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ABSTRACT

We present Segment Anything Model (SAM) 3, a unified model that detects, seg-
ments, and tracks objects in images and videos based on concept prompts, which
we define as either short noun phrases (e.g., “yellow school bus”), image exemplars,
or a combination of both. Promptable Concept Segmentation (PCS) takes such
prompts and returns segmentation masks and unique identities for all matching
object instances. To advance PCS, we build a scalable data engine that produces
a high-quality dataset with 4M unique concept labels, including hard negatives,
across images and videos. Our model consists of a vision backbone shared be-
tween an image-level detector and a memory-based video tracker. Recognition
and localization are decoupled with a presence head, which significantly boosts
detection accuracy. SAM 3 delivers a 2× gain over existing systems in both image
and video PCS, and improves previous SAM capabilities in interactive visual seg-
mentation tasks. We open source SAM 3 along with our new Segment Anything
with Concepts (SA-Co) benchmark.

1 INTRODUCTION

The ability to find and segment anything in a visual scene is foundational for multimodal AI, powering
applications in robotics, content creation, augmented reality, data annotation, and scientific fields.
The SAM series (Kirillov et al., 2023; Ravi et al., 2024) introduced the promptable segmentation task
to segment objects in images and videos via interactive prompts, including visual inputs like points,
boxes, and masks marking a specific object, or text inputs describing an object. However, SAM 1
and SAM 2 focus on visual prompts and segment a single object instance per prompt. While these
methods achieved a breakthrough for this critical task, they did not address the broader task of finding
and segmenting all instances of a concept appearing anywhere in the input (e.g., all “cats” in a video).

In this work, we present SAM 3, a model that achieves a step change in promptable segmentation in
images and videos, improving Promptable Visual Segmentation (PVS) relative to SAM 2 and setting
a new standard for Promptable Concept Segmentation (PCS). We formalize the PCS task as taking
text and/or image exemplars as input, and predicting instance and semantic masks for every single
object matching the concept, while preserving object identities across video frames (§2). We focus
on recognizing atomic visual concepts and thus constrain text to simple noun phrases (NPs), such as
“red apple” or “striped cat”. Example outputs are shown in Fig. 1.

Figure 1: SAM 3 improves over SAM 2 on promptable visual segmentation with clicks (left) while advancing
promptable concept segmentation (right) where users can segment all instances of a visual concept specified by
a short noun phrase, image exemplars, or a combination of both.
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Figure 2: Illustration of supported initial and optional interactive refinement prompts in the PCS task.

While SAM 3 is not designed for long referring language expressions or queries requiring reasoning,
we show that it can be straightforwardly combined with a Multimodal Large Language Model
(MLLM) to handle more complex language prompts.

The PCS task is inherently ambiguous due to its open-vocabulary nature, with many concepts having
multiple interpretations; e.g., “small window” is subjective (small vs large) and has ambiguous
boundaries (with shutters vs without). Our approach systematically accounts for these ambiguities at
every stage, including data collection, metric design, and modeling. Consistent with previous SAM
versions, SAM 3 is fully interactive, allowing users to resolve ambiguities by adding refinement
prompts to guide the model towards their intended output.

Our model (§3) consists of a detector and a tracker that share a vision encoder (Bolya et al., 2025).
The detector is a DETR-based (Carion et al., 2020) model conditioned on text, geometry, and image
exemplars. To address the challenge of open-vocabulary concept detection, we introduce a separate
presence head to decouple recognition and localization, which is especially effective when training
with challenging negative phrases. The tracker inherits the SAM 2 transformer encoder-decoder
architecture, supporting video segmentation and interactive refinement. The decoupled design for
detection and tracking avoids task conflict, as the detector needs to be identity agnostic, while the
tracker’s main objective is to separate identities in the video.

To unlock major performance gains, we build a scalable human- and model-in-the-loop data en-
gine (§4) that annotates a large and diverse training dataset. We innovate upon prior data engine
designs in three key ways: i) media curation: we curate more diverse media domains than past
approaches that rely on homogeneous web sources, ii) label curation: we significantly increase
label diversity and difficulty by leveraging an ontology and multimodal LLMs as “AI annotators” to
generate noun phrases and hard negatives, iii) label verification: we double annotation throughput by
fine-tuning MLLMs to be effective “AI verifiers” that achieve near-human performance. Starting from
noisy media-phrase-mask pseudolabels, our data engine checks mask quality and exhaustivity using
both human and AI verifiers, filtering out correctly labeled examples and identifying challenging
error cases. Human annotators then focus on fixing these errors by manually correcting masks. This
enables us to annotate high-quality training data with 4M unique phrases and 52M masks, and a
synthetic dataset with 38M phrases and 1.4B masks. We additionally create the Segment Anything
with Concepts (SA-Co) benchmark for PCS (§5) containing 214K unique concepts with exhaustive
masks in 124K images and 1.7K videos, > 50× more concepts than existing benchmarks.

Our experiments (§6) show that SAM 3 sets a new state-of-the-art in promptable segmentation, e.g.,
reaching a zero-shot mask AP of 47.0 on LVIS vs the current best of 38.5, surpassing baselines
on our new SA-Co benchmark by at least 2×, and improving upon SAM 2 on PVS benchmarks.
Ablations (§B) verify that the choice of backbone, novel presence head, and adding hard negatives
all boost results, and establish scaling laws on the PCS task for both our high-quality and synthetic
datasets. We open-source the SA-Co benchmark and release the SAM 3 checkpoints and inference
code. On an H200 GPU, SAM 3 runs in 30 ms for a single image with 100+ detected objects. In
video, the inference latency scales with the number of objects, sustaining near real-time performance
for ∼ 5 concurrent objects. Next we dive into the task, and review related work in §A.

2 PROMPTABLE CONCEPT SEGMENTATION (PCS)
We define the Promptable Concept Segmentation task as follows: given an image or short video (≤30
secs), detect, segment and track all instances of a visual concept specified by a short text phrase,
image exemplars, or a combination of both. We restrict concepts to those defined by simple noun
phrases (NPs) consisting of a noun and optional modifiers. Noun-phrase prompts (when provided)
are global to all frames of the image/video, while image exemplars can be provided on individual
frames as positive or negative bounding boxes to iteratively refine the target masks (see Fig. 2).
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Figure 3: SAM 3 architecture overview. See Fig. 8 for a more detailed diagram.

All prompts must be consistent in their category definition, or the model’s behavior is undefined; e.g.,
“fish” cannot be refined with subsequent exemplar prompts of just the tail; instead the text prompt
should be updated. Exemplar prompts are particularly useful when the model initially misses some
instances, or when the concept is rare.

Our vocabulary includes any simple noun phrase groundable in a visual scene, which makes the task
intrinsically ambiguous. There can be multiple interpretations of phrases arising from polysemy
(“mouse” device vs. animal), subjective descriptors (“cozy”, “large”), vague or context-dependent
phrases that may not even be groundable (“brand identity”), boundary ambiguity (whether “mirror”
includes the frame), and factors like occlusion and blur that obscure object extent. While similar issues
appear in large closed-vocabulary corpora (e.g., LVIS (Gupta et al., 2019)), they are alleviated by
carefully curating the vocabulary and setting a clear definition of all the classes of interest. We address
the ambiguity problem by collecting test annotations from three experts, adapting the evaluation
protocol to allow multiple valid interpretations (§F.3), designing the data pipeline and guidelines to
minimize ambiguity during annotation, and introducing an ambiguity module in the model (§D.2).

3 MODEL

SAM 3 is a generalization of SAM 2, supporting the new PCS task (§2) as well as the PVS task. It
takes concept prompts (simple noun phrases, image exemplars) or visual prompts (points, boxes,
masks) to define the objects to be (individually) segmented spatio-temporally. Image exemplars
and visual prompts can be iteratively added on individual frames to refine the target masks—false
positive and false negative objects can be removed or added respectively using image exemplars and
an individual mask(let) can be refined using PVS in the style of SAM 2. Our architecture is broadly
based on the SAM and (M)DETR (Carion et al., 2020; Kamath et al., 2021) series. Fig. 3 shows the
SAM 3 architecture, consisting of a dual encoder-decoder transformer—a detector for image-level
capabilities—which is used in combination with a tracker and memory for video. The detector and
tracker ingest vision-language inputs from an aligned Perception Encoder (PE) backbone (Bolya
et al., 2025). We present an overview below, see §D for details.

Detector Architecture. The architecture of the detector follows the general DETR paradigm. The
image and text prompt are first encoded by PE and image exemplars, if present, are encoded by
an exemplar encoder. We refer to the image exemplar tokens and text tokens jointly as “prompt
tokens”. The fusion encoder then accepts the unconditioned embeddings from the image encoder and
conditions them by cross-attending to the prompt tokens. The fusion is followed by a DETR-like
decoder, where learned object queries cross-attend to the conditioned image embeddings from the
fusion encoder. Each layer, for each object query, predicts a classification logit (in our case, a binary
label of whether the object corresponds to the prompt), and a delta from the bounding box predicted
by the previous level, following Zhu et al. (2020). We use box-region-positional bias (Lin et al., 2023)
to help focalize the attention on each object, but unlike recent DETR models, we stick to vanilla
attention. During training, we adopt dual supervision from DAC-DETR (Hu et al., 2023), and the
Align loss (Cai et al., 2024). The mask head is adapted from MaskFormer (Cheng et al., 2021). In
addition, we also have a semantic segmentation head, which predicts a binary label for every pixel in
the image, indicating whether or not it corresponds to the prompt. See §D for details.

Presence Token. It can be difficult for each of the proposal queries to both recognize (what) and
localize (where) an object in the image/frame. For the recognition component, contextual cues from
the entire image are important. However, forcing proposal queries to understand the global context
can be counterproductive, as it conflicts with the inherently local nature of the localization objective.
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We decouple the recognition and localization steps by introducing a learned global presence token.
This token is solely responsible for predicting whether the target concept in the form of a noun phrase
(NP) is present in the image/frame, i.e. p(NP is present in input). Each proposal query qi only needs
to solve the localization problem p(qi is a match | NP is present in input). The final score for each
proposal query is the product of its own score and the presence score.

