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Abstract001

While coreference resolution is attracting more002
interest than ever from computational litera-003
ture researchers, representative datasets of fully004
annotated long documents remain surprisingly005
scarce. In this paper, we introduce a new anno-006
tated corpus of three full-length French novels,007
totaling over 285,000 tokens. Unlike previous008
datasets focused on shorter texts, our corpus ad-009
dresses the challenges posed by long, complex010
literary works, enabling evaluation of corefer-011
ence models in the context of long reference012
chains. We present a modular coreference reso-013
lution pipeline that allows for fine-grained error014
analysis. We show that our approach is com-015
petitive models and scales effectively to long016
documents. Finally, we demonstrate its useful-017
ness to infer the gender of fictional characters,018
showcasing its relevance for both literary anal-019
ysis and downstream NLP tasks.020

1 Introduction021

Coreference Resolution (CR)—the task of identi-022

fying and grouping textual mentions that refer to023

the same entity (e.g., a person, an organization, a024

place)—is a fundamental component of natural lan-025

guage processing (NLP). It underpins downstream026

applications such as information extraction (Yao027

et al., 2019), text summarization (Liu et al., 2021),028

and machine translation (Vu et al., 2024). Over the029

past decades, significant progress has been made030

in CR, evolving from rule-based multi-sieve sys-031

tems to end-to-end neural models, encoder-decoder032

architectures, and large language models based033

approaches, all contributing to improvements on034

benchmark datasets (Porada et al., 2024).035

These models have long been trained and evalu-036

ated solely on generic datasets such as OntoNotes037

(Hovy et al., 2006). As CR drew attention in other038

fields, it became evident that models trained on039

general datasets underperformed when applied to040

domain-specific tasks. To address this flaw, dedi-041

cated datasets have been developed, covering areas042

such as biomedical (Lu and Poesio, 2021) and en- 043

cyclopedic data (Ghaddar and Langlais, 2016). 044

Driven by the availability of extensive digitized 045

collections, literary texts have emerged as a key 046

subject of digital humanities (Moretti, 2013). A 047

large part of such research focuses on characters, 048

considered a fundamental aspect of fiction works. 049

The study of characters is essential for analyzing 050

narrative structures, plot development or conduct- 051

ing diachronic studies. CR is crucial for applica- 052

tions such as quote attribution (Vishnubhotla et al., 053

2023), character archetypes inference (Bamman 054

et al., 2014), and social networks extraction (Elson 055

et al., 2010). Additionally, it has been employed to 056

study the representation and behavior of characters 057

according to their gender (van Zundert et al., 2023). 058

As outlined by Roesiger et al. (2018), literary 059

texts present unique challenges for CR, including 060

character evolution throughout the narrative and 061

the prevalence of dialogues involving multiple par- 062

ticipants. They also contain a high proportion of 063

pronouns and nested mentions. Complex narrative 064

structures—such as letters, flashbacks, and sudden 065

narrator interventions—further complicate the task. 066

Additionally, authors often rely on readers’ contex- 067

tual understanding rather than explicit statements, 068

creating ambiguities when linking mentions. 069

To address these challenges, annotated datasets 070

have been developed, covering multiple languages 071

and genres, from classical novels and fantasy tales 072

to contemporary literature. These resources en- 073

able training and evaluating in-domain coreference 074

resolution models, leading to steady performance 075

improvements (Martinelli et al., 2024). Despite vis- 076

ible progress on benchmarks, current state-of-the- 077

art CR models still struggle with full-scale literary 078

texts, limiting usefulness for downstream applica- 079

tions (Vishnubhotla et al., 2023). 080

A key factor contributing to this limitation lies 081

in the scarcity of fully annotated long documents. 082

Most existing datasets consist of short excerpts or 083
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relatively brief texts. Since coreference annotation084

is labor-intensive and costly, there exists a trade-085

off between annotating a larger number of short086

documents or a smaller number of long ones.087

We argue that the lack of representative datasets088

for long literary texts is a major obstacle to effec-089

tively scaling CR models. This work aims to bridge090

this gap, and our contributions are as follows:091

• an annotated dataset of character coreference for092

three full-length French novels spanning three093

centuries, showcasing the feasibility of combin-094

ing automatic mention detection with manual095

coreference annotation.096

• A modular CR pipeline scalable to long docu-097

ments, enabling fine-grained error analysis and098

achieving competitive performance on bench-099

mark dataset.100

• A comprehensive study of the impact of docu-101

ment length on CR performance.102

• A case study on character gender inference using103

CR models.1104

2 Related Work105

2.1 Coreference Models106

Coreference resolution has undergone several107

paradigm shifts (Poesio et al., 2023), evolving from108

rule-based, linguistically informed models tested109

on limited examples to data-driven statistical ap-110

proaches enabled by the creation of large annotated111

datasets such as those from the Message Under-112

standing Conference (MUC) and the Automatic113

Content Extraction (ACE) shared tasks (Grishman114

and Sundheim, 1995; Doddington et al., 2004).115

The adoption of neural network-based models,116

beginning with Wiseman et al. (2015), marked sig-117

nificant progress. The introduction of end-to-end118

models by Lee et al. (2017, 2018), further advanced119

CR by jointly detecting mention spans and resolv-120

ing coreference, eliminating the need for external121

parsers and handcrafted mention detection mod-122

els. Building on this foundation, higher-order infer-123

ence (HOI) strategies and entity-level models were124

developed to refine entity representations during125

inference and leverage cluster-level information.126

However, as highlighted by Xu and Choi (2020),127

the performance gains from these strategies have128

1All code and data will be made publicly available. The
trained models will be directly usable for downstream applica-
tions through the open-source ANONYMIZED Python library.

