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ABSTRACT

This paper introduces an implicit face motion diffusion model (IF-MDM), a fully
self-supervised framework for learning dynamic facial motion tailored for audio-
driven talking head generation. IF-MDM eliminates the need for explicit human
head priors by utilizing implicit motion templates, effectively addressing common
visual alignment issues between the head and the background, as well as the com-
putational challenges associated with conventional, heavy latent diffusion-based
methods. To enhance speech-motion alignment, our approach incorporates (1) local
flow modules for fine-grained motion modeling, (2) motion statistics guidance
to manage head pose and facial expression intensity, and (3) framewise temporal
guidance to accurately capture phoneme-level dependencies in lip movements.
IF-MDM achieves real-time performance, generating realistic and high-fidelity
512x512 resolution videos at up to 45 fps. By capturing subtle dynamic motions
such as eye blinking and torso movements purely through self-supervised learning,
our model extends its applicability beyond human faces, offering generalizable
talking head generation for various characters and animals. For more details on this
work, including supplementary materials and code, please visit our project page
(ifmdm.github.io).

1 INTRODUCTION

Talking head generation synthesizes video sequences from an input facial image and corresponding
speech audio. Given the inherently sparse information in speech signals, generating realistic videos
is an ill-posed task necessitating sophisticated generative modeling techniques such as variational
autoencoders (VAE) (Kingma, 2014), generative adversarial networks (GAN) (Goodfellow et al.,
2014), and diffusion models (Ho et al., 2020; Rombach et al., 2022), alongside explicit facial
representation methods including facial landmarks (Wang et al., 2019; Wu et al., 2021) and 3D
morphable models (3DMM) (Gerig et al., 2018; Guo et al., 2020). Recent advancements in diffusion-
based video generation have significantly improved visual quality and temporal coherence (Shen
et al., 2023; Stypułkowski et al., 2024; Cui et al., 2025; Guo et al., 2024; Li et al., 2024; Wei
et al., 2024). However, the substantial computational overhead and slow inference speed of these
approaches impede their practical use, particularly for real-time applications and extended video
sequences (Wei et al., 2024; Cui et al., 2025). Conversely, methods leveraging explicit facial priors
offer computational efficiency and structured representations but suffer from compromised realism
due to being overly dependent on face rendering, frequently resulting in misalignments of regions
such as eyes and torso. Moreover, these methods rely heavily on pre-aligned and cropped facial data,
inherently restricting the diversity and realism of generated head motions.

To address this challenge, we introduce a fully self-supervised learning framework that leverages
implicit motion while eliminating reliance on human expert models for extracting motion liveness
from video datasets. This approach enables the generation of videos that not only exhibit motion styles
consistent with ground-truth sequences but also appear highly natural to human observers. However,
it increases the overall learning difficulty. We mitigate this issue by constructing a motion latent space
tailored for dynamic motion in talking head generation through the use of a Local Flow Module in
conjunction with dataset curation and filtering. The Local Flow Module effectively captures global
motion styles while simultaneously modeling fine-grained motions in facial sub-regions such as the
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eyes and lips. Furthermore, structuring the dataset into progressive levels and gradually training the
model proves highly beneficial for learning these multi-scale motion dynamics.

Beyond the challenge of disentanglement, implicit motion itself posed inherent difficulties. In
particular, the dimensions learned in an unsupervised manner often appeared uncorrelated to the
extent that they became impractical for diffusion models to learn. To address this, we introduced
motion statistics as training cues, which not only stabilized learning but also provided motion
controllability during inference. Another challenge stemmed from the weak correlation between
speech and talking head motion, which we mitigated through architectural refinement via residual
compression. Overall, by fully self-supervising the learning of implicit motion and removing human
priors, we were able to extract motion liveness more directly from the dataset. However, we also
observed that achieving controllability ultimately requires alignment mechanisms.

