in the output of the classifier y. This particular notion of confidence is somewhat artificial,
but it is useful in two regards: (i) it illustrates the shortcomings of traditional verification approaches
when verifying a global property and (ii) it can easily be handled by existing constraint-based verifiers
(e.g., Marabou 2) due to its piecewise linearity. Note, however, that our approach is not limited to this
notion of confidence and can handle any verification condition that the underlying verifier can.

The results in Figures 2a and 2b differ due to the use of different preconditions. In Figure 2a the
precondition restricts the input to be any grayscale pixel image with resolution 10× 10. That image
is then applied to the classifier f1 to obtain the scores y. In Figure 2b, on the other hand, the
precondition restricts the input x to the UDL in the latent space. The threshold t is determined such
that pD(L↑

D(tp)) = p where p = 0.01. Applying the flow gτ yields a top 1% typical image which is
then applied to the classifier f1 to obtain the score y. In all experiments, the network does not satisfy
the property and the images below correspond to the counterexamples provided by the solver.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

As can be seen, the images on the left, which do not utilize a flow model, are noise and come from
a region of the input space with high epistemic uncertainty. This provides almost no insight to the
weakness of the classifier when used in real world. However, the images on the right, that do utilize a
flow model, come from within the data distribution and provide a deeper insight to the classifier’s
weakness as the images indeed resemble the digits 7 and 8. As an alternative to using flow models,
autoencoders can also yield similar visual results (Xie et al., 2022). However, autoencoders lack
probabilistic interpretability and fine-grained probabilistic control of the input-space, which are
integral features of our flow-model. More experiments are shown in the appendix: Section C.2 shows
a verification task involving epistemic uncertainty, while Section C.3 illustrates how the confidence
threshold in the postcondition affects the quality of counterexamples.

Scalability In this experiment, we assess the scalability of our flow model in the verification domain.
To this end, we consider both the deductive verification tool Marabou 2 (Wu et al., 2024) and the
abstract interpretation tool ERAN (ERAN). In order to assess the scalability reliably, we focus on
verifying properties that are satisfied by the neural network. Otherwise, the deductive verifier could
terminate early after finding a counterexample while barely touching the search space. We verify for
a classifier fℓ that for a subspace of the 1% UDL, the network fℓ classifies the whole output space of
the flow model g0 restricted by the UDL as the digit 0. We show this property only for a subspace of
the UDL because the full UDL does not constitute a zonotope as required when using the deepzono
domain (Singh et al., 2018). One could eliminate this problem by either choosing an ∞-radial base
distribution for the flow or by using abstract interpretation algorithms that can handle more general
initial sets. However, we decided to live with this shortcoming since first experiments indicated that
both the above mentioned approaches bear additional challenges in terms of quality of the fit and
efficiency, respectively, that we cannot fully address in this work. For observing potential effects of
the size of the neural network on the runtime, we conduct experiments with several classifiers varying
in depth f1, . . . , f15 as indicated on the X-Axis of Figure 3a and repeat each experiment three times,
taking the median value. Note that the y-axes in Figure 3 are discontinuous.

The results in Figure 3a indicate that the runtime of both tools is linear in the depth of the neural
network. And even though Marabou is slower by a factor of up to 70 compared to ERAN, both
verifiers accomplish the verification tasks within seconds. In a second experiment, we fix the neural
network to f1 and only increase the size of the input space. The small space corresponds to a small
percentage of the whole input space of around 1e−7%. This input size was selected in order to
illustrate the exact threshold in input size for which the runtime of verification with Marabou becomes
prohibitive. We present the results of the second experiment in Figure 3b. Clearly, ERAN scales better
than Marabou in both absolute values with a factor of around 50 for the smallest tested input size as
seen before, as well as in the overall trend when increasing the size of the input space to search in.
In particular, we can now also observe a strong non-linear increase in the runtime of Marabou, as it
reaches the timeout limit of 200 seconds for an input size that is proved by the abstract interpreter
within 20 milliseconds. We conjecture that it is because Marabou also uses abstract interpretation
methods as a preprocessing step for inferring bounds for each node in the network and use these
bounds to simplify or even trivialize the satisfiability problem. This, however, may no longer be

ϕ :
{
x ∈ [0, 255]10×10}
y ← f1(x)

ψ :
{
argmax(y) = τ → conf (y, τ) > δ

}

(a) Counterexamples without flow model

ϕ :
{
x ∈ L↑

D(t)
}

y ← f1(gτ (x))

ψ :
{
argmax(y) = τ → conf (y, τ) > δ

}

(b) Counterexamples with flow model

Fig. 2: The formulas at the top correspond to the verification conditions with τ = 7 for each left side and τ = 8
for each right side and δ = 17. The images at the bottom are counter-examples as provided by the solver.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Comparison increasing depth of the classifier (b) Comparison increasing input sizes

Fig. 3: Comparison of the runtime between ERAN (blue) and Marabou (red) for a complete proof.

feasible when the input space gets overly increased. We conclude that both ERAN and Marabou scale
well for deeper neural networks and ERAN also scales well for increased input sizes.

Unscaled MNIST In our previous experiments, we used the rescaled MNIST in order to directly
compare the runtime of the verifiers ERAN and the computationally more expensive verifier Marabou.
(Brix et al., 2023) Now we demonstrate that the training procedure of our flow model scales to higher
dimensional datasets such as MNIST 28x28. We trained the flow model the same way as with MNIST
10x10. The the quality of random samples from the flow model are shown in Figure 4a. The total
number of parameters of the flow model increased by a factor of 22 compared to the flow models
on MNIST 10x10 and the number of parameters of the classifier increased by a factor of 20. On
the verification side, we only show the runtime of the ERAN verifier for this larger flow model as
Marabou times out after 60 minutes in our experiments. The runtime results for the bound-propagation
algorithm of ERAN are plotted in Figures 4b. The runtime of ERAN increased by a factor of ten
compared to the flow model for MNIST 10x10. The composed neural network in Figure 4b has
approximately 2.9M parameters (110K of which are due to the classifier).

4.2 ABLATION STUDY

Besides the efficient applicability of our model in neuro-symbolic verification, our model needs to be
versatile enough to capture the concepts of interest. We show the effectiveness of our architecture as
density estimator and generative model. We perform several ablation studies to compare our choice of
the base distribution against the most commonly used Gaussian distribution as well as our architecture
against the original NICE architecture. Our most surprising finding is that 1-radial base distributions
are not only competitive but outperform their Normal counterparts in the vast majority of benchmarks.
Overall, we observed that the training with an 1-radial base distribution, especially a Laplacian, is
more stable (note the bad performance and high standard deviations for some digits with the normal
distribution in Figure 5 (left)).

