
Under review as a conference paper at ICLR 2023

CLEP: EXPLOITING EDGE PARTITIONING FOR GRAPH
CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative and contrastive are two fundamental unsupervised approaches to model
graph information. The graph generative models extract intra-graph information
whereas the graph contrastive learning methods focus on inter-graph information.
Combining these complementary sources of information can potentially enhance
the expressiveness of graph representations, which, nevertheless, is underinvesti-
gated by existing methods. In this work, we introduce a probabilistic framework
called contrastive learning with edge partitioning (CLEP) that integrates genera-
tive modeling and graph contrastive learning. CLEP models edge generation by
aggregating latent node interactions over multiple overlapping hidden communities.
Inspired by the assembling behavior of communities in graph generation, CLEP
learns community-specific graph embeddings, which are assembled together to
represent the entire graph and further used to predict the graph’s identity via a
contrastive objective. To relate each embedding to one hidden community, we
define a set of community-specific weighted edges for node feature aggregation by
partitioning the observed edges according to the latent node interactions associated
with the corresponding hidden community. With these unique designs, CLEP
is able to model the statistical dependency among hidden communities, graph
structures, as well as the identity of each graph; it can also be trained end-to-end
via variational inference. We evaluate CLEP on real-world benchmarks under
self-supervised and semi-supervised settings and achieve promising results, which
demonstrate the effectiveness of our method. Various exploratory studies are also
conducted to highlight the characteristics of the inferred hidden communities and
the potential benefits they bring to representation learning.

1 INTRODUCTION

Generative modeling and contrastive learning are both commonly employed to learn graph represen-
tations without label supervision. Both types of methods learn the embedding space by leveraging
some ground-truth information from the observed graphs, but the aspects of data that each type
chooses to fit are different. Graph generative models (Kipf & Welling, 2016; Mehta et al., 2019;
Wang et al., 2020) prioritize intra-graph information, i.e., the information in each individual graph.
The representations provided by graph generative models are usually related to the formation of its
own edges. Contrariwise, graph contrastive learning methods (You et al., 2020; 2021; 2022; Xie et al.,
2022) focus on capturing inter-graph information, they put graphs under comparison to highlight the
inherent similarity and differences among a group of graphs.

The difference in the focused graph information leads to complementary strengths and weaknesses
of graph generative and contratsive learning methods. The advantage of graph generative models
is their ability to recover the structural information of some latent factors, which is lost during
graph generation. These latent factors, relevant to each graph in the sense of its own formation,
usually preserve valuable information for various graph-analytic tasks. However, the quality of the
embeddings provided by graph generative models is questionable because the encoded information is
limited to the“expression levels” of these latent factors, which may be insufficient to downstream
tasks other than graph generation. Unlike generative models, graph contrastive learning methods
cannot automatically find meaningful latent factors in the graph, but they are well recognized for
producing high-quality feature representations once the raw structural information is given. An
integration of graph generative modeling and graph contrastive learning potentially combines the

1

Under review as a conference paper at ICLR 2023

complementary strengths of these two classes of methods, which would further benefit representation
learning. However, such a direction is insufficiently explored.

In this work, we introduce Contrastive Learning with Edge Partitioning (CLEP), a probabilistic
framework that provides a concrete solution to the integration of graph generative modeling with
graph contrastive learning. To better leverage the strengths of both methods, we assign different duties
to the graph generative model and the contrastive learner, where the former takes the responsibility of
extracting the hidden structures of the latent factors which explain graph generation, while the latter
treats the inferred hidden structures as new raw inputs, learns their corresponding graph embeddings in
a contrastive paradigm, and then aggregates all the embeddings in a way that is intuitively compatible
with how the hidden structures interact during graph generation.

More specifically, CLEP is developed upon the graph generative models that explain the formation
of edges by cumulative latent node interactions associated with some hidden communities (Yang &
Leskovec, 2012; 2013; 2014; Zhou, 2015). Membership and intra-community node interactions are
assumed to be independent among different hidden communities. According to the generative model,
we embody the structures of these communities by explicitly modeling the average node interactions
in each community and partitioning the observed edges accordingly. As indicated by Jenatton et al.
(2012), node interactions that happen in different communities may follow multiple relations. It is
highly likely that, when nodes interact under different relations, the information exchange that comes
along also focuses on different aspects. To better capture the potentially heterogeneous community-
specific information, we define a set of encoders to process the information that comes from different
communities. The training of these encoders are based on aggregating their corresponding contrastive
learning tasks with a set of weights that measure the “importance” of each community. Finally, we
gather the community-specific graph embeddings to represent the overall information on a graph, as
an analogy with the assembling behavior of communities in graph generation.

We summarize the major contributions of this work as follows:

• We propose CLEP as an integration of graph generative model and graph contrastive learning,
which can effectively capture both intra- and inter-graph information.

• We formulate the statistical problem of training CLEP as the maximum likelihood estimation
of a latent variable model, which supports end-to-end optimization via variational inference.

• We show through exploratory studies that the strength of factor-wise representation learning
is to capture nonrepetitive graph information from different hidden factors, which offers
more flexible embedding selection & combination when facing various downstream tasks.

• We train CLEP under self-supervised and semi-supervised settings and conduct an extensive
empirical evaluation of the obtained graph representations, finding that CLEP consistently
outperforms existing arts on various real-world benchmarks.

