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Abstract

We present a framework for automatically struc-
turing and training fast, approximate, deep neural
surrogates of stochastic simulators. Unlike tradi-
tional approaches to surrogate modeling, our surro-
gates retain the interpretable structure and control
flow of the reference simulator. Our surrogates
target stochastic simulators where the number of
random variables itself can be stochastic and poten-
tially unbounded. Our framework further enables
an automatic replacement of the reference simula-
tor with the surrogate when undertaking amortized
inference. The fidelity and speed of our surrogates
allow for both faster stochastic simulation and ac-
curate and substantially faster posterior inference.
Using an illustrative yet non-trivial example we
show our surrogates’ ability to accurately model
a probabilistic program with an unbounded num-
ber of random variables. We then proceed with
an example that shows our surrogates are able to
accurately model a complex structure like an un-
bounded stack in a program synthesis example. We
further demonstrate how our surrogate modeling
technique makes amortized inference in complex
black-box simulators an order of magnitude faster.
Specifically, we do simulator-based materials qual-
ity testing, inferring safety-critical latent internal
temperature profiles of composite materials under-
going curing.

1 INTRODUCTION

Stochastic simulators are accurate generative models that en-
code the relationship between random variables. Simulators
can be used to reason about the relationship between latent
variables and real world observations which the simulator is
assumed to accurately model. Whether in aeronautical engi-
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neering [Wu et al., 2018], nonlinear flow physics [Veldman
et al., 2007], finance [Raberto et al., 2001], or modeling the
brain’s blood flow [Perdikaris et al., 2016], simulators play
an important role in design, diagnosis, and manufacturing.
Unfortunately, complex simulators are often computation-
ally expensive, ruling them out for just-in-time uses. This
problem is exacerbated in stochastic simulators as these
often need to be run many times to accurately estimate quan-
tities of interest. A natural solution to this problem, known
as surrogate modeling, is to construct a fast approximation
to the reference simulator. This approach has found success
in applications in various fields including computational
fluid dynamics (CFD) [Glaz et al., 2010], aerospace engi-
neering [Jeong et al., 2005], material science [Rikards et al.,
2004] and quantum chemistry [Gilmer et al., 2017]. These
surrogates learn to approximate the input to output mapping
represented by a simulator, usually by fitting a regressor to
samples drawn from the simulator. However, when such a
simulator is stochastic, and especially when the number of
internal random variables is unbounded, it is not immedi-
ately clear how to extend these ideas. It becomes impossible
to write down a predefined parametrization. This is exactly
the issue our work addresses: to provide a framework for
surrogate modeling in the case where the number of random
variables is generally unbounded.

Stochastic simulators can come in the form of (I) determin-
istic simulators with a fixed-dimensional vector of randomly
distributed inputs (equivalent to a push-forward or structural
equation model) or (I) a program that uses random vari-
ables internally. Constructing a surrogate for simulators that
consumes randomness internally (type II) is done in one of
two ways: (1) All internally utilized random variables are
externalized and specified a priori as inputs, effectively trans-
forming a type II stochastic simulator into type I. (2) Internal
random variables are implicitly marginalized over, in which
case any structural information internal to the simulators
will be lost. In particular, considering (1), the randomness of
a stochastic simulator can be abstracted to a single random
number seed. Alternatively, and less extreme, samples of all

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).


mailto:<amunk@cs.ubc.ca>?Subject=Probabilistic Programming, Surrogate Modeling

random variable types can be obtained by deterministically
transforming ¢/ (0, 1) pseudorandom numbers. So we can
in theory transform a stochastic simulator of type Il into a
stochastic simulator of type I with 2/(0, 1) distributed inputs.
However, identifying all the internal random variables is
in general impossible when a Turing complete language is
used to specify the type II stochastic simulator that uses
looping, branching, and other control flow constructs. This
is because one must be able to identify or “address” all
the random variables in advance. This is infeasible as the
space of random variables can be countably infinite. So, any
generic scheme to externalize the random variables of a type
11 stochastic simulator will involve under-approximating the
original stochastic simulator, as only a finite number of vari-
ables can be externalized. Further like for option (2), such
externalization discards structural information about the re-
lationship between the otherwise internal random variables.
As it is known that utilizing information about the structure
of the model enables it to generalize better and lead to lower
estimation loss [Bishop, 2006], it is desirable to retain all
such information.

