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Abstract

Deep neural networks often predict samples with
high confidence even when they come from un-
seen classes and should instead be flagged for
expert evaluation. Current novelty detection al-
gorithms cannot reliably identify such near OOD
points unless they have access to labeled data that
is similar to these novel samples. In this paper,
we develop a new ensemble-based procedure for
semi-supervised novelty detection (SSND) that suc-
cessfully leverages a mixture of unlabeled ID and
novel-class samples to achieve good detection per-
formance. In particular, we show how to achieve
disagreement only on OOD data using early stop-
ping regularization. While we prove this fact for
a simple data distribution, our extensive experi-
ments suggest that it holds true for more complex
scenarios: our approach significantly outperforms
state-of-the-art SSND methods on standard image
data sets (SVHN/CIFAR-10/CIFAR-100) and med-
ical image data sets with only a negligible increase
in computation cost.

1 INTRODUCTION

Despite achieving great in-distribution (ID) prediction per-
formance, deep neural networks (DNN) often have trouble
dealing with test samples that are out-of-distribution (OOD),
i.e. test inputs that are unlike the data seen during training.
In particular, DNNs often make incorrect predictions with
high confidence when new unseen classes emerge over time
(e.g. undiscovered bacteria [Ren et al., 2019], new diseases
[Katsamenis et al., 2020]). Instead, we would like to auto-
matically detect such novel samples and bring them to the
attention of human experts.

Consider, for instance, a hospital with a severe shortage of
qualified personnel. To make up for the lack of doctors, the

Figure 1: Novelty detection is challenging since X-rays of
novel diseases are remarkably similar to known conditions.
The unlabeled batch of inference-time data can be used
to adapt a semi-supervised novelty detection approach to
emerging novel diseases.

hospital would like to use an automated system for real-
time diagnosis from X-ray images (Task I) and a novelty
detection system, which can run at the end of each week,
to detect outbreaks of novel disease variants (Task II) (see
Figure 1). In particular, the detection algorithm can be fine-
tuned weekly with the unlabeled batch of data collected
during the respective week.

While the experts are examining the peculiar X-rays over the
course of the next week, the novelty detection model helps
to collect more instances of the same new condition and can
request human review for these patients. The human experts
can then label these images and include them in the labeled
training set to update both the diagnostic prediction and the
novelty detection systems. This process repeats each week
and enables both diagnostic and novelty detection models
to adjust to new emerging diseases.

Note that, in this example, the novelties are a particular kind
of out-of-distribution samples with two properties. First,
several novel-class samples may appear in the unlabeled
batch at the end of a week, e.g. a contagious disease will
lead to several people in a small area to be infected. This
situation is different from cases when outliers are assumed

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<tifreaa@inf.ethz.ch>?Subject=Your UAI 2022 paper


Figure 2: Left: Sketch of the SSND setting. Middle and Right: Novelty detection with a diverse ensemble.

to be singular, e.g. anomaly detection problems. Second, the
novel-class samples share many features in common with
the ID data, and only differ from known classes in certain
minute details. For instance, both ID and OOD samples
are frontal chest X-rays, with the OOD samples showing
distinctive signs of a pneumonia caused by a new virus. In
what follows, we use the terms novelty detection and OOD
samples to refer to data with these characteristics.

Automated diagnostic prediction systems (Task I) can al-
ready often have satisfactory performance [Calli et al., 2021].
In contrast, novelty detection (Task II) still poses a chal-
lenging problem in these scenarios. Many prior approaches
can be used for semi-supervised novelty detection (SSND),
when a batch of unlabeled data that may contain OOD sam-
ples is available, like in Figure 1.1 However, all of these
methods fail to detect novel-class data when used with com-
plex models, like neural networks.

Despite showing great success on simple benchmarks like
SVHN vs CIFAR10, SOTA unsupervised OOD detection
methods perform poorly on near OOD data [Winkens et al.,
2020] where OOD inputs are similar to the training samples.
Furthermore, even though unlabeled data can benefit nov-
elty detection Scott and Blanchard [2009], existing SSND
methods for deep neural networks [Kiryo et al., 2017, Guo
et al., 2020, Zhang et al., 2020, Yu and Aizawa, 2019] can-
not improve upon unsupervised methods on near OOD data
sets. Even methods that violate fundamental OOD detection
assumptions by using known test OOD data for hyperpa-
rameter tuning [Liang et al., 2018, Lee et al., 2018, Yu and
Aizawa, 2019] fail to work on challenging novelty detection
tasks. Finally, large pretrained models seem to solve near
OOD detection [Fort et al., 2021], but they only work for
extremely specific OOD data sets (see Section 5 for details).