We conducted extensive experiments to analyze the strengths and limitations of the fully self-
supervised compressed dynamic motion latent space. Quantitative and qualitative evaluations on
HDTF (Zhang et al., 2021) and CelebV-Text (Yu et al., 2023) demonstrated that our approach
outperforms existing state-of-the-art models, achieving superior visual quality and natural motion
while generating 512×512 videos at 45 fps—surpassing video diffusion models in both efficiency
and realism. Moreover, similar to studies employing 3D morphable models, we confirmed that
the discovered motion statistics inherently provide motion controllability. An additional intriguing
application of our framework lies in its applicability to animals, as it does not rely on human expert
models; corresponding experiments are presented as well. Comprehensive ablation studies were also
included to offer insights for future research.

2 RELATED WORKS

Audio-driven talking head generation Early methods for audio-driven talking head generation
used explicit facial priors like 3D morphable models or landmarks to animate facial regions (Prajwal
et al., 2020; Thies et al., 2020; Fan et al., 2022). Generative models such as GANs and VAEs were
later introduced to improve realism (Zhou et al., 2020). More recently, diffusion-based methods
have achieved superior visual quality and temporal coherence (Shen et al., 2023; Wei et al., 2024;
Cui et al., 2025), but their high computational cost limits real-time application. Our work addresses
this limitation by using an efficient implicit motion representation optimized for diffusion-based
generation, enabling scalable training without compromising fidelity.

Motion transfer and implicit motion modeling Motion transfer aims to animate a source image
with motion from a driving video. Techniques range from keypoint-based methods to implicit motion
fields (Siarohin et al., 2019; Jeon et al., 2020). Recent studies have shown that decoder-aware implicit
motion improves disentanglement (Wang et al., 2022). While prior work focuses on cross-identity
reenactment, our goal is to learn a natural and expressive motion space specifically for speech, which
requires fine-grained audio-visual modeling.

Human Avatar Recent high-fidelity human avatar synthesis methods use NeRFs, 3D Gaussian
Splatting, or volumetric capture to model speaker-specific geometry (Guo et al., 2021; Cho et al.,
2024; Saito et al., 2024). Although these approaches produce excellent results, they often require
extensive multi-view data and are not suitable for real-time applications. Industrial efforts like
Codec Avatars also require specialized capture systems. In contrast, our lightweight, self-supervised
framework synthesizes coherent motion from monocular video alone, offering broader applicability
without identity-specific retraining.

Comparison to Compressed Latent Diffusion Models The compressed latent diffusion paradigm
has been adopted by models like VASA-1 (Xu et al., 2025), EMO (Tian et al., 2024), and GAIA (He
et al., 2024), which show impressive progress. However, our key distinction is the use of a fully
self-supervised approach that does not rely on human-specific priors. This allows our model to stably
generate dynamic motions from academic-scale datasets. We acknowledge that direct quantitative
comparisons are not feasible due to their closed-source nature, but qualitative results in our supple-
mentary materials demonstrate comparable visual quality. Our self-supervised framework’s ability
to learn from video clips or multi-image inputs also enables talking head generation beyond human
faces.
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Figure 1: The training pipeline of our framework. In the stage 1 training the visual encoder EV and
decoder D is trained with the local flow module to disentangle the fine-grained motion vector m and
the appearance tensor list {Al | l = 1, . . . , nl}. In the stage 2 training the diffusion-based implicit
motion generator M is trained with the extracted motion sequence {m̂f | f = 1, . . . , nf} and speech
vector sequence {sf | f = 1, . . . , nf} from the real video. The motion statistics guidance and the
framewise temporal guidance is utilized on the stage 2.

3 METHODS

Framework Overview The objective of our framework is to learn a compressed yet expressive
implicit representation of dynamic facial and torso motions from video sequences, while simultane-
ously aligning these motions with corresponding speech audio. As depicted in Figure 1, the training
pipeline is structured into two distinct stages: the first disentangles visual appearance from motion
dynamics, and the second learns speech-conditioned temporal motion sequences.

During inference, as illustrated in Figure 2, the model synthesizes realistic talking head videos from
an input identity image and speech audio. The appearance branch extracts identity-specific visual
features, whereas the motion branch generates temporally coherent face motion sequences from the
input speech. These two branches converge within the decoder, resulting in a synthesized video that
integrates both appearance consistency and motion realism. A more detailed architecture can be
found in Appendix B.