2 PRELIMINARIES

Information encoding on graphs. A graph encoder maps the information on each graph to a vector
representation. For a graph G with N nodes, its given information usually includes a node feature
matrix X ∈ RN×F and an adjacency matrix A. The most effective way to aggregate these two forms
of information is based on graph neural networks (GNNs) (Kipf & Welling, 2017; Hamilton et al.,
2017; Veličković et al., 2018; Xu et al., 2019). For a GNN with T layers, denoting H0 = X, its
propagation rule can be summarized as

Ht = AGGt(ft(Ht−1),A), t ∈ [1, T],

where AGG denotes neighborhood aggregation and f(·) denotes nonlinear transformation. Append-
ing a readout layer to a regular GNN converts it from a node-level encoder to a graph-level encoder,
where the readout operation is defined as h = READOUT({Ht}t=1,T). In the sequel, we use
hV(A,X) to denote node-level encoders, and use hG(A,X) to denote graph-level encoders.

Graph contrastive learning (GCL). The ground-truth information that GCL methods use to train
the graph encoders is the uniqueness of each graph. The distribution of the graph representations in
the embedding space is expected to capture the inherent similarity and differences among the graphs.
To this end, positive pairs are created, with each one consisting of two nonidentical views of the same
graph. Some contrastive methods (Xie et al., 2022) only pull together the representations of positive

2

Under review as a conference paper at ICLR 2023

(1)
n

(2)
n

(3)
n

×

(0)(0)T K D

×

(0)(0)T K D
(3)(3) D K

×

(0)(0)T K D
(3)(3) D K

(3)̂
×

(0)(0)T K D
(2)(2) D K

×

(0)(0)T K D
(2)(2) D K

(2)̂
×

(0)(0)T K D
(1)(1) D K

×

(0)(0)T K D
(1)(1) D K

(1)̂

×××

(1)(1)T K D
(2)(2) D K

(2)

×××
(3)(3) D K

(2)(2)T K D

(1)
nx

(2)
nx

(3)
nx

(1)
nh

(2)
nh

(3)
nh

nx

Generative Network: Deep-Coupling topic Embeddings guided GBNInference Network

(3)

nx

(1)

nh

(2)

nh

(3)

nh (3)

n

(2)

n

(1)

n

(3)

(2)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

(3)

(2)

(3)

n

(2)

n

(1)

n

(3)

(2)

nx

(1)

nh

(2)

nh

(3)

nh (3)

n

(2)

n

(1)

n

(3)

(2)

nx

(3)

nx

(2)

nx

(1)

nx

Generative Inference Generative Inference Generative

(1)

(2)

(3)

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

GNN_1

GNN_2

GNN_1(A1,X)

GNN_2(A2,X)

Project_2(h)

Project_1(h)

A

B

D

G

F

C

E

A

B

D

G

F

C

E

G’

Projectors

Augmentation

Community-Wise Graph
Encoders

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

1

A

B

D

G

F

C

E

1

11

A

B

D

G

F

C

E

1

1

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

Community_1

Community_2

AA

BB

G

A

B

G

A

B

G

Lookup
A B

Compute Partition
Weights

A B

1

FF GG

Compute Partition
Weights

F G

1

F G

1

A B

Compute Partition
Weights

A B

1

F G

Compute Partition
Weights

F G

1

AA BBA B

AA CCA C

FF GGF G

A B

A C

F G

Edges

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E
Edges

AA C A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

Community 1 (C1)

Community 2 (C2)

Look Up
AA B AA C F G

1

F GF G

1

F G

1

F G

Compute Edge Partition Weights

BB

1

AA

1

A B

1

A

1

AA BA B

1

A B

F GF G

A BA BA B

Partitioned Edges

Input Graph

AA

BB

G

A

B

G

A

B

G

Node-Community
Affiliation

A

B

G

Node-Community
Affiliation

Aggregated Embedding
Aggrement

Softmax

A B G

ef zf

A B G

ef zf

Normalized Embedding
Agreement

Aggregated Embedding
Aggrement

Softmax

A B G

ef zf

Normalized Embedding
Agreement

Aggregated Contrastive Loss

Softmax

Community-Wise
Contrastive Losses

SEA

SEA

Projectors
Community-Wise Graph

Encoders

SEA

Projectors
Community-Wise Graph

Encoders

Global Graph EncoderGlobal Graph Encoder

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

Augmentation

G

G”

’

”

AA BB GA B GA B GA B G

Node-Community
Affiliation

AA BB GA B GA B GA B G

Node-Community
Affiliation

A B G

h
h

(1)h

(1)h

(1)m

(1)m

(1)h

(2)h

Figure 1: The model architecture of CLEP (left) and the computation of its objective function (right).
Node-community affiliation of graph G is modeled an amortized function. This information is
combined with the two augmented views G′ and G′′ to partition these graphs in order to reveal the
hidden structure of each hidden community in the augmented graphs. The graph is represented by a
collection of community-specific embeddings, which are learned by individual contrastive learning
tasks customized for the corresponding communities. During training, these tasks are balanced by a
set of weights measuring the “relatvie importance” of each community.

pairs, some other methods (You et al., 2020; 2021; 2022) also create negative pairs and push afar the
representations of these negative-paired graphs. Unlike the graphs forming positive pairs that share
the same origin, graphs in a negative pair are transformed from different source graphs. The update
of the embedding space is achieved by optimizing a contrastive objective.

A probabilistic interpretation. Many contrastive objectives involving both positive and negative
pairs, such as N -pair (Sohn, 2016), InfoNCE (Oord et al., 2018) and NT-Xent (Chen et al., 2020), are
collectively related to an in-batch instance discrimination event (Wu et al., 2018). Such statistical
property is inherited by GCL methods following these established work. Specifically, given a mini-
batch B = {G1,G2, · · · ,G|B|}, let ki be the identity-preserving key of Gi, and q be a query vector,
the probability that the in-batch graph ID of q being recognized as i can be defined as

p(i |q) = exp(sim(q,ki)/τ)∑|B|
j=1 exp(sim(q,kj)/τ)

,

where sim(a, b) := a⊺b
∥a∥·∥b∥ measures the cosine similarity between vectors a and b, and τ is a

temperature parameter. Back to the context of GCL, after each graph G being augmented into two
views G′ and G′′, representations h′ and h′′ are obtained and mapped to f ′ and f ′′ by a shared
parametric function m(·). Treating {f ′′i }i=1,|B| as the keys and {f ′i}i=1,|B| as the queries (or the
other way around) leads to a similar expression to the objective functions in various GCL methods
(You et al., 2020; 2021), hence optimizing those objectives can be interpreted as maximizing the
log-likelihood of correctly recovering the in-batch graph IDs of the queries.