Image Exemplars and Interactivity. SAM 3 supports image exemplars, given as a pair—a bounding
box and an associated binary label (positive or negative)—which can be used in isolation or to
supplement the text prompt. The model then detects all the instances that match the prompt. For
example, given a positive bounding box on a dog, the model will detect all dogs in the image. This
is different from the PVS task in SAM 1 and 2, where a geometric/visual prompt yields only a
single object instance. Each image exemplar is encoded separately by the exemplar encoder using
an embedding for the position, an embedding for the label, and ROI-pooled visual features, then
concatenated and processed by a small transformer. The resulting prompt is concatenated to the text
prompt to comprise the prompt tokens. Image exemplars can be interactively provided based on
errors in current detections to refine the output.

Tracker and Video Architecture. Given a video and a prompt P , we use the detector and a tracker
(see Fig. 3) to detect and track objects corresponding to the prompt throughout the video. On each
frame, the detector finds new objects Ot and the tracker propagates masklets Mt−1 (spatial-temporal
masks) from frames at the previous time t− 1 to their new locations M̂t on the current frame at time
t. We use a matching function to associate propagated masklets M̂t with new object masks emerging
in the current frame Ot,

M̂t = propagate (Mt−1) , Ot = detect (It, P ) , Mt = match and update
(
M̂t,Ot

)
.

Tracking an Object with SAM 2 Style Propagation. A masklet is initialized for every object
detected on the first frame. Then, on each subsequent frame, the tracker module predicts the new
masklet locations M̂t of those already-tracked objects based on their previous locations Mt−1

through a single-frame propagation step similar to the video object segmentation task in SAM 2.
The tracker shares the same image/frame encoder (PE backbone) as the detector. After training the
detector, we freeze PE and train the tracker as in SAM 2, including a prompt encoder, mask decoder,
memory encoder, and a memory bank that encodes the object’s appearance using features from the
past frames and conditioning frames (frames where the object is first detected or user-prompted). The
memory encoder is a transformer with self-attention across visual features on the current frame and
cross-attention from the visual features to the spatial memory features in the memory bank.

During inference, we only retain frames where the object is confidently present in the memory bank.
The mask decoder is a two-way transformer between the encoder hidden states and the output tokens.
To handle ambiguity, we predict three output masks for every tracked object on each frame along with
their confidence, and select the most confident output as the predicted mask on the current frame.

Matching and Updating Based on Detections. After obtaining the tracked masks M̂t, we match
them with the current frame detections Ot through a simple IoU based matching function (§D.3) and
add them to Mt on the current frame. We further spawn new masklets for all newly detected objects
that are not matched. The merging might suffer from ambiguities, especially in crowded scenes. We
address this with two temporal disambiguation strategies outlined next.

First, we use temporal information in the form of a masklet detection score (§D.3) to measure how
consistently a masklet is matched to a detection within a temporal window (based on the number
of past frames where it was matched to a detection). If a masklet’s detection score falls below a
threshold, we suppress it. Second, we use the detector outputs to resolve specific failure modes of the
tracker due to occlusions or distractors. We periodically re-prompt the tracker with high-confidence
detection masks Ot, replacing the tracker’s own predictions M̂t. This ensures that the memory bank
has recent and reliable references (other than the tracker’s own predictions).

Instance Refinement with Visual Prompts. After obtaining the initial set of masks (or masklets),
SAM 3 allows refining individual masks(lets) using positive and negative clicks. Specifically, given
the user clicks, we apply the prompt encoder to encode them, and feed the encoded prompt into the
mask decoder to predict an adjusted mask. In videos the mask is then propagated across the entire
video to obtain a refined masklet.
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Figure 4: Overview of the final SAM 3 data engine. See §F.1 for details of collected data.

Training Stages. We train SAM 3 in four stages that progressively add data and capabilities:
1) Perception Encoder (PE) pre-training, 2) detector pre-training, 3) detector fine-tuning, and 4) tracker
training with a frozen backbone. See §D.4.1 for details.

4 DATA ENGINE

Achieving a step change on PCS with SAM 3 requires training on a large and diverse set of concepts
and visual domains, beyond any existing dataset (see Figure 10). Our solution is to build an efficient
data engine that iteratively generates annotated data via a feedback loop with SAM 3, human
annotators, and AI annotators, actively mining media-phrase pairs on which the current version of
SAM 3 fails to produce high-quality training data to further improve the model. By delegating certain
tasks to AI annotators—models that match or surpass human accuracy—we more than double the
throughput compared to a human-only annotation pipeline. We develop the data engine in four phases,
with each phase increasing the use of AI models to steer human effort to the most challenging failure
cases, alongside expanding visual domain coverage. Phases 1-3 focus only on images, with Phase 4
expanding to videos. We describe the key steps here; details and metrics are in §E.

Data Engine Components (Fig. 4). Media inputs (image or video) are mined from a large pool
with the help of a curated ontology. An AI model proposes noun phrases (NPs) describing visual
concepts, followed by another model (e.g., SAM 3) that generates candidate instance masks for each
proposed NP. The proposed masks are verified by a two-step process: first, in Mask Verification
(MV) annotators accept or reject masks based on their quality and relevance to the NP. Second, in
Exhaustivity Verification (EV) annotators check if all instances of the NP have been masked in the
input. Any media-NP pairs that did not pass the exhaustivity check are sent to a manual correction
stage, where humans add, remove or edit masks (using SAM 1 in a browser based tool), or use “group”
masks for small, hard to separate objects. Annotators may reject ungroundable or ambiguous phrases.

Phase 1: Human Verification. At first, data mining is done by randomly sampling images and NP
proposal is done with a simple captioner and parser. The initial mask proposal model is SAM 2
prompted with the output of an off-the-shelf open-vocabulary detector, and verifiers are all human.
The collected 4.3M image-NP pairs form the initial SA-Co/HQ dataset. We train SAM 3 on this data
and use it as the mask proposal model for the next phase.

Phase 2: Human + AI Verification. In this next phase, we use human accept/reject labels from the
MV and EV tasks collected in Phase 1 to fine-tune Llama 3.2 (Dubey et al., 2024) to create AI verifiers
to automatically perform the MV and EV tasks. These models receive image-phrase-mask triplets
and produce multiple-choice judgements of mask quality or exhaustivity. This new auto-verification
process allows human effort to be focused on the most challenging cases. We continue to re-train
SAM 3 on newly collected data and update it 6 times. As SAM 3 and AI verifiers improve, a higher
proportion of labels are auto-generated, further accelerating data collection. The introduction of AI
verifiers for MV and EV doubles the data engine’s throughput. We further upgrade the NP proposal
step to a Llama-based pipeline that also proposes hard negative NPs adversarial to SAM 3. This
phase adds 122M image-NP pairs to SA-Co/HQ.

Phase 3: Scaling and Domain Expansion. In this phase, we use AI models to mine increasingly
challenging cases and broaden domain coverage in SA-Co/HQ to 15 datasets (Fig. 11). In new
domains, the MV AI verifier performs well zero-shot, while the EV AI verifier improves with modest
domain-specific human supervision. We also expand concept coverage to long-tail, fine-grained
concepts by extracting NPs from each image’s alt-text where available and by mining concepts from
a 22.4M node SA-Co ontology based on Wikidata (17 top-level categories, 72 sub-categories). We
iterate SAM 3 training 7 times and AI verifiers 3 times, and add 19.5M image-NP pairs to SA-Co/HQ.

5
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Figure 5: Example video (top) and images (bottom) from SA-Co with annotated phrases and instance masks/IDs.

Phase 4: Video Annotation. This phase extends the data engine to video. We use a mature SAM 3 to
collect targeted quality annotations that capture video-specific challenges. The data mining pipeline
applies scene/motion filters, content balancing, ranking, and targeted searches. Video frames are
sampled (randomly or by object density) and sent to the image annotation flow (from phase 3).
Masklets are produced with SAM 3 (now extended to video) and post-processed via deduplication
and removal of trivial masks. Because video annotation is more difficult, we concentrate humans on
likely failures by favoring clips with many crowded objects and tracking failures. The collected video
data SA-Co/VIDEO consists of 52.5K videos and 467K masklets. See §E.6 for details.

5 SEGMENT ANYTHING WITH CONCEPTS (SA-CO) DATASET

Training Data. We collect three image datasets for the PCS task: i) SA-Co/HQ, the high-quality
image data collected from the data engine in phases 1-4, ii) SA-Co/SYN, a synthetic dataset of images
labeled by a mature version of the data engine (phase 3) without any human involvement, and iii)
SA-Co/EXT, fifteen external datasets which have instance mask annotations, enriched with hard
negatives using our SA-Co ontology pipeline. Notably in the SA-Co/HQ dataset we annotate 5.2M
images and 4M unique NPs, making it the largest high-quality open-vocab segmentation dataset.
We also annotate a video dataset, SA-Co/VIDEO, containing 52.5K videos and 24.8K unique NPs,
forming 134K video-NP pairs. The videos have an average length of 84.1 frames at 6 fps. See §F.1
for details including full statistics, comparison with existing datasets and the distribution of concepts.

SA-Co Benchmark. The SA-Co evaluation benchmark has all together 214K unique phrases, 126K
images and videos, and over 3M media-phrase pairs with challenging hard negative labels to test
open-vocabulary recognition. It consists of several splits: SA-Co/Gold has seven domains and
each image-NP pair is annotated by three different annotators (used measure human performance);
SA-Co/Silver has ten domains and only one human annotation per image-NP pair; SA-Co/Bronze
and SA-Co/Bio are nine existing datasets either with existing mask annotations or masks generated
by using boxes as prompts to SAM 2. The SA-Co/VEval benchmark has three domains and one
annotator per video-NP pair. See Tab. 29 for dataset statistics and Fig. 5 for example annotations.