been marginal compared to the substantial improve- 129

ments achieved by the use of more powerful en- 130

coders like ELMo, BERT and DeBERTaV3. 131

Alternative approaches using encoder-decoder 132

architectures and large language models have been 133

proposed, framing CR as sequence-to-sequence 134

(Hicke and Mimno, 2024) or question-answering 135

(Wu et al., 2020; Gan et al., 2024) tasks. While 136

showing promising results, these methods are com- 137

putationally intensive and do not scale efficiently to 138

long documents or resource-constrained scenarios. 139

Ultimately, the development and evaluation of 140

CR models remain deeply tied to the availability 141

of annotated datasets, which continue to drive the 142

direction of research in this field. 143

2.2 Existing Datasets 144

While MUC and ACE laid the foundation for coref- 145

erence datasets, OntoNotes has since become the 146

primary benchmark for CR. Published in 2006 147

(Hovy et al.) and regularly updated, OntoNotes 148

has been used in the CoNLL shared tasks (Pradhan 149

et al., 2011, 2012). Its latest version (Weischedel 150

et al., 2013) spans multiple languages (English, 151

Chinese and Arabic), and genres, including conver- 152

sations, news, web, and religious texts. The English 153

part contains 1.6M tokens across 3,943 documents, 154

averaging 467 tokens per document. OntoNotes 155

does not contains singleton mentions—those that 156

do not corefer with any other mention. 157

The growing interest for large literature corpora 158

has driven the development of dedicated annotated 159

datasets. The late 2010s saw the emergence of the 160

first literary CR datasets, beginning with DROC 161

(Krug et al., 2018), including samples from 90 162

German novels annotated with character corefer- 163

ence chains. With over 393,000 tokens (averaging 164

4,368 tokens per document), DROC remains the 165

largest literary CR dataset to date. The RiddleCoref 166

dataset (van Cranenburgh, 2019) followed, cover- 167

ing excerpts from 21 contemporary Dutch novels, 168

though it is not publicly available due to copyright 169

restrictions. Bamman et al. (2020) released Lit- 170

Bank, consisting of the first 2,000 tokens from 100 171

English novels. This dataset covers six entity cat- 172

egories (persons, faculties, locations, geopolitical, 173

organizations and vehicles). Other datasets include 174

FantasyCoref (Han et al., 2021), KoConovel cover- 175

ing 50 full-length Korean short stories (Kim et al., 176

2024), and LitBank-fr (Mélanie et al., 2024). This 177

last dataset is noteworthy in that it covers longer 178

excerpts of text—averaging 9,834 tokens and up to 179
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Lang. Domain Doc. Tokens Tokens / Doc.
Avg. Max.

Annotated Datasets
OntoNotesen (Weischedel et al., 2013) English Non-literary 3,493 1,600,000 467 4,009
DROC (Krug et al., 2018) German Fiction 90 393,164 4,368 15,718
RiddleCoref (van Cranenburgh, 2019) Dutch Fiction 21 107,143 5,102 -
LitBank (Bamman et al., 2020) English Fiction 100 210,532 2,105 3,419
FantasyCoref (Han et al., 2021) English Fantasy 214 367,891 1,719 13,471
KoCoNovel (Kim et al., 2024) Korean Fiction 50 178,000 3,578 19,875
LitBank-fr (Mélanie et al., 2024) French Fiction 28 275,360 9,834 30,987
Target Datasets
Standard Ebooks2 English Fiction 770 82,855,210 107,604 1,105,964
Chapitres (Leblond, 2022) French Fiction 2,960 240,971,614 81,409 878,645
Contribution
Ours French Fiction 3 285,176 95,058 115,415

Table 1: Comparison of coreference annotation datasets: OntoNotes (English section), fiction datasets, and target
datasets across languages.