3 CLEP: CONTRASTIVE LEARNING WITH EDGE PARTITIONING

3.1 LATENT NODE INTERACTION AND EDGE GENERATION

Given a graph G with N nodes, suppose it contains K conceptual latent factors, interpreted as com-
munities C1, C2, · · · , CK whose intra-community node interactions are recorded as {M̃(k) | M̃(k) ∈
RN×N

+ }k=1,K , the adjacency matrix of G, i.e., A ∈ {0, 1}N×N , can thus be modeled under the
Bernoulli-Poisson link (Zhou, 2015) as

Auv = ∨Kk=1B
(k)
uv , B

(k)
uv = 1(M(k)

uv > 0), M(k)
uv ∼ Poisson(M̃(k)

uv), u, v ∈ [1, N], u ̸= v. (1)

Here ∨ denote logical OR. Equation (1) has the following interpretation: for any nodes u, v in graph
G, they interact with each other for M(k)

u,v times within community Ck, which follows a Poisson

3

Under review as a conference paper at ICLR 2023

(1)
n

(2)
n

(3)
n

×

(0)(0)T K D

×

(0)(0)T K D
(3)(3) D K

×

(0)(0)T K D
(3)(3) D K

(3)̂
×

(0)(0)T K D
(2)(2) D K

×

(0)(0)T K D
(2)(2) D K

(2)̂
×

(0)(0)T K D
(1)(1) D K

×

(0)(0)T K D
(1)(1) D K

(1)̂

×××

(1)(1)T K D
(2)(2) D K

(2)

×××
(3)(3) D K

(2)(2)T K D

(1)
nx

(2)
nx

(3)
nx

(1)
nh

(2)
nh

(3)
nh

nx

Generative Network: Deep-Coupling topic Embeddings guided GBNInference Network

(3)

nx

(1)

nh

(2)

nh

(3)

nh (3)

n

(2)

n

(1)

n

(3)

(2)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

nx

(3)

(2)

(1)

(3)

n

(2)

n

(1)

n

(3)

(2)

(3)

n

(2)

n

(1)

n

(3)

(2)

nx

(1)

nh

(2)

nh

(3)

nh (3)

n

(2)

n

(1)

n

(3)

(2)

nx

(3)

nx

(2)

nx

(1)

nx

Generative Inference Generative Inference Generative

(1)

(2)

(3)

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

GNN_1

GNN_2

GNN_1(A1,X)

GNN_2(A2,X)

Project_2(h)

Project_1(h)

A

B

D

G

F

C

E

A

B

D

G

F

C

E

G’

Projectors

Augmentation

Community-Wise Graph
Encoders

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

1

A

B

D

G

F

C

E

1

11

A

B

D

G

F

C

E

1

1

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

Community_1

Community_2

AA

BB

G

A

B

G

A

B

G

Lookup
A B

Compute Partition
Weights

A B

1

FF GG

Compute Partition
Weights

F G

1

F G

1

A B

Compute Partition
Weights

A B

1

F G

Compute Partition
Weights

F G

1

AA BBA B

AA CCA C

FF GGF G

A B

A C

F G

Edges

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E
Edges

AA C A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

Community 1 (C1)

Community 2 (C2)

Look Up
AA B AA C F G

1

F GF G

1

F G

1

F G

Compute Edge Partition Weights

BB

1

AA

1

A B

1

A

1

AA BA B

1

A B

F GF G

A BA BA B

Partitioned Edges

Input Graph

AA

BB

G

A

B

G

A

B

G

Node-Community
Affiliation

A

B

G

Node-Community
Affiliation

Aggregated Embedding
Aggrement

Softmax

A B G

ef zf

A B G

ef zf

Normalized Embedding
Agreement

Aggregated Embedding
Aggrement

Softmax

A B G

ef zf

Normalized Embedding
Agreement

Aggregated Contrastive Loss

Softmax

Community-Wise
Contrastive Losses

SEA

SEA

Projectors
Community-Wise Graph

Encoders

SEA

Projectors
Community-Wise Graph

Encoders

Global Graph EncoderGlobal Graph Encoder

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

A

B

D

G

F

C

E

Augmentation

G

G”

’

”

AA BB GA B GA B GA B G

Node-Community
Affiliation

AA BB GA B GA B GA B G

Node-Community
Affiliation

A B G

h
h

(1)h

(1)h

(1)m

(1)m

(1)h

(2)h

Figure 2: The dashed block encloses the internal steps of soft edge assignment (SEA), which is edge
partitioning per se. For each edge, we search for the node-community affiliation of its endpoints
and compute the latent interactions of these two nodes in all K hidden communities, then use them
to compute the partitioned weights. We embody the hidden structures of the communities with the
partitioned graphs, and use them as the raw inputs to learn community-specific graph embeddings.

distribution with rate M̃
(k)
uv ; a latent connection in Ck will be established between u and v if they

interact for at least once, and the edge (u, v) can be observed if the latent connection is established in
at least one community. Assuming that the communities are mutually independent, we further derive

Auv = 1(Muv > 0), Muv ∼ Poisson(M̃(1)
uv + M̃(2)

uv + · · ·+ M̃(K)
uv), u, v ∈ [1, N], u ̸= v, (2)

as an equivalence to Equation (1). The reformulation explains the formation of edges as a result
of accumulating latent node interactions over multiple hidden communities. In practice, to avoid
densely parameterizing the edge generation process, each of {M̃(k)}k=1,K is modeled by a rank-
d nonnegative matrix factorization (Yang & Leskovec, 2013; Zhou, 2015), i.e., M̃(k) = Z(k) ·
Z(k)⊺ ,Z(k) ∈ RN×d

+ . If d = 1, Z(k) can be interpreted as the affiliation strengths of all nodes to
community Ck; if d > 1, Z(k)

u· would be the affiliation strengths of node u to the d sub-communities
that are belonged to metacommunity Ck. d is by default set to one except being specified otherwise.