Metrics. We aim to measure the usefulness of the model in downstream applications. Detection
metrics such as average precision (AP) do not account for calibration, which means that models
can be difficult to use in practice. To remedy this, we only evaluate predictions with confidence
above 0.5, effectively introducing a threshold that mimics downstream usages and enforces good
calibration. The PCS task can be naturally split into two sub-tasks, localization and classification.
We evaluate localization using positive macro F1 (pmF1) on positive media-phrase pairs with at least
one ground-truth and one predicted mask. Classification is measured with image-level Matthews
Correlation Coefficient (IL MCC) which ranges in [−1, 1] and evaluates binary prediction at the
image level (“is the object present or not?”) without regard for the quality of the masks. Our main
metric, classification-gated F1 (CGF1), combines these as follows: CGF1 = 100∗pmF1 ∗ IL MCC.
Full definitions are in §F.3.
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Instance Segmentation Box Detection Semantic Segmentation
LVIS SA-Co LVIS COCO SA-Co ADE-847 PC-59 Cityscapes

Model CGF1 AP Gold Silver Bronze Bio CGF1 AP AP APo Gold Silver Bronze Bio mIoU mIoU mIoU

Humanmin – – 74.2 – – – – – – – 76.2 – – – – – –
Humanmax – – 81.4 – – – – – – – 83.6 – – – – – –
OWLv2 35.5 – 22.9 12.1 8.5 1.1 35.2 35.2 38.2 42.4 23.3 11.7 8.5 1.6 – – –
OWLv2⋆ 45.7 43.4 34.3 19.3 19.3 0.2 47.4 45.5 46.1 23.9 35.4 19.2 19.4 0.3 – – –
gDino-T 32.9 – 9.1 7.4 11.1 0.6 33.8 20.5 45.7 35.3 9.4 6.8 12.3 0.7 – – –
LLMDet-L 48.1 36.3 12.9 12.1 18.8 0.5 53.7 42.0 55.6 49.8 13.5 11.5 20.6 0.6 – – –
APE-D⋆ – 53.0† 27.3 15.0 19.7 0.0 – 59.6† 58.3† – 29.4 15.9 21.8 0.0 9.2† 58.5† 44.2†

DINO-X – 38.5† 27.7δ – – – – 52.4† 56.0† – 29.4δ – – – – – –
Gemini 2.5 19.8 – 16.4 10.5 8.9 10.2 23.7 – – – 18.7 12.2 10.1 12.0 – – –

SAM 3 52.8 47.0 65.0 57.1 49.5 59.3 57.5 51.7 53.5 55.5 67.7 58.0 53.1 60.0 14.7 59.4 65.1

Table 1: Evaluation on image concept segmentation with text. APo corresponds to COCO-O accuracy, ⋆partially
trained on LVIS. †from original papers, δfrom DINO-X API. Gray numbers indicate usage of respective closed
set training data (LVIS/COCO). Upper and lower bound for human performance given, see §F.4 for details.

Handling Ambiguity. We collect 3 annotations per NP on SA-Co/Gold. We measure oracle accuracy
comparing each prediction to all ground truths and selecting the best score. See §F.3.

6 EXPERIMENTS

We evaluate SAM 3 across image/video segmentation, few-shot adaptation to detection and counting
benchmarks, and segmenting from complex language queries with SAM 3 + MLLM. We also show a
subset of ablations, with more in §B. References, more results and details are in §G.

Image PCS with Text. We evaluate instance segmentation, box detection, and semantic segmentation
on external and our benchmarks. SAM 3 is prompted with a single NP at a time, and predicts instance
masks, bounding boxes, or semantic masks. As baselines, we evaluate OWLv2, GroundingDino, and
LLMDet on box detection, and prompt SAM 1 with their boxes to evaluate segmentation. We also
compare to APE, DINO-X, and Gemini 2.5 Flash, a generalist LLM. Tab. 1 shows that zero-shot,
SAM 3 is competitive on closed-vocabulary COCO, COCO-O and on LVIS boxes, and is significantly
better on LVIS masks. On open-vocabulary SA-Co/Gold SAM 3 achieves double the CGF1 score of
the strongest baseline OWLv2⋆, and 88% of the estimated lower bound on human performance. The
improvements are even higher on the other SA-Co splits. Open vocabulary semantic segmentation
results on ADE-847, PascalConcept-59, and Cityscapes show that SAM 3 outperforms APE, a strong
specialist baseline. See §G.1 for details.

ODinW13 RF-100VL
Model AP0 AP10 AP0 AP10

Gemini2.5-Pro 33.7 – 11.6 9.8
gDino-T 49.7 – 15.7 33.7
gDino1.5-Pro 58.7 67.9 – –
SAM 3 59.9 71.6 14.3 35.7

Table 2: Zero-shot and 10-shot
transfer on in-the-wild datasets.

COCO LVIS ODinW13
AP AP+ AP+ AP+ AP AP+ AP+ AP+ AP AP+ AP+ AP+

Model T T I T+I T T I T+I T T I T+I

T-Rex2 52.2 – 58.5 – 45.8 – 65.8 – 50.3 – 61.8 –
SAM 3 53.5 56.8 75.7 76.0 51.7 53.4 75.5 77.0 59.9 62.5 81.9 79.6

Table 3: Prompting with 1 exemplar on COCO, LVIS and ODinW35. Eval-
uation per prompt type: T (text-only), I (image-only), and T+I (combined
text and image). AP+ is evaluated only on positives examples.

Few-Shot Adaptation. We evaluate zero- and few-shot transfer of SAM 3 on ODinW13 and
Roboflow100-VL, with their original labels as prompts. We do not perform any prompt tuning.
We fine-tune SAM 3 without mask loss, and report average bbox mAP in Tab. 2. SAM 3 achieves
SoTA 10-shot performance, surpassing in-context prompting in Gemini and object detection experts
(gDino); more details in §G.3. RF-100VL contains domains with specialized prompts that are out of
SAM 3’s current scope, but SAM 3 adapts through fine-tuning more efficiently than baselines.

PCS with 1 Exemplar. We first evaluate image exemplars using a single input box sampled at
random from the ground truth. This can be done only on “positive” data, where each prompted object
appears in the image. We report the corresponding AP+ in Tab. 3 across three settings: text prompt
(T), exemplar image (I), and both text and image (T+I); SAM 3 outperforms prior state-of-the-art
T-Rex2 by a healthy margin on COCO (+17.2), LVIS (+9.7), and ODinW (+20.1). See §G.2 for more
details and results on SA-Co/Gold.
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Figure 6: SAM 3’s interactive exemplar
prompts vs the ideal PVS baseline on SA-
Co. We report CGF1 vs # of box prompts,
averaged over all SA-Co/Gold phrases.

PCS with K Exemplars. Next, we evaluate SAM 3 in
an interactive setting, simulating collaboration with a hu-
man annotator. Starting with a text prompt, we iteratively
add one exemplar prompt at a time: missed ground truths
are candidate positive prompts, false positive detections
are candidate negative prompts. Results (Fig. 6) are com-
pared to a perfect PVS baseline, where we simulate the
user manually fixing errors using ideal box-to-mask cor-
rections. SAM 3’s PCS improves CGF1 more quickly, as
it generalizes from exemplars (e.g., detecting or suppress-
ing similar objects), while PVS only corrects individual
instances. After 3 clicks, interactive PCS outperforms
text-only by +18.6 CGF1 points and PVS refinement by
+9.7. Performance plateaus after 4 clicks, as exemplars
cannot fix poor-quality masks. Simulating a hybrid switch
to PVS at this point yields further gains, showing that the
two approaches are complementary.

CountBench PixMo-Count
Model MAE ↓ Acc ↑ MAE ↓ Acc ↑

DINO-X 0.62 82.9 0.21 85.0
Qwen2-VL-72B 0.28 86.7 0.61 63.7
Molmo-72B 0.27 92.4 0.17 88.8
Gemini 2.5 Pro 0.24 92.4 0.38 78.2
SAM 3 0.11 95.6 0.22 87.3

Table 4: Accuracy on counting benchmarks.
Gray indicates usage of training sets.

Object Counting. We evaluate on object counting bench-
marks CountBench and PixMo-Count to compare with
several MLLMs using Accuracy (%) and Mean Absolute
Error (MAE) from previous technical reports and our own
evaluations. See Tab. 4 for results and §G.4 for more eval-
uation details. Compared to MLLMs, SAM 3 not only
achieves good object counting accuracy, but also provides
object segmentation that most MLLMs cannot provide.

Video PCS with Text. We evaluate video segmentation with text prompts on both our SA-Co/VEval
benchmark and existing public benchmarks. For SA-Co/VEval, we report CGF1 and pHOTA
metrics (defined in §G.5) across its subsets (SA-V, YT-Temporal-1B, SmartGlasses). For public
benchmarks, we use their official metrics. Baselines include GLEE, an open-vocabulary image and
video segmentation model, “LLMDet + SAM 3 Tracker” (replacing our detector with LLMDet),
and “SAM 3 Detector + T-by-D” (replacing our tracker with an association module based on the
tracking-by-detection paradigm). In Tab. 5, SAM 3 largely outperforms these baselines, especially
on benchmarks with a very large number of noun phrases. On SA-Co/VEval it reaches over 80% of
human pHOTA. See §G.5 for more details.

SA-Co/VEval benchmark test split public benchmarks
SA-V YT-Temporal-1B SmartGlasses LVVIS BURST YTVIS21 OVIS

(2.0K NPs) (1.7K NPs) (2.4K NPs) (1.2K NPs) (482 NPs) (40 NPs) (25 NPs)
Model CGF1 pHOTA CGF1 pHOTA CGF1 pHOTA test mAP test HOTA val mAP val mAP

Human 53.2 68.0 73.8 79.2 57.6 70.3 – – – –
GLEE† (all NPs at once) 0.2 8.8 2.1 18.9 0.1 5.5 20.8 28.4 62.2 38.7
GLEE† (one NP at a time) 0.0 12.3 3.2 22.6 0.1 6.4 9.3 20.2 56.5 32.4
LLMDet† + SAM 3 Tracker 3.6 31.2 9.2 41.5 0.0 7.4 15.5 35.1 32.4 47.5
SAM 3 Detector + T-by-D 22.2 49.0 44.6 64.4 29.3 57.1 37.3 40.7 57.3 54.9

SAM 3 27.8 53.9 51.7 69.2 38.2 62.9 38.2 45.9 56.9 59.9

Table 5: Video PCS from a text prompt (open-vocabulary video instance segmentation) on SA-Co/VEval and
public benchmarks (see Tab. 38 for more results and analyses). SAM 3 shows strong performance, especially on
benchmarks with a large number of NPs. †: GLEE and LLMDet have not been trained on the SA-Co dataset, so
their results should be seen as zero-shot on SA-Co/VEval.