30,987 for the longest document.180

Despite these resources, extrinsic evaluations re-181

veal that CR models perform poorly on full-length182

documents (van Zundert et al., 2023). Studies con-183

sistently show that performance degrades with in-184

creasing document length (Joshi et al., 2019; Tosh-185

niwal et al., 2020; Shridhar et al., 2023). This repre-186

sents a major challenge given that practical applica-187

tions involve digitized collections such as Project188

Gutenberg or Wikisource, where documents fre-189

quently exceed 90,000 tokens and can reach up to190

a million as illustrated in Table 1.191

While some initiatives annotate entire books,192

they often diverge from standard guidelines. He193

et al. (2013) annotated Pride and Prejudice but194

focused solely on proper mentions. Similarly,195

van Zundert et al. (2023) labeled character aliases196

across 170 novels, omitting pronouns and noun197

phrases. Other datasets, such as QuoteLi3 (Muzny198

et al., 2017) and PNDC (Vishnubhotla et al., 2022),199

include coreference annotations for speakers and200

direct speech but lack broader character coverage.201

To the best of our knowledge, the only CR results202

reported on a document of substantial length (37k203

tokens) come from Guo et al. (2023), but they omit204

singletons, plural mentions, and nested entities.205

These observations underscore the need for an206

annotated corpus of full-length literary documents.207

Such a resource will enable more robust evaluation208

and improvement of CR models, addressing the gap209

between current datasets and intended applications.210

2standardebooks.org

3 New Dataset 211

We selected three average-length French novels 212

spanning three centuries, resulting in a total of 213

285,176 tokens. We chose to annotate coreference 214

for character mentions only for several reasons. 215

First, most downstream tasks in literary NLP focus 216

on characters. Second, previous work shows that 217

characters account for the majority of annotated 218

mentions—83.1% in LitBank. Restricting annota- 219

tions to character mentions allows us to leverage 220

the 31,570 mentions already annotated in LitBank- 221

fr to train an accurate mention detection model. 222

For consistency and interoperability, we adhere 223

to the annotation guidelines from Mélanie et al. 224

(2024). We annotate all mentions referring to a 225

character, including pronouns, nominal phrases, 226

proper nouns, singletons and nested entities. Coref- 227

erence links capture strict identity relations. 228

On [their]1 way to visit [John]2, [[my]3 parents]1 229

met [[Mrs. Smith]4 and [[her]4 husband]5]6. 230

This sentence illustrates some annotation princi- 231

ples: 232

• Mention types: pronoun (my), nominal phrase 233

(her husband), and proper noun (John); 234

• Nested entities, including third-level nesting 235

(e.g., her within Mrs. Smith and her husband); 236

• Plural mentions (their, my parents, Mrs. Smith 237

and her husband) are treated as distinct corefer- 238

ence chains separate from their individual com- 239

ponents; 240

• Singletons, such as John, are annotated even if 241

they are not referenced again. 242
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3.1 Mentions Detection Model243

While Mélanie et al. (2024) report strong results244

for mention detection, we opted to retrain our245

own model. Our approach builds on a stacked246

BiLSTM-CRF architecture inspired by Ju et al.247

(2018), leveraging contextual token embeddings248

from CamemBERTLARGE (Martin et al., 2020). We249

achieved an improvement of 4.99 in F1-score on250

the test set from LitBank-fr (Table 2). To assess251

generalization performance, we also conducted a252

leave-one-out cross-validation (LOOCV). Details253

of the model architecture and hyperparameters are254

available in the Appendix A.255

Model P R F1 Support
Mélanie et al.
(test set)

85.0 92.1 88.4 4,061

Ours (test set) 91.29 95.59 93.39 4,061
Ours (LOOCV) 90.72 93.52 92.05 31,570

Table 2: Mention detection performances.

Coreference annotation is usually carried out in256

two stages: annotating the mention spans, then link-257

ing mentions referring to the same entity together.258

Given our model’s 92.05 F1-score, we consider its259

performance sufficient to automate the first opera-260

tion, significantly reducing annotation time.261

3.2 Coreference Annotation262

Coreference annotation is performed manually,263

building on the automatically detected mentions.264

A single annotator reviews the text, assigns entity265

identifiers to each mention, corrects errors from the266

mention detection step, deleting spurious mentions,267

adding missed ones, and adjusting incorrect bound-268

aries. his process yield gold-standard annotations269

for both mentions and coreference chains.270

To assess annotation consistency, we double-271

annotated a sample from each of the three nov-272

els (5,000 tokens per text, 5% of the corpus).273

Inter-annotator agreement (IAA) was measured for274

mention spans (F1-score) and coreference chains275

(MUC, B3, and CEAFe). Results show high con-276

sistency: mention span F1-score of 97.47 (vs. 86.0277

in Bamman et al. (2019)), benefiting from our fo-278

cus on a single, well-defined entity type. Coref-279

erence agreement is also high: MUC 96.40, B3280

91.02, and CEAFe 71.65. The lower CEAFe re-281

flects differences in annotator decisions regarding282

long coreference chains and ambiguous cases such283

as plural entities leaving room for multiple valid284

interpretations. These results overall demonstrate285

the reliability and robustness of our annotations. 286

To perform annotation we use SACR, an open- 287

source, browser-based interface (Oberle, 2018). 288

This tool meets our requirements, allowing efficient 289

processing of long texts, tracking a large number 290

of entities and handling nested mentions. 291

Mention detection errors mainly involve diffi- 292

cult cases, such as nested and ambiguous mentions 293

(animals with agentivity, appositions, reflexive pro- 294

nouns) or other edge cases. It shows the feasibility 295

of leveraging automatic mention detection to accel- 296

erate coreference annotation. The manual annota- 297

tion of a 100k-token text takes around 40 hours. 298

3.3 Dataset Statistics 299

Table 3 summarizes statistics from our dataset. The 300

entity spread refers to the distance between the first 301

and the last mention of an entity (Toshniwal et al., 302

2020). This highlights a key specificity of literary 303

texts, characters can be referred to thousands times 304

over several hundred pages, comprising thousands 305

of tokens. 306

Average Mentions / Doc. 13,178
Singletons Ratio 1.15%
Coreference Chains / Doc. 159
Average Mentions / Chain 82
Maximum Mentions / Chain 4,932
Average Entity Spread (tokens) 17,529
Maximum Entity Spread (tokens) 115,369
Second-Level Nested Mentions 5.74%
Third-Level Nested Mentions 0.30%
Plural Mentions 8.13%

Table 3: Dataset statistics summary.