Dataset Filtering We employed a two-stage dataset filtering process using facial landmarks and
face segmentation maps to refine our training data. Initially, we processed 80,000 video clips to
identify samples with distinct motion characteristics. We categorized these into three groups: a
’coarse motion’ subset containing videos with only global head movement, a ’lip motion’ subset
focusing on videos with intricate lip movements, and a ’hard sample’ subset that included videos with
both types of movements. This filtering process reduced our dataset to 35,000 video clips, which were
subsequently used to progressively train the Stage 1 model, ensuring it learned a robust representation
for diverse motion types.

Training Stage 1: Disentangle the implicit motion In the first stage, we employ a self-supervised
approach using an encoder-decoder architecture to disentangle appearance and motion representations.
Given an appearance image Ia and a motion image Im, both from the same video, the visual encoder
Ev extracts an appearance tensor list {Al} and a compact motion embedding vector m. The decoder
D, employing a U-Net-like structure (Ronneberger et al., 2015) combined with progressive image
synthesis (Karras et al., 2020), reconstructs a motion-transferred image Î by warping appearance
tensors with motion-conditioned flow fields.

Our objective is to capture authentic motion dynamics in a compressed latent form. To this end, we
propose a local flow module that decomposes the global motion embedding into spatially localized
flow fields, each designed to attend to semantically meaningful regions such as the lips, eyes, and
torso.

Given the input feature map Fl, we apply a grouped convolution with Gl groups. The output is
defined as:

Fout
l = GroupConv(Fl, Gl) ∈ RB×Cl×Hl×Wl ,

3
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Figure 2: The inference pipeline of our framework. The visual encoder Ev extract the motion vector
of input image m′ and the appearance tensor list {Al | l = 1, . . . , nl} from the input image. The our
diffusion-based implicit motion generator M generate the motion sequence {m̂f | f = 1, . . . , nf}
by given speech vector sequence {sf | f = 1, . . . , nf} and the input image motion vector m‘ as
motion mean. Finally the decoder D generate the video from the generated motion sequence and the
appearance tensor list.

From Fout
l , we generate a warping index Wl and a warping mask Ml. To enforce spatial locality, we

apply sequential 1D softmax operations along the height and width dimensions of the mask:

Mnorm
l = Softmax(Softmax(Ml, dim = −1), dim = −2).

This normalization constrains each local flow to focus on compact, region-specific areas. By inde-
pendently warping feature maps using Wl and Mnorm

l , the model synthesizes highly detailed and
spatially coherent motion representations.

To facilitate stable training dynamics in the diffusion-based second stage, we apply motion space
normalization using a tanh function. The local flow module compensates for the representational
capacity lost from this normalization, enabling the learning of a motion embedding suitable for Stage
2 training.

Training Stage 2: Audio-driven Motion Sequence Generation Our implicit motion generator
M is designed as a conditional denoising diffusion model to generate realistic motion embeddings
aligned with speech and motion statistics. Given a noised motion sequence {mt

f} at diffusion timestep
t, the model predicts the noise component ϵtf for each frame:

ϵtf = M
(
{mt

f}, t, {sf}, mµ, mσ, m′) , f = 1, . . . , nf , (1)

where mµ and mσ denote the motion mean and standard deviation, respectively, serving as motion
statistics guidance. The speech vector sequence {sf} provides as framewise temporal guidance,
encoding phoneme-level and prosodic structures extracted by the speech encoder. To enable long-term
sequence generation, the model also incorporates the motion embedding of the previous frame m′ as
a motion hint. These conditioning signals are injected into the diffusion transformer-like backbone
via concatenation.

We empirically set the sequence length nf = 32, which is sufficient to capture mid- to long-range
facial dynamics. This design allows the model to synthesize temporally coherent and expressive
talking head motions from implicit motion embeddings in a fully self-supervised setting.

To effectively guide the diffusion process, we introduce motion statistics guidance to capture global
motion tendencies and intensity. Addressing the weak correlation between implicit motion and
speech, we propose framewise temporal guidance. By integrating speech vector sequences directly
into self-attention and modulation modules, we establish explicit frame-level temporal alignment,
which markedly improves lip-sync quality.