PVS. We evaluate SAM 3 on a range of geometric tasks, including Video Object Segmentation (VOS)
and interactive image segmentation. Tab. 6 compares SAM 3 to recent state-of-the-art methods on the
VOS task. SAM 3 achieves significant improvements over SAM 2 on most benchmarks, particularly
on the challenging MOSEv2 dataset, where SAM 3 outperforms prior work by 6 points. For the
interactive image segmentation task, we evaluate SAM 3 on the 37 datasets benchmark introduced in
SAM 2. As shown in Tab. 7, SAM 3 outperforms SAM 2 on average mIoU.

SAM 3 Agent. We experiment with an MLLM that uses SAM 3 as a tool, called SAM 3 Agent,
to segment more complex text queries such as “people sitting down but not holding a gift box in

8
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J&F G J&Ḟ

Model MOSEv1
val

DAVIS17
val

LVOSv2
val

SA-V
val

SA-V
test

YTVOS19
val

MOSEv2
val

SAMURAI 72.6 89.9 84.2 79.8 80.0 88.3 51.1
SAM2Long 75.2 91.4 85.9 81.1 81.2 88.7 51.5
SeC 75.3 91.3 86.5 82.7 81.7 88.6 53.8
SAM 2.1 L 77.9 90.7 79.6 77.9 78.4 89.3 47.9†

SAM 3 78.4 92.0 88.2 82.9 84.6 89.6 60.1

Table 6: SAM 3 improves over SAM 2 in VOS. †: Zero-shot.

Avg. mIoU
Model 1-click 5-clicks

SAM 1 H 58.5 82.1
SAM 2.1 L 64.8 84.4
SAM 3 65.4 85.0

Table 7: Interactive image segmen-
tation on the SA-37 benchmark.

ReasonSeg (gIoU) Omnilabel (AP)
val test val 2023

Model MLLM All All Short Long descr descr-S descr-M descr-L

X-SAM Phi-3-3.8B 56.6 57.8 47.7 56.0 12.0* 17.1* 11.4* 8.8*
SegZero Qwen2.5-VL 7B 62.6 57.5 – – 13.5* 20.7* 12.4* 9.1*
RSVP GPT-4o 64.7 55.4 61.9 60.3 – – – –

Overall SoTA Performance† 65 61.3 55.4 63.2 36.5 54.4 33.2 25.5

SAM 3 Agent Qwen2.5-VL 7B 65.4 62.6 59.1 63.7 36.5 52.6 34.3 26.7
SAM 3 Agent Llama4 Maverick 71.5 69.3 70.9 68.8 36.2 47.5 34.9 28.1
SAM 3 Agent Qwen2.5-VL 72B 75.0 71.8 71.3 72.0 44.7 58.4 42.6 36.1
SAM 3 Agent Gemini 2.5 Pro 76.0 73.8 74.0 73.7 46.7 54.6 46.2 38.7

Table 8: SAM 3 Agent results. Gray indicates fine-tuned results on ReasonSeg (train), * indicates reproduced
results, underline indicates the main metric. †: LISA-13B-LLaVA1.5 for ReasonSeg; REAL for OmniLabel.

their hands”. The MLLM proposes noun phrase queries to prompt SAM 3 and analyzes the returned
masks, iterating until the masks are satisfactory. Tab. 8 shows that SAM 3 Agent evaluated zero-
shot on ReasonSeg (Lai et al., 2024) and OmniLabel (Schulter et al., 2023) surpasses prior work
without training on any referring expression segmentation or reasoning segmentation data. SAM 3
Agent also outperforms previous zero-shot results on RefCOCO+ (Kazemzadeh et al., 2014) and
RefCOCOg (Mao et al., 2016). SAM 3 can be combined with various MLLMs, with the same set of
the system prompts for all those MLLMs, showing SAM 3’s robustness. See §H for more details.

CGF1 IL MCC pmF1

× 57.6 0.77 74.7
✓ 63.3 0.82 77.1

(a) Presence token.

#/img CGF1 IL MCC pmF1

0 31.8 0.44 70.2
5 44.8 0.62 71.9
30 49.2 0.68 72.3

(b) Hard Negatives.

EXT SYN HQ CGF1 IL MCC pmF1

✓ × × 30.9 0.46 66.3
✓ ✓ × 39.7 0.57 70.6
✓ × ✓ 51.8 0.71 73.2
✓ ✓ ✓ 54.3 0.74 73.5

(c) Training data.

Model CGF1 IL MCC pmF1

Humanmin 74.2 0.88 84.7
SAM 3 65.0 0.82 79.7
+ EV AI 68.1 0.86 78.8
+ MV AI 69.2 0.85 81.3

(d) SAM 3 + AI verifiers.

Table 9: Selected model and data ablations on SA-Co/Gold. Numbers across tables are not directly comparable.

Selected Ablations. In Tab. 9 we report a subset of the more extensive ablations from §B. The
presence head boosts CGF1 by +5.7 (9a), mainly improving image-level recognition ability measured
by IL MCC. Tab. 9b shows that adding hard negatives significantly improves the model performance,
most notably the image-level IL MCC from 0.44 to 0.68. Tab. 9c shows that synthetic (SYN) training
data improves over the external (EXT) by +8.8 CGF1 and our high-quality (HQ) annotations add
+14.6 CGF1 on top of this baseline. We present detailed data scaling laws of the synthetic data and
high-quality data in §B.2, showing their effectiveness on both in-domain and out-of-domain test sets.
In Tab. 9d, we show how AI verifiers can improve pseudo-labels. Replacing the presence score from
SAM 3 with a presence score from the exhaustivity verification (EV) AI verifier boosts IL MCC by
4.6 points. Using the mask verification (MV) AI verifier to remove bad masks boosts pmF1 by +2.5.

7 CONCLUSION

We present Segment Anything with Concepts, enabling open vocabulary text and exemplars as
prompts in interactive segmentation. Our principal contributions are: (i) introducing the PCS task and
SA-Co benchmark, (ii) a decoupled recognition-localization architecture that extends SAM 2 for PCS
while retaining PVS capabilities, (iii) a high-quality efficient human and AI annotator in the loop data
engine. SAM 3 achieves state-of-the-art results, doubling performance over prior systems for PCS
on SA-Co in images and videos. We believe SAM 3 and the SA-Co benchmark will be important
milestones and pave the way for future research and applications in computer vision.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

URL https://lila.science/datasets/wcscameratraps. 44, 49

URL https://www.nga.gov/artworks/free-images-and-open-access. 44, 48

Xiang An, Kaicheng Yang, Xiangzi Dai, Ziyong Feng, and Jiankang Deng. Multi-label cluster
discrimination for visual representation learning. In European Conference on Computer Vision, pp.
428–444. Springer, 2024. 68

Ali Athar, Jonathon Luiten, Paul Voigtlaender, Tarasha Khurana, Achal Dave, Bastian Leibe, and
Deva Ramanan. Burst: A benchmark for unifying object recognition, segmentation and tracking in
video. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pp.
1674–1683, 2023. 55

Hexin Bai, Wensheng Cheng, Peng Chu, Juehuan Liu, Kai Zhang, and Haibin Ling. Gmot-40: A
benchmark for generic multiple object tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 6719–6728, 2021. 55

Kevin Barnard, Elaine Liu, Kristine Walz, Brian Schlining, Nancy Jacobsen Stout, and Lonny
Lundsten. DeepSea MOT: A benchmark dataset for multi-object tracking on deep-sea video. arXiv
preprint arXiv:2509.03499, 2025. doi: 10.48550/arXiv.2509.03499. 55

Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking without bells and whistles. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 941–951, 2019. 22

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and realtime
tracking. In 2016 IEEE international conference on image processing (ICIP), pp. 3464–3468. Ieee,
2016. 22
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Luc Van Gool. The 2017 davis challenge on video object segmentation. arXiv:1704.00675, 2017b.
44

PySceneDetect Developers. PySceneDetect. https://www.scenedetect.com/. 41

Jiyang Qi, Yan Gao, Yao Hu, Xinggang Wang, Xiaoyu Liu, Xiang Bai, Serge Belongie, Alan Yuille,
Philip Torr, and Song Bai. Occluded video instance segmentation: A benchmark. International
Journal of Computer Vision, 2022. 55

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021. 22

Vikram V. Ramaswamy, Sing Yu Lin, Dora Zhao, Aaron B. Adcock, Laurens van der Maaten, Deepti
Ghadiyaram, and Olga Russakovsky. Geode: a geographically diverse evaluation dataset for object
recognition. In NeurIPS Datasets and Benchmarks, 2023. 44, 48

Viresh Ranjan, Udbhav Sharma, Thu Nguyen, and Minh Hoai. Learning to count everything. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3394–3403, 2021. 44

Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel
grounding large multimodal model. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13009–13018, 2024. 22, 66, 68

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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A RELATED WORK

Promptable and Interactive Visual Segmentation. SAM 1 (Kirillov et al., 2023) introduces
“promptable” image segmentation with interactive refinement. While the original task definition
included text prompts, they were not fully developed. SAM 2 (Ravi et al., 2024) extended the
promptable visual segmentation task to video, allowing refinement points on any frame. SAM 3
inherits geometry-based segmentation from SAM 1 and 2, while extending to include text and image
exemplar prompts that segment all instances of a specified concept in images and videos.