(a) Full MNIST Random samples (b) Runtime effect of increasing Input space

Fig. 4: Training and verification results with full MNIST 28x28

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

As benchmarks, we mostly focus on tasks of moderate dimensionality and small sized networks
since this scenario is approachable with the contemporary verification software on standard hardware.
We pick up the example from the verification experiments and fit the models to each individual
MNIST digit i where the images are rescaled to 10 × 10 pixels (MNIST10×10

i) and we use three
classic synthetic 2D datasets (circles, moons, blobs). All these experiments have been performed on
a Macbook pro with M2 chip and 16GB of RAM. Additionally, we also scale our architecture to
higher dimensions and more challenging datasets by performing a base distribution comparison on
the full MNIST. Performance metric in all experiments is the negative log-likelihood (NLL). The
scaled experiments have been performed on a DGX2 with 8 V100 GPUs. For all image datasets we
used uniform dequantization and report the NLL of dequantized images.

Dataset Base Distribution NLL

MNIST Normal -1679.132
Laplace -1879.869
RlogN(1, .5),1,784 -2013.079

Circles Normal -0.910
Laplace -1.113
RlogN(1, .5), 1, 2 -0.604

Moons Normal -1.899
Laplace -2.279
RlogN(1, .5),1,2 -1.084

Blobs Normal 2.287
Laplace 2.500
RlogN(1, .5),1,2 2.596

Fig. 5: (Left) Ablation study on MNIST10×10
i . We fit our flow architecture with Normal and Laplacian base

distributions and additive coupling layers, which are alternated either with random masking layers or with
LU-layers. We perform a random hyperparameter optimization with 20 samples for each configuration and report
the average top-3 performance. The remaining experiment parametrization is fixed across all models and datasets.
We use the average negative log-likelihood on the test set (lower is better) as performance measure. (Right)
Negative log-likelihood (lower is better) of VeriFlow with varying base distribution on multiple benchmark
datasets. The architecture is always based on alternating LU layers and additive coupling layers.The remaining
experiment parametrization is fixed per dataset.

5 RELATED WORK

We first provide an overview of verification tools that can be leveraged for verification and could
take our flow model as part of the specification. Generally speaking Polytopes (Chen et al., 2008),
Zonotopes or even simple boxes are sufficient for representing the UDL of our flow model in
the latent space precisely. This enables the use of more recent developments based on these do-
mains that enhance precision or scalability for verification such as Deepzono (Singh et al., 2018),
DeepPoly (Singh et al., 2019a), GPUPoly (Serre et al., 2021), RefineZono (Singh et al., 2019b),
multi-neuron abstraction (Müller et al., 2023) and DiffPoly (Banerjee et al., 2024).

Besides of Marabou and ERAN, another verification framework that achieves promising results in the
VNNComp competition is α, β−crown (abcrown). It consists of numerous verification algorithms
and combines abstract interpretation methods with branch-and-bound methods. In particular, GCP-
CROWN (Zhang et al., 2022) recently became part of the α, β−crown framework and enables the use
of general cutting plane methods in combination with GPU accelerated bound propagation methods.
Similarly, the verifier MN-BAB (Ferrari et al., 2022) is utilizes both branch-and-bound and convex
relaxation but still provides completeness of the verification result.

Other verifiers that participate in the VNNComp are Cora Althoff (2015), PyRAT (Lemesle et al.,
2024), nnenum (Bak, 2021a) and NNV (Lopez et al., 2023). We refer to the VMNComp (Brix et al.,
2023) competition for a comprehensive overview. Note that while the aforementioned verifiers are
conceivable for use as downstream verifiers with VeriFlow, they are generally incomplete and do not
provide counterexamples when the neural network is unsafe.

However, the research in the verification context often focuses on the verification of local robustness
properties (Balunovic et al., 2019; Zeng et al., 2023; Banerjee & Singh, 2024). These works also

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

uncover that neural networks are highly non-robust even for small perturbations and even when
trained with robust training algorithms (Gowal et al., 2019; Zhang et al., 2019b;a). Verification of
global properties as tackled in our work is arguably harder as it is naturally subject a greater input
space. In this context, our flow model enables relaxing the global property by restricting the input
space to the high-density region of the data distribution. This removes the necessity of the neural
network to ensure the global property on the whole input space, which includes meaningless noise
data. In other words, VeriFlow aims to push the challenging verification of global properties more
towards local properties by restricting the input space to the data distribution.

Optimization-based approaches have recently emerged as a more scalable and higher-performing alter-
native to constraint-based and simple zonotope-based methods for verifying neural networks (Toledo
et al., 2021; Wu et al., 2023; Mangal et al., 2020; Müller et al., 2023; Koller et al., 2024). While our
flow model is, in principle, compatible with these optimization-based approaches and our restriction
of the search space to an upper density sets can be formulated as a constrained optimization, we leave
a thorough evaluation of their integration for future work.

Paralleling our efforts to design a flow model amenable to verification using existing infrastructure,
recent studies have explored automated preprocessing techniques for neural networks, including
pruning (Guidotti et al., 2020) and regularization methods (Leofante et al., 2023; Böing & Müller,
2022). The ultimate goal of this direction is to render them more suitable for verification with
state-of-the-art verifiers.

Flow models are on the forefront of modern density estimation techniques and have received signif-
icant attention over the last decade (Papamakarios et al., 2019). A constant Jacobian determinant
is usually observed at the time of the introduction of the respective layer in the context of the like-
lihood computation (Dinh et al., 2015; Ma et al., 2019; Kingma et al., 2017; Huang et al., 2018;
Papamakarios et al., 2017), although typically without further investigation of the induced properties.
The role of the Jacobian determinant in general has been investigated in the context of the exploding
determinant phenomenon (Kim et al., 2020; Liao & He, 2021; Lyu et al., 2022). There is also a
notable application of flow architectures with constant Jacobian determinant for anomaly detection.
OneFlow uses a constant Jacobian determinant to compute and minimize the volume the image of a
unit hyper sphere around the origin in the latent space, drawing a connection between flows and deep
one-class SVMs (Maziarka et al., 2022).