Inference At inference, the synthesized talking head video’s motion characteristics can be explicitly
controlled by adjusting the motion statistics parameters, mµ and mσ. Lower values of mσ yield
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subtle and stable motions with enhanced lip-sync accuracy, whereas higher values allow for more
expressive movements. This mechanism provides practical flexibility in adapting motion dynamics to
diverse application requirements.

To enable long-term video generation, we utilize a recursive inference strategy. For the first chunk,
the initial motion hint m′ is a learned, fixed motion vector. For all subsequent chunks, the motion
hint is the last frame’s generated motion embedding from the previous chunk. This approach ensures
temporal continuity and coherence across long video sequences.

During inference, we additionally apply classifier-free guidance scaling (Ho & Salimans, 2021)
exclusively to the speech condition to further enhance the alignment between speech and facial
motion. Let ϵcond denote the noise prediction conditioned on all inputs and ϵuncond denote the
prediction where only the speech vector is omitted. The final noise prediction used for denoising is
then computed as:

ϵ = ϵuncond + w · (ϵcond − ϵuncond) , (2)

where w is the guidance scale, fixed to 2.5. This selective guidance amplifies speech-conditioned
features without perturbing the motion priors, thereby improving lip-sync fidelity and temporal
consistency.

4 EXPERIMENTS

Implementation Details We trained our model using the CelebV-Text (Yu et al., 2023) and
HDTF (Zhang et al., 2021) datasets. The Wav2Vec model (Baevski et al., 2020) was employed to
extract speech vector sequences, subsequently used for training the implicit motion generator M . As
discussed in our analysis, these vectors capture phoneme-level and prosodic features essential for
our framewise temporal guidance. Stage 1 training required approximately 10 days on four NVIDIA
A6000 GPUs, whereas Stage 2 training took around one week using a single NVIDIA A100 80G
GPU. We extensively referenced the codebases of LIA (Wang et al., 2022) and DiT (Peebles & Xie,
2023), implemented training and inference with the PyTorch framework (Paszke et al., 2017).

Experiment Setup Consistent with previous studies, we allocated 30 videos from the HDTF
dataset (Zhang et al., 2021) as our test set for quantitative evaluation. To evaluate our method’s
strengths comprehensively, we selected representative baseline methods spanning different paradigms:
SadTalker (Zhang et al., 2023) and Real3DPortrait (Ye et al., 2024), which utilize explicit face models;
AniPortrait (Wei et al., 2024) and Hallo3 (Cui et al., 2025), video diffusion-based approaches; and
Ditto (Li et al., 2024), which also employs implicit motion representations. Additionally, we assessed
performance on in-the-wild inputs using images licensed by Unsplash1.

Talking Head Generation As summarized in Table 1, our method consistently outperforms baseline
methods across multiple metrics while achieving real-time performance exceeding 30 fps. This result
directly supports our core hypothesis that an efficient implicit motion representation can surpass
computationally intensive methods. Compared with video diffusion models such as AniPortrait and
Hallo3 (Wei et al., 2024; Cui et al., 2025), IF-MDM delivers comparable visual quality (FID 42.84
vs. 49.13/48.78) and superior temporal consistency (VideoScore-TC 3.71 vs. 2.57/3.29), along with
significantly faster generation speed (FPS 30.90 vs. 0.88/1.25). The lower temporal consistency in
AniPortrait may result from its frame-by-frame restoration with GFPGAN (Wang et al., 2021), which
disrupts coherence.

Our method’s fully self-supervised approach addresses key limitations of explicit face models.
Although Real3DPortrait (Ye et al., 2024) and SadTalker (Zhang et al., 2023) achieve strong lip-
sync, their dependence on rendered face models introduces spatial inconsistency, creating unnatural
"floating-head" artifacts (reflected by a poor FID score of 74.68). In contrast, our approach generates
natural full-frame results, offering superior visual realism and comparable lip-sync accuracy (LSE-D
8.21 vs. 8.23), entirely without explicit facial priors.

1https://unsplash.com/license
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Table 1: Quantitative results of talking head generation on the testset of HDTF dataset. The FPS is
calculated on a NVIDIA A6000. The bold means the best score. The underline means the 2nd best
score. The * means the model requires a H100 80GB for the inference.