This situation naturally raises the following question:

Can we improve semi-supervised novelty detection
for neural networks?

1We use the same definition of SSND as the survey by Bulusu
et al. [2020], whereas some works use the term to refer to super-
vised [Gornitz et al., 2013, Daniel et al., 2019, Ruff et al., 2020] or
unsupervised ND [Song et al., 2017, Akçay et al., 2018] according
to our taxonomy in Section 5.

In this paper, we introduce a new method that successfully
leverages unlabeled data to obtain diverse ensembles for
novelty detection. Our contributions are as follows:

• We propose to find Ensembles with Regularized Disagree-
ment (ERD), that is, disagreement only on OOD data.
Our algorithm produces ensembles just diverse enough
to be used for novelty detection with a disagreement test
statistic (Section 2).

• We prove that training with early stopping leads to regu-
larized disagreement, for data that satisfies certain simpli-
fying assumptions (Section 3).

• We show experimentally that ERD significantly outper-
forms existing methods on novelty detection tasks derived
from standard image data sets, as well as on medical im-
age benchmarks (Section 4).

2 PROPOSED METHOD

In this section we first introduce our proposed method to
obtain Ensembles with Regularized Disagreement (ERD)
and describe how they can be used for novelty detection.

2.1 TRAINING ENSEMBLES WITH
REGULARIZED DISAGREEMENT (ERD)

Recall from Figure 1 that we have access to both a la-
beled training set S = {(xi, yi)}ni=1 ∼ P , with covariates
xi ∈ XID and discrete labels yi ∈ Y , and an unlabeled
set U , which contains both ID and unknown OOD samples.
Moreover, we initialize the models of the ensemble using
the weights of a predictor with good in-distribution perfor-
mance, pretrained on S. In the scenarios we consider, such
a well-performing pretrained classifier is readily available,
as it solves Task I in Figure 1.

The entire training procedure is described in Algorithm 1.
For training a single model in the ensemble, we assign a
label c ∈ Y to all the unlabeled points in U , resulting in the
c-labeled set that we denote as (U, c) := {(x, c) : x ∈ U}.
We then fine-tune a classifier fc on the union S∪(U, c) of the
correctly-labeled training set S, and the unlabeled set (U, c).
In particular, we choose an early stopping time at which



Algorithm 1: Obtaining ERD ensemble via early stopping

Input :Train set S, ID Validation set V , Unlabeled set U , Model f̃
pretrained on S, Ensemble size K

Result: ERD ensemble {fyi}Ki=1

Sample K different labels {y1, ..., yK} from Y
for c← {y1, ..., yK} do // fine-tune K models

fc ← Initialize(f̃)
(U, c)← {(x, c) : x ∈ U}
fc ← EarlyStoppedFineTuning (fc, S ∪ (U, c);V )

return {fyi}Ki=1

Algorithm 2: Novelty detection using ERD
Input :Ensemble {fyi}Ki=1, Test set T , O = ∅, Threshold t0,

Disagreement metric ρ
Result: O, i.e. the novel-class samples from T

for x ∈ T do // run hypothesis test

if (Avg ◦ ρ)(fy1 , ..., fyK )(x) > t0 then
O ← O ∪ {x}

return O

validation accuracy is high and training error on S ∪ (U, c)
is low. We create a diverse ensemble of K classifiers fc by
choosing a different artificial label c ∈ Y for every model.

Intuitively, encouraging each model in the ensemble to fit
different labels to the unlabeled set U promotes disagree-
ment, as shown in Figure 2. In the next sections, we elabo-
rate on how to use diverse ensembles for novelty detection.

2.2 ENSEMBLE DISAGREEMENT FOR
NOVELTY DETECTION

We now discuss how we can use ensembles with disagree-
ment to detect OOD samples and why the right amount of
diversity is crucial. Note that we can cast the novelty detec-
tion problem as a hypothesis test with the null hypothesis
H0 : x ∈ XID.

As usual, we test the null hypothesis by comparing a test
statistic with a threshold t0: The null hypothesis is rejected
and we report x as OOD (positive) if the test statistic is
larger than t0 (Section 4.3 elaborates on the choice of t0). In
particular, we use as test statistic the following disagreement
score, which computes the average distance between the
softmax outputs of the K models in the ensemble:

(Avg ◦ ρ)(f1(x), ..., fK(x)) :=
2
∑
i 6=j ρ (fi(x), fj(x))

K(K − 1)
,

where ρ is a measure of disagreement between the softmax
outputs of two predictors, for example the total variation
distance ρTV(fi(x), fj(x)) = 1

2‖fi(x) − fj(x)‖1 used in
our experiments2. We provide a thorough discussion on the
soundness of this test statistic for disagreeing models and
compare it with previous metrics in Appendix B.