Open-Vocabulary Detection and Segmentation in Images exhaustively labels every instance of an
open-vocabulary object category with a coarse bounding box (detection) or a fine-grained pixel mask
(segmentation). Recent open-vocabulary (OV) detection (Gu et al., 2021; Minderer et al., 2022) and
segmentation (Ding et al., 2022; Liang et al., 2023) methods leverage large-scale vision-language
encoders such as CLIP (Radford et al., 2021) to handle categories described by arbitrary text, even
those never seen during training. While DETR (Carion et al., 2020) is limited to a closed set of
categories seen during training, MDETR (Kamath et al., 2021) evolves the approach to condition
on raw text queries, such as a sentence or a caption. Image exemplars used as prompts to specify
the desired object category (e.g., DINOv (Li et al., 2023a), T-Rex2 (Jiang et al., 2024)) present a
practical alternative to text, but fall short in conveying the abstract concept of objects as effectively
as text prompts. We introduce a new benchmark for OV segmentation with > 100× more unique
concepts than prior work, and release a state-of-the-art model.

Visual Grounding localizes a language expression referring to a region of the image with a box or
mask. (Plummer et al., 2020) introduces phrase detection as both deciding whether the phrase is
relevant to an image and localizing it. GLIP (Li et al., 2022b) and GroundingDino (Liu et al., 2023)
formulate object detection as phrase grounding, unifying both tasks during training. MQ-GLIP (Xu
et al., 2023) adds image exemplars to text as queries. Building on this trend toward models supporting
multiple tasks and modalities, GLEE (Wu et al., 2024a) allows text phrases, referring expressions, and
visual prompts for category and instance grounding in both images and videos. Unlike SAM 3, GLEE
does not support exemplars or interactive refinement. LISA (Lai et al., 2024) allows segmentation
that requires reasoning, while OMG-LLaVa (Zhang et al., 2024a) and GLaMM (Rasheed et al.,
2024) generate natural language responses interleaved with corresponding segmentation masks, with
GLaMM accepting both textual and optional image prompts as input. Some general-purpose MLLMs
can output boxes and masks (Gemini2.5 (Comanici et al., 2025)) or points (Molmo (Deitke et al.,
2025)). SAM 3 can be used as a “vision tool” in combination with an MLLM (§6).

Multi-Object Tracking (MOT) and Segmentation methods identify and track multiple instances of
an object category in video, associating each with a unique ID. In tracking-by-detection methods,
detection is performed independently on each frame to produce boxes and confidence scores, followed
by association of boxes using motion-based and appearance-based matching as in SORT (Bewley
et al., 2016; Wojke et al., 2017), Tracktor (Bergmann et al., 2019), ByteTrack (Zhang et al., 2022c),
SAM2MOT (Jiang et al., 2025), or OC-SORT (Cao et al., 2023). An alternative is an end-to-end
trainable architecture that jointly detects and associates objects, e.g., TrackFormer (Meinhardt et al.,
2022), TransTrack (Sun et al., 2020), or MOTR (Zeng et al., 2022). TrackFormer uses a DETR-like
encoder-decoder that initializes new tracks from static object queries and auto-regressively follows
existing tracks with identity-preserving track queries. A challenge with joint models is the conflict
between detection and association (Yu et al., 2023a; Gao et al., 2025), where one needs to focus on
semantics while the other on instance identities. In SAM 3, we tackle this challenge with a video
tracker that is built on top of a strong image detector to propagate masks across frames.

B ABLATIONS

B.1 MODEL ABLATIONS

Presence Token. We first ablate the impact of the presence token and the approach to its training.
The presence token is included in the decoder (discussed further in §D.2), together with the object
queries, and predicts a concept presence score. The presence score receives gradients only on the
PCS task during joint training and is always supervised with the presence (or absence) of the concept
in the image using a binary cross-entropy loss. Using a presence token to decouple presence and
localization brings large gains in performance, see Tab. 10.
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SA-Co/Gold
Presence token CGF1 IL MCC pmF1

× 57.6 0.77 74.7
✓ 63.3 0.82 77.1

Table 10: Presence token. Decoupling presence and localization brings large gains.

When used with a presence score, we found that the best supervision strategy for the box/mask object
scores is to not receive gradients when a concept is an image-level negative, see Setting (a) in Tab. 11.
Note that this is in contrast to the approach in typical DETR variants, where all individual object
scores are supervised negatively to reflect the absence of the concept in the image, see Setting (b) in
Tab. 11. We find that (b) works worse than (a) when used with the presence score. When a concept
is present in the image, individual object queries always receive classification supervision based on
Hungarian matching. Setting (a) is consistent with our recognition-localization decoupled design,
where the presence score is responsible for recognition (existence in the image) and the object scores
are responsible for localization (i.e., rank the best match to the positive ground-truth highest among
all the proposals).

During inference, we use the product of the global presence score and the object score as the total
object score. In Setting (c), we explored directly supervising the total object scores (instead of
the typical object scores) as positive or negative (as determined by matching) but observed worse
performance. Finally, Setting (d) in Tab. 11 investigates detaching the presence score from the
computation graph while supervising the total scores, but this does not improve over (c).

SA-Co/Gold
CGF1 IL MCC pmF1

a. ✓ × × 65.0 0.82 79.7
b. × × × 64.1 0.81 79.2
c. ✓ ✓ × 63.6 0.83 76.7
d. ✓ × ✓ 63.4 0.83 76.7

Supervise mask scores
only when concept present

Supervise
total score

Sup. total score,
detach presence

Table 11: Supervision strategy for object/mask scores for a model with a presence token. We find the best
supervision strategy is to supervise mask scores only for positive concepts and to supervise the presence and
mask scores separately, although their product is used as the total object score during inference.

Training with presence can be considered as a form of post-training and occurs in Stage 3 (see §D.4.1)
of our training pipeline. By default, ablations do not undergo this stage unless otherwise mentioned.

Vision and Text Encoder. While SAM 2 uses an MAE (He et al., 2022) pre-trained Hiera (Ryali
et al., 2023) for its strong localization capability and efficiency for the more geometric PVS task,
SAM 3 also needs strong semantic and linguistic understanding with broad coverage. We adapted
PE (Bolya et al., 2025) for the vision and text encoders of SAM 3, so that a large and diverse set of
concepts is seen during Stage 1 of training, while producing aligned image and text encoders. In
Tab. 12, we compare performance with Hiera and DINOv2 (Oquab et al., 2024); since these vision
encoders lack an aligned text encoder, we use DistilRoBERTa-base (Sanh et al., 2019). We find PE to
be the best overall choice of vision backbone, and using its own aligned text encoder provides further
gains over PE with an unaligned text baseline. Use of PE enables strong robustness in SAM 3 (here
measured by AP on COCO-O, demonstrating good object detection across various domain shifts, e.g.
“sketch”, “cartoon”, “painting”, etc).

Encoder (patch size) SA-Co/Gold (CGF1) COCO-O (AP)

PE-L+ (14) 50.4 42.5
PE-L+ (14) w/ DistilRoBERTa 43.3 37.9

DINOv2-L (14) 42.0 31.6
Hiera-L (16) 37.0 22.0

Table 12: Choice of encoders. As SAM 3 needs both semantic visual and linguistic understanding, we find PE’s
aligned image and text encoders work well.

Implementation Details. The image resolution was set to 1008 px, 1008 px, 1152 px for PE, DINOv2,
Hiera, respectively, ensuring the same number of tokens in the detector due to their differences in
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patch size. All vision encoders used global attention in only a subset of the layers, using windowed
(24× 24 tokens) attention otherwise. Since Hiera is a hierarchical encoder, we set the window size to
24× 24 in stage 3 of the encoder, which has most of the FLOPs. Since PE is capable of using relative
positional information via RoPE (Su et al., 2021; Heo et al., 2024), we include relative positional
embeddings in global layers for Hiera and DINOv2 following Bolya et al. (2024). All models were
trained using SA-Co/HQ viewing 5 million samples over the course of training. Recipe was separately
optimized for each choice of encoders. Tokens from the respective vision encoders are downsampled
by 2× 2 to 1296 tokens before being passed to the fusion encoder and detector.

B.2 IMAGE TRAINING DATA ABLATIONS

Setup. We adopt a simplifed, lighter model and training strategy for ablations in this section.
Specifically, we use (i) a stride-28 (instead of 14) variant of SAM 3 using 4× fewer tokens in the
detector, (ii) limit to 45% of the entire SA-Co/SYN dataset and adopt (iii) shorter training schedules
and do not run “presence post-training” (see §B). This allows running ablations more efficiently (but
results in lower absolute accuracy vs. SAM 3). We observed similar trends when training at scale.

SAM 3 Training Data. Tab. 13 analyzes the impact of various SA-Co training data subsets.
Training with even with just SA-Co/EXT shows comparable performance with best external models
on SA-Co/Gold (see OWLv2’s and DINO-X’s performance in Tab. 1), indicating a strong base
model. Adding synthetic data SA-Co/SYN into the training mix results in significantly improved
performance. The performance further increases after adding the high-quality SA-Co/HQ data due to
its quality and distributional similarity with SA-Co/Gold. Although SA-Co/HQ is large-scale and
in-domain with SA-Co/Gold, SA-Co/SYN shows further gains on SA-Co/Gold when added on top of
SA-Co/HQ.

SA-Co/EXT SA-Co/SYN SA-Co/HQ CGF1 IL MCC pmF1

✓ × × 30.9 0.46 66.3
✓ ✓ × 39.7 0.57 70.6
✓ × ✓ 51.8 0.71 73.2
✓ ✓ ✓ 54.3 0.74 73.5

Table 13: Training data effect on SA-Co/Gold. Adding each subset improves performance.