To address this we introduce a novel approach to surrogate
modeling which captures and fully utilizes the structure
of the stochastic simulator. Our surrogates, which we call
probabilistic surrogate networks (PSNs), do not suffer from
being an under-approximation. However, as we will dis-
cuss, it might be desirable to choose to execute them as
under-approximations for practical purposes. Particularly,
by framing the surrogate modeling problem in the context of
probabilistic programming, our model architecture automati-
cally replicates distributions over traces for a given reference
simulator. This enables PSNs to generate interpretable se-
quences of latent variables that are fully compatible with
the reference simulator. We achieve this by simultaneously
learning to approximate the latent probability distributions
and the control flow of the original simulator. Our method
therefore targets simulators of type II in addition to type I,
and we emphasize that it can handle simulators with arbi-
trarily many random variables. As a corollary we introduce
a novel method for parameterizing a classifier defined over
an unbounded number of classes.

Faster simulation via surrogate modeling is in itself use-
ful. However, the speedup PSNs provide arguably has even
greater impact on the “inversion” of simulators. Here in-
verting a simulator means performing Bayesian inference
over latent variables given observed values of outputs. This
definition blurs the line between stochastic simulators and
probabilistic models and should be considered a key point of
probabilistic programming [Baydin et al., 2019]. In this pa-
per we illustrate how PSNs leverage faster inference by em-
ploying them in conjunction with the neural network based
inference compilation (IC) framework [Le et al., 2017] and
its PyProb [Baydin and Le, 2018] realization. PyProb is
a probabilistic programming language (PPL) that enables

Bayesian inference in stochastic simulators written in other
programming languages [Baydin et al., 2018], by intercept-
ing and controlling random number draws during simulator
execution. This process is explained elsewhere in full techni-
cal detail [van de Meent et al., 2018, chapt. 6]. PyProb was
chosen due to several desirable features, such as automatic
address construction.

2 BACKGROUND

2.1 PROBABILISTIC PROGRAMMING

The probabilistic programming paradigm equates a gener-
ative model with a program written in a probabilistic pro-
gramming language (PPL). An inference backend takes the
program and observed data and generates inference results,
usually in the form of samples from a posterior distribu-
tion. PPLs can be broadly categorized as restricted, which
limit the set of expressible models to ensure that particu-
lar inference algorithms can be applied [Lunn et al., 2009,
Minka et al., 2018, Milch et al., 2005, Carpenter et al., 2017,
Tran et al., 2016], and unrestricted (universal), which al-
low arbitrary models [Goodman et al., 2008, Mansinghka
et al., 2014, Wood et al., 2014, Pfeffer, 2009, Goodman
and Stuhlmiiller, 2014, Bingham et al., 2018]. For instance,
universal PPLs allow programs to contain for-loops where
the number of iterations itself is stochastic and unbounded.
For our purposes it is particularly important to note that
extending an existing Turing-complete programming lan-
guage with operations for sampling and conditioning results
in a universal PPL [Goodman and Stuhlmiiller, 2014]. For
this reason existing stochastic simulators written in Turing-
complete languages are programs in a universal PPL. As
PSNs target universal PPLs we focus our discussion here on
those.

A crucial concept is that of a trace of a probabilistic program.
A trace is a sequence of random variables (z,,, a;) for t =
1,...,T, where a; € Ais an address [Wingate et al., 2011]
of a random variable and z,, its value. A = {a1, as, ...}
is a countable (potentially infinite) set of possible address
values, which uniquely identify all random variables the
simulator could ever produce. The purpose of the addresses
is to identify the same random variables across different
execution traces to facilitate correct inference. The trace
length 7" can vary between different executions of the same
program and is generally unbounded.

Every probabilistic program specifies a joint distribution
over the space of traces. Defining = (x,,,...,Zq,) and
a = (ai,...,ar) this distribution is denoted

T

p(:L‘,a) = Hp(a‘t|'r<at’a/<t)p(xllt|x<llt7a‘§t)7 (1)
t=1
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where 2o, = {Za,|2a, € T,t' <t}, acy = api-1.



a<y = ao:t, ag being the begin—execution address and
Tq, = 0. Foreach t, p(as|T<q,,a<;) is the address transi-
tion probability distribution and p(x,, |2 <4, , a<¢) is the dis-
tribution passed to the sample or observe statements in
the program. It is these statements which allow for automatic
inference in PPLs. The subset of « specified by observe
statements is denoted x5, While the remaining variables
are denoted x, — i.e. those specified using sample state-
ments. The goal of inference is to compute the posterior
distribution p(@iat|Tobs) = Y4 P(Tlat, @|Tobs). It should
be noted that in probabilistic programs a is always deter-
ministic when conditioned on & making the marginalization
of a trivial, as p(at|r<a,,a<t) = d(ar — f(z<a,,a<t)),
where ¢ (-) is the Kronecker delta function and f(-) is the
deterministic function defined by the simulator which speci-
fies the address transition from address a; given T<q, , G<¢.
However, modeling a as a random variable is essential to
our PSN construction.