Image Quality Identity
Preservation

Temporal
Consistency Lip-Sync Speed

FID↓ CSIM↑ VideoScore-TC↑ LSE-D↓ LSE-C↑ FPS↑
Explicit Face Model

SadTalkerZhang et al. (2023)) 54.58 0.981 3.21 8.66 6.06 8.86
Real3DPortraitYe et al. (2024)) 74.68 0.982 2.10 8.23 6.58 10.21

Video Diffusion Model
AniPortraitWei et al. (2024) 49.13 0.978 2.57 11.56 3.00 0.88

Hallo3Cui et al. (2025)) 48.78 0.976 2.97 9.73 3.98 1.25*

Implicit Motion Model
DittoLi et al. (2024)) 51.46 0.983 2.70 10.74 3.91 4.07

IF-MDM (ours) 41.91 0.984 3.12 8.21 7.35 31.18
Ground Truth 0.00 1.00 2.71 8.48 6.28 -
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Figure 3: The qualitative results of HDTF datasets with baselines. Each column has same frame index
on the reconstruction result with the first image and speech audio of ground truth. The rightmost
column shows the merged difference from the first frame, visualizing the motion style. Please check
the supplementary files for video results.

Compared to the implicit motion-based method Ditto (Li et al., 2024), our model demonstrates
superior performance across all evaluation criteria, including lip-sync accuracy (LSE-C 7.35 vs.
3.91) and visual fidelity (FID 42.84 vs. 51.46). The slower performance of Ditto primarily arises
from its reliance on post-processing for 3DMM extraction to enhance video quality. Our model,
by comparison, achieves faster end-to-end inference, as illustrated in Figure 2. Although direct
quantitative comparisons were limited by unavailable public code, we have included a supplementary
video with reconstruction results on the project pages of VASA-1 (Xu et al., 2025), EMO (Tian et al.,
2024), and GAIA (He et al., 2024) to enable a more comprehensive qualitative comparison.

Local Flow Analysis This analysis supports our claim that the local flow module enhances fine-
grained motion modeling. We visually assess the module’s impact, as illustrated in Figure 4. Incor-
porating local flow substantially improves motion coherence and preserves delicate facial details,
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Local Flow Visualization

Input Image Target Image w/o Local Flow with Local Flow

Index 3 Index 7 Index 8 Index 11 Index 15

Figure 4: The visualization and comparison
with and without local flow module.

Modulation Residual Addition
for Self-Attention LSE-D↓

Global X 14.35
Framewise Temporal X 11.11
Framewise Temporal O 8.28

Table 2: Ablation Study for speech classifier-free
guidance. The bold means the best score.

especially in dynamic areas like the mouth and eyes. Without this module, noticeable artifacts and
degraded motion alignment occur.

The top row of Figure 4 displays localized flow fields, revealing that each index specializes in specific
facial regions, such as the eyes and mouth. This specialization highlights the module’s capacity to
disentangle intricate motion components from global motion vectors, contributing to accurate motion
representation in expressive areas. The bottom row compares results with and without local flow.
Without it, overall head pose is maintained, but detailed motions (mouth and eyes) become static or
misaligned, disrupting realism. In contrast, enabling local flow accurately captures local motions
synchronized with speech, enhancing realism and temporal consistency. This analysis demonstrates
that the local flow module effectively learns to capture fine-grained motion, rather than overfitting
to only coarse motion across a larger field of view, as originally intended. Visualizations provide
evidence for this, showing that the model concentrates on localized regions such as the eyes and
mouth.

Framewise Temporal Guidance We evaluate framewise temporal guidance via ablation studies
(Table 2). This analysis provides evidence for the effectiveness of our approach in improving
speech-motion alignment, a key contribution. Replacing global modulation with framewise temporal
modulation notably improves outcomes, reducing FID from 83.22 to 42.84 and LSE-D from 14.35
to 11.11, alongside increased CSIM from 0.95 to 0.97. The addition of FID and CSIM values to
Table 2 provides a more complete picture of the performance gains. Furthermore, introducing residual
addition in self-attention mechanisms provides additional gains, yielding the lowest FID (30.80),
highest CSIM (0.98), and best lip-sync accuracy (LSE-D 8.28). This residual addition mechanism
strengthens the direct temporal link between speech signals and motion embeddings at each self-
attention layer, which is crucial for achieving high lip-sync accuracy. These findings underscore the
efficacy of framewise temporal guidance combined with residual attention, significantly enhancing
visual quality and speech-motion alignment.