SA-Co/Gold (All) SA-Co/Gold-MetaCLIP SA-Co/Gold-Wiki-Food&Drink
(in-domain) (in-domain) (in domain)

Training data CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1

SA-Co/EXT 30.9 0.50 66.3 28.1 0.45 62.3 30.49 0.45 67.5
+ 1% SA-Co/HQ 36.4 0.54 68.7 36.1 0.56 64.1 40.3 0.55 73.3
+ 4% SA-Co/HQ 44.2 0.62 71.1 43.2 0.65 66.8 50.2 0.66 75.6

+ 10% SA-Co/HQ 46.7 0.65 71.7 45.6 0.67 67.7 54.7 0.71 76.9
+ 20% SA-Co/HQ 49.0 0.68 72.2 46.8 0.68 68.2 57.5 0.74 77.4
+ 100% SA-Co/HQ 51.8 0.71 73.2 49.0 0.71 69.4 59.9 0.77 77.5
Teacher (Human) [74.2, 81.4] [0.88, 0.96] 84.7 [68.2, 76.3] [0.86, 0.96] 79.8 [79.2, 85.0] [0.91, 0.97] 87.3

Table 14: SA-Co/HQ scaling. SA-Co/EXT data alone is not enough to solve SA-Co/Gold, training on SA-
Co/HQ scales well with increasing amount of data. Human performance given as an estimated range where
applicable, see §F.4 for details. Ablations use a lighter model and training setting vs SAM 3.

SA-Co/HQ Scaling Law. Tab. 14 investigates scaling behavior of the SA-Co/HQ training data.
For this ablation, the data mix is sampled randomly from the entire SA-Co/HQ (collected from the
three phases in §4) at a fixed percentage. We also report scaling behavior on two specific subsets of
SA-Co/Gold: the MetaCLIP Xu et al. (2024b) subset annotated with generic caption-derived NPs,
and Wiki-Food&Drink subset annotated with fine-grained NPs from SA-Co Ontology nodes. SA-
Co/HQ improves performance on both subsets as expected, since they are from the same distribution
(in-domain). We also report the Teacher (Human) performance in the last row. Due to the simplified
setting, the gap between SAM 3 and Human is larger than that of the best SAM 3 model.

SA-Co/SYN Scaling Law. Tab. 15 shows that SAM 3 scales well with SA-Co/SYN data on SA-
Co/Gold benchmark as it benefits from the large scale concepts captured from image captions
generated by Llama4 and alt-text associated with the images, for both the in-domain MetaCLIP subset
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SA-Co/Gold (All) SA-Co/Gold-MetaCLIP SA-Co/Gold-Wiki-Food&Drink
(in-domain) (out-of-domain)

Training data CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1

SA-Co/EXT 30.9 0.46 66.3 28.1 0.45 62.3 30.49 0.45 67.5
+ 1% SA-Co/SYN 35.9 0.5 69.3 37.3 0.6 64.5 32.4 0.4 73.1
+ 4% SA-Co/SYN 36.9 0.5 69.7 38.5 0.59 64.9 34.0 0.46 73.1

+ 15% SA-Co/SYN 38.9 0.56 70.2 40.8 0.62 65.5 36.6 0.50 73.8
+ 45% SA-Co/SYN 39.7 0.57 70.6 42.5 0.64 66.1 37.4 0.51 73.9

Teacher (SAM 3 + AI verifiers) 66.1 0.84 78.5 62.5 0.83 75.7 70.0 0.87 80.8

Table 15: SA-Co/SYN scaling. SAM 3 benefits from increasing SA-Co/SYN data, both on MetaCLIP which is
in-domain with the synthetic data, and on Wiki concepts which are out-of-domain of the synthetic data. The
teacher that generated the SA-Co/SYN data consists of an older version of SAM 3, and AI verifiers from the
SAM 3 data engine. Ablations use a lighter model and training setting vs SAM 3.

and the out-of-domain Wiki-Food&Drink subset within the SA-Co/Gold benchmark. The last row
shows the Teacher performance (an older version of SAM 3 and AI verifiers) is much better than the
student, and explains why SA-Co/SYN is useful. When comparing the SA-Co/SYN in Tab. 15 and
SA-Co/HQ in Tab. 14, the lower in-domain performance gap on MetaCLIP (42.5 vs 49.0) comes from
the relatively weaker annotation quality of SA-Co/SYN, due to lacking of the human correction step.
The gap is larger on the out-of-domain Wiki-Food&Drink set (37.4 vs 59.9), because SA-Co/SYN
only covers the MetaCLIP images and noun phrases from a captioning model; see Table 28. We also
show in §B.3 that with additional in-domain synthetic data, we can close the performance gap on
SA-Co/Gold-Wiki-Food&Drink subset without any human involvement.

Hard Negatives. We ablate the number of hard negative noun phrases in SA-Co/HQ per image in
Tab. 16. We show that increasing the number of negatives improves SAM 3 performance across all
metrics, most notably IL MCC. Hard negatives are phrases that are not present in the image but that (a
previous generation of) SAM 3 predicts masks for, i.e., they are adversarial to (a previous generation
of) SAM 3. Training on such difficult distractors helps improve the image-level classification
performance captured by the IL MCC metric.

SAM 3 and AI Verifiers. AI verifiers improve performance over the final SAM 3 model alone on the
PCS task, as shown in Tab. 17. We first replace the presence score from SAM 3 with a presence score
from the Exhaustivity Verification (EV) AI verifier (given the image and noun phrase with no objects
as input, the probability of not exhaustive, defined in Tab. 24). This results in a +3.1 point gain in
CGF1, all due to IL MCC. Then we apply the Mask Verification (MV) AI verifier to each mask, and
remove the rejected masks. This results in a further +1.1 point gain in CGF1, all due to pmF1. The
system closes half the gap between SAM 3 and human performance, which indicates potential further
improvements of SAM 3 by scaling up the SA-Co/SYN data and SAM 3 model size.

# negatives CGF1 IL MCC pmF1

0 31.8 0.44 70.2
5 44.8 0.62 71.9
15 47.9 0.67 72.1
30 49.2 0.68 72.3

Table 16: Effect of hard negatives on SA-
Co/Gold. More negatives improve performance.

Model CGF1 IL MCC pmF1

SAM 3 65.0 0.818 79.7
+ EV AI verifier 68.1 0.864 78.8
+ MV AI verifier 69.2 0.852 81.3

Human [74.2, 81.4] [0.876, 0.962] 84.7

Table 17: Effect of using AI verifiers on top of SAM 3,
evaluated on SA-Co/Gold.

B.3 AUTOMATIC DOMAIN ADAPTATION VIA THE SYNTHETIC DATA ENGINE

In this section, we demonstrate that with domain-specific synthetic data generated with the synthetic
data engine (using SAM 3 + AI verifiers), we can significantly improve performance on a new domain
without any human annotation. We select “Food & drink” Wiki nodes in our ontology as the new
domain and mine images from MetaCLIP (refer to Concept Selection, Offline Concept Indexing and
Online Mining steps in §E.4 for more details on data mining). For pseudo-annotating fine-grained
“Food & drink” concepts, we use our ontology to identify relevant coarse-grained concepts that SAM
3 works well on and use this as the prompt to generate masks. We ensure that no data from the new
domain was used in training the AI annotators (including both SAM 3 and AI verifiers) that were
used to generate the data.
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(a) Data scaling mixing pre-training data at a 1:1 ratio.
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(b) Data scaling without mixing pre-training data.

Figure 7: Domain adaptation via synthetic data. (a) SAM 3 + AI verifiers (teacher system) can annotate
synthetic (SYN) data in new domains (e.g., fine-grained food concepts) and achieve similar scaling behavior as
with human-annotated (HQ) data. (b) Not mixing in high-quality pre-training data can limit performance gains
when fine-tuning on new domains, particularly when using synthetic data.

We study data scaling laws for three variants of “Food & drink” training data, evaluating performance
on the Wiki-Food&Drink subset of the SA-Co/Gold benchmark:

• PL-Food: The target concepts are annotated using the data engine without AI verification. This
data is similar to typical pseudo-labelled data used in prior work for self-training (e.g. Minderer
et al. (2022)).

• SA-Co/SYN-Food: This data is PL-Food, but cleaned by AI verifiers.

• SA-Co/HQ-Food: Data annotated by human annotators.

We train the models in 2 steps to isolate the impact of the data from the new domain from other
data as well as to amortize training costs. We first pre-train a base model using SA-Co/HQ minus
SA-Co/HQ-Food to establish base capability and a common starting point. Next, we fine-tune the
same base model with the three data variants in two settings: with or without mixing the pre-training
data.

Fig. 7a shows the scaling law with mixing the pre-training data in a 1:1 ratio. We observe some
modest improvement in performance with PL-Food compared to the baseline, but there is a large gap
to the other variants due to its lower quality. SA-Co/HQ-Food and SA-Co/SYN-Food have similar
data scaling behavior, but a model trained using SA-Co/SYN-Food can eventually surpass using
SA-Co/HQ-Food because SA-Co/SYN-Food can be scaled up without incurring any annotation cost.
The model trained on SA-Co/SYN-Food eventually gets very close to the performance of its teacher
system.

In the second setting, we do not mix the pre-training data with the fine-tuning data from the new
domain. All three data variants result in worse performance in Fig. 7b (vs Fig. 7a). In this setting,
there is a larger gap between SA-Co/HQ-Food and SA-Co/SYN-Food reflecting the lower quality of
SA-Co/SYN-Food (mainly lack of exhaustivity due to no human correction) but can eventually reach
a similar level of performance as using SA-Co/HQ-Food (likely due to volume and thereby improved
coverage). Comparing Fig. 7a and 7b, it is beneficial to include high-quality general-domain data
when fine-tuning SAM 3 on new domains, particularly when using synthetic data, allowing us to
“make up” for the lower quality in the synthetic data to some degree.

B.4 IMAGE DATA ENGINE ANNOTATION SPEED

Tab. 18 measures the speedup in the SAM 3 data engine from adding AI verifiers when collecting
data on a new domain with fine-grained concepts. We use the same setup as §B.3, annotating
Wiki-Food&Drink data generated with a data engine where neither SAM 3 nor AI verifiers have been
trained on Wiki-Food&Drink data. We annotate the same set of image-NP pairs in four settings:
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• Human (NP Input). A human annotator is given a single image noun-phrase pair from SA-Co/HQ-
Food, and is required to manually annotate all instance masks. No mask proposals or AI-verifiers
are used in the loop.