2.2 INFERENCE COMPILATION

Inference compilation (IC) [Le et al., 2017] is an amor-
tized algorithm for performing inference in probabilistic
programs using sequential importance sampling (SIS). It
works by constructing an inference network, which con-
structs proposal distributions for all the latent random vari-
ables in the program, conditioned on the observed variables.

IC is essentially a self-normalizing importance sampler,
specifically developed as an inference engine for probab-
listic programming languages. IC infers p(@1a¢|Zobs) using
a proposal distribution g(&1at|Zobs). It draws K samples

k
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The proposal distribution q factorizes in ¢ just like p. Subse-
quent conditional distributions in g are constructed using a
recurrent deep neural network, called the inference network.
Specifically,

qcf)(wlataa'xobs = H q lat|77af 1'1<a;c1,,,a<taa:obsv¢))

t Ewlat
T
2 H q(at]r<a,, a<t), 2
t=1

where 212! = {z,,, |z, € @at,t’ < t}, ¢ are the param-

eters of the inference network, and 7, () is the function
computed by the neural network. We emphasize here how
we explicitly write the address transitions as part of the
inference problem, but note that in IC (and other similar
inference engines) the address transitions in the posterior
are defined as g(a¢|T<q,, a<t) = plat|T<q,, a<t).

The proposal g4 is trained to match the true posterior
p(X1at, alTons) x p(x,a), where the distance between

the posteriors p and ¢, is measured using the Kullback—
Leibler (KL) divergence KL ( p || ¢ ). In order to match gy
for all possible x5 the expected KL divergence under the
marginal p(X,ps) is minimized.

It should be emphasized here, that for inference engines
where g(at|T<q,, a<t) = plat|T<q,, a<t), the program and
inference engine must run concurrently. That is, the ad-
dress transitions are provided by the program via sampling
from the dirac distribution p(a¢|Z<q,,a<:) = 0 (az — a}),
where a} = f(Z<q,,a<t) is the deterministic address given
T<a,, G<t. This has two implications: (1) any surrogate mod-
eling framework incorporated into a PPL framework must
be able to provide such address transitions. (2) The run-
time of inference engines relying on executing the reference
simulator, like IC, will be computationally constrained by
the computational complexity of the reference simulator.
Such cases would be examples where surrogate models,
like PSNs, in PPLs can drastically speed up the inference
procedure.

3 PROBABILISTIC SURROGATE
NETWORKS

PSNss are constructed to model a distribution over the trace
space. They will replace the original program, thereby fa-
cilitating faster simulation and inference, provided the PSN
is faster than the original program. PSNs factorize identi-
cally to the distribution of the original program specified
in Eq. (1). Specifically, the distribution represented by a
PSN is defined as

T
HS ‘/Eat‘fat x<ataa<t70)) (3
t=1

xs(at|Cay_y (T<a,, act; 0)), “4)

where &, (+) and (,,_, (+) are neural networks. At the center
of our PSNGs, there is a recurrent neural network (RNN) that
enables the density of z,, to depend on all x.,, and a<;
that preceded it. We use 6 to denote all parameters in the
PSN, but note that the factors in Eq. (4) typically only use a
subset of these. The PSN is trained to be close to p(x, a) in
terms of the KL-divergence,

=KL (p(z,a) || so(z,a))
= —Ep(a,a) [log so(x, a)] + const, 5)

L(9)

L(6) is minimized by stochastic gradient descent, which
requires calculating the unbiased gradient estimator

N
1 n n
VoL(0) ~ =Y Vologss(z".a"),  (6)
n=1
with (z™, a™) £ p(x,a). It is crucial to distinguish be-
tween sampling repeatedly from an empirical distribution



p(x,a) ~ p(x,a) (i.e. using a dataset) or sampling repeat-
edly from p(x,a) (online training) when calculating the
gradient Eq. (6). Either approach puts different requirements
on how sy (x, a) can be constructed. In the former case, a
naive but straightforward approach is to construct the pos-
sible address distributions and transitions by enumerating
all traces in the dataset. However, this results in a surrogate
model which is an under-approximation by construction.
Furthermore, if new data containing unseen traces is later
added to the dataset the surrogate must be reconstructed
and retrained, which is computationally wasteful. Online
training, on the other hand, requires the surrogate to grow
dynamically as new data is sampled from the simulator. Our
PSNs are designed to operate in the latter case and models
the space of an unbounded number of random variables. Our
method allows the PSN to grow dynamically as new traces
are drawn from the simulator yet does not require the PSN
to be retrained. This is due to PSNs having the property of
being measure preserving with respect to a set of events B
of particular interest as defined in Definition 1.