Even though previous work like Yu and Aizawa [2019] used
a similar disagreement score, their detection performance
is notably worse. The reason lies in the lack of diversity in
their trained ensemble (see Figure 3a in Appendix B). On the
other hand Algorithm 1 without early stopping would lead to
a too diverse ensemble, that also disagrees on ID points, and
hence, has a high false positive rate (see Appendix K). In

2We also expect other distance metrics to be similarly effective.

the next section, we explain why novelty detection with this
test statistic crucially relies on the right amount of ensemble
diversity and how ensembles may achieve this goal if they
are trained to have regularized disagreement.

2.3 DESIRED ENSEMBLE DIVERSITY VIA
REGULARIZED DISAGREEMENT

For simplicity of illustration, let us first assume a training set
with binary labels and a semi-supervised novelty detection
setting as depicted in Figure 2 a). For an ensemble with two
models, like in Figure 2 b), the model predictions agree on
the blue and red areas and disagree on the gray area depicted
in Figure 2 c). Note that the two models in Figure 2 are just
diverse enough to obtain both high power (flag true OOD as
OOD) and low false positive rate (avoid flagging true ID as
OOD) at the same time.

Previous methods that try to leverage unlabeled data to ob-
tain more diverse ensembles either do not work with deep
neural networks [Bennett et al., 2002, Zhang and Zhou,
2010, Jain et al., 2020] or do not disagree enough on OOD
data [Yu and Aizawa, 2019], leading to subpar novelty de-
tection performance (see Figure 3a in Appendix B).

To obtain the right amount of diversity, it is crucial to train
ensembles with regularized disagreement on the unlabeled
set: The models should disagree on the unlabeled OOD sam-
ples, but agree on the unlabeled ID points (Figure 3c). Thus,
we avoid having too little disagreement as in Figure 3a),
which results in low power, or too much diversity, resulting
in high false positive rate as in Figure 3b). In particular, if
models fc predict the correct label on ID points and the
label c on OOD data, we can effectively use disagreement
to detect novel-class samples. Since classifiers with good ID
generalization need to be smooth, we expect the model pre-
dictions on holdout OOD data from the same distributions
to be in line with the predictions on the unlabeled set.

In Section 3 we argue that the training procedure in Al-
gorithm 1 successfully induces regularized disagreement
and prove it in a synthetic setting. Our experiments in Sec-
tion 4 further corroborate our theoretical statements. Finally,
we note that one could also use other regularization tech-



Figure 3: a) Ensembles with too little disagreement fail to detect OOD samples. b) An ensemble of two models trained
on S ∪ (U, c) disagrees on both ID and OOD data. b) Regularization prevents models from fitting (U¬cID , c), limiting
disagreement to only OOD samples.

niques like dropout or weight decay. However, running a
grid search to select the right hyperparameters can be more
computationally expensive than simply using one run of the
training process to select the optimal stopping time.

3 PROVABLE REGULARIZED
DISAGREEMENT VIA EARLY
STOPPING

In this section, we show how using early stopping in Algo-
rithm 1 prevents fitting the incorrect artificial label on the
unlabeled ID samples. Albeit for a simplified setting, this
result provides a rigorous proof of concept and intuition for
why ERD ensembles achieve the right amount of diversity
necessary for good novelty detection.

3.1 PRELIMINARY DEFINITIONS

We first introduce necessary definitions to prepare the math-
ematical statement. Recall that in our approach, in addition
to the correct labels of the ID training set S, each member
of the ensemble tries to fit one label c to the entire unlabeled
set U that can be further partitioned into

(U, c) = (UID, c) ∪ (UOOD, c)

= {(x, c) : x ∈ UID} ∪ {(x, c) : x ∈ UOOD},

where UID := U ∩ XID and UOOD := U \ UID. Moreover,
assuming that the label of an ID input x is deterministically
given by y∗(x), we can partition the set (UID, c) (see Fig-
ure 3b) into a subset of effectively “correctly labeled” sam-
ples (U cID, c) and “incorrectly labeled” samples (U¬cID , c):

(U¬cID , c) := {(x, c) : x ∈ UID with y∗(x) 6= c}
(U cID, c) := {(x, c) : x ∈ UID with y∗(x) = c}.

Note that (U¬cID , c) can be viewed as the subset of noisy
samples from the entire training set S ∪ (U, c).

3.2 MAIN RESULT

We now prove that there exists indeed an optimal stopping
time at which a two-layer neural network trained with gra-
dient descent does not fit the incorrectly labeled subset
(U¬cID , c), under mild distributional assumptions.