Interestingly, similar experiments conducted with other modalities, such as text-to-image generation,
do not exhibit such discrepancies. A key distinction lies in the nature of modality influence: while text
typically induces global semantic transformations across the entire image, speech primarily induces
localized effects on facial regions, with only limited global influence manifesting temporally—such
as through prosody-driven head movements. This localized and weakly-correlated nature of speech-
to-motion mapping likely imposes structural challenges for diffusion-based implicit motion modeling.
Consequently, prior works often resorted to incorporating explicit geometric priors, such as 3DMM
parameters, as classifier-free guidance signals to mitigate the ambiguity in the generation process.
Our findings indicate that strong framewise modulation mechanisms are essential to overcome
these modality-specific challenges and to establish reliable alignment between speech and motion
representations.

Ablation Studies To further validate our design choices, we conducted ablation studies on two key
components: the local-flow module and the dimensionality of the motion latent space.

First, we examined the effect of the local-flow module by varying the number of groups G. Without
the module (G = 1), Stage 1 learning did not converge under our large field-of-view setting in Table 3.
Similarly, G = 4 failed to converge, while G = 8 produced limited reconstruction performance
(PSNR: 27.32 for same identity, 16.32 for different identity). Increasing to G = 16 yielded the
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Table 3: Ablation Study for the number
of group G of local flow module.

G Same Identity Diff Identity

1 - -
4 - -
8 27.32 16.32
16 32.04 29.74
32 31.21 27.34

Table 4: Ablation study for dimension D of motion
vector.

D Same Identity Diff Identity Convergence on Stage 2

20 32.04 29.74 YES
40 33.01 26.32 NO
100 31.90 25.90 NO

Figure 5: The qualitative results of the talking
head generation with in the wild input image.

Figure 6: The scalability of our method is demon-
strated by cat talking head generation.

best balance (32.04/29.74), while further increasing to G = 32 slightly degraded performance
(31.21/27.34). The degradation with G = 32 likely results from the over-segmentation of the motion
into too many small, non-meaningful groups, which hinders the learning of coherent, fine-grained
motions. This confirms that the local-flow module not only enables convergence but also improves
fine-grained motion learning in sub-parts such as eyes and lips.

Second, we analyzed the effect of motion latent dimensionality D in Table 4. While a compact
representation with D = 20 achieved strong performance (32.04/29.74), increasing to D = 40
slightly improved same-identity reconstruction (33.01) but reduced generalization across identities
(26.32). Models with larger D (e.g., 100) failed to converge in Stage 2 training, suggesting that
excessive dimensionality impairs disentanglement between motion and appearance. These results
highlight that compressed motion representations are not only efficient but also crucial for stable
training and controllable inference.

To assess speed-quality trade-offs, we further varied diffusion steps (Table 5). Increasing steps
generally improved generation quality (lower FID, higher CSIM) at the cost of inference speed.
For instance, 100 diffusion steps balanced quality and efficiency (30.90 fps), while additional steps
improved fidelity but reduced throughput, providing tunable performance depending on application
needs.

Towards Arbitrary Talking Head Generation We further evaluated our model’s generalization
capabilities by testing it on in-the-wild images sourced from the internet. As depicted in Figure 5,
IF-MDM consistently produces high-quality, coherent talking head videos across various real-world
identities and challenging conditions. This outcome supports our claim that a fully self-supervised
approach without human-specific priors offers broader applicability.