Definition 1. Consider a probability space (2, F,P9) and
let g € G be a function parameterizing the probability mea-
sure P9. Let h : G — G be a functional mapping such that
P"9) s a probability measure associated with the probabil-
ity space (Q, F, ]P’h(g)). Let B C F be a set of subsets. We
then say that h is measure preserving with respect to B if,

P"9)(E) = PI(E),VE € B

We will show how to choose 5 such that the PSN grows to
model newly encountered address transitions, while leav-
ing the probability mass placed on known address tran-
sitions invariant to this expansion. Our method is inher-
ently designed to work in the online setting but may also
be used with an empirical trace distribution. The key to
our method lies in how we model the probability measure
associated with the set of infinitely many possible address
transitions a4 from address a;. We accomplish this by
parameterizing the probability measure in a way that dy-
namically allows “breaking” the probability measure into
smaller pieces. Specifically, we consider the probability
space (Qq,, Fa,,PS, ), where €1, is the set of possible ad-
dresses the program can transition to from address a¢, Fy,
the o-algebra, and Pgt the probability measure parameter-
ized by a neural network (,, (z<q,, a<; 0). We can without
loss of generality partition €2,, into transitions we are cer-
tain exist, C,,, and transitions we are uncertain about, Uy, .
We have that Q,, = C,, UU,, and C,, NU,, = . In prac-
tice C,, contains transitions observed during training and
grows as we train the surrogate, while U, contains tran-
sitions not yet encountered. We denote the size of known
address transitions as C' = |Cq, |, and define the neural net-
work as a mapping (o, @ Acq, X X<, — REHL, where
a<; € A<q, and T<,, € X<,,. From this we finally define

the parameterized probability measure,

1 e, if E={c}andcecC,
P, (E) = — ’ @
at( ) Z{eCCJrl ifE:Z/{at’ ( )
where v : C,, — {1,...,C} is a mapping from observed

addresses to a unique “address index”, (; is the ¢th out-
put of (g, (xSawaSt; 9), and Z = efo+r + Zceca et
is the normalization constant. Looking at Eq. (%), we
see that the probability measure can be modeled using
Ca, 1n conjunction with the softmax function, IP’gt =
softmax((y, (T<a,, a<t; 0)).

By modeling Pgt according to Eq. (7) we can consider the
model to be a classifier which assigns probability to each
address transition we know exists, while also assigning prob-
ability to yet unseen transitions. In order to relate Eq. (7)
to the address transitions defined in Eq. (4) we note that
Ve € Cq, we can define s(ai+1 = ¢|Cq, (T<q,,a<i;0)) =
P$,({c}). In a similar fashion we can Vu € U, im-
plicitly define s(a; = u|Cq,(®<q,,a<¢;0)) in terms of
PS, (Ua,) = > ueu,, Pa, ({u}), where the summation is
justified as the set of all addresses (and therefore U4, )
is countably infinite. The address transition probability,
s(a; = u|le, (T<a,,a<t;0)), would be one of the terms
in the sum. To provide some intuition on how to use the pa-
rameterized probability measure in Eq. (7), we now describe
how our PSNs grows during the optimization procedure. For
every set of samples of size [NV used to calculate the gradient
estimator (i.e. a mini-batch), enumerate all the addresses
and their transitions. For each address consider all new ad-
dress transitions, which are transitions not found in C,, . Let
the set of newly encountered address transitions be denoted
K., and its size be denoted K = |K,,| < N. We then ex-
pand the neural network (,, and refer to the expansion as
Ca, : Aca, X Xeg, — RETETL The expansion, (g, has
its own learnable parameters that are derived directly from ¢
and parameterizes a new probability measure ]P’gt. We carry

out the expansion so that Pgt is given by,

1 eG@, if B = {c}and ¢ € Co, UK,,

P(E)= =4
Z | lernn it E =1,

3 3 (®)
where U, = U,, \ Ka,, Z the new normalization constant
and ¥ : Cq, x Ko, — {1,...,C,C+1,--- ,C+ K} the
new index mapping, which is equal to y for the same ad-
dresses already in C,,. Specifically we have e$3(e) = %
if c € Cq,, ¢S = eloni—log(K+1) jf ¢ ¢ Ka,, and
eSo+r+1 = gber1—log(K+1) This choice, Eq. (8), leads
to the following theorem, which we prove in Appendix A.1,

Theorem 1. Consider a probability measure ]P’gt charac-
terized by a neural network (,, € G according to Eq. (7).
Consider also a sample of traces of size N which for each
address a; contain a set Ko, of new address transitions.