For the formal statement, we assume that the artificially
labeled set S ∪ (U, c) is clusterable, i.e. the points can be
grouped in K clusters of similar sizes. Each class may com-
prise several clusters, but every cluster contains only sam-
ples from one class. Any cluster may include at most a
fraction η ∈ [0, 1] of samples with label noise, e.g. (U¬cID , c).
We denote by c1, ..., cK the cluster centers and define the
matrix C := [c1, ..., cK ]T ∈ RK×d. Further, let λNN

C be a
measure of how well a randomly-initialized two-layer neu-
ral network can separate the cluster centers. We provide the
formal definition of λNN

C in Appendix A. Intuitively, λNN
C is

large if the cluster centers are well-separated and it vanishes
if ci = cj for some i, j ≤ K. Under these assumptions we
have the following:

Proposition 3.1. (informal) It holds with high probability
over the initialization of the weights that a two-layer neural
network trained on S ∪ (U, c) perfectly fits S, (U cID, c) and
(UOOD, c), but not (U¬cID , c), after T ' ‖C‖

2

λNN
C

iterations.

The precise assumptions for the proposition can be found
in Appendix A. On a high level, the reasoning follows from
two simple insights: 1. When the artificial label is not equal
to the true label, the ID samples in the unlabeled set can be
seen as noisy samples in the set S∪(U, c). 2. It is well known
that early stopping prevents models from fitting incorrect
labels since noisy samples with incorrect labels are often
fit later during training (see e.g. theoretical and empirical
evidence here Yilmaz and Heckel [2019], Li et al. [2020],
Song et al. [2020], Liu et al. [2020]). In particular, our proof
heavily relies on Theorem 2.2 of Li et al. [2020] which
shows that early stopped predictors are robust to label noise.



Proposition 3.1 gives a flavor of the theoretical guarantees
that ERD enjoys. Albeit simple, the clusterable data model
actually includes data with non-linear decision boundaries.
On the other hand, the requirement that the clusters are bal-
anced seems rather restrictive. In our experiments we show
that this condition is in fact more stringent than it should. In
particular, our method still works when the number of OOD
samples |UOOD| is considerably smaller than the number of
ID samples from any given class, as we show in Section 4.5.

3.3 CHOOSING THE EARLY STOPPING TIME

In practice, we avoid computing the exact value of T by
using instead a heuristic for picking the early stopping itera-
tion with the highest validation accuracy (indicated by the
vertical line in Figure 4). As shown in the figure, the model
fits the noisy training points, i.e. (U¬cID , c), late during fine-
tuning, which causes the validation accuracy to decrease,
since the model will also predict the incorrect label c on
some validation ID samples. In Appendix J we show that
the trend in Figure 4 is consistent across data sets.

Figure 4: Accuracy during fine-tuning a model pretrained
on S (epoch 0 indicates values obtained with the initial
pretrained weights). The samples in (UOOD, c) are fit first,
while the model reaches high accuracy on (UID, c) much
later. We fine-tune for at least one epoch and then early
stop when the validation accuracy starts decreasing after 7
epochs (vertical line). The model is trained on SVHN[0:4]
as ID and SVHN[5:9] as OOD.

4 EXPERIMENTAL RESULTS

In this section we evaluate the novelty detection perfor-
mance of ERD with deep neural networks on several image
data sets. On difficult near OOD data sets, we find that
our approach outperforms all baselines, including SSND
methods, but also methods operating in other, sometimes
more favorable settings. In addition, we discuss some of the
trade-offs that impact ERD’s performance.

4.1 DATA SETS

Our experiments focus on novel-class detection scenarios
where the ID and OOD data share many similar features

and only differ in a few characteristics. We use standard
image data sets (e.g. CIFAR10/CIFAR100) and consider
half of the classes as ID, and the other half as novel. We
also assess ERD’s performance on a medical image bench-
mark [Cao et al., 2020], where near OOD data consists of
novel unseen diseases (e.g. X-rays of the same body part
from patients with different conditions; see Appendix E for
details). Further, we also include far OOD data sets (e.g.
CIFAR10/CIFAR100 vs SVHN) for completeness.

For all scenarios, we used a labeled training set (e.g. 40K
samples for CIFAR10), a validation set with ID samples
(e.g. 10K samples for CIFAR10) and an unlabeled test set
where half of the samples are ID and the other half are OOD
(e.g. 5K ID samples and 5K OOD samples for CIFAR10 vs
SVHN). For evaluation, we use a holdout set containing ID
and OOD samples in the same proportions as the unlabeled
set. Moreover, in Appendix F.5 we present results obtained
with a smaller unlabeled set of only 1K samples.