3.2 EDGE-PARTITION-INDUCED COMMUNITY-WISE INFORMATION ENCODING

In general, to analyze graph information with regard to one type of relation in a multi-relational graph,
a critical step is to isolate the edges indicating such relation from the rest of edges (Schlichtkrull et al.,
2018; Vashishth et al., 2020). Likewise, when capturing the information on a specific community, we
focus on identifying the pairs of nodes which are connected owing to their intense interactions in this
community. In CLEP, such goal is achieved by soft edge assignment (denoted by SEA), i.e.,

A(k)
uv = SEA(Auv, k, {M̃(k)

uv }k=1,K) := Auv ·
exp(M̃

(k)
uv /τSEA)∑K

k′=1 exp(M̃
(k′)
uv /τSEA)

, k ∈ [1,K]. (3)

Applying Equation (3) to all pairs of nodes yields weighted adjacency matrices {A(k)}Kk=1, with
A(k) corresponding to hidden community Ck. τSEA is a positive temperature (Hinton et al., 2015)
that controls the concentration of the partitioned weights. Setting τSEA close to zero would drive
{A(k)}Kk=1 towards binary matrices with little overlap on edges, which would highlight the structural
difference among the hidden communities. Intuitively, it would encourage extracting the information
on the aspects that are unique to each community. Contrariwise, assigning a large value to τSEA

would suppress the expression on the differences between the communities.

With the crude relational structural information for all hidden communities embodied by
{A(k)}k=1,K , we can further refine it by an array of GNN-based graph encoders and obtaining
community-specific graph embeddings, i.e., h(k) = h

(k)
G (A(k),X), k ∈ [1,K]. We use the collection

of all the community-specific embeddings, i.e., [h(1),h(2), · · · ,h(K)] as the overall graph represen-
tation for downstream tasks, which has a comprehensive coverage on the information from all hidden
communities. A graphic illustration on the computation details of soft edge assignment (SEA) and
community-wise information encoding is given in Figure 2.

4

Under review as a conference paper at ICLR 2023

3.3 THE LATENT FACTOR CONTRASTIVE LEARNING MODEL

The statistical problem of fitting CLEP is defined upon mini-batches. Let us denote a generic
graph batch as B = {Gi := (Xi,Ai)}i=1,|B|, which is uniformly sampled from the data population.
Like many other GCL methods (You et al., 2020; 2021), for any G ∈ B, we augment it into two
views G′ = (A′,X′) and G′′ = (A′′,X′′) via perturbations T ′ and T ′′. Recalling the probabilistic
interpretation of GCL as given in Section 2, the ultimate optimization problem can be defined as

max
θ

EB
∑|B|

i=1
log pθ(i |Ai,Xi), (4)

where i is the in-batch ID of graph Gi, which serves as the surrogate label of Gi in the in-batch
instance discrimination task. Unlike previous works (You et al., 2020; 2021; 2022) that directly
model the probability pθ(i |Ai,Xi), we take the influence of latent communities into consideration
and define the conditional probability pθ(i | {Z(k)

i }k=1,K ,Ai,Xi) instead, i.e.,

pθ(i | {Z(k)
i }k=1,K ,Ai,Xi) =

∑K

k=1
p
(k)
i · p(k)θ (i | {Z(k)

i }k=1,K ,Ai,Xi), (5)

where p(k)θ (i | {Z(k)
i }k=1,K ,Ai,Xi) is the contrastive loss on Gi that is computed with graph em-

beddings specified to community Ck, and p
(1)
i , p

(2)
i , · · · , p(K)

i collectively measure the relative
“importance” of each community to graph Gi, subject to the constraint that

∑K
k=1 p

(k)
i = 1.

A series of variables are computed in the way as suggested in Figure 1 to facilitate the elab-
oration on our model. hi = hG(Ai,Xi) is a global embedding for the original graph, Gi.
The edges of the augmented graphs are soft-assigned to the K communities, i.e., A

′(k)
i =

SEA(A′
i, k, {Z

(k)
i ·Z

(k)⊺

i }k=1,K), A′′(k)
i = SEA(A′′

i , k, {Z
(k)
i ·Z

(k)⊺

i }k=1,K); with the partitioned
edges, community-specific embeddings of G′i and G′′i can be obtained via h

′(k)
i = h

(k)
G (A

′(k)
i ,X′

i)

and h
′′(k)
i = h

(k)
G (A

′′(k)
i ,X′′

i); they are further projected to {f ′(k)i }k=1,K and {f ′′(k)i }k=1,K by a

group of MLPs, i.e., f ′(k)i = m(k)(h
′(k)
i) and f

′′(k)
i = m(k)(h

′′(k)
i), for k = 1, 2, · · · ,K.

With these variables readily available, we specify the quantities in Equation (5) as follows:

p
(k)
θ (i | {Z(k)

i }k=1,K ,Ai,Xi) =
exp

(
sim(f

′(k)
i , f

′′(k)
i)/τ

)∑|B|
j=1 exp

(
sim(f

′(k)
i , f

′′(k)
j)/τ

) , (6)

p
(k)
i =

exp
(
ψ(hi,h

′(k)
i)

)∑K
k′=1 exp

(
ψ(hi,h

′(k′)
i)

) , k ∈ [1,K], (7)

where ψ(·, ·) measures the similarity between the graph embeddings.