Another important metric for characterizing 307

coreference is the distance to the nearest antecedent 308

(Han et al., 2021). For each mention, we locate the 309

previous mention belonging to the same corefer- 310

ence chain and measure the difference in terms of 311

mention positions. Bamman et al. (2020) analyzed 312

the distribution of distance to nearest antecedent 313

for proper nouns, noun phrases and pronouns. We 314

replicate their experiment and report similar results. 315

While 95% of pronouns appear within 7 mentions 316

of their last antecedent, this distance reach up to 317

270 mentions for proper nouns and noun phrases. 318

This observation calls for distinct handling of pro- 319

nouns, common, and proper nouns during CR. The 320

the last 1% of proper and common noun mentions 321

exhibit a distance of over 1,700 mentions, present- 322

ing a significant challenge for CR. See Appendix 323

B for the full distribution of antecedent distances. 324
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3.4 Corpus Merging325

Since we followed the guidelines from Mélanie326

et al. (2024), the newly annotated dataset is fully327

compatible with the character annotations from the328

LitBank-fr dataset. It allows us to merge the two329

datasets, resulting in a combined dataset contain-330

ing 31 documents and 71,105 character mentions.331

This decision is motivated by the goal of evaluating332

generalization across a broader range of texts.333

This merged dataset becomes the largest anno-334

tated literary coreference dataset in terms of tokens335

(560,536), average document length (18,081 to-336

kens), and maximum document length (115,415337

tokens). Unless otherwise specified, all results pre-338

sented in this paper pertain to this merged corpus,339

which we refer to as Long-LitBank-fr.340

4 Coreference Resolution341

Several coreference resolution pipelines are avail-342

able off-the-shelf, such as the CoreferenceRe-343

solver module from Spacy3, Fastcoref (Otmazgin344

et al., 2022) and AllenNLP (Gardner et al., 2018).345

BookNLP (Bamman et al., 2020), is a pipeline346

performing, among other, mentions detection and347

coreference resolution for English. A French adap-348

tation, BookNLP-fr, was developed by Mélanie349

et al. (2024) and trained on the LitBank-fr dataset.350

The BookNLP pipelines implement an end-to-end351

coreference resolution model (Ju et al., 2018).352

Diverging from recent trends of end-to-end ar-353

chitectures, we propose to implement coreference354

resolution as a modular pipeline, facilitating the355

study of each component’s role and enabling fine-356

grained error analysis.357

Additionally, the use of compact, specialised358

models (∼15M and ∼11M parameters for mention359

detection and mention scoring models) is motivated360

by practical end-use considerations: the need to361

process large literary corpora under limited com-362

putational resources. This is further supported by363

recent critiques of the "bigger-is-better" trend in AI,364

arguing that simply increasing scale doesn’t always365

lead to better results. Instead, smaller, task-specific366

models have been shown to offer more sustain-367

able, transparent, and often competitive solutions368

for domain-specific applications (Varoquaux et al.,369

2025).370

3https://spacy.io/api/coref

4.1 Pipeline Description 371

Our mention-pair-based coreference resolution 372

pipeline is composed of the following modules: 373

Mention Detection: We employ the mention de- 374

tection module described in section 3.1, which 375

consists of a stacked BiLSTM-CRF architecture 376

using token-level embeddings from pretrained 377

CamemBERTLARGE model as input. We retrained 378

it on the merged corpus, achieving an increase of 379

2.82 points in F1-score (94.87). As mention de- 380

tection can impact overall CR performance, we 381

make it possible to bypass the errors introduced by 382

this module by using gold mentions as input to the 383

mention-pair encoder. 384

Considered Antecedents: To address the quadratic 385

complexity of considering all antecedents, re- 386

cent approaches introduce hyperparameters to uni- 387

formly limit the number of considered antecedents 388

(Thirukovalluru et al., 2021; Wu et al., 2020). In- 389

spired by Bamman et al. (2020) and supported by 390

our observations regarding antecedent distance, we 391

adopt a mention-type-specific approach. We limit 392

the number of antecedents to 30 for pronouns and 393

300 for proper and common nouns. 394

Mention Pair Encoder: Mention-pairs are en- 395

coded by concatenating the representations of the 396

two mentions with a feature vector that includes 397

attributes such as gender, grammatical person, and 398

the distance between the mentions. For multi-token 399

mentions, the representation is calculated as the av- 400

erage of the first and last tokens embeddings. 401

Mention Pair Scorer: Encoded mention-pairs are 402

passed into a feedforward neural network trained 403

to predict if two mentions refer to the same entity. 404

Details about the features, model architecture and 405

parameters are provided in the Appendix C. 406

Antecedent Ranker: Following Wiseman et al. 407

(2015), candidate antecedents are ranked accord- 408

ing to their predicted scores. During inference, the 409

highest-scoring antecedent is selected unless all 410

scores fall below 0.5, in which case the null an- 411

tecedent is assigned. 412

Entity Clustering: Default strategy for linking 413

mentions into clusters is to scan the document from 414

left to right, each new mention is either merged into 415

the cluster of its best-ranked antecedent or left as a 416

standalone entity. Coreference chains are defined 417

as the set of mentions in a cluster. 418

We explore additional strategies to address spe- 419
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cific challenges and improve overall performance.420