Let the expansion procedure represented by Eq. (8) be de-
fined as the function h : G — G such that 5(“ = h((a,) If
B = 2% U{U,,} C Fn, where 2C denotes the powerset
of Cq,, then for all addresses ay, the functional mapping
h is measure preserving with respect to B as defined in
Definition 1, and

P (E) = P$, (E),YE € B

Once a new probability measure is created, the new transi-
tions found in /C,, are added to C,,. In Fig. 1 we show an
illustration of the expansion process and we provide further
details on how to expand the PSNs when encountering new
address transitions in Appendix B where we also provide Al-
gorithm 1. Following the expansion of the PSN, the update
of the PSN parameters, 6, is carried out by calculating the
gradient estimator and performing gradient descent. This
procedure is repeated until convergence. Additional details
and design choices of PSNs can be found in Appendix C.

3.1 EVALUATING AND EXECUTING PSNS

The construction of our PSNs described above ensures that
the surrogate models define a probability measure on spaces
with an unbounded number of random variables. In particu-
lar, and we prove this in Appendix A.2,

Theorem 2. Let s(x, a) be a surrogate model using PSNs.
Then any trace (x,a) ~ p(x,a) can be evaluated under
s(x,a).

While Theorem 2 guarantees evaluation for all possible
traces generated by the reference simulator, the surrogate s
is only likely to provide accurate density estimates for traces
for which all addresses have been encountered during train-
ing. As such, at evaluation time when training is complete,
it is of more practical use to place zero probability measure
on traces containing unknown addresses. The justification
of this choice becomes more apparent when discussing the
execution of PSN-based surrogate models. Such executions
start with the begin—-execution address, after which
the surrogate samples a new address from the transition
distribution, a value is sampled from the distribution at the
sampled address, after which a new address transition is sam-
pled, etcetera, finishing only when the surrogate samples an
end-execution address. The procedure is illustrated in
more detail in Fig. 1 in Appendix C. The question now arises
what should happen if the surrogate samples an unknown
address at any point during its execution. Recall that at each
address a; the probability associated with such an event is
P$, (Us, ). One straightforward approach would be to (1)
Generate a new arbitrary address including the possibility
to generate an end-execution address. (2) If the new
address is not an end-execution address then expand
the PSN according to Eq. (8) in order to accommodate the

input layers

output layers
Ql

'll7:3.\2 @ Expansion
-

w33

O*u;“

Figure 1: Illustration of the PSN expansion relating Eq. (7)
and Eq. (8). The expansion takes place in the final address
transition prediction layer, and the new weights . . relate to
the former weights w. . as follows: (1) for the weights asso-
ciated with known address transitions we have w; ; = w; ;
forall 4,5 € {1,2} x {1,...,5}. (2) For the weights asso-
ciated with the unknown addresses and newly encountered
addresses we have for all ¢ € {1,...,5} that W3 ; = W4,
where w3 ; = ws; — log(K + 1). In this case, with one
newly encountered address, we have K = 1.

input layers

output layers

= e x ng(ua,) “ wiy

newly generated address. (3) Sample some distribution from
a prior distribution over distributions. (4) Repeat until an
end-execution address is generated. Clearly, the pro-
duced traces from such a procedure will almost certainly
have zero probability under the reference simulator, and
would yield spurious results. To remedy this, we instead
decide to only allow transitions between addresses encoun-
tered during training. Specifically, whenever an unknown
address is sampled, we keep resampling until a known ad-
dress is sampled, leading to the following adjusted address
transition probabilities for all ¢ € C,,,,

Ale)s(clCa, (T<a,; a<t; )
P(4)
S(C‘Cllt (Igat ? agt; 9))

= 5 9
1-P§, (Ua,) ©

P(at+1 = C|A) = P(

where A denotes the event that we accept the address transi-
tion at —> Agyq.

3.2 PRACTICAL LIMITATIONS

While PSNs target programs written in universal PPLs, there
are practical considerations accompanying (1) the rejection
sampling step of address transitions and (2) the proposed
use of RNNSs as the core of the PSN. Regarding (1), the rejec-
tion sampling step is equivalent to placing zero probability
mass on traces that were not observed during training. In
general this results in the adjusted address transition proba-
bilities, Eq. (9), to become slightly biased. Additionally, this
implies that PSNs become an under-approximation of the
target simulator, which may have non-zero probability on
certain traces where the PSN places no probability mass. In



‘rL) def control_flow_program(x): b)
dy; = Beta(50, 7)
0 = sample(dist=d;)
n=0 . GT
while True:

[ IC in Simulator I ICin PSN

dy = Categorical (prob=[1/5, 4/5]) 10

b = sample(dist=dy)
if b: 0.94
d3 = Normal (mean=0, std=1/2)
z = sample(dist=d3)
else: = (.84
d3 = Normal(mean=2, std=1/2)
z = sample(dist=d3)
nr=z 0.7
dy = Categorical(prob=[1-6,6])
c = sample(dist=d,)