3.4 THE TRAINING ALGORITHM OF CLEP

We set the prior distributions of the latent variables, namely P (Z(1)
i), P (Z

(2)
i), · · · , P (Z(K)

i), as

Z
(k)
i,u

iid∼ Gamma(α, β), k ∈ [1,K], u ∈ [1, Ni], i ∈ [1, |B|], (8)

where α, β are the shape and rate parameters. Although Equations (5) to (7) compute the conditional
probability pθ(i | {Z(k)

i }k=1,K ,Ai,Xi), the corresponding density function does not have an analyti-
cal expression, hence the true posteriors of {Z(k)

i }k=1,K cannot be explicitly defined, which prohibits
direct optimization of the log-likelihood in Equation (4) via Expectation-Maximization (Dempster
et al., 1977). Instead, we model {Z(k)}k=1,K by a set of variational distributions {Qϕ(Z

(1)
i)}k=1,K ,

and maximizing the evidence lower bound, defined as

Lelbo = EB

[∑|B|

i=1
EZi∼Qϕ(Zi) log pθ(i |Zi,Ai,Xi)−DKL(Qϕ(Zi) ∥P (Zi |Ai,Xi))

]
. (9)

Here we use Zi to denote [Z
(1)
i ,Z

(2)
i , · · · ,Z(K)

i] to avoid clutter of notations. The negative KL
divergence term can be further expanded as EZi∼Qϕ(Zi) log p(Ai |Zi)−DKL(Qϕ(Zi) ∥P (Zi))−

5

Under review as a conference paper at ICLR 2023

log p(Ai). Dropping the constant log p(Ai) from Equation (9) yields the final objective of CLEP,

LCLEP = EB
∑|B|

i=1
ℓi,

ℓi = EZi∼Qϕ(Zi)

[
log pθ(i |Zi,Ai,Xi) + log p(Ai |Zi)

]
−DKL(Qϕ(Zi) ∥P (Zi)).

(10)

We define Qϕ(Z
(k)
i) as Weibull(Z

(k)
i |Λ

(k)
i ,K

(k)
i), where Λ

(k)
i ,K

(k)
i are the matrix form of scales

and shapes. Z(k)
i can be sampled via computing the following inverse cumulative density function:

Z
(k)
i,u = λ

(k)
i,u (− log(1− ϵ(k)i,u))

1/κ
(k)
i,u , ϵ(k)u

iid∼ Uniform(0, 1), u ∈ [1, N], k ∈ [1,K]. (11)

The shapes and scales are modeled by an amortized function, i.e., [Λi,Ki] = hV(X,A), where
Λi := [Λ

(1)
i ,Λ

(2)
i , · · · ,Λ(K)

i] and Ki := [K
(1)
i ,K

(2)
i , · · · ,K(K)

i]. With Qϕ(Zi) being a Weibull
distribution and P (Zi) being a Gamma distribution, their KL divergence, i.e., DKL(Qϕ(Zi) ∥P (Zi))
can be explicitly expressed as in Zhang et al. (2018):

DKL(Qϕ(Zi) ∥P (Zi)) =
∑K

k=1

∑Ni

u=1
DKL(Qϕ(Z

(k)
i,u) ∥P (Z

(k)
i,u)),

DKL(Qϕ(Z
(k)
i,u) ∥P (Z

(k)
i,u)) = −α log λ

(k)
i,u +

γα

κ
(k)
i,u

+ log κ
(k)
i,u + βλ

(k)
i,uΓ

(
1 +

1

κ
(k)
i,u

)
− γ − 1− α lnβ + log Γ(α),

(12)

where γ ≈ 0.5772 is the Euler constant. Maximizing Equation (10) with respect to parameters (θ,ϕ)
would train CLEP. After that, we sample {Z(k)}k=1,K from the well-tuned variational distribution,
computing the latent node interactions in each hidden community by M̃(k) = Z(k) ·Z(k)⊺ , k ∈ [1,K],
then perform the operations in Section 3.2 to obtain the graph embeddings for downstream tasks.

4 OTHER RELATED WORK

Matrix-factorization-based graph generative models. A well-established way to build up the
stochastic process that generates the adjacency matrix of an observed graph is by low-rank matrix
factorization. The seminal idea can be traced back to the stochastic block model (SBM) (Holland
et al., 1983), where the latent variables to infer are the assignments of nodes to some latent factors, i.e.,
communities. SBM models the pairwise node interactions by the dot-product of the node-community
assignment matrix and its transpose, which further generate the edges. SBM prohibits nodes to be
affiliated with multiple communities, so the latent assignment factors associated with each node are
restricted to be one-hot. Such constraint is later relaxed by various extensions of SBM (Airoldi et al.,
2008; Miller et al., 2009; Yang & Leskovec, 2012; 2013; 2014; Zhou, 2015; Sun et al., 2019) that
permit communities to have overlapped membership. CLEP is closely related to these methods in
terms of defining the graph generation process, and the representations obtained by both CLEP and
these methods are about the information on these hidden communities. The major difference is that
we adopt contrastive learning techniques to embed community-specific information, which brings us
immense advantage over these latent factor graph generative models in representation quality.

Modeling multi-relational data. Retrieving information from multi-relational data has been exten-
sively studied in the literature of embedding knowledge graphs (Schlichtkrull et al., 2018; Vashishth
et al., 2020). Different relation types are expressed by edge labels, which are usually provided as a
part of the groundtruth information. A consensus of these models is that different relations should
be separately modeled, which is in general carried out by factorizing the graph by edge type, then
individually modeling the information on each graph factor that only contain one type of edges.
In a similar way, edges in the graph that CLEP deals with are also inherently different with each
other in terms of the “major contributor” of their generation, i.e., the community that contributes
the most of the interactions, which creates a special case of multi-relational graph. We hence adopt
a similar high-level representation pipeline that contains both graph factorization and factor-wise
representation learning. However, the necessary information to perform graph factorization is not
observable, thus we express it with a set of latent variables and infer them via variational inference.