Handling Limited Antecedents: Limiting the421

number of antecedents can lead to split corefer-422

ence chains. A common strategy in literary texts is423

to link all matching proper nouns at the document424

level, along with their derivatives. While previous425

works have been using hand-crafted sets of aliases426

to link proper mentions (Bamman et al., 2020), we427

leverage local mention-pairs scoring to perform428

coreference resolution at the document scale. Let’s429

say that all local predictions involving mentions of430

"Sir Ralph Brown" and "Raphael" are coreferent,431

we propagate this decision to all mention-pairs at432

the global scale, bridging the gap between a men-433

tion and an antecedent that would otherwise be out434

of the range of locally considered antecedents.435

Leveraging Non-Coreference Predictions: While436

most mention-pair models focus on coreference437

links, the cross-entropy loss used during training438

involves that they are equally trained to predict439

non-coreference. We propose leveraging high-440

confidence non-coreference predictions to prevent441

later incorrect cluster merging. Mention-pairs442

containing a coordinating conjunction, such as443

“[Ralph] and [Mr. Delmare]”, are a strong indi-444

cation of non-coreference between these mentions,445

which can be used to prevent the merging of these446

entities at document level. This approach is com-447

bined with an "easy-first" clustering strategy (Clark448

and Manning, 2016), which processes mentions in449

order of confidence rather than left-to-right, thus450

delaying harder decisions.451

The addition of these two strategies is refered452

to as the easy-first, global proper mentions coref-453

erence approach. This approach follows a hier-454

archical iterative process, where high-confidence455

local mention-pair predictions are resolved first,456

constraining subsequent decisions at the document457

level. This post-processing module is not trained.458

4.2 Evaluation Metrics459

We evaluate CR performance using MUC (Vilain460

et al., 1995), B3 (Bagga and Baldwin, 1998), and461

CEAFe (Luo, 2005) scores. For overall perfor-462

mance assessment we report the average F1-score463

of the three metrics which we refer to as the CoNLL464

F1-score (Pradhan et al., 2012). We use the scorer465

implementation by Grobol.4466

4https://github.com/LoicGrobol/scorch

4.3 Document Length 467

While Poot and van Cranenburgh (2020) investi- 468

gated the impact of document length on CR by 469

truncating documents to different sizes, we adopt a 470

splitting approach. This allows us to evaluate CR 471

performance on more text excerpts. 472

Given a target sample size of L tokens, we 473

first select all documents from our corpus that ex- 474

ceed this length. Each document is split into non- 475

overlapping samples, each containing L tokens. 476

CR is performed independently on each sample, 477

and the results are averaged across samples of a 478

given document. The overall CR scores are cal- 479

culated as the macro-average across all retained 480

documents. 481

4.4 Coreference Resolution Results 482

4.4.1 Mention-Pairs Scorer Results 483

The mention-pairs scorer, evaluated using leave- 484

one-out cross-validation with gold mention spans, 485

achieved an overall accuracy of 88.10%. As 486

shown in Table 4, performance disparities between 487

classes reflect the underlying class imbalance, with 488

significantly higher precision and recall for non- 489

coreferent pairs (class 0). Most errors occurred 490

for mention pairs where the scorer’s confidence is 491

low (∼0.5) (Appendix D). As we use the highest 492

ranked antecedent strategy, not all scorer decisions 493

are used during entity clustering, mitigating the 494

number of wrong decisions considered. 495

Coref. P R F1 Support
0 92.31 93.18 92.74 5.52M (82%)
1 68.49 65.62 67.02 1.25M (18%)

Table 4: Mention-pairs scorer performance on Long-
LitBank-fr corpus. Precision (P), Recall (R).

4.4.2 Highest Ranked Antecedent 496

After sorting, the correct antecedent was predicted 497

in 88.05% of cases, highlighting the effectiveness 498

of this approach. Errors occurred for 8,496 men- 499

tions (11.95%). In 1,478 cases (2.08%), the range 500

of considered antecedents is too narrow, leaving 501

true antecedents out of reach. For these mentions, 502

the null antecedent is assigned approximately half 503

the time, while an unrelated antecedent is assigned 504

in the other half. In 7,018 cases (9.87%), the true 505

antecedent is within reach, but the model incor- 506

rectly assigned a different antecedent in nearly 90% 507

of instances. In the remaining 10%, the null an- 508

tecedent is wrongly predicted. 509
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Figure 1: Impact of document length on CR performance for different strategy. Gold and predicted mentions.