To Address

‘' .

if c:
break
ds = Normal(mean=p, std=1)
observe(z, likelihood=ds)
return f

To Address

Zobs =5
Observation

Figure 2: (a) Program containing stochastic control flow in the form of a for-loop with a nested if-else statement. The task
here is to perform posterior inference about # given the observed value of . (b) Each boxplot represents the estimated
posterior distribution of  conditioned on x = 5. We see that inference using IC in the simulator and using IC in the PSN
both are identical to GT. (c) shows a subset of the address transitions with high probability for the original program (top)
and our PSN (bottom). We observe identical transition probabilities which, together with (b), shows that the PSN is able to

approximate models with complex control flow.

the limit of observing all possible address transitions these
issues simply vanish, while practically the more traces are
observed, the less likely it becomes that important addresses
with high probability mass are missed. Concerning (2), the
choice of using RNNs to model the flow of information (i.e.
inter-variable dependencies) was made as it has proven very
effective in practice. Notwithstanding, while RNNs are ca-
pable, in theory, of emulating Turing machines [Weiss et al.,
2018, Siegelmann, 1998, Siegelmann and Sontag, 1994,
1995, Chen et al., 2018], finite memory and floating point
precision make them finite state machines in practice. For
target programs, which require storing information on e.g. a
potentially infinitely growing stack, we would not, in gen-
eral, expect RNNs to model said programs arbitrarily well.
This does not, however, influence the results in Theorems 1
and 2 which are agnostic to the specific implementation of
the dependency model. Rather, it implies that the size of
the RNN needs to be chosen appropriately to ensure that
accurate surrogates are learned. Put in different words, the
approximating distribution has limited flexibility, but its sup-
port is guaranteed to be correct by Theorem 2. If RNNs turn
out insufficient, we suggest considering differentiable neu-
ral computers [Graves et al., 2016] as a potential suitable
alternative, as it has access to external memory. Further-
more, previous work by Harvey et al. [2019] suggests that
the transformer architecture [Vaswani et al., 2017] might
also be a good alternative choice in some cases.

3.3 COMPLEXITY ANALYSIS

We limit the complexity analysis to pertain to the number of
addresses encountered during training - a set we denote A.
We start by considering the worst-case scenario, where the
possible addresses transitions of some program is as follows:

Order all addresses on a single line in the order in which they
could appear. If a transition can occur from any address to
any other address following it, the computational complexity
must be O(A?). This is also true memory-wise. This is
because from any particular address we must calculate the
transition probability to any of the addresses following it.
This includes storing model parameters to each of those
potential addresses.

How the PSNs compare to the reference simulator
complexity-wise cannot generally be determined. We imag-
ine that the reference simulator in many cases has similar
complexity. For instance, if the various address transitions
are due to if-elif-else statements in a program, the
reference simulator may calculate all logical clauses lead-
ing to complexity O(A?). However, there might exist an
equivalent program which is much more efficient in how
it determines its state transitions, possibly even O(A), but
we cannot in general make such guarantees. Similarly, there
may exist other programs which scale much worse, say
O(x?), z > 1 - we can imagine programs which do com-
plex computations that reason about all possible future and
past states.

Ultimately, what matters in determining whether or not to
use a PSN to replace the reference simulator is the wall-
clock time of the PSN versus the reference simulator.

4 EXPERIMENTS
4.1 STOCHASTIC CONTROL FLOW

Here we present an experiment that highlights the PSN’s ca-
pability to learn a model’s address transitions. Fig. 2(a)
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Figure 3: Composite manufacturing involves an uncured composite material being laid up onto a tool, of known material,
which are then placed in an autoclave where a predefined pressure and heating cycle is imposed (left). We consider a 1D
simulation of this process as a function of time, leading to the 2D heatmap (right). The set of latent variables are heat transfer
coefficients and thicknesses and internal temperature (green box). The observed variables are temperature configuration of
the autoclave, air temperatures, and tool temperature (blue box, measured at the bottom surface of the tool).

shows a program with complex stochastic control flow,
where the aim is to perform posterior inference of 6 given
the observed value of z = 5 using a trained PSN. Fig. 2(b)
shows boxplots representing the estimated posterior distri-
bution of # conditioned on = = 5. The inference results
are obtained using either MCMC, specifically Lightweight
Metropolis-Hastings (LMH) [Wingate et al., 2011], with a
chain length of 1,000,000 samples (denoted GT for ground
truth) or IC in either the simulator or PSN using 10,000
resampled importance weighted samples. To evaluate the
address transition capability we look at Fig. 2(c), which
shows a subset of address transitions with high probability
observed across 50,000 generated samples from the model
(top) and PSN (bottom). We observe that the three poste-
riors and the address transition probabilities are identical.
Together these results show that the PSN has successfully
approximated the program including the address transitions
associated with the original program. Further evidence can
be found in Appendices D.1.1 and D.4.