Disentangled graph learning. Isolating the structure of each community from the entire graph then
modeling each isolated sub-structure with a customized model relates CLEP to disentangled graph

6

Under review as a conference paper at ICLR 2023

Table 1: Comparison of graph classification performance, results are reported in the format “average accuracy
± standard error”. “A.R.” stands for average ranking.

Method MUTAG PTC MR PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K A.R.↓
SP 85.2 ± 2.4 58.2 ± 2.4 75.1 ± 0.5 73.0 ± 0.2 55.6 ± 0.2 38.0 ± 0.3 64.1 ± 0.1 39.6 ± 0.2 10.4
GK 81.7 ± 2.1 57.3 ± 1.4 71.7 ± 0.6 62.3 ± 0.3 65.9 ± 1.0 43.9 ± 0.4 77.3 ± 0.2 41.0 ± 0.2 11.1
WL 80.7 ± 3.0 58.0 ± 0.5 72.9 ± 0.6 80.0 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 68.8 ± 0.4 46.1 ± 0.2 9.1

DGK 87.4 ± 2.7 60.1 ± 2.6 73.3 ± 0.8 80.3 ± 0.5 67.0 ± 0.6 44.6 ± 0.5 78.0 ± 0.4 41.3 ± 0.2 7.3
MLG 87.9 ± 1.6 63.3 ± 1.5 76.1 ± 2.0 80.8 ± 1.3 66.6 ± 0.3 41.2 ± 0.0 - - 4.8

node2vec 72.6 ± 10.2 58.6 ± 8.0 57.5 ± 3.6 54.9 ± 1.6 - - - - 13.3
sub2vec 61.1 ± 15.8 60.0 ± 6.4 53.0 ± 5.6 52.8 ± 1.5 55.3 ± 1.5 36.7 ± 0.8 71.5 ± 0.4 36.7 ± 0.4 12.5

graph2vec 83.2 ± 9.3 60.2 ± 6.9 73.3 ± 2.1 73.2 ± 1.8 71.1 ± 0.5 50.4 ± 0.9 75.8 ± 1.0 47.9 ± 0.3 8.1
GAE 84.0 ± 0.6 - 74.1 ± 0.5 73.3 ± 0.6 52.1 ± 0.2 - 74.8 ± 0.2 37.6 ± 1.6 9.7

VGAE 84.4 ± 0.6 - 74.0 ± 0.5 73.7 ± 0.3 52.1 ± 0.2 - 74.8 ± 0.2 39.1 ± 1.6 9.3

InfoGraph 89.0 ± 1.1 61.7 ± 1.4 74.4 ± 0.3 76.2 ± 1.1 73.0 ± 0.9 49.7 ± 0.5 82.5 ± 1.4 53.5 ± 1.0 5.5
MVGRL 89.7 ± 1.1 62.5 ± 1.7 - - 74.2 ± 0.7 51.2 ± 0.5 84.5 ± 0.6 - 3.2
GraphCL 86.8 ± 1.3 63.6 ± 1.8 74.4 ± 0.5 77.9 ± 0.4 71.1 ± 0.4 50.7 ± 0.4 89.5 ± 0.8 56.0 ± 0.3 4.4

JOAO 87.7 ± 0.8 61.1 ± 1.7 74.6 ± 0.4 78.4 ± 0.5 70.8 ± 0.3 51.0 ± 0.5 86.4 ± 1.5 56.0 ± 0.3 4.5
LaGraph 90.2 ± 1.1 - 75.2 ± 0.4 79.9 ± 0.5 73.7 ± 0.9 - 90.4 ± 0.8 56.4 ± 0.4 2.2

CLEP 91.2 ± 0.8 65.1 ± 1.2 76.4 ± 0.4 78.5 ± 0.4 75.6 ± 0.4 52.0 ± 0.3 87.3 ± 0.5 56.4 ± 0.3 1.8

(a) MUTAG, accuracy-K (b) PROTEINS, accuracy-K (c) IMDB-B, accuracy-K

(d) MUTAG, accuracy-τSEA (e) PROTEINS, accuracy-τSEA (f) IMDB-B, accuracy-τSEA

Figure 3: Task performance with graph embeddings trained with alternative choices of K and τSEA,
errorbar is set to “± standard error”. The red dotted line indicates the performance of GraphCL.

learning (Ma et al., 2019; Yang et al., 2020). In general, the effectiveness of such model design can
be explained by better modeling potentially heterogeneous information from different hidden factors,
and increased flexibility in terms of the utilization of the information associated with each factor. To
make hidden factors more interpretable, this line of work also introduces graph factorization into
their frameworks. The major difference between CLEP and disentangle-oriented methods is that the
graph factorization in the latter is mostly based on a downstream task, whereas in CLEP, it is based
on both graph generation and the pretext contrastive learning task.