4.2 BASELINES

We compare our method against a wide range of baselines
that are applicable in the SSND setting.

Semi-supervised novelty detection. We primarily com-
pare ERD to SSND approaches that are designed to incor-
porate a small set of unlabeled ID and novel samples.

The MCD method [Yu and Aizawa, 2019] trains an ensemble
of two classifiers such that one model gives high-entropy
and the other yields low entropy predictive distributions on
the unlabeled samples. Furthermore, nnPU [Kiryo et al.,
2017] considers a binary classification setting, in which the
labeled data comes from one class (i.e. ID samples, in our
case), while the unlabeled set contains a mixture of samples
from both classes. Notably, both methods require oracle
knowledge that is usually unknown in the regular SSND
setting: MCD uses test OOD data for hyperparameter tuning
while nnPU requires oracle knowledge of the ratio of OOD
samples in the unlabeled set.

In addition to these baselines, we also propose two natural
extensions to the SSND setting of two existing methods.
Firstly, we present a version of the Mahalanobis approach
(Mahal-U) that is calibrated using the unlabeled set, instead
of using oracle OOD data. Secondly, since nnPU requires ac-
cess to the OOD ratio of the unlabeled set, we also consider
a less burdensome alternative: a binary classifier trained
to separate the training data from the unlabeled set and
regularized with early stopping like our method.

Unsupervised novelty detection (UND). Naturally, one
may ignore the unlabeled data and use unsupervised ap-
proaches. The current SOTA UND method on the usual
benchmarks is the Gram method [Sastry and Oore, 2019].
Other notable UND approaches include vanilla ensembles



Table 1: AUROC and TNR@95 for ERD and various baselines (we highlight the best method for each data set). Numbers in
square brackets indicate the ID/OOD classes. Asterisks mark methods proposed in this paper. Mahal, nnPU and MCD (†) use
oracle information about the OOD data. Repeated runs of ERD show a small variance σ2 < 0.01 in the detection metrics.

Other settings SSND

ID data OOD data Vanilla
Ensembles Gram DPN OE Mahal.† nnPU† MCD† Mahal-U Bin.

Classif. * ERD *

AUROC ↑ / TNR@95 ↑

SVHN CIFAR10 0.97 / 0.88 0.97 / 0.86 1.00 / 1.00 1.00 / 1.00 0.99 / 0.98 1.00 / 1.00 0.97 / 0.85 0.99 / 0.95 1.00 / 1.00 0.99 / 0.98
CIFAR10 SVHN 0.92 / 0.78 1.00 / 0.98 0.95 / 0.85 0.97 / 0.89 0.99 / 0.96 1.00 / 1.00 1.00 / 0.98 0.99 / 0.96 1.00 / 1.00 1.00 / 1.00
CIFAR100 SVHN 0.84 / 0.48 0.99 / 0.97 0.77 / 0.44 0.82 / 0.50 0.98 / 0.90 1.00 / 1.00 0.97 / 0.73 0.98 / 0.92 1.00 / 1.00 1.00 / 1.00

SVHN
[0:4]

SVHN
[5:9] 0.92 / 0.69 0.81 / 0.31 0.87 / 0.19 0.85 / 0.52 0.92 / 0.71 0.96 / 0.73 0.91 / 0.51 0.91 / 0.63 0.81 / 0.40 0.95 / 0.73

CIFAR10
[0:4]

CIFAR10
[5:9] 0.80 / 0.39 0.67 / 0.15 0.82 / 0.32 0.82 / 0.41 0.79 / 0.27 0.61 / 0.11 0.69 / 0.25 0.64 / 0.13 0.85 / 0.43 0.89 / 0.57

CIFAR100
[0:49]

CIFAR100
[50:99] 0.78 / 0.35 0.71 / 0.16 0.70 / 0.26 0.74 / 0.31 0.72 / 0.20 0.53 / 0.06 0.70 / 0.26 0.72 / 0.19 0.66 / 0.13 0.81 / 0.41

[Lakshminarayanan et al., 2017], deep generative models
(which tend to give undesirable results for OOD detection
[Kirichenko et al., 2020]), or various Bayesian approaches
(which are often poorly calibrated on OOD data [Ovadia
et al., 2019]).

Preliminary analyses revealed that generative models and
methods trained with a contrastive loss [Winkens et al.,
2020] or with one-class classification [Sohn et al., 2021]
perform poorly on near OOD data sets (see Appendix F.2
for a comparison; we use numbers reported by the authors
for works where we could not replicate their results).