Additionally, Figure 6 demonstrates our model’s capability to extend beyond human faces through
personalization. Leveraging the fully self-supervised training approach that does not depend on
human-specific expert models, IF-MDM facilitates arbitrary talking head generation. We initially
trained the model on the AFHQ-Cat dataset (Choi et al., 2020) to capture diverse poses and expressions.
Subsequently, using LoRA-based personalization (Hu et al., 2022), we successfully generated talking
head outputs exhibiting varied poses, expressions, and mouth movements distinct from the original
identity images. This highlights the model’s robust adaptability to diverse and novel identity domains.

Controlling Motion Characteristics We explore motion controllability by varying the motion
mean mµ and motion standard deviation mσ (Table 6). We found that applying the motion mean
from previous frames stabilizes pose and expression, while lower motion standard deviations enhance

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Ablation Study for the diffusion steps.
The bold means the best score. The underline
means the best trade-off for visual quality and
the speed.

Diffusion
Steps FPS↑ FID↓ CSIM↑ LSE-D↓

50 45.75 50.22 0.981 11.11
100 30.90 42.35 0.984 10.65
200 20.22 31.85 0.982 10.63
500 9.90 30.80 0.981 10.56
1000 2.18 31.14 0.980 10.61

Table 6: Ablation study for motion mean and stan-
dard (mµ, mσ). The bold means the best score.

mµ mσ FID↓ CSIM↑ VideoScore-TC↑ LSE-D↓
- - 46.21 0.981 2.67 11.46
m′ - 42.84 0.983 2.54 12.79

m̂n−1 - 28.83 0.984 2.99 11.05
- 0.1 42.84 0.983 3.42 8.41
- 0.3 58.66 0.973 2.40 9.78
- 0.6 73.27 0.970 2.47 10.77
- 0.9 103.22 0.968 2.51 11.26

GT GT 20.88 0.984 2.79 8.77

Figure 7: The effect of motion mean. (1st row)
Without motion mean the generated video has
diverse pose and motion. (2nd row) With motion
mean the generated video shows stable pose and
expression.

Figure 8: The effect of high motion standard
value on inference. The generated video has dy-
namic motion, compromising the visual quality.

visual quality and lip-sync. Optimal results are obtained with mµ = m̂n−1 and mσ = 0.1, achieving
lowest FID (28.83), highest VideoScore-TC (3.42), and improved LSE-D (8.41), demonstrating
effective alignment between generated motion and speech. A full exploration of the controllability
space with different motion mean values (e.g., ground truth vs. randomly sampled) is left for future
work, but our current findings confirm the practical utility of these parameters.

Qualitative analysis (Figures 7 and 8) confirms these findings. Without motion mean, motion
becomes unstable and erratic, whereas applying mµ produces consistent, realistic outputs. Similarly,
increasing mσ exaggerates and destabilizes motion, highlighting its sensitivity in modulating realism
and temporal coherence.

5 CONCLUSION

We introduced IF-MDM, a fully self-supervised implicit face motion diffusion model designed
for real-time, high-fidelity talking head generation. Our two-stage training pipeline, which learns
a compressed, decoder-aware motion representation through inter-frame reconstruction, enables
efficient and expressive motion synthesis without reliance on explicit facial priors or 3D templates.
By incorporating a novel local flow module, motion statistics guidance, and framewise temporal
alignment, our model captures fine-grained expressiveness and achieves superior lip-sync accuracy.
Through extensive experiments, IF-MDM demonstrates significant advantages over existing explicit
and video diffusion-based approaches. It consistently outperforms baselines in visual quality, identity
preservation, and, most notably, inference speed, producing 512×512 resolution videos at up to
45 fps. Its self-supervised formulation also enables successful generalization to diverse domains,
including non-human characters and animals.

Despite its strengths, IF-MDM faces challenges in handling complex scenarios such as multi-person
interactions and dynamic lighting. Future work will focus on improving expressiveness and robustness
to these domain shifts. While the model has broad applicability in creative fields, we acknowledge
the ethical risks associated with misuse in deepfakes and synthetic misinformation. We emphasize
the importance of responsible deployment, urging the development of robust detection mechanisms
and transparent usage practices to mitigate potential harms.
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Table 7: The mean and standard deviation for
results of our method in Table 1.