5 EXPERIMENTS

5.1 EMPIRICAL EVALUATION

Unsupervised learning. We first examine the quality of the representation learned by only opti-
mizing Equation (10). 8 widely adopted real-world benchmarks are selected for this evaluation
task, including 4 biochemical graph datasets (MUTAG, PTC MR, PROTEINS, and NCI1) and 4

7

Under review as a conference paper at ICLR 2023

social network datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and REDDIT-MULTI).
We compare CLEP against three groups of baselines: (i) graph kernel methods, including Shortest
Path Kernel (SP) (Borgwardt & Kriegel, 2005), Graphlet Kernel (GK) (Shervashidze et al., 2009),
Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011), Deep Graph Kernels (DGK)
Yanardag & Vishwanathan (2015), and Multi-Scale Laplacian Kernel (MLG) (Kondor & Pan, 2016);
(ii) traditional graph representation learning methods, including node2vec (Grover & Leskovec,
2016), sub2vec (Adhikari et al., 2018), graph2vec (Narayanan et al., 2017), GAE and VGAE (Kipf &
Welling, 2016); and (iii) recent state-of-the-arts, including InfoGraph (Sun et al., 2020), MVGRL
(Hassani & Khasahmadi, 2020), GraphCL (You et al., 2020), JOAO (You et al., 2021) and LaGraph
(Xie et al., 2022). We align most of the hyperparameters with You et al. (2020); forK, i.e., the number
of communities, and τSEA), i.e., the temperature of soft edge assignment, we search (K, τSEA) across
the grid of {2, 4, 8} × {0.1, 1, 10} at the evaluation time through cross-validation. The obtained
embeddings are evaluated following You et al. (2020).

66.5

71.6
72.8

69.3

75.1 76.1

5% 10% 20%
Label Rate

50

55

60

65

70

75

80

85

R
O

C
-A

UC

GraphCL
CLEP

Figure 4: The comparison of clas-
sification performance (ROC-AUC)
on ogbg-molhiv dataset under the set-
ting of self-supervised learning.

We list the results under comparison in Table 1. CLEP has
achieved state-of-the-art results on 6 out of 8 benchmarks, and
has the best average ranking among all algorithms under compar-
ison. On IMDB-BINARY and IMDB-MULTI, CLEP surpasses
the second-best baseline by 1.4% and 0.8%, with both exceed-
ing two standard errors; on MUTAG and PTC MR, CLEP beats
the second place model by 1% and 1.5%, with both exceeding
one standard error, indicating a significant improvement to other
competitive baselines. CLEP is implemented based on GraphCL,
the only difference between CLEP and GraphCL is that the latter
does not systematically model the information specified to the
hidden communities. When comparing CLEP with GraphCL, the
advantage of learning from diverse hidden communities appears
to be quite evident, i.e., CLEP outperforms GraphCL by more
than one standard deviation on 7 out of 8 benchmarks, at the
evaluations on MUTAG, PROTEINS, IMDB-BINARY and IMDB-MULTI, the results obtained by
CLEP are higher than those of GraphCL by more than two standard errors. These results demonstrate
that capturing the information from hidden communities is beneficial for representation learning, and
the way that CLEP expresses and encodes the information on each hidden community is effective.

Semi-supervised learning. Besides the common setting of unsupervised learning, we compare the
developed CLEP with the strong self-supervised baseline, specifically GraphCL (You et al., 2020),
under the semi-supervised setting. As shown in Fig. 4, with the learned graph representations on the
ogbg-molhiv dataset from Open Graph Benchmark (Hu et al., 2020), we conduct fine-tuning on the
partially labeled data, where the settings of label rates are 5%, 10% and 20% respectively, and then
evaluate these graph representations on the validation/test sets with binary classification measured
by ROC-AUC metric. From the results, we can find that the performance of both methods tends to
improve with the increase of the label rate, and our method CLEP achieves significant performance
improvement over GraphCL with 2.8%, 3.5%, and 3.3% performance gains by setting the label rate
as 5%, 10% and 20% respectively. These results further demonstrate that our CLEP can provide more
expressive graph representations even when handling large-scale graph in a semi-supervised manner,
benefiting from capturing the information from hidden communities.

5.2 ABLATION STUDY

Compared with its base model GraphCL, two hyperparameters, namely K, the number of commu-
nities, and τSEA, the edge partition temperature, are unique to CLEP. The influence of adjusting K
or τSEA is shown in Figure 3. In general, within a reasonable range of hyperparameter variation,
CLEP outperforms GraphCL most of the time, which shows the consistency of the performance
improvement we have achieved against our base model. The optimal values for K appear to be
around 2 to 4, and τSEA not greater than 1. When setting K = 1, CLEP degenerates to GraphCL,
which explains the comparable performances of CLEP and GraphCL; and due to the small size of
these graphs, the number of meaningful communities is expected not to be large. As for the selection
of τSEA, a large value would drive edge partition towards an even partition, leading to a result that
the inputs to all community-specific graph encoders are approximately the same as the original graph,

8

Under review as a conference paper at ICLR 2023

Table 2: Performance on the downstream task, with (w/) and without (w/o) community selection.

MUTAG PTC MR PROTEINS IMDB-BINARY
w/ community selection 91.4 ± 1.5 68.1 ± 1.3 75.7 ± 0.4 75.4 ± 0.4
w/o community selection 90.3 ± 1.2 67.7 ± 1.4 75.4 ± 0.5 75.0 ± 0.2

(a) PROTEINS (b) MUTAG (c) NCI1

Figure 5: t-SNE visualization of the community-specific representations learned on some benchmarks.

hence in this scenario, CLEP is analogous to an aggregation of K runs of GraphCL, which cannot
effectively improve the quality of the graph embeddings.

5.3 EXPLORATORY STUDIES

Shown in Figure 5 are the t-SNE plots of the community-specific graph embeddings obtained from
MUTAG, PROTEINS, and NCI1. We color-code the embeddings learned from different communities.
From Figure 5 we can observe that points sharing the same color are concentrated at different
locations. We interpret the general location of a cluster of colored points as the information “biases”
that are related to the nature of the corresponding community category, and the variation across
the points in the cluster as the uniqueness of each individual graph. So the spatial clustering of the
colored points is a positive sign that CLEP captures community-specific information.