6 CONCLUSION

We have presented the VeriFlow architecture, a flow-based density model that enables effective
verification of neural networks within a specified data distribution and fits in any existing verification
infrastructure. By using a novel approach of restricting the search space to probabilistically meaningful
subsets of the input space, VeriFlow mitigates spurious errors and provides fine-grained, interpretable
control over the input space. Independent of the verification domain, VeriFlow outperforms the NICE
architecture, taken as baseline for uniformly scaling flow architectures, by a large margin.

Our flow-based verification approach shares a limitation inherent to neuro-symbolic frameworks: the
quality of the verification results is contingent upon the quality of the specification networks, in this
case, the flow model. However, as noted by Xie et al. (2022), these networks are generally smaller
and more manageable than the networks under verification, allowing for additional training efforts
and quality assurance measures, such as adversarial training. Moreover, the creation and improvement
of flow models could be facilitated through public competitions, community-driven initiatives, or
even future regulatory oversight, ultimately ensuring their accuracy and reliability.

We envision three promising avenues for future research. Firstly, we believe that verification tools
should be enhanced to provide more comprehensive support for the capabilities of popular deep
learning frameworks like PyTorch, particularly in scenarios involving multiple networks. Secondly,
a deeper theoretical and practical understanding of the expressivity of piecewise affine uniformly
scaling flows is needed. To the best of our knowledge there is no known universal approximation
theorem that applies to our architectures. Lastly, well-calibrated density level sets are essential for
producing interpretable verification results. Therefore, improving the consistency of density level sets
in deep learning models poses an important challenge that warrants further investigation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Bibliography

abcrown. alpha beta crown verifier. https://github.com/Verified-Intelligence/
alpha-beta-CROWN, 2024. Accessed: 2024-11-27.

Aws Albarghouthi. Introduction to Neural Network Verification. verifieddeeplearning.com, 2021.
http://verifieddeeplearning.com.

Matthias Althoff. An introduction to CORA 2015. In Proc. of the 1st and 2nd Workshop on
Applied Verification for Continuous and Hybrid Systems, pp. 120–151. EasyChair, Decem-
ber 2015. https://doi.org/10.29007/zbkv. URL https://easychair.org/
publications/paper/xMm.

Stanley Bak. nnenum: Verification of relu neural networks with optimized abstraction refinement. In
NASA Formal Methods Symposium, pp. 19–36. Springer, 2021a.

Stanley Bak. Nnenum: Verification of ReLU Neural Networks with Optimized Abstraction Re-
finement. In Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muñoz, and Ivan
Perez (eds.), NASA Formal Methods, volume 12673 of Lecture Notes in Computer Science,
pp. 19–36. Springer International Publishing, 2021b. ISBN 978-3-030-76384-8. https:
//doi.org/10.1007/978-3-030-76384-8_2. URL https://link.springer.
com/chapter/10.1007/978-3-030-76384-8_2.

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev. Certifying
geometric robustness of neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Debangshu Banerjee and Gagandeep Singh. Relational dnn verification with cross executional bound
refinement. arXiv preprint arXiv:2405.10143, 2024.

Debangshu Banerjee, Changming Xu, and Gagandeep Singh. Input-relational verification of deep
neural networks. Proc. ACM Program. Lang., 8(PLDI), June 2024. https://doi.org/10.
1145/3656377. URL https://doi.org/10.1145/3656377.

Benedikt Böing and Emmanuel Müller. On training and verifying robust autoencoders. In 2022 IEEE
9th International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–10. IEEE,
2022.

Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The fourth international
verification of neural networks competition (vnn-comp 2023): Summary and results. arXiv preprint
arXiv:2312.16760, 2023.

Robin Kien-Wei Chan, Sarina Penquitt, and Hanno Gottschalk. LU-Net: Invertible Neural Net-
works Based on Matrix Factorization. In 2023 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–10. IEEE, 2023. ISBN 978-1-66548-867-9. URL https://pub.
uni-bielefeld.de/record/2982070.

Liqian Chen, Antoine Miné, and Patrick Cousot. A sound floating-point polyhedra abstract domain.
In Asian Symposium on Programming Languages and Systems, pp. 3–18. Springer, 2008.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear independent components
estimation. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
2015. URL http://arxiv.org/abs/1410.8516.

ERAN. Eran verifier. https://github.com/eth-sri/eran, 2024. Accessed: 2024-09-27.
Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. Complete verification

via multi-neuron relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263, 2022.
G. B. Folland. Real Analysis: Modern Techniques and Their Applications. Pure and Applied

Mathematics (John Wiley & Sons : Unnumbered). Wiley, 2nd ed edition, 1999. ISBN 978-0-471-
31716-6. URL http://catdir.loc.gov/catdir/toc/onix03/98037260.html.

Yoav Goldberg. A primer on neural network models for natural language processing. Journal of
Artificial Intelligence Research, 57:345–420, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Arthur Mann, and Pushmeet Kohli. Scalable verified training
for provably robust image classification. In 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 4841–4850. IEEE,

https://github.com/Verified-Intelligence/alpha-beta-CROWN
https://github.com/Verified-Intelligence/alpha-beta-CROWN
http://verifieddeeplearning.com
https://doi.org/10.29007/zbkv
https://doi.org/10.29007/zbkv
https://easychair.org/publications/paper/xMm
https://easychair.org/publications/paper/xMm
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_2
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_2
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://doi.org/10.1145/3656377
https://pub.uni-bielefeld.de/record/2982070
https://pub.uni-bielefeld.de/record/2982070
http://arxiv.org/abs/1410.8516
https://github.com/eth-sri/eran
http://catdir.loc.gov/catdir/toc/onix03/98037260.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

2019. https://doi.org/10.1109/ICCV.2019.00494. URL https://doi.org/
10.1109/ICCV.2019.00494.

Dario Guidotti, Francesco Leofante, Luca Pulina, and Armando Tacchella. Verification of neural
networks: Enhancing scalability through pruning. arXiv preprint arXiv:2003.07636, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning, pp. 1321–
1330, 2017. URL http://proceedings.mlr.press/v70/guo17a.html.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural Autoregressive
Flows. In Proceedings of the 35th International Conference on Machine Learning, volume 80, pp.
2078–2087. MLResearchPress, 2018. URL https://proceedings.mlr.press/v80/
huang18d.html.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and Epistemic Uncertainty in Machine Learning:
An Introduction to Concepts and Methods. Machine Learning, 110(3):457–506, 2021. ISSN
0885-6125, 1573-0565. https://doi.org/10.1007/s10994-021-05946-3. URL
http://arxiv.org/abs/1910.09457.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 5580–5590. Curran Associates Inc., 2017. ISBN 978-1-5108-6096-4.

Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang, Joun Yeop Lee, and Nam Soo Kim. SoftFlow:
Probabilistic Framework for Normalizing Flow on Manifolds. In NeuIPS, 2020. URL https:
//openreview.net/forum?id=xMMkWV7mAf.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pp. 4743–4751.
Curran Associates Inc., 2017. ISBN 978-1-5108-3881-9.

Herbert Knothe. Contributions to the theory of convex bodies. Michigan Math-
ematical Journal, 4(1):39–52, 1957. ISSN 0026-2285, 1945-2365. https:
//doi.org/10.1307/mmj/1028990175. URL https://projecteuclid.
org/journals/michigan-mathematical-journal/volume-4/issue-1/
Contributions-to-the-theory-of-convex-bodies/10.1307/mmj/
1028990175.full.

Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. Normalizing Flows: An Introduction
and Review of Current Methods. ArXiv190809257 Cs Stat, 2020. URL http://arxiv.org/
abs/1908.09257.

Lukas Koller, Tobias Ladner, and Matthias Althoff. End-to-end set-based training for neural network
verification. CoRR, abs/2401.14961, 2024. https://doi.org/10.48550/ARXIV.2401.
14961. URL https://doi.org/10.48550/arXiv.2401.14961.

Augustin Lemesle, Julien Lehmann, and Tristan Le Gall. Neural network verification with pyrat,
2024. URL https://arxiv.org/abs/2410.23903.

Francesco Leofante, Patrick Henriksen, and Alessio Lomuscio. Verification-friendly networks: the
case for parametric relus. In 2023 International Joint Conference on Neural Networks (IJCNN),
pp. 1–9. IEEE, 2023.

Huadong Liao and Jiawei He. Jacobian determinant of normalizing flows. CoRR, abs/2102.06539,
2021. URL https://arxiv.org/abs/2102.06539.

Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran, and Taylor T. Johnson. NNV
2.0: The neural network verification tool. In Constantin Enea and Akash Lal (eds.), Com-
puter Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-
22, 2023, Proceedings, Part II, volume 13965 of Lecture Notes in Computer Science, pp. 397–
412. Springer, 2023. https://doi.org/10.1007/978-3-031-37703-7_19. URL
https://doi.org/10.1007/978-3-031-37703-7_19.

Junlong Lyu, Zhitang Chen, Chang Feng, Wenjing Cun, Shengyu Zhu, Yanhui Geng, Zhijie Xu, and
Chen Yongwei. Para-CFlows: $Cˆk$-universal diffeomorphism approximators as superior neural
surrogates. In Advances in Neural Information Processing Systems, volume 35, pp. 28829–28841,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/b9523d484af624986c2e0c630ac44ecb-Abstract-Conference.html.

Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard Hovy. MaCow: Masked convolutional
generative Flow. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, pp. 5893–5902. Curran Associates Inc., 2019.

12

https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
https://doi.org/10.1109/ICCV.2019.00494
http://proceedings.mlr.press/v70/guo17a.html
https://proceedings.mlr.press/v80/huang18d.html
https://proceedings.mlr.press/v80/huang18d.html
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
http://arxiv.org/abs/1910.09457
https://openreview.net/forum?id=xMMkWV7mAf
https://openreview.net/forum?id=xMMkWV7mAf
https://doi.org/10.1307/mmj/1028990175
https://doi.org/10.1307/mmj/1028990175
https://doi.org/10.1307/mmj/1028990175
https://doi.org/10.1307/mmj/1028990175
https://projecteuclid.org/journals/michigan-mathematical-journal/volume-4/issue-1/Contributions-to-the-theory-of-convex-bodies/10.1307/mmj/1028990175.full
https://projecteuclid.org/journals/michigan-mathematical-journal/volume-4/issue-1/Contributions-to-the-theory-of-convex-bodies/10.1307/mmj/1028990175.full
https://projecteuclid.org/journals/michigan-mathematical-journal/volume-4/issue-1/Contributions-to-the-theory-of-convex-bodies/10.1307/mmj/1028990175.full
https://projecteuclid.org/journals/michigan-mathematical-journal/volume-4/issue-1/Contributions-to-the-theory-of-convex-bodies/10.1307/mmj/1028990175.full
http://arxiv.org/abs/1908.09257
http://arxiv.org/abs/1908.09257
https://doi.org/10.48550/ARXIV.2401.14961
https://doi.org/10.48550/ARXIV.2401.14961
https://doi.org/10.48550/ARXIV.2401.14961
https://doi.org/10.48550/ARXIV.2401.14961
https://doi.org/10.48550/arXiv.2401.14961
https://arxiv.org/abs/2410.23903
https://arxiv.org/abs/2102.06539
https://doi.org/10.1007/978-3-031-37703-7_19
https://doi.org/10.1007/978-3-031-37703-7_19
https://doi.org/10.1007/978-3-031-37703-7_19
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b9523d484af624986c2e0c630ac44ecb-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b9523d484af624986c2e0c630ac44ecb-Abstract-Conference.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ravi Mangal, Kartik Sarangmath, Aditya V. Nori, and Alessandro Orso. Probabilistic lipschitz
analysis of neural networks. In David Pichardie and Mihaela Sighireanu (eds.), Static Analysis
- 27th International Symposium, SAS 2020, Virtual Event, November 18-20, 2020, Proceedings,
volume 12389 of Lecture Notes in Computer Science, pp. 274–309. Springer, 2020. https://
doi.org/10.1007/978-3-030-65474-0_13. URL https://doi.org/10.1007/
978-3-030-65474-0_13.

Łukasz Maziarka, Marek Śmieja, Marcin Sendera, Łukasz Struski, Jacek Tabor, and Przemysław
Spurek. OneFlow: One-Class Flow for Anomaly Detection Based on a Minimal Volume Region.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):8508–8519, 2022. ISSN
0162-8828. https://doi.org/10.1109/TPAMI.2021.3108223. URL https://
www.computer.org/csdl/journal/tp/2022/11/09525256/1wuoUni5yi4.

Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby,
Dustin Tran, and Mario Lucic. Revisiting the Calibration of Modern Neural Networks.
ArXiv210607998 Cs, 2021. URL http://arxiv.org/abs/2106.07998.

Bernhard A. Moser, Michal Lewandowski, Somayeh Kargaran, Werner Zellinger, Battista Biggio,
and Christoph Koutschan. Tessellation-Filtering ReLU Neural Networks. In Tessellation-Filtering
ReLU Neural Networks, volume 4, pp. 3335–3341, 2022. https://doi.org/10.24963/
ijcai.2022/463. URL https://www.ijcai.org/proceedings/2022/463.

Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T. Vechev. Certified train-
ing: Small boxes are all you need. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/forum?id=7oFuxtJtUMH.

Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for
anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for Den-
sity Estimation. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://papers.nips.cc/paper_files/paper/2017/
hash/6c1da886822c67822bcf3679d04369fa-Abstract.html.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Laksh-
minarayanan. Normalizing Flows for Probabilistic Modeling and Inference. ArXiv191202762 Cs
Stat, 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. The Jour-
nal of Machine Learning Research, 22(1):57:2617–57:2680, 2021. ISSN 1532-4435. URL
https://www.jmlr.org/papers/v22/19-1028.html.

Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification: A
comprehensive review. Neural computation, 29(9):2352–2449, 2017.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International
conference on machine learning, pp. 1530–1538. PMLR, 2015.

Murray Rosenblatt. Remarks on a Multivariate Transformation. The Annals of Mathematical Statis-
tics, 23(3):470–472, 1952. ISSN 0003-4851. URL https://www.jstor.org/stable/
2236692.

François Serre, Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin Vechev. Scaling
polyhedral neural network verification on GPUs. In Proc. Machine Learning and Systems (MLSys),
2021.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
effective robustness certification. Advances in neural information processing systems, 31, 2018.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30,
2019a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness certification
of neural networks. In International Conference on Learning Representations (ICLR). 2019b.

Esteban G Tabak and Eric Vanden-Eijnden. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

Felipe Toledo, David Shriver, Sebastian G. Elbaum, and Matthew B. Dwyer. Distribution models for
falsification and verification of dnns. In 36th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021, pp. 317–329.
IEEE, 2021. https://doi.org/10.1109/ASE51524.2021.9678590. URL https:
//doi.org/10.1109/ASE51524.2021.9678590.

13

https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.1109/TPAMI.2021.3108223
https://doi.org/10.1109/TPAMI.2021.3108223
https://www.computer.org/csdl/journal/tp/2022/11/09525256/1wuoUni5yi4
https://www.computer.org/csdl/journal/tp/2022/11/09525256/1wuoUni5yi4
http://arxiv.org/abs/2106.07998
https://doi.org/10.24963/ijcai.2022/463
https://doi.org/10.24963/ijcai.2022/463
https://doi.org/10.24963/ijcai.2022/463
https://doi.org/10.24963/ijcai.2022/463
https://www.ijcai.org/proceedings/2022/463
https://openreview.net/forum?id=7oFuxtJtUMH
https://papers.nips.cc/paper_files/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://www.jmlr.org/papers/v22/19-1028.html
https://www.jstor.org/stable/2236692
https://www.jstor.org/stable/2236692
https://doi.org/10.1109/ASE51524.2021.9678590
https://doi.org/10.1109/ASE51524.2021.9678590
https://doi.org/10.1109/ASE51524.2021.9678590
https://doi.org/10.1109/ASE51524.2021.9678590

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai Matni, George J. Pap-
pas, Hamed Hassani, Corina S. Pasareanu, and Clark W. Barrett. Toward certified robust-
ness against real-world distribution shifts. In 2023 IEEE Conference on Secure and Trust-
worthy Machine Learning, SaTML 2023, Raleigh, NC, USA, February 8-10, 2023, pp. 537–
553. IEEE, 2023. https://doi.org/10.1109/SATML54575.2023.00042. URL
https://doi.org/10.1109/SaTML54575.2023.00042.

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: A versatile formal analyzer of
neural networks. arXiv preprint arXiv:2401.14461, 2024.

Xuan Xie, Kristian Kersting, and Daniel Neider. Neuro-Symbolic Verification of Deep Neural
Networks. In Proceedings of the Thirty-First International Joint Conference on Artificial Intelli-
gence. International Joint Conferences on Artificial Intelligence, 2022. ISBN 978-1-956792-00-3.
https://doi.org/10.24963/ijcai.2022/503. URL http://arxiv.org/abs/
2203.00938.

Yi Zeng, Zhouxing Shi, Ming Jin, Feiyang Kang, Lingjuan Lyu, Cho-Jui Hsieh, and Ruoxi Jia.
Towards robustness certification against universal perturbations. In International Conference on
Learning Representation. ICLR, 2023.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 7472–7482. PMLR, 2019a. URL http://proceedings.
mlr.press/v97/zhang19p.html.

Huan Zhang, Hongge Chen, Zhao Song, Duane S. Boning, Inderjit S. Dhillon, and Cho-Jui Hsieh.
The limitations of adversarial training and the blind-spot attack. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019b. URL https://openreview.net/forum?id=HylTBhA5tQ.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. Advances in
neural information processing systems, 35:1656–1670, 2022.

Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep learning:
A review. IEEE transactions on neural networks and learning systems, 30(11):3212–3232, 2019.

14

https://doi.org/10.1109/SATML54575.2023.00042
https://doi.org/10.1109/SATML54575.2023.00042
https://doi.org/10.1109/SaTML54575.2023.00042
https://doi.org/10.24963/ijcai.2022/503
https://doi.org/10.24963/ijcai.2022/503
http://arxiv.org/abs/2203.00938
http://arxiv.org/abs/2203.00938
http://proceedings.mlr.press/v97/zhang19p.html
http://proceedings.mlr.press/v97/zhang19p.html
https://openreview.net/forum?id=HylTBhA5tQ

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOFS OMITTED FROM SECTION 3

Proposition 2. Let F : Rd → Rd be a piecewise affine bijection with affine partition R1, . . . , Rn ∈
B(Rd) of the input space and corresponding affine functions f1, . . . , fn. Let X be an absolutely

continuous random variable. Then pF (X)(y) = pX(F−1(y))
∣∣∣det ∂F−1

∂y

∣∣∣, where the Jacobian of F−1

is evaluated piecewise. More precisely,
∣∣∣det ∂F−1

∂y

∣∣∣ =∑i

∣∣∣det ∂f−1
i

∂y

∣∣∣ · I [F−1(x) ∈ Ri

]
, where I is

the indicator function.

Proof. We define the random variable

C : Rd → {1, . . . , n};x 7→
n∑

k=1

k · I [x ∈ Rk]

and consider the conditional probability densities pX(x | C = i) = P (X ∈ Ri)
−1pX(x) · I[x ∈ Ri].