4.2 PROGRAM SYNTHESIS

Next we consider the question of whether the machinery as
it is presented here is able to capture relevant connections
between the addresses as they are available. As touched
upon in Section 3.2, RNNss are finite state machines in prac-
tice and so may be insufficient in accurately modeling the
inter-variable dependencies. To shed light on this we provide
an experiment that showcases that RNNs can, in practice,
model programs which require access to dynamically grow-
ing memory. Particularly, we learn a surrogate for a model
that generates valid Python programs. We use a subset of
the Python syntax that allows 1f, else, and for state-

ments, to an unbounded nesting depth, corresponding to
piecewise linear functions. Example programs and full tech-
nical details of the simulator can be found in Appendix D.5.
The crucial element of this experiment is the existence of a
stack in the original simulator, that tracks the opening and
closing of conditionals, and determines at any time what
constitutes a valid next line. The surrogate has to store this
information in the RNN hidden state, or alternatively, learn
the valid continuations that belong to a certain unbounded
collection of addresses. We judge the quality of PSNs by the
fraction of valid programs that are generated. As the validity
of programs allows for direct evaluation without performing
inference, we omit the latter. We find the percentage of valid
programs to be 99.62% (50k samples). We thus conclude
that in practice, the use of an RNN for our method is easily
sufficient for a task requiring the simulation of a program
stack.

4.3 PROCESS SIMULATION OF COMPOSITE
MATERIALS

In this experiment we train a surrogate model for a commer-
cial heat-transfer finite element analysis simulator, depicted
in Fig. 3, that is used to model the cure cycle for composite
aircraft (e.g. Boeing) parts. We show how to use inference
to estimate the temperature of the part in regions that can-
not be accessed non-invasively. Such results are critical for
determining whether the part is safe or not. The particu-
lar simulator used is RAVEN which simulate the curing
process of composite materials, a proprietary software de-
veloped by Convergent Manufacturing Technologies [2019].
RAVEN is used in the aerospace and automotive industries
to evaluate key performance metrics for part manufactur-
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Figure 4: (a) Shows the expected squared difference between
the output (xg = xravEN) from the PSN and output from
the simulator. We observe negligible errors throughout, with
small peaks around time 160 min and towards the end of
the heating process at the top/bottom. Each boxplot in (b)
represents the estimated posterior distribution (conditioned
on either z_ , wggg‘i“al, or w(fbs) over a fixed time window
f(x) = 1. We see that IC in the PSN yields effectively the
same posterior as IC in the simulator across all observations.
In all cases inference using IC agrees with the ground truth
(GT).

ing design with the ultimate goal of decreasing manufac-
turing cost whilst retaining part performance and safety.
Physical observations of the material’s internal temperature
during manufacturing are expensive, if not impossible, and
manufacturers would prefer to infer the internal state of
the material given less expensive external measurements.
Fig. 3 illustrates this process and the experimental setup.
Using probabilistic programming and our PSNs, we seek
to infer the internal state of the material conditioned on
realistically observable quantities. We evaluate the qual-
ity of the PSN by considering the expectation of zrAvEN
(material temperature during processing) conditioned on
the RAVEN configurations, ®confg, under (1) the model
distribution ]Ep(mRAVENlmconfig) [fERAVEN] and (2) the PSN
distribution Eg(gp sy px @conn,) [TRAVEN]. Fig. 4(a) shows
generally negligible expected squared errors between the
surrogate and simulator outputs, and we provide additional
results in Appendix D.3 that showcase the efficacy of the
trained PSN. Small peaks are, however, observed in Fig. 4(a)
at around time ¢t = 160 min, as well as towards the end of

Table 1: We estimate /i, ~ Ep,,, @) [Hw] under the
posterior using SIS denoted GT, IC in simulator (ICS) and
IC in PSN (ICP) using 15,000 traces, and report the as-
sociated effective sample size (ESS). We provide six dif-
ferent estimates; three posteriors and three observations
x, ., xhominal and ¥ . We observe that the PSN esti-
mates matches that of the GT and IC in the simulator.

w;bs wgg;ﬁinal ch)rbs
fiao ESS  fiw ESS  fiw ESS
GT 20490 259 20446 304 203.82 399
ICS 20496 158 204.46 340 203.83 204
ICP 205.01 173 20449 279 203.80 292

the heating process, which is where the internal temperature
exhibits the most rapid changes.