Other methods. We also compare with Outlier Exposure
[Hendrycks et al., 2019] and Deep Prior Networks (DPN)
[Malinin and Gales, 2018] which use TinyImages as known
outliers during training, irrespective of the OOD set used
for evaluation. On the other hand, the Mahalanobis baseline
[Lee et al., 2018] is tuned on samples from the same OOD
distribution used for evaluation. Finally, we also consider
large transformer models pretrained on ImageNet21k and
fine-tuned on the ID training set [Fort et al., 2021].

4.3 IMPLEMENTATION DETAILS

Baseline hyperparameters. For all the baselines, we use
the default hyperparameters suggested by their authors on
the respective ID data set (see Appendix D for more details).
For the binary classifier, nnPU, ViT, and vanilla ensembles,
we choose the hyperparameters that optimize the loss on an
ID validation set.

ERD details. 3 We follow the procedure in Algorithm 1
to fine-tune each model in the ERD ensemble starting from
weights that are pretrained on the labeled ID set S.4 Unless

3Our code is publicly available at
https://github.com/ericpts/ERD.

4In the appendix we also train the models from random ini-
tializations, i.e. ERD++, and obtain better novelty detection at the
cost of more training iterations.

otherwise specified, we train K = 3 ResNet20 networks
[He et al., 2016] using 3 randomly chosen class labels for
(U, c) and note that even ensembles of two models produce
good results (see Appendix F.9). We stress that whenever ap-
plicable, our choices disadvantage ERD for the comparison
with the baselines, e.g. vanilla ensembles useK = 5, and for
most of the other approaches we use the larger WideResNet-
28-10. We select the early stopping time and other standard
hyperparameters so as to maximize validation accuracy.

Evaluation. As in standard hypothesis testing, choosing
different thresholds for rejecting the null hypothesis leads
to different false positive and true positive rates (FPR and
TPR, respectively). The ROC curve follows the FPR and
TPR for all possible threshold values and the area under the
curve (AUROC; larger values are better) captures the perfor-
mance of a statistical test without having to select a specific
threshold. In addition, we also report the TNR at a TPR
of 95% (TNR@95; larger values are better). These metrics
evaluate the quality of an outlier score without choosing a
rejection threshold. However, we note that this problem can
easily be addressed in practice. For instance, one can choose
the threshold so as to achieve a desired FPR, which can be
estimated using a validation set of ID samples.5

Computation cost. We only need to fine-tune two-model
ensembles to get good performance with ERD (see Ap-
pendix F.9). For instance, in applications like the one in
Figure 1, ERD fine-tuning introduces little overhead and
works well even with scarce resources (e.g. it takes around
5 minutes on 2 GPUs for the settings in Table 1). In contrast,
other ensemble diversification methods require training dif-
ferent models for each hyperparameter choice and have
training losses that cannot be easily parallelized (e.g. Yu
and Aizawa [2019]). Moreover, the only other approach that
achieves comparable performance to our method on some

5Alternatively, the work of [Liu et al., 2018] proposes a crite-
rion for selecting the threshold, tailored specifically to the SSND
setting. This method uses the unlabeled set and the known ID data
to estimate the distribution of outlier scores for OOD points.

https://github.com/ericpts/ERD


(a) Novelty detection performance on medical data (b) Effect of OOD proportion on detection

Figure 5: Left: AUROC averaged over all scenarios in the medical novelty detection benchmark. The values for the baselines
are computed using the code from Cao et al. [2020]. Right: The AUROC of a 3-model ERD ensemble as the number and
proportion of ID (CIFAR10[0:4]) and OOD (CIFAR10[5:9]) samples in the unlabeled set are varied (see also Appendix I).

near OOD data uses large transformer models pretrained on
a large and conveniently chosen data set [Fort et al., 2021].

4.4 MAIN RESULTS

We summarize the main empirical results in Table 1. While
most methods achieve near-perfect detection for far OOD,
ERD has a clear edge over the baselines for novel-class
detection within the same dataset – even compared to meth-
ods (†) that use oracle OOD information. For complete-
ness, we present in Appendix F.2 a comparison with more
related works. These methods either show unsatisfactory
performance on near OOD tasks, or seem to work well only
on certain specific data sets. We elaborate on the potential
causes of failure for these works in Section 5.

For the medical novelty detection benchmark we show in
Figure 5a the average AUROC achieved by some represen-
tative baselines taken from Cao et al. [2020]. Our method
improves the average AUROC from 0.85 to 0.91, compared
to the best baseline. We refer the reader to Cao et al. [2020]
for precise details on the methods. Appendix G contains
more results, as well as additional baselines.

4.5 ABLATION STUDIES AND LIMITATIONS

We also perform extensive experiments to understand the
importance of specific design choices and hyperparameters,
and refer the reader to the appendix for details.