Since F is an affine bijection on Ri, the support of pX(·|C = i), we can employ the change of

variables formula and obtain that pF (X)(y | C = i) = P (X ∈ Ri)
−1pX(f−1

i (y))
∣∣∣det ∂f−1

i

∂y

∣∣∣ ·
I[F−1(y) ∈ Ri]. Finally, we obtain by the sum rule that

pF (X)(y) =

n∑
i=1

P (C = i)pF (X)(y | C = i)

=

n∑
i=1

PX(X ∈ Ri)pF (X)(y | C = i)

=

n∑
i=1

pX(f−1
i (y))

∣∣∣∣det ∂f−1
i

∂y

∣∣∣∣ · I[F−1(y) ∈ Ri]

∗
=

n∑
i=1


n∑

j=1

pX(f−1
i (y))I[F−1(y) ∈ Rj]︸ ︷︷ ︸
=pX(F−1(y))


∣∣∣∣det ∂f−1

i

∂y

∣∣∣∣ · I[F−1(y) ∈ Ri]

= pX(F−1(y))

n∑
i=1

∣∣∣∣det ∂f−1
i

∂y

∣∣∣∣ · I[F−1(y) ∈ Ri]

= pX(F−1(y))

∣∣∣∣det ∂F−1

∂y

∣∣∣∣ ,
where (∗) holds since I[F−1(y) ∈ Ri] · I[F−1(y) ∈ Rj] = δijI[F−1(y) ∈ Ri], where δij ={
1; i = j

0; else
is the Kronecker-Delta. ⊓⊔

Next, we consider the choice of the base distribution.

Proposition 5. Let pD be defined by a piecewise affine flow F and a log-piecewise affine base
distribution pB . Then log pD is piecewise affine.

Proof. As we have seen,

log pD(x) = log pB(F (x)) + log

∣∣∣∣det
∂F

∂x

∣∣∣∣
Since F and log pB(·) are piecewise affine, log pB(F (x)) is also piecewise affine. Similarly,

∣∣det∂F∂x
∣∣

is piecewise constant, which implies that log
∣∣det∂F∂x

∣∣ is piecewise constant too. The claim follows
immediately. ⊓⊔

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proposition 3. If the determinant of the Jacobian of a flow F on Rd is constant, then F maps upper
density level sets of the target distribution to upper density level sets of the base distribution. Hence, if
B is a k-radial monotonic distribution over the domain of F , then there is a function r : [0, 1) → R+

such that UDLF (B)(q) = F (Bd
k(r(q))).

Proof. This is a direct consequence of the change of variables formula.

F ({x | log pD(x) > t}) = {F (x) | log pD(x) > t}

=

F (x) | log pB(F (x)) > t− log

∣∣∣∣det
∂F

∂x

∣∣∣∣︸ ︷︷ ︸
const


= {y | log pB(y) > t′},

which is obviously an upper log-density level set w.r.t. the latent distribution B. The last equation
holds since F is a bijection and log

∣∣det∂F∂x
∣∣ is constant. We combine the observation with the

idea from 1 and conclude that for radial monotonic B and r(q) = quantile|B|k(q) the identity
UDLF (B)(q) = F

(
Bd
k(r(q))

)
is indeed correct. ⊓⊔

B AN EXTENDED ARCHITECTURAL SURVEY

B.1 ADDITIVE TRANSFORMATIONS

As it turns out, additive transformations yield precisely the properties that we need in order to
guarantee the good properties of the previous section. The simplest such architecture is realized by so
called additive coupling, which was first introduced for the NICE architecture by Dinh et al. (2015).

B.2 ADDITIVE COUPLING (NICE)

NICE belongs to the first flow architectures. Nevertheless, it is a popular benchmark which has shown
good performance on multiple data sets.

Additive Coupling Layers A NICE flow is build from additive coupling layers. Each such layer
L consists of a partition I1, I2 of [D], where D is the data dimension, and a conditioning function
m : Rd → RD−d, where d = |I1|. The layer L maps x to y where

yI1 = xI1
yI2 = xI2 +m(xI1).

It is easy to see that the Jacobean ∂y
∂x =

(
Id 0

∂yI2

∂xI1
ID−d

)
is triangular and that all entries on the

diagonal are 1. As the first d components of the input remain unchanged, it is usually necessary to
employ multiple layers with varying partitions of the input vector. It is straight forward to see that a
coupling layer defines a piecewise affine function if the conditioner m is piecewise affine.

Allowing Rescaling As all additive coupling layers have Jacobean determinant 1, the same will
hold for their composition. That means the space is never stretched or compressed through the trans-
formation, which potentially limits the expressiveness. In order to account for this issue, NICE allows

for a final component-wise rescaling, i.e. multiplication with a matrix S, where Sij

{
̸= 0 if i = j

= 0 else
.

Computing log-Densities Because of the simple additive coupling, computing log-densities is
particularly simple. Let F be a NICE flow with base distribution B, layers L1, . . . , Ln, and scaling

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

matrix S. Then

log(pD(x)) = log

(
pB(F (x))

∣∣∣∣det
∂F

∂x

∣∣∣∣)
= log

(
pB(F (x)) ·

∏∣∣∣∣det
∂Li

∂x

∣∣∣∣ · | detS|)
= log pB(F (x)) +

∑
log

∣∣∣∣det
∂Li

∂x

∣∣∣∣︸ ︷︷ ︸
=0

+ log |detS|

= log pB(F (x)) +
∑

logSii

Computing F−1(z) has exactly the same complexity as computing a forward pass F (x). Because in
order to invert the flow we only need to multiply with the inverse scaling matrix and then pass the
input to through the inverse coupling layer in reverse order. Note that for an additive coupling layer
L = ((I1, I2),m) the inverse function can be implemented by L−1 = ((I1, I2),−m).

MASKED ADDITIVE COUPLING

It is also possible to rewrite the additive coupling equation in order to implement the NICE architecture
as a fully connected neural network with masking and skip connections. An additive coupling layer
ℓ : (xI1

xI2
) 7→ (

xI1
xI2

+c(xI1
)
), whose conditioner is implemented by a neural network c can equivalently be

written as

ℓ(x) = x+ (1− mask) · c′(mask · x), (1)

where mask is a {0, 1}-vector with maski = 1 ⇔ i ∈ I1 and the multiplication is computed
component wise. Further, c′ is a fully connected network obtained by adding dummy inputs for the
components in I2 and dummy outputs for the components of I1 tom, which are effectively eliminated
by the mask in Equation 1.