• Human (Mask Input). The same annotation task as “NP input” but in this setting, the human
annotators starts with PL-Food, i.e., image noun-phrase pairs with mask proposals generated by
SAM 3.

• Engine (All Human) Similar to Phase 1 in the SAM 3 data engine, humans start with PL-Food,
and sequentially perform 3 tasks: Mask Verification, Exhaustivity Verification and Correction. All
three tasks are performed by humans.

• Engine (Full) Similar to Phase 3 in the SAM 3 data engine, Mask Verification and Exhaustivity
Verification tasks are completed by AI verifiers, and Correction is done by humans i.e human
annotators in the manual annotation task start with SA-Co/SYN-Food.

Task Human from NP Human from masks Engine - all human Engine - full

Time for datamix (sec) 90 86 50 23

Time for positive NP (sec) 236 205 207 152
Time for negative NP (sec) 71 70 30 6

Table 18: Data engine efficiency. AI verifiers significantly increase throughput, allowing humans to focus on
challenging cases and the manual correction task. AI verifiers allow for a 5x speed up on negative phrases and a
36% speed up for positive phrases. The time for datamix is calculated based on 88.5% negatives in SA-Co/HQ,
see Tab. 26 for dataset composition. Timing is calculated based on the Wiki-Food&Drink domain. Compared to
captioner-based domains, fine-grained domains require more research by annotators to understand the concept,
leading to much higher annotation times for negative phrases and amortized time per mask.

Tab. 18 shows that a version of the SAM 3 model and AI verifiers that were never trained in this new
domain double the throughput of the data engine. AI verifiers also allow verifying generated hard
negative NPs at scale with close to no human-annotator involvement. As SAM 3 and AI verifiers
are updated with the collected data and improve, human annotators need to manually correct fewer
errors. This leads to increasingly higher throughput and the collection of more challenging data for a
given amount of human annotation time.

In Tab. 25, we show that AI verifiers achieve a similar even better performance on the MV and EV
tasks than human verifiers, so the quality of annotations from these four settings are similar.

B.5 VIDEO TRAINING DATA ABLATIONS

We analyze how much the SAM 3 model benefits from the videos and annotations in SA-Co/VIDEO
obtained through the video data engine, which are used in Stage 4 (video-level) training (described
further in §D.4.1). Specifically, we train the model with a varying amount of masklets from SA-
Co/VIDEO as VOS training data, and evaluate the resulting checkpoints on SA-Co/VEval under the
VOS task with the J&F metric. The results are shown in Tab. 19, where adding masklets collected
with noun phrases through the video data engine (as additional Stage 4 training data) improves the
J&F performance on both SA-Co/VEval and public benchmarks such as DAVIS17 (Pont-Tuset
et al., 2017a) and SA-V (Ravi et al., 2024).

SA-Co/VEval YT-1B SA-Co/VEval SA-V DAVIS17 SA-V SA-V
Stage-4 training data val J&F val J&F val J&F val J&F test J&F

using SAM 2 video data only 80.7 84.9 91.6 77.0 77.1

+ 25% SA-Co Train videos 80.9 85.3 91.3 75.2 76.9
+ 50% SA-Co Train videos 81.2 85.3 91.5 76.7 77.0
+ 75% SA-Co Train videos 81.4 85.9 91.7 76.5 78.5
+ 100% SA-Co Train videos 81.4 86.5 91.5 77.4 78.0

Table 19: Scaling analysis on SA-Co/VEval under Stage 4 (video-level) training, evaluated on multiple bench-
marks through the Video Object Segmentation (VOS) task under the J&F metric. Note that “SA-Co/VEval
YT-1B” and “SA-Co/VEval SA-V” refer to the subset of SA-Co/VEval built upon YT-Temporal-1B videos and
SA-V videos respectively, while “SA-V” referred to the VOS evaluation dataset released in Ravi et al. (2024).
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C LIMITATIONS

SAM 3 demonstrates strong performance on the PCS task in images and videos but has limitations in
many scenarios.

SAM 3 struggles to generalize to fine-grained out-of-domain concepts (e.g., aircraft types, medical
terms) in a zero-shot manner, especially in niche visual domains (e.g., thermal imagery). Concept
generalization for PCS is inherently more challenging than the class-agnostic generalization to new
visual domains for the PVS task, with the latter being the key that enables SAM and SAM 2 to be
successfully applied zero-shot in diverse settings. Our experiments show that SAM 3 is able to quickly
adapt to new concepts and visual domains when fine-tuned on small quantities of human-annotated
data (Tab. 2). Further, we show that we can improve the performance in a new domain without any
human involvement (§B.3), using domain-specific synthetic data generated using our data engine.

From our formulation of the PCS task, SAM 3 is constrained to simple noun phrase prompts and does
not support multi-attribute queries beyond one or two attributes or longer phrases including referring
expressions. We show that when combined with an MLLM, SAM 3 is able to handle more complex
phrases well (§6 and §H).

In the video domain, SAM 3 tracks every object with a SAM 2 style masklet, which means the cost
of SAM 3 inference scales linearly with the number of objects being tracked. To support real-time
inference (30 FPS) on videos in practical applications (e.g., a web demo), we parallelize the inference
over multiple GPUs: up to 10 objects on 2 H200s, up to 28 objects on 4 H200s, and up to 64
objects on 8 H200s. Further, under the current architecture, there is no shared object-level contextual
information to aid in resolving ambiguities in multi-object tracking scenarios. Future developments
could address this through shared global memory across multiple objects, which would also improve
inference efficiency.

Supporting concept-level interactivity for PCS, alongside instance-level interactivity for PVS, poses
several challenges. To support instance-level modifications without affecting all other instances of the
concept, we enforce a hard “mode-switch” within the model from concept to instance mode. Future
work could include more seamlessly interleaving concept and instance prompts.

D MODEL DETAILS

D.1 MODEL ARCHITECTURE

Our architecture is broadly based on the SAM series (Ravi et al., 2024; Kirillov et al., 2023) and
DETR (Carion et al., 2020) and uses a (dual) encoder-decoder transformer architecture, see Fig. 8
for an overview. SAM 3 is a generalization of SAM 2, supporting the new Promptable Concept
Segmentation (PCS) task as well as the Promptable Visual Segmentation (PVS) task (Ravi et al.,
2024). The design supports multimodal prompts (e.g., text, boxes, points) and interactivity, in images
and videos. We first discuss the detector architecture for images and build upon it to discuss the
tracker components for video.

D.2 IMAGE IMPLEMENTATION DETAILS

The image detector is an encoder-decoder transformer architecture.

Image and Text Encoders. The image and text encoders are Transformers (Vaswani et al., 2017)
trained using constrastive vision language training using 5.4 billion image-text pairs following
Perception Encoder (PE) (Bolya et al., 2025), see §D.4.1 for training details. As in SAM 2, the
vision encoder uses windowed attention (Ryali et al., 2023; Li et al., 2022d) and global attention
in only a small subset of layers (4 out of 32), where an image of 1008 pixels is divided into 3×3
non-overlapping windows of 336 pixels each. The vision encoder uses RoPE in each layer and
windowed absolute positional embeddings as in Bolya et al. (2024). The text encoder is causal, with
a maximum context length of 32.

As in Ravi et al. (2024), we use a streaming approach, ingesting new frames as they become available.
We run the PE backbone only once per frame for the entire interaction, which can span multiple
forward/backward propagation steps through a video. The backbone provides unconditioned tokens
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Figure 8: SAM 3 architecture. We highlight new components in yellow, SAM 2 (Ravi et al., 2024) in blue and
PE (Bolya et al., 2025) in cyan.

(feature embeddings) representing each frame to the dual-encoder consisting of the fusion encoder
and memory attention, described below.

Geometry and Exemplar Encoder. The geometry and exemplar encoder is primarily used to encode
image exemplars (if present) for the PCS task. It is additionally also used to encode visual prompts
for the PVS task on images but this is an auxiliary functionality that is primarily used to include
pre-training data for the PVS task in stages-2,-3 of training (see §D.4.1) and is thereby used to enable
a more modular training approach.

Each individual image exemplar is encoded using positional embedding, label embedding (positive or
negative) and ROI-pooled visual features that are concatenated (comprising “exemplar tokens”) and
processed by a small transformer. Visual prompts (points, boxes) for auxiliary training are encoded
in a similar manner, comprising “geometry tokens”. It is possible for neither “geometry tokens” nor
“exemplar tokens” to be present (e.g. when only a text prompt is used). The geometry or exemplar
tokens attend to each other via self-attention and also cross-attend to the frame-embeddings of the
corresponding (unconditioned) frame from the image encoder.

Fusion Encoder. The text and geometry/exemplar tokens together constitute the prompt tokens. The
fusion encoder accepts the unconditioned frame-embeddings and conditions on prompt tokens using
a stack of 6 transformer blocks with self- and cross-attention (to prompt tokens) layers followed by an
MLP. We use vanilla self-attention operations. The output of the fusion encoder are the conditioned
frame-embeddings.

Decoder. The decoder architecture follows Carion et al. (2020); Kamath et al. (2021) as a starting
point and is a stack of 6 transformer blocks. K learned object queries (not to be confused with
prompts) self-attend to each other and cross attend to the prompts tokens (made up of text and
geometry/exemplar tokens) and conditioned frame-embeddings, followed by an MLP. We use box-to-
pixel relative position bias (Lin et al., 2023) in the cross-attention layers attending to the conditioned
frame-embeddings.

Following standard practice in stronger DETR variants, we use iterative box refinement (Zhu et al.,
2020), look-forward-twice (Zhang et al., 2022a) and hybrid matching (Jia et al., 2022) and Divide-
And-Conquer (DAC) DETR (Hu et al., 2023). By default, we use K = 200 object queries. Bounding
boxes and scores are predicted using dedicated MLPs and accept the object queries as input.