Relaxing assumptions on OOD samples. In Table 1 we
evaluate our approach on a holdout test set that is drawn
from the same distribution as the unlabeled set U used
for fine-tuning. However, we provide experiments in Ap-
pendix F.10 that show that novelty detection with ERD con-
tinues to perform well even when the test set and U come
from different distributions (e.g. novel-class data in the test
set also suffers from corruptions). Further, even though our
main focus is novel-class detection, our experiments (Ap-

pendix F.4) indicate that ERD can also successfully identify
near OOD samples that suffer from only mild covariate shift
compared to the ID data (e.g. CIFAR10 vs corrupted CI-
FAR10 [Hendrycks and Dietterich, 2019] or CIFAR10v2
[Recht et al., 2019]). Finally, Appendix F.1 shows that ERD
ensembles also perform well in a transductive setting [Scott
and Blanchard, 2008], where the test set coincides with U .

Relaxing the assumptions of Proposition 3.1. Our the-
oretical results require that the ID classes in the training
set and the novel classes in U have similar cardinality. In
fact, this condition is unnecessarily strong as we show in
our empirical analysis: In all experimental settings we have
significantly fewer OOD than ID training points. We further
investigate the impact of the size of the unlabeled set and of
the ratio of novel samples in it ( |UOOD|

|UID|+|UOOD| ) and find that
ERD in fact maintains good performance for a broad range
of ratios in Figure 5b.

Sensitivity to hyperparameter choices. We point out
that ERD ensembles are particularly robust to changes in
the hyperparameters like batch size or learning rate (Ap-
pendix H), or the choice of the arbitrary label assigned to the
unlabeled set (Appendix F.9). Further, we note that ERD en-
sembles with as few as two models already show remarkable
novelty detection performance and refer to Appendix F.9
for experiments with larger ensemble sizes. Moreover, ERD
performance improves with larger neural networks (Ap-
pendix F.8), meaning that ERD will benefit from any future
advances in architecture design.

Choice of disagreement score. We show in Table 1
in Appendix B, that the training procedure alone (Algo-
rithm 1) does not suffice for good novelty detection. For
optimal results, ERD ensembles need to be combined with
a disagreement-based score like the one introduced in Sec-
tion 2.3. Finally, we show how the distribution of the dis-
agreement score changes during training for ERD (Ap-
pendix K) and explain why regularizing disagreement is
more challenging for near OOD data, compared to easier,
far OOD settings (Appendix J).



Table 2: Taxonomy of novelty detection methods, categorized according to data availability (horizontal axis) and proba-
bilistic perspective (vertical axis). We highlight the ensemble-based methods.

UND SSND Different OOD
A-UND

Synthetic OOD
A-UND P-UND SND

Learn PX Generative e.g. [AAB18], OC
classif. e.g. [SPSSW01]

nnPU [KNPS17] OC classif. [SLYJP21,
TMJS20]

[RH21] [GKRB13,
DKT19,
RVGBM20]

Learn PX

using y
Gram [SO19], OpenHybrid
[ZLGG20]

ERD (Ours), SSND for shallow
models [MBGBM10, BLS10],
U-LAC [DYZ14, ZZMZ20]

Data augmentation for con-
trastive loss [TMJS20, LA20]

ViT
[FRL20]

Mahala.
[LLLS18],
MCD
[YA19]

Uncertainty
of PY |X

Bayesian methods e.g. [GG16],
Vanilla Ensemble [LPB17]

— DPN [MG18], OE
[HMD19]

GAN outputs [LLLS18], noise
[HTLI19] or uniform samples
([JLMG20])

ODIN
[LLS18]

Limitations. Despite the advantages of ERD, like all prior
SSND methods, our approach is not a good fit for online
(real-time) novelty detection tasks. Moreover, ERD ensem-
bles are not tailored to anomaly detection, where outliers
are particularly rare, since the unlabeled set should contain
at least a small number of samples from the novel classes
(see Figure 5b and Appendix I). However, ERD ensembles
are an ideal candidate for applications that require highly
accurate, offline novelty detection, like the one illustrated in
Figure 1.

5 RELATED WORK

In this section, we present an overview of different types of
related methods that are in principle applicable for solving
semi-supervised novelty detection. In particular, we indicate
caveats of these methods based on their categorization with
respect to 1) data availability and 2) the surrogate objective
they try to optimize. This taxonomy may also be of inde-
pendent interest to navigate the zoo of ND methods. We
list a few representative approaches in Table 2 and refer the
reader to surveys such as Bulusu et al. [2020] for a thorough
literature overview.