The additional global proper mentions corefer-510

ence strategy aims at reducing both types of errors,511

by bridging the gap between proper mentions and512

their long distance antecedent, and by limiting clus-513

tering of mentions that are believed to be distinct514

from local mention-pair scores.515

4.4.3 Entity Clustering Strategies516

The global proper mentions strategy leads to an517

overall gain in performance measured by CoNLL518

F1-score of 1.68 points. We observe a slight drop519

for MUC, but a significant improvement on both520

B3 and CEAFe.

Strategy MUC B3 CEAFe CoNLL
Left to Right 94.61 62.95 60.36 72.64
Global Proper CR 94.45 67.32 61.18 74.32

Table 6: Coreference resolution for Long-LitBank-fr
corpus. Average F1-scores. Gold mentions.

521

These scores reflect the overall performance gain522

of this strategy on the full Long-LitBank-fr cor-523

pus (averaging 18,081 tokens per document). How-524

ever, it is best suited to long texts that present both525

the risk of out-of-reach antecedent, and sufficient526

local evidence on proper mentions-pairs to propa-527

gate document-wide decisions.528

4.4.4 Influence of Document Length529

When analyzing performance gains as a function of530

document length, we observe that the MUC score531

remains relatively stable. For CEAFe we see a con-532

sistent improvement of around 1 point, regardless533

of document length. The most striking trend is534

observed on the B3 score: for documents exceed-535

ing 20,000 tokens, the gain from the global proper536

mentions strategy increases significantly, ranging 537

from 5 to 10 points. See Appendix E. 538

From Figure 1, we observe that the overall 539

CR performance decreases with document length. 540

Much of the performance loss is observed in the 541

lower range. This might well explain why CR mod- 542

els trained and evaluated on documents of limited 543

length (<10k), have been deceiving when used for 544

downstream tasks on full length documents. 545

The proper mentions global coreference strat- 546

egy consistently outperform the vanilla left-to-right 547

method. Performance gains is mostly negligible for 548

short documents (< 2k tokens), but becomes signif- 549

icant and stable beyond, reaching +3 points on the 550

CoNLL F1-score. This shows the effectiveness of 551

our approach for handling CR in longer documents. 552

Additionally, Figure 1 shows the impact of using 553

predicted mentions as input to the mention-pair 554

encoder, leading to a performance drop of ∼7%, 555

this result is consistent with previous publications. 556

4.4.5 Comparison to Baseline 557

For French, our new pipeline consistently outper- 558

forms the model proposed by Mélanie et al. (2024) 559

on their test set, setting a new baseline on this spe- 560

cific dataset. We also report average performances 561

on the 3 newly annotated novels for future compar- 562

ison ; both with gold and predicted mentions. 563

See Appendix G for cross-dataset and cross- 564

language coreference performance comparison. 565

While this experiment reveals performance limi- 566

tations exacerbated by document length, commonly 567

used CR metrics (MUC, B3, CEAFe) have been 568

criticised for presenting systematic flaws. Alter- 569

native metrics such as LEA (Moosavi and Strube, 570

Corpus (test set) Model Mentions Tokens / Doc MUC B3 CEAFe CoNLL
LitBank-fr (test-set) Mélanie et al. 2024 Gold 2,000 88.0 69.2 71.8 76.4
LitBank-fr (test-set) Ours Gold 2,000 92.43 70.67 75.59 79.56

Long-LitBank-fr (3 docs) Ours Gold 93,019 96.64 52.36 46.45 65.15
Long-LitBank-fr (3 docs) Ours Predicted 93,019 95.59 45.4 35.95 58.98

Table 5: CR performance on LitBank-fr test-set and on the three fully annotated novels. Gold and predicted
mentions.
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2016) and BLANC (Recasens and Hovy, 2011)571

have been proposed as better aligned with linguis-572

tic intuitions. Others argue for extrinsic evaluation573

(O’Keefe et al., 2013; Vishnubhotla et al., 2023),574

where CR is assessed based on its contribution to575

easier to evaluate, downstream tasks.576

5 Gender Prediction Case study577

As mentioned, studies gravitating around charac-578

ter gender have attracted substantial attention from579

computational humanities researchers (Underwood580

et al., 2018). A key challenge is accurately predict-581

ing the gender of as many character mentions as582

possible to ensure representative results.583

Early works relied on heuristics to infer gender584

from explicit clues (he, Mrs, the man), achieving585

high precision (90%) but lower recall (30-50%),586

due to the high proportion of ambiguous mentions587

in literary texts. Recent works leverages CR for588

broader gender prediction (Vianne et al., 2023).589

5.1 Data Preparation590

We use the Long-Litbank-fr corpus. Starting591

with all character mentions, we discard singletons592

(2.74%) and plural mentions (9.84%). We manu-593

ally annotate the gender of the remaining 62,162594

mentions at the entity level. We adopt a binary595

approach to gender. Works of fiction are subject596

to play on characters’ gender, such as gender rev-597

elation or asymmetry of knowledge between char-598

acters. To assign character gender we adopt the599

omniscient perspective (Kim et al., 2024), refering600

to the knowledge one have at the end of the entire601

book. We discard chains whose gender cannot be602

annotated with certainty, leaving us with 804 enti-603

ties and 61,852 mentions (86.99% of all mentions).604

5.2 Prediction Pipeline605

To predict the gender of character mentions we im-606

plement a multi-stage solution:607

Heuristic rules: assign gender based on heuristics608

from explicit gender clues (pronouns, noun phrases,609

articles and adjectives).610

First-name database: determine the gender of611

proper mentions using a statistical database of first612

names given in France since 1900.5613

Coreference propagation: resolve coreference,614

compute the male/female ratio of processed men-615

5French National Institute of Statistics and Economic Stud-
ies (INSEE).