Image Quality Identity
Preservation

Temporal
Consistency Lip-Sync Speed

FID↓ CSIM↑ VideoScore-TC↑ LSE-D↓ LSE-C↑ FPS↑
Mean 37.12 0.985 3.22 9.31 7.33 31.90
Std 5.26 0.006 0.71 2.40 1.06 2.51

Table 8: Quantitative results of talking head gen-
eration on the testset of CelebV-Text dataset.

FID FVD LSD-C LSD-D

SadTalker 50.015 471.163 6.922 7.921
DreamTalker 109.011 988.539 5.709 8.743
AniPortrait 46.915 477.179 2.853 11.709

Hallo 44.578 377.117 7.191 7.984
Hallo3 43.271 355.272 6.527 9.113

IF-MDM (Ours) 43.252 301.119 7.252 8.351
Ground Truth 0.00 0.00 7.372 7.518
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Figure 9: The detailed architecture of the visual encoder Ev , the decoder G, and the implicit motion
generator M .

A MORE RESULTS ON THE TALKING HEAD GENERATION

In Table 7, we report the mean and standard deviation of key evaluation metrics derived from
three independent experimental runs to ensure robust statistical validity. Specifically, metrics such
as image quality (FID), identity preservation (CSIM), temporal consistency (VideoScore-TC), lip
synchronization quality (LSE-D and LSE-C), and speed (FPS) are presented with standard deviations,
quantifying the variability arising from factors including random noise initialization and stochastic
sampling during inference.

In Table 8, we report more comparisons on the CelebV-Text (Yu et al., 2023) testset. Our model
shows the best quality compared to other 3D model or video diffusion model based approaches.

B DETAILED ARCHITECTURE

Figure 9 illustrates the detailed architecture of the proposed model, comprising the visual encoder
Ev , the decoder D, and the implicit motion generator M .

Visual Encoder and Decoder The visual encoder Ev is designed to disentangle appearance and
motion from a given frame. It consists of multiple residual blocks followed by downsampling
layers, projecting visual features into a motion vector m and a set of appearance tensors {Al |
l = 1, . . . , nl}. The motion vector is further processed through a fully connected layer and tanh
activation. These features are fed into the decoder D, which reconstructs the motion-transferred
image via an upsampling path and a local flow module.

The decoder receives the motion vector m and injects it into a latent axis alongside a 4× 4 constant
tensor, then processes it through the local flow module, which applies region-specific warping to the
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features. This module is trained with a local flow loss to enforce spatial specificity. The decoder
outputs the final RGB image using a ToRGB layer, and the full reconstruction is supervised via a
reconstruction loss.

Implicit Motion Generator The implicit motion generator M follows a denoising diffusion
paradigm, conditioned on speech and motion statistics. It takes as input a noised motion sequence
{mt

f}, a speech vector sequence {sf}, and motion statistics: the mean mµ, the standard deviation
mσ, and a motion hint m′. These are projected via linear layers and modulated with positional
encodings and diffusion time t.

The core of the generator consists of L stacked transformer-style layers with self-attention and
framewise temporal modulation. Framewise temporal guidance is implemented by incorporating
speech-dependent conditioning at each layer. Motion statistics guidance is injected through residual
connections to control expressiveness and pose stability across time. The final output is the predicted
noise {ϵ̂f} for each frame, used in the denoising process to generate coherent motion aligned with
the speech.

This modular architecture enables high-quality, real-time talking head generation without relying on
explicit facial priors.

C LARGE LANGUAGE MODELS USAGE

We disclose the use of Large Language Models (LLMs) to enhance the writing and coding processes
for this paper. Specifically, we used **Google Gemini**2 to aid in refining and polishing the overall
manuscript writing. Additionally, we utilized **Cursor**3 and **Claude Code**4 (or similar specific
product page if available, using the main company link as a default) for generating and debugging
scripts related to data preparation and experimental setup. The contributions of these models were
limited to assistive tasks and did not rise to the level of a contributing author.

2https://gemini.google.com/
3https://www.cursor.so/
4https://www.anthropic.com/product/claude

14


	Introduction
	Related Works
	Methods
	Experiments
	Conclusion
	More Results on the talking head generation
	Detailed architecture
	Large Language Models Usage