5.1 TAXONOMY ACCORDING TO DATA
AVAILABILITY

In this section we present related novelty detection methods
that use varying degrees of labeled OOD data for training.
We call test OOD the novel-class data that we want to detect
at test time.

In a scenario like the one in Figure 1, one can apply un-
supervised novelty detection (UND) methods that ignore
the unlabeled batch and only uses ID data during training
[Lakshminarayanan et al., 2017, Sastry and Oore, 2019, Nal-
isnick et al., 2019]. However, these approaches lead to poor
novelty detection performance, especially on near OOD
data.

There are methods that suggest to improve UND perfor-

mance by using additional data. For example, during train-
ing one may use synthetically generated outliers (e.g. Tack
et al. [2020], Sohn et al. [2021]) or a different OOD data set
that may be available (e.g. OE and DPN use TinyImages)
with samples known to be outliers. However, in order for
these augmented unsupervised ND (A-UND) methods to
work, they require that the OOD data used for training is
similar to test OOD samples. When this condition is not
satisfied, A-UND performance deteriorates drastically (see
Table 1). However, by definition, novel data is unknown and
the only information about the OOD data that is realistically
available is in the unlabeled set like in SSND. Therefore, it
is unknown what an appropriate choice of the training OOD
data is for A-UND methods.

Another line of work uses pretrained models to incorpo-
rate additional data that is close to test OOD samples, i.e.
pretrained UND (P-UND). Fort et al. [2021] use large trans-
former models pretrained on ImageNet21k and achieve good
near OOD detection performance when ID and OOD data
are similar to ImageNet samples (e.g. CIFAR10/CIFAR100).
However, our experiments in Appendix F.3 reveal that this
method performs poorly on all other near OOD data sets,
including unseen FashionMNIST or SVHN classes and X-
rays of unknown diseases. This unsatisfactory performance
is apparent when ID and OOD data do not share visual fea-
tures with the pretraining data (i.e. ImageNet21k). Since
collecting such large troves of “similar” data for pre-training
is often not possible in practical applications (as medical
imaging), the use case of their method is rather limited.

Furthermore, a few popular methods use test OOD data for
calibration or hyperparameter tuning [Yu and Aizawa, 2019,
Lee et al., 2018, Liang et al., 2018, Ruff et al., 2020], which
is not applicable in practice. Clearly, knowing the test OOD
distribution a priori turns the problem into supervised ND
(SND), and hence, violates the fundamental assumption that
OOD data is unforeseeable.

As we have already seen, current SSND approaches (e.g.
MCD, nnPU) perform poorly for complex models such as
neural networks. We note that SSND is similar to using un-
labeled data for learning with augmented classes (U-LAC)



[Da et al., 2014, Guo et al., 2020, Zhang et al., 2020] and
is related to transductive novelty detection [Scott and Blan-
chard, 2008, Guo et al., 2020], where the test set coincides
with the unlabeled set used for training.

5.2 TAXONOMY ACCORDING TO
PROBABILISTIC PERSPECTIVE

Apart from data availability, the methods that we can use
in a practical SSND scenario implicitly or explicitly use
a different principle based on a probabilistic model. For
example, novel-class samples are a subset of the points that
are out-of-distribution in the literal sense, i.e. PX(x) < α.
One can hence learn PX from unlabeled ID data, which is
however notoriously difficult in high dimensions.

Similarly, from a Bayesian viewpoint, the predictive vari-
ance is larger for OOD samples with PX(x) < α. Hence,
one could instead compute the posterior PX(y|x) and
flag points with large variance (i.e. high predictive uncer-
tainty). This circumvents the problem with estimating PX .
However, Bayesian estimates of uncertainty that accom-
pany NN predictions tend to not be accurate on OOD data
[Ovadia et al., 2019], resulting in poor novelty detection
performance.

When the labels are available for the training set, we can
instead partially learn PX using y. For instance, one could
use generative modeling to estimate the set of x for which
PX(x) > α via PX(x|y) Lee et al. [2018], Sastry and Oore
[2019]. Alternatively, given a loss and function space, we
may use the labels indirectly, like in ERD, and use properties
of the approximated population error that imply small or
large PX .

6 CONCLUSION

In summary, we propose an SSND procedure that exploits
unlabeled data effectively to generate an ensemble with reg-
ularized disagreement, which achieves remarkable novelty
detection performance. Our SSND method does not need
labeled OOD data during training unlike many other related
works summarized in Table 2.

We leave as future work a thorough investigation of the
impact of the labeling scheme of the unlabeled set on the
sample complexity of the method, as well as an analysis of
the trade-off governed by the complexity of the model class.
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