tions, and assign the majority gender to all men- 616

tions within the coreference chain. 617

We compare our results with those of Naguib 618

et al. (2022) who used a similar combination of 619

heuristic rules and CR to infer character gender. 620

5.3 Case Study Results 621

CR significantly improves recall compared to rule- 622

based methods. While heuristics achieve high pre- 623

cision (>98%), they suffer from low recall (37- 624

47%), reflecting the significant number of mentions 625

whose gender cannot be inferred without additional 626

context. Our approach outperforms the baseline 627

by leveraging sophisticated heuristic rules, a first- 628

names database, and a more effective CR pipeline. 629

Although CR slightly reduces precision—a conse- 630

quence of clustering errors—the substantial recall 631

gain makes it a robust method overall. 632

Male Female
P R P R

Baseline
Naguib et al. 2022

95.00 45.00 97.00 58.00

Heuristic Rules 99.77 36.97 98.85 46.67
+ First-name data 99.77 38.35 98.82 47.41
+ Coreference 95.35 91.55 90.37 93.40

Table 7: Mentions gender prediction performance.

6 Conclusion 633

We highlight critical limitations in coreference 634

resolution (CR) for literary texts, particularly the 635

scarcity of representative datasets, limiting the pos- 636

sibility to train and evaluate models tailored for 637

literary computational studies. To bridge this gap, 638

we release an annotated corpus of character coref- 639

erence chains for three full-length French novels 640

spanning three centuries (285,000+ tokens). We 641

introduce a modular CR pipeline tailored for long 642

documents, integrating global coreference propa- 643

gation for proper nouns and an easy-first cluster- 644

ing approach. After carrying out a detailed error 645

analysis of each component, we study the impact 646

of document length on overall coreference perfor- 647

mance. Our approach is competitive with existing 648

state-of-the-art models, demonstrating good perfor- 649

mance on longer texts. To demonstrate practical 650

value, we apply it to character gender inference, 651

significantly improving recall over rule-based base- 652

lines while maintaining high precision, and out- 653

performing other CR-based approach. This study 654

underscores the need for robust datasets and well- 655

evaluated models to advance literary CR research. 656
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Limitations657

While our dataset is among the largest annotated658

literary datasets in terms of tokens (285,000), it is659

limited by the fact that it only contains three doc-660

uments. This implies that it does not encompass661

the full diversity of time periods, literary move-662

ments, and genres within French literature. This663

limitation may impact the generalizability of the664

coreference resolution (CR) models trained on this665

dataset. The proposed Long-LitBank-fr corpus re-666

sulting from the concatenation with the LitBank-fr667

dataset mitigates this issue by increasing diversity668

and improving the potential for model generaliza-669

tion.670

Another limitation is that we focused solely on671

annotating coreference chains for characters. Some672

downstream applications may require resolving673

coreference for other entity types (e.g., geograph-674

ical entities, events). Since our annotations are675

restricted to characters, a model trained exclusively676

on this data may not easily transfer to tasks involv-677

ing other entity types. In such cases, enriching the678

annotations would be necessary for broader appli-679

cability.680

Furthermore, our study is limited to French-681

language texts, and we did not explore cross-682

lingual generalization of our pipeline. Expand-683

ing the dataset to include full documents in other684

languages could improve its applicability. This685

could be achieved through annotation transfer or686

by leveraging multilingual models, which would687

help reduce the cost of manual annotation.688

Finally, while extrinsic evaluation is not the pri-689

mary focus of this work, we have only begun to690

assess our pipeline through its application to charac-691

ter gender inference. A more comprehensive evalu-692

ation of the models’ suitability for full-document693

literary analysis would require additional extrinsic694

assessments, such as network extraction or quote695

attribution.696
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A Mention Detection Model1076