We further investigate how such property of CLEP can be leveraged to benefit downstream tasks. We
are interested in the situations where not all communities are needed for the task, i.e., some may be
closely related to and can provide crucial information for the task, while the others may be loosely
related to the task or even worse, producing more noise than information. The advantage of CLEP
is that it organizes the information by communities, which enables the users to actively select &
combine the information for different tasks. Intuitively, correctly identifying the “noisy” communities
and dropping them from the overall information pool may increase the signal-to-noise ratio of the
input information, thus is beneficial for the downstream tasks.

To illustrate the point, we conduct the following experiment on MUTAG, PTC MR, PROTEINS and
IMDB-BINARY. Each dataset is split into 10 folds, with one for validating, one for testing, and the
remainder for training. For each benchmark, we fit two logistic classification models, one takes all
community-specific embeddings as inputs, and another selects the embeddings by community via
cross-validation. The experimental results, as recorded in Table 2, show that community selection
results in a consistent improvement to the downstream task. Results in this experiment demonstrate
the flexibility of the usage of the graph representations learned by CLEP.

6 CONCLUSIONS

In this work, we propose a probabilistic contrastive learning framework called contrastive learning
with edge partitioning (CLEP). CLEP combines the strengths of graph generative models and graph
contrastie learing methods by assigning them different duties that they are adept in, i.e., the graph
generative models extracts the hidden communities and thus augments the total amount of information
on a graph, and the graph contrastie learning methods are used to convert these hidden structures
to high-quality graph embeddings. The empirical evaluation on real-world datasets demonstrate the
superiority of the graph representations learned by CLEP. Besides, CLEP organizes the learned graph
information by communities, which creates higher flexibility in embedding selection & combining
schemes when facing potentially different downstream tasks, which enhances the versatility of CLEP.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
for subgraphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 170–182.
Springer, 2018.

Edo M Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic
blockmodels. In Advances in Neural Information Processing Systems (NeurIPS), volume 21, 2008.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning
(ICML), pp. 1597–1607. PMLR, 2020.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems (NeurIPS), 30, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning (ICML), pp. 4116–4126. PMLR, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems, 2020.

Rodolphe Jenatton, Nicolas Roux, Antoine Bordes, and Guillaume R Obozinski. A latent factor model
for highly multi-relational data. Advances in neural information processing systems (NeurIPS), 25,
2012.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Risi Kondor and Horace Pan. The multiscale laplacian graph kernel. Advances in neural information
processing systems (NeurIPS), 29, 2016.

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. Disentangled graph convolutional
networks. In International Conference on Machine Learning (ICML), pp. 4212–4221, 2019.

Nikhil Mehta, Lawrence Carin, and Piyush Rai. Stochastic blockmodels meet graph neural networks.
In International Conference on Machine Learning (ICML), pp. 4466–4474. PMLR, 2019.

Kurt Miller, Michael Jordan, and Thomas Griffiths. Nonparametric latent feature models for link
prediction. Advances in neural information processing systems (NeurIPS), 22, 2009.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

10

Under review as a conference paper at ICLR 2023

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference (ESWC), pp. 593–607. Springer, 2018.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In International Conference on Artificial
Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, pp. 488–495,
2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems (NeurIPS), 29, 2016.

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang. vgraph: A generative
model for joint community detection and node representation learning. Advances in Neural
Information Processing Systems (NeurIPS), 32, 2019.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In Interna-
tional Conference on Learning Representations (ICLR), 2020.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In International Conference on Learning Representations
(ICLR), 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

Chaojie Wang, Hao Zhang, Bo Chen, Dongsheng Wang, Zhengjue Wang, and Mingyuan Zhou. Deep
relational topic modeling via graph poisson gamma belief network. volume 33, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), pp. 3733–3742, 2018.

Yaochen Xie, Zhao Xu, and Shuiwang Ji. Self-supervised representation learning via latent graph
prediction. In International conference on machine learning (ICML), pp. 24460–24477. PMLR,
2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining (KDD), pp. 1365–1374,
2015.

Jaewon Yang and Jure Leskovec. Community-affiliation graph model for overlapping network
community detection. In 2012 IEEE 12th international conference on data mining, pp. 1170–1175.
IEEE, 2012.

Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: a nonnegative matrix
factorization approach. In Proceedings of the sixth ACM international conference on Web search
and data mining (WSDM), pp. 587–596, 2013.

Jaewon Yang and Jure Leskovec. Structure and overlaps of ground-truth communities in networks.
ACM Trans. Intell. Syst. Technol., 5(2), 2014.

11

Under review as a conference paper at ICLR 2023

Yiding Yang, Zunlei Feng, Mingli Song, and Xinchao Wang. Factorizable graph convolutional
networks. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp.
20286–20296, 2020.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In International Conference on Machine Learning (ICML), pp. 12121–12132. PMLR, 2021.

Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. Bringing your own view: Graph
contrastive learning without prefabricated data augmentations. In ACM International Conference
on Web Search and Data Mining (WSDM), 2022.

Hao Zhang, Bo Chen, Dandan Guo, and Mingyuan Zhou. WHAI: Weibull hybrid autoencoding
inference for deep topic modeling. In International Conference on Learning Representations
(ICLR), 2018.

Mingyuan Zhou. Infinite edge partition models for overlapping community detection and link predic-
tion. In International Conference on Artificial Intelligence and Statistics (AISTATS), volume 38 of
Proceedings of Machine Learning Research, pp. 1135–1143, 2015.

12

	Introduction
	Preliminaries
	CLEP: Contrastive Learning with Edge Partitioning
	Latent node interaction and edge generation
	Edge-partition-induced community-wise information encoding
	The latent factor contrastive learning model
	The training algorithm of CLEP

	Other Related Work
	Experiments
	Empirical Evaluation
	Ablation Study
	Exploratory studies

	Conclusions
	Learning and obtaining graph embeddings with CLEP
	More Ablation Studies