To evaluate the quality of performing inference (using IC)
in the PSN we consider the scenario where we only ob-
serve the configurations, air and surface temperatures of
the curing process, &,ps. The latent variables xi,; are the
dimensions of the material, the heat transfer coefficients and
the internal temperature during curing. We then consider
the function f(xat) = 4w, being the empirical mean of
the internal temperature of the material across the time win-
dow w = [155 min, 165 min] (chosen to be close to peak
temperatures) and at a fixed depth 30 mm (chosen to be
somewhere near the upper quarter of the material). We then
estimate fi,, ~ Ep(mlat\wobs) [f(mlat)] = Ep(mlatlmobs) [/.Lw]
using IC with the same inference network g(@1a¢|Zobs) used
for performing inference in both the surrogate and the model.
As a ground truth posterior, we employ SIS where the pro-
posal distribution is the prior ¢(@1at|Zobs) = p(@1at) and
denote it GT. To evaluate the effect of amortized inference
we consider conditioning on three different observations
Ty a:‘olg;ni“al, and m:bs each corresponding to an obser-
vation produced by the simulator with input values and
temperature settings well below, equal to, and well above
the nominal values respectively. In all cases inference is
performed using 15,000 traces (SIS particles) and we sum-
marize the results in Table 1. We show that performing
inference in the PSN yields approximately the same results
as inference in the simulator. We only find small deviations
when observing x_, . where the PSN seems to barely over-
estimate fi,, compared to the GT. To get a sense of how our
traces are distributed we show in Fig. 4(b) boxplots repre-
senting the posterior distribution from which we estimate
Ep(a1a¢ [@one) [Hw]- Each boxplot is made by resampling the
15,000 importance weighted samples. The results confirm
that inference in the PSN yields similar posteriors compared
to inference in the simulator. These boxplots also illustrate
why /i, was slightly overestimated when doing inference
in the PSN; when observing x_, . the posterior is shifted
slightly upwards compared to the GT.



The advantage of using the PSN is that we maintain high
accuracy in the posterior estimates with a speedup factor
of 15.32 when comparing the number of traces generated
per second. Furthermore, in cases where we simply seek to
produce faster simulations (not for the sake of inference),
the PSN provides an even greater speedup factor of 90.16.
The additional speedup is due to dropping the overhead of
performing inference. The exact running times and model
specifications can be found in Appendices D.1.2 and D.2.

S RELATED WORK

As far as the authors of this paper are aware, the PSN is the
first framework for learning surrogate models that models
simulators containing a potentially unbounded number of
random variables by automatically extracting and using a
simulator’s latent structure. Surrogate modeling is, however,
a topic that dates back several decades and is fundamen-
tally a regression problem, where the surrogate predicts the
output of the model for a given input. Currently, the most
commonly used methods for constructing deterministic sur-
rogate models [Razavi et al., 2012] include Kriging [Simp-
son et al., 2001, Sacks et al., 1989], support vector machines
(SVMs) [Willcox and Megretski, 2005], radial basis func-
tions (RBFs) [Hussain et al., 2002, Mullur and Messac,
2006], and neural networks (NNs) [Tompson et al., 2017,
Khu and Werner, 2003, Gilmer et al., 2017], while methods
like the stochastic Kriging [Hamdia et al., 2017] allow for
stochastic surrogate modeling. Notwithstanding, such com-
monly used methods are incompatible with simulators with
an unbounded number of variables.

Finally, the idea of learning trace executions using LSTMs
has been studied before, see for example neural programmer-
interpreters (NPI) [Reed and De Freitas, 2015]. Methods
like NPIs are trained to predict the sequence of called sub-
routines used to solve specific tasks like sorting or image
rotation. As such, NPIs make no attempt to abstract away
the predicted subroutines. That is, if any subroutine causes
a computational bottleneck, NPIs cannot decrease the com-
putational cost. This is fundamentally different to our PSN
surrogate method which aims to model the entire simulator.

6 CONCLUSIONS

We have proposed probabilistic surrogate networks, a novel
approach to surrogate modeling that considers not only the
distributions in stochastic simulators but the stochastic struc-
ture of the simulator itself. Our main contribution is to de-
velop a construction in which the surrogates allow for the
description of a dynamically growing number of random
variables, while maintaining consistency of the assigned
probability measure as new variables are encountered. Such
a framework is a requirement for producing surrogates for ar-
bitrary simulators potentially containing an unbounded num-

ber random variables. Using a real-world process simulation
of composite materials as an example, we have shown that
our approach provides significant computational speedup
in inference problems using inference compilation, while
preserving the quality of inference results that are indistin-
guishable from the ground truth.
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