The mention detection module consists of two1077

stacked BiLSTM-CRF models, each trained on a1078

different nesting level of mentions. During infer-1079

ence, predicted spans from both models are com-1080

bined. If two mention spans overlap, the span with1081

the lower prediction confidence is discarded.1082

BERT embeddings: The raw text is split into1083

overlapping segments of length L (the maximum1084

embedding model context window) with an over-1085

lap of L/2 to maximize the context available for1086

each token. Each segment is passed through the1087

CamemBERTLARGE model, and we retrieve the last1088

hidden layer as the token representations (1024 di-1089

mensions). The final token embedding is computed1090

as the average from overlapping segments. We do1091

not fine-tune CamemBERT for this task.1092

BIOES tag prediction: For each sentence,1093

token representations are passed through the1094

BiLSTM-CRF model, which outputs a sequence1095

of BIOES tags: B-PER (Beginning of mention), I-1096

PER (Inside), E-PER (End), S-PER (Single-token1097

mention), and O (Outside).1098

A.1 Model Architecture1099

• Locked Dropout (0.5) applied to embeddings1100

for regularization.1101

• Projection Layer: Highway network mapping1102

1024 → 2048 dimensions.1103

• BiLSTM Layer: Single bidirectional LSTM1104

(256 hidden units per direction).1105

• Linear Layer: Maps 512-dimensional BiLSTM1106

outputs to BIOES label scores.1107

• CRF Layer: Enforces structured consistency in1108

predictions.1109

A.2 Model Training1110

• Data Splitting: Leave-One-Out Cross-1111

Validation (LOOCV) with an 85%/15%1112

train-validation split.1113

• Batch Size: 16 sentences per batch.1114

• Optimization: Adam optimizer (lr = 1.4 ×1115

10−4, weight decay = 10−5).1116

• Learning Rate Scheduling: ReduceLROn-1117

Plateau (factor = 0.5, patience = 2).1118

• Average Training Epochs: 20.1119

• Hardware: Trained on a single 6GB Nvidia1120

RTX 1000 Ada Generation GPU.1121

B Nearest Antecedent Distribution 1122

Figure 2: Distance to nearest antecedent for mentions
of different type.

C Coreference Resolution Model 1123

C.1 Model Architecture 1124

• Model Input: 2,165-dimensional vector, com- 1125

posed of concatenated: 1126

– CamemBERT embeddings: Maximum con- 1127

text embeddings for both mentions (2 × 1,024 1128

= 2,048 dimensions). 1129

– Mention Features (106 dimensions): 1130

* Mention length. 1131

* Position of the mention’s start token in the 1132

sentence. 1133

* Grammatical category (pronoun, common 1134

noun, proper noun). 1135

* Dependency relation of the mention’s head 1136

(one-hot encoded). 1137

* Gender (one-hot encoded). 1138

* Number (one-hot encoded). 1139

* Grammatical person (one-hot encoded). 1140

– Mention Pair Features (11 dimensions): 1141

* Distance between mention IDs. 1142

* Distance between start and end tokens of 1143

mentions. 1144

* Sentence and paragraph distance. 1145

* Difference in nesting levels. 1146

* Ratio of shared tokens between mentions. 1147

* Exact text match (binary). 1148

* Exact match of mention heads (binary). 1149
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* Match of syntactic heads (binary).1150

* Match of entity types (binary).1151

• Hidden Layers:1152

– Three fully connected layers.1153

– 1,900 hidden units per layer with ReLU activa-1154

tion.1155

– Dropout rate of 0.6 for regularization.1156

• Final Layer:1157

– Linear layer mapping from 1,900 dimensions1158

to a single scalar score.1159

– Output: Continuous value between 0 (not1160

coreferent) and 1 (coreferent).1161

C.2 Model Training1162

• Data Splitting: Leave-One-Out Cross-1163

Validation (LOOCV) with an 85%/15%1164

train-validation split.1165

• Batch Size: 16,000 mention-pairs per batch.1166

• Optimization: Adam optimizer (lr = 4× 10−4,1167

weight decay = 10−5).1168

• Antecedent Candidates:1169

– 30 for pronouns.1170

– 300 for common and proper nouns.1171

• Hardware: Trained on a single 6GB Nvidia1172

RTX 1000 Ada Generation GPU.1173

D Mention-Pairs Scorer Error1174

Distribution1175

Figure 3: Error Rate by Mention-pair Predicted Score
Range.

1176

1177
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E Detailed performance gain from clustering strategy

Table 8: Absolute CR performance gain from the global proper mentions clustering strategy over vanilla left-to-right,
as a function of document length. Predicted mentions.

F Annotated Dataset Details
Year Author Text Tokens
1731 Antoine-François Prévost Manon Lescaut 71,219
1832 George Sand Indiana 115,415
1923 Delly Dans les ruines 98,542

Table 9: Annotated Dataset Details

G Comparison of CR performance with other datasets and languages

Corpus Model Mentions Tokens / Doc MUC B3 CEAFe CoNLL
LitBank (English) Bamman et al. 2020 Gold 2,105 88.5 72.6 76.7 79.3
LitBank-fr (LOOCV) Ours Gold 2,105 91.93 74.6 75.35 80.63
LitBank (English) Bamman et al. 2020 Predicted 2,105 84.3 62.73 57.3 68.1
LitBank (English) Thirukovalluru et al. 2021 Predicted 2,105 89.50 78.21 67.59 78.44
LitBank-fr (LOOCV) Ours Predicted 2,105 84.58 74.77 63.30 73.21
KoCoNovel (Korean) Kim et al. 2024 Predicted 3,578 71.06 57.33 44.19 57.53
Long-LitBank-fr (LOOCV) Ours Predicted 3,578 88.31 68.79 47.17 68.09
G. Orwell, Animal Farm Guo et al. 2023 Predicted 37,000 - - - 36.3
Long-LitBank-fr (LOOCV) Ours Predicted 37,000 92.79 52.35 32.89 59.34

Table 10: Comparison of CR performance with other work on literary coreference with predicted and gold mentions.
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