ADDITIVE AUTO-REGRESSION

A general way to increase the expressiveness of the based flow models is the use of auto-regression
instead of coupling (Kingma et al., 2017; Huang et al., 2018; Papamakarios et al., 2017). In this case
the conditioner is implemented as an RNN c, which couples the input component by component.
More precisely, an additive auto-regressive flow layer ℓ computes a transformation ℓ(x) = y with

h1, z1 = 0; (hi+1, zi+1) = c(xi, hi)

yi = xi + zi

Observe that the structure of the auto-regression still leads to a lower triangular shape of the Jacobean
and the additive auto-regressive coupling ensures that all diagonal entries are 1. With these properties
one easily checks Proposition 2, 5 and 3 remain valid if additive coupling is replaced by additive
auto-regression.

MASKED ADDITIVE CONVOLUTIONS

The idea of masking was used by Ma et al. (2019) in order to transfer coupling to convolutional
architectures where the input is a higher-order tensor. We can also employ this idea in our situation
and still maintain the desired properties. In this case, Equation 1 is applied to a convolutional network,
e.g. with a checker board and/or a channel-wise mask. As the reader readily verifies, the analogues of
Proposition 2 - 3 hold also for this layer.

GOOD PROPERTIES OF ADDITIVE TRANSFORMATIONS

Let us summarize the properties of the above mentioned layers.

Proposition 6. Let F be a network that is purely build from the layer types (masked) additive
coupling, additive autoregression, masked additive convolution, component-wise scaling, and permu-
tation of input dimensions. If all conditioners are piecewise affine, then F is a piecewise affine flow

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

with constant Jacobean determinant. In particular, any density pD defined by F has the following
properties:

1. If B is the standard Laplacian distribution, then log pD is piecewise affine

2. For any p-radial monotonic base distribution B there is a function r : [0, 1) → R such that
UDLF (B)(q) = F (Bd

k(r(q))).

3. Computing log-densities has the same computational complexity as sampling.

LUNETS

Recently, bijective fully-connected layers have been proposed by Chan et al. (2023) as a so-called
LUNet. The idea is to ensure that that both, the affine transformation of a fully connected layer and
the non-linearity are bijections. Bijectivity is ensured by representing the linear transform of the layer
by an LU-factorization A = LU with lower/upper triangular Matrices L and U . Bijectivity is ensured
by adding the constraints that the diagonal of L contains only ones and diagonal of U is always
non-zero. In this case, Propositions 2 and 5 will still hold if we replace the layer architecture and use
leaky ReLU instead of ReLU, but Proposition 3 will in general not hold anymore as the determinant
of the layer Jacobean is not constant anymore.

LUNet is a very different approach to guaranteeing the bijectivity of the transformation compared
to additive coupling. It has the advantage that the entire input can be transformed by a single layer.
The restriction that the affine transform needs to be bijective, however, fixes the capacity of the
transformation to d2 parameters where d is the input dimension. This can be problematic, especially
when working with high-dimensional data.

BIJECTIVE AFFINE LAYERS

The bijective affine transform T (x) = (LU)x + b at the heart of an LU-layer deserves special
attention. Note that the determinant of the Jacobean is is constant for T . Since computing the inverse
of an affine transform also has the complexity of computing the affine transform it follows that we
can add bijective affine layers to the list of layers in Proposition 6 without loosing the validity of the
statement. Bijective affine layers can be an interesting alternative to the intermediate permutation
layers of the NICE architecture. Using an affine bijection instead of a simple fixed permutation of
the dimensions allows the architecture to correlate the components of I1 and I2 in the subsequent
coupling layer in a learnable fashion. As an example, consider the extreme case where all components
of the target distribution are independent. In this case, the components I1 and I2 will be independent,
no matter which permutation of the components we have applied beforehand. An affine bijection,
however, can be capable of combining the variables in a way such that the components I1 and I2
become correlated.

Proposition 7. The statement of Proposition 6 remains valid even if we add bijective affine transfor-
mations to the list of allowed layer types.

C EXPERIMENTAL SETUP

C.1 REGULARIZATION AND ADVANCED TRAINING METHODOLOGY

Following the description given by Chan et al. (2023), we regularize the parameters of the LU
layers. Without any form regularization, we observed exploding determinants on many tasks when
working with LU layers. Additionally, we adopt the technique of soft training (Kim et al., 2020).
During training, We sample a noise scale σ from a prior distribution P for each training sample and
perturb the sample with noise sampled from from the base distribution (Gaussian or Laplacian) with
covariance σI . For the noise scale prior we use a Laplacian with small standard deviation. We fit a
conditional flow on the perturbed data where the conditioning variable is the noise scale σ. During
inference with unperturbed data, the noise scale is set to 0. We observed significant improvements
through soft training, in terms of test likelihoods but also in terms of subjective visual quality as
evaluated by the authors.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 EPISTEMIC UNCERTAINTY VERIFICATION

For the far tail of the data distribution there are usually no samples available. Hence, any model
trained purely from data has never gotten information about these areas (epistemic uncertainty). In
that context, we can verify that a classifier was trained with a vanishing inductive bias by moving away
from the training data. In this case the uncertainty estimates given by a classifier should converge
towards a prior distribution, e.g., uniform, as we move further outwards in the tail (Kendall & Gal,
2017; Hüllermeier & Waegeman, 2021). However, it is known that many deep neural network training
methods produce badly calibrated networks with overconfident predictions, especially in areas of high
epistemic uncertainty (Guo et al., 2017; Minderer et al., 2021). In that context, we want to verify that
our classifier is not overconfident in the far tail of the data distribution. More precisely, we leverage
our flow model to restrict the input to the 9% tail of the data distribution, trimming the last 1% to
avoid an unbounded input space and verify that the classifier has a low confidence for all atypical
inputs.

Similar to the in-distribution verification task, we conduct four experiments to compare the coun-
terexamples without and with leveraging a flow model for restricting the input space and and present
them in Figure 6 along with the verification properties.

The left upper side of Figure 6 is the same as for the in-distribution verification task, except for the
postcondition ψ, that now checks for the confidence to be low, if the image is classified as the digit
τ . In the right upper side of Figure 6, the precondition phi restricts the input space to the top one
percent of most typical examples by first determining the threshold t such that pD(L↑

D(tp)) = p

where p = 0.01 and setting the precondition ϕ : {x ∈ L↑
D(t)}. The postcondition on the right side ψ

checks for the confidence to be low, if the image is classified as τ .

The counterexamples on the left side of Figure 6, that do not utilize a flow model, are noise-
images that do not resemble even atypical digits, despite being classified with high confidence. The
counterexamples on the right side of Figure 6, however, are atypical images of the digits that are
classified with high confidence. The latter is more useful for a user as it shows exactly the type of
images where the classification itself is reasonable but the high confidence shows a wrong calibration
of the neural network.

ϕ :
{
x ∈ [0, 255]10×10}
y ← f(x)

ψ :
{
argmax(y) = τ → conf (y, τ) ≤ δ

}
ϕ :

{
x ∈ L↓

D(t)
}

y ← f(gτ (x))

ψ :
{
argmax(y) = 0→ conf (y, τ) ≤ δ

}

Fig. 6: The formulas at the top correspond to the verification conditions with τ = 0 for each left side and τ = 9
for each right side and δ = 8. The images at the bottom are counter-examples as provided by the solver. Note
that for obtaining the images on the right, the assignment x is reapplied to the flow gτ (x).

C.3 DEDUCTIVE VERIFICATION CONFIDENCE THRESHOLD

One aspect that influences the quality of the counter examples of the verifier is the selected confidence
threshold in the verification property. More precisely, running an in-distribution verification task on
the same UDL but with different confidence thresholds for the classifier may also return more atypical
images as shown in Figure 7. There, the UDL in the precondition is the same in every experiment,
only the confidence threshold δ in the postcondition argmax(y) = τ → conf (y, τ) > δ is assigned
values increasing from 1 to 15 (with gaps in between).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Fig. 7: Counterexamples for in-distribution verification tasks with increasing confidence thresholds in the
postcondition.

C.4 CALIBRATION OF DENSITY LEVEL SETS

A major challenge that we faced when conducting verification experiments was the calibration
of the density level sets. When testing for satisfiability within a given density level set, we turn
the distribution of interest into an uncertainty set in the latent space without preference for more
likely examples. Current solvers tend to produce counter examples from extreme points within the
uncertainty set. Since the geometry of the space often enforces that little probability is centered
around these areas, we found that sampling from such point in the latent space often produces
OOD data, even when considering a set that is supposed to represent the top e.g. one percent of
most typical examples. Following this intuition, it seems that the properties of distributions like
the Laplacian and Gaussian distribution in high dimensions lead to particularly unfavorable results
for our purposes. Indeed, in high dimensional spaces, the corresponding p-norm distributions are
strongly concentrated around the relatively large values of d and

√
d, respectively. Therefore, we

Fig. 8: Quantiles of the p-norm distributions for d-dimensional Gaussian, Laplacian, and a custom 1-radial
distribution. While the∞-norm is always relatively low, the p-Norm of the p radial distributions Laplacian and
Gaussian are relatively large. That means that even on very high density contours, there are points on contour
(e.g. αei for a standard basis vector ei and suitably chosen α) that are very far away from the data that is seen
during training (assuming that the empirical latent distribution approximately follows that base distribution
relatively soon during training). Hence, it is not surprising that sampling from such areas in the latent space
is likely to produce poor quality samples. The custom radial distribution mitigates this effect by keeping the
p-norm distribution constant without dependency on the dimension.

conjecture that more concentrated base distributions help to mitigate this issue to some extend, see
Figure 8 for an intuition. In order to avoid that the infinity norm of vectors becomes to small by
concentrating the probability mass closer to the origin, we choose a unimodal radius distribution
where the density converges to 0 when approaching both, 0 and ∞. Among our initial trials with
multiple such distributions, like e.g. scaled Normal and Laplacian or distributions based on EVT norm
distributions, a log-normal distribution with µ = 1.0 and σ = 0.5 has shown most promising results.
A qualitative and quantitative comparison with the Laplace base distribution is shown in the figures 9 –
11. We remark here that, strictly speaking, the resulting distribution is not radial monotonic. However,
in high dimension it holds that the corresponding function g with g(|x|1) = p(x) is unimodal with

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

it’s mode extremely close to 0. In an SMT setting, it would not be very hard to correct the formulas
and exclude the small Lp ball that does not belong to the density level set, but in our experiments with
a dimensionality of 100, the additionally included area is so vanishingly small, both in probability
and in volume, that we decided ignore this issue here. Based on our initial experience with more
exotic radial distributions, we believe that a thorough investigation of this class of distributions is
potentially interesting also in other application areas such as anomaly detection. More generally, the
calibration of density level sets remains a challenge that we think has gotten too little attention in
past. Therefore, we stress the need for more systematic research in that area.

Fig. 9: Laplace base distribution

Fig. 10: Base distribution with Log-Normal 1-norm distribution.
Samples from two models trained on MNIST10×10

0 . Samples are drawn from different region of the latent space.
Each column considers a UDL of a given probability. The first row samples conditioned on being in the UDL.
The second row samples uniformly from the density contour in the latent space, and the third row samples
samples uniformly from the density contour in the latent space intersected with the union of the 1-dimensional
subspaces induced by the standard basis vectors. Note that counter examples or often preferably chosen from the
latter.

C.5 SAMPLE QUALITY AND ADDITIONAL BENCHMARKS

Figure 12 shows random samples from the MNIST digit ablation study. Additionally, we also tested
our architecture on the FashionMNIST dataset. Results are depicted in table 1

Benchmark

Dataset Base Distribution NLL

FashionMNIST Normal -1264.539
Laplace -1341.916
RlogN(1, .5),1,784 -1386.659

Table 1: Additional Benchmarks comparing VeriFlow with various base distributions. For each trial, a model
with 10 alternations of LU- and additive coupling layers has been trained. Each coupling layers consists of a
conditioner with 3 hidden layers. Each layer consists of 300 neurons. The same setup was used for the MNIST
benchmark.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Fig. 11: QQ-plot of the empirical latent 1-norm distribution under the flow, p|F−1(X)|
1

, against the theoretical
1-norm distribution induced by the base distribution. With both base distributions, the model struggles to match
the empirical with the optimal latent 1-norm distribution in the low quantiles (although in opposite directions).
However, with the log-normal distribution, theQQ-plot indicates approximately proportional tail behavior, while
the empirical distribution is too wide in both directions with a Laplacian base distribution.

Fig. 12: Random samples from the ablation study on the MNIST digits. The ith column shows samples of the flow
architectures trained on MNIST10×10

i . Each row shows a different architecture (Top to bottom: MNIST10×10
i

ground truth, LU + Laplace distribution, LU + Normal distribution, Random mask + Laplace distribution,
Random mask + Normal distribution).

22