Presence Head. Classifying each object in isolation is often difficult, due to insufficient information,
and may require contextual information from the rest of the image. Forcing each object query to
acquire such global awareness is however detrimental, and can conflict with the localization objectives
that are by nature very local. To address this, we propose decomposing the classification problem into
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two complementary components: a global-level classification that determines object presence within
the entire image, and a local-level localization that functions as foreground-background segmentation
while preventing duplicate detections. Formally, we add the following probabilistic structure: instead
of predicting p(queryi matches NP) directly, we break it down as follows:

p(queryi matches NP) = p(queryi matches NP | NP appears in image) · p(NP appears in image).

To compute p(NP appears in image), we use a presence token, which is added to our decoder and
then fed through an MLP classification head. Crucially, the presence score is shared by all object
queries. The per-query classification loss is kept as usual, but to account for the decomposition, we
only compute it when the NP is present in the image (see §B.1 for ablations on supervision strategy).
The same decomposition is applied to the semantic segmentation head, where we reuse the same
presence score, and train the binary mask head only on the positive examples.

Besides being more robust to false positives, decomposing the prediction in this manner is also more
flexible, e.g. in typical counting tasks, we already know the NP is present in the image and instead want
to know how many instances are present - in this case we can simply set p(NP is present in frame) =
1. The presence token is concatenated with the object queries in all operations, but is excluded from
DAC.

We also learn 4 geometric queries. Their function is similar to the 4 geometric queries in SAM
1 and 2 (where they were called “output tokens”) and are used to perform the PVS on individual
image or video frames during the stags-2,-3 of training, see §D.4.1. The prompts are provided by the
“geometry tokens” in the form of visual prompts. The presence score is set to 1 when performing the
PVS task on a single frame, as the target is known to be present in the frame.

Segmentation Head. The segmentation head is adapted from MaskFormer (Cheng et al., 2021).
Semantic segmentation and instance segmentation share the same segmentation head. The conditioned
features from the fusion encoder are used to produce semantic segmentation masks, while instance
segmentation additionally uses the decoder’s output object queries. “Multi-scale” features are
provided to the segmentation head using SimpleFPN (Li et al., 2022d), since the vision encoder is a
(single-scale) ViT.

Handling Ambiguity. Experimentally, if we train a SAM 3 model without handling ambiguities as
described in §2 in any way, we observe that the model tends to predict several valid but conflicting
interpretations of the phrase. This is expected; if in our training dataset a given phrase has two
distinct interpretations, and roughly half the data is annotated assuming the first one, while the other
half follows the second one, then the solution that minimizes the training loss is to output both
interpretations with 50% confidence. However, this behavior is undesirable for end-users, because it
produces conflicting, sometimes overlapping masks.

To address this issue, we add an ambiguity head to our model. Similar to SAM 1 and 2, this head is a
mixture of experts, where we train in parallel K experts, and only supervise the expert that gets the
lowest loss (winner-takes-all). We find that K = 2 performs the best and that it is more difficult to
train K > 3 experts due to mode collapse.

For a mixture of K experts, each producing an output yk with loss Lk, the mixture loss is a weighted
average:

Loss: LMoE =

K∑
k=1

pk Lk Gradient:
∂LMoE

∂θj
= pj

∂Lj

∂θj
.

In our winner-takes-all variant, only the expert with the lowest loss receives gradient:

Loss: k⋆ = argmin
k

Lk, LWTA = Lk⋆

Gradient:
∂LWTA

∂θj
=


∂Lk⋆

∂θj
, if j = k⋆,

0, otherwise.
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Backpropagating the loss only through the expert which received the minimal loss allows each expert
to specialize to one kind of interpretation. This behavior is illustrated in Fig. 9.

(a) Original image (b) Prediction by Expert 1 (c) Prediction by Expert 2

Figure 9: Two interpretations of the noun phrase “large circular shape” learned by two Experts (SA-1B image).

While this strategy allows experts to specialize, it does not explicitly select which expert should be
used at inference time. To resolve this, we train a classification head that predicts the expert that has
the highest probability of being correct. The classification head is trained in a supervised fashion
with a cross entropy loss, by predicting which expert obtained the minimal loss during training. The
Ambiguity head adjusts only the classification logits, leaving masks, boxes, and presence scores
unchanged. We train it on top of a frozen SAM 3 model.

Finally, to detect overlapping instances, we compute the Intersection-over-Minimum (IoM) between
masks. IoM is more effective than Intersection-over-Union (IoU) for identifying nested instances.
With the ambiguity head, we obtain a 15% reduction in overlapping instances.

D.3 VIDEO IMPLEMENTATION DETAILS

As illustrated in §3, tracking in videos can suffer from ambiguities in mask propagation, false
predictions from the detector, or limitations of IoU-based matching in crowded scenes with highly
overlapping objects. In this section, we present the details of the temporal disambiguation strategies
used to address these challenges. We begin by introducing the notation used throughout this section.

Let Dτ and M̂τ denote the set of detector outputs and the set of tracker’s predicted masks on frame
τ respectively. We define a frame-wise matching function ∆i(τ) for a masklet i on frame τ as

∆i(τ) =

{
+1, if ∃ d ∈ Dτ s.t. IoU(d,M̂i

τ ) > iou threshold

−1, otherwise,

where M̂i
τ is the predicted output mask of object i on frame τ . In addition, we define a Masklet

Detection Score (MDS) over an interval [t, t′] as Si(t, t
′) =

∑t′

τ=t ∆i(τ). This score measures how
a masklet is consistently matched to a detection within a temporal window. We also denote the first
frame in which object i appears as tifirst.

D.3.1 TRACK CONFIRMATION DELAY

To reduce spurious and duplicate masklets, we adopt a delayed output confirmation strategy. Specifi-
cally, the output at frame τ is finalized only after observing frames up to frame τ + T . This delay
provides temporal context for validating candidate masklets before outputting their masks. We find
that T = 15 achieves good accuracy. During this delay period, we apply the two following criteria to
remove unconfirmed or duplicate masklets.

Removal of Unconfirmed Masklets. Candidate masklets are considered unconfirmed within the
confirmation window [t, t+ T ] if their MDS is below a threshold, Si(t, t+ T ) < K, and the masklet
first appears within the window tifirst ≥ t. If both conditions are satisfied within the confirmation
delay, we remove the masklet from the tracker’s state. We choose K = 0, requiring that the masklet
has to be matched to a detection for at least half of the frames within the confirmation delay period to
be confirmed. This strategy helps reject some false positive detections and not track them.
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Removal of Duplicate Masklets. If the tracker temporarily fails to predict a mask for an object in
some frames, but the detector continues to detect the object during those frames, this can lead to
the creation of a new masklet for the same object. As a result, two masklets may end up tracking
the same object: the original (older) masklet, and a new masklet that is initiated during the period
when the tracker missed the object. To resolve this issue, during the confirmation delay period, if
two masklets consistently overlap with the same detection, we remove the one that started later.
Specifically, two masklets i, j are considered duplicates on frame τ if there exists a detection d ∈ Dτ

such that IoU(M̂i
τ , d) ≥ iou threshold and IoU(M̂j

τ , d) ≥ iou threshold. If the two masklets i
and j are found to be duplicates for at least ⌈T/2⌉ frames, we remove the one with the latest first
appearance tfirst only if it first appeared within the confirmation window [t, t+ T ]. Empirically, we
find that using iou threshold = 0.1 gives the best results.

D.3.2 MASKLET SUPPRESSION

For confirmed masklets that were not removed during the confirmation delay, we apply an additional
suppression step: if a masklet’s MDS over its entire lifetime falls below zero at any frame τ (i.e.
Si(t

i
first, τ) < 0), we suppress its output by zeroing out its mask. However, we retain the masklet

in the tracker’s state, allowing for the possibility that the object may be confirmed in future frames.
This strategy primarily addresses ambiguous detections, such as objects entering the scene near the
boundary. For example, if only a person’s hands are visible as they enter the frame, the detector may
be unable to determine whether the object matches the text prompt (e.g., impossible to distinguish
between a man and a woman). In such cases, if the detector subsequently fails to detect the object after
it fully enters the scene, the masklet suppression criterion ensures that these masklets are suppressed,
unless they are consistently matched with new detections.

D.3.3 RE-PROMPTING

Periodic Re-Prompting. In challenging scenarios involving occlusions or visually similar distractor
objects, the tracker may lose track of the target object. To address such tracking failures, we
periodically re-prompt the tracker using the latest detection outputs. Specifically, on every N -th
frame τ , we compare each detection d ∈ Dτ with the tracker’s current predictions M̂τ . If a detection
d has a high overlap with the tracker’s prediction (i.e., IoU(d,M̂i

τ ) ≥ 0.8) and both the detection
score and the masklet prediction score exceed a confidence threshold of 0.8, we re-initialize the tracker
for that object using the detection output mask. We observed that re-prompting is most effective
on frames where objects are not occluded and are fully visible, which motivates our choice of high
confidence thresholds. In our experiments, we set N = 16 by default. This periodic re-prompting
helps the tracker recover from temporary failures and maintain accurate object tracking throughout
the video.

Detection-Guided Re-Prompting. In cases where the tracker’s predictions may drift and its predicted
masks become leaky, we employ the detectors’ outputs. For each frame τ , we compare every detection
d ∈ Dτ with the tracker’s current predictions M̂τ . If the highest-matching detection d has a low
bounding box IoU (i.e., IoUbbox(d,M̂i

τ ) < 0.85) with the corresponding tracker prediction M̂i
τ , we

recondition the tracker for that object using the latest detector output. This approach ensures that the
tracker remains synchronized with reliable detection results.

The impact of these strategies is ablated in Tab. 38, and they show quantitative improvements across
our evaluation sets.

D.4 MODEL TRAINING

D.4.1 TRAINING STAGES

SAM 3 is trained in 4 stages, with each stage introducing new capabilities or refining existing
capabilities. Tab. 20 lists the data used in each stage.

Stage 1. Perception Encoder (PE) pre-training (Bolya et al., 2025), which pre-trains the image and
text encoders with 5.4 billion image-text pairs. In addition to broad concept coverage, this stage is
key for robustness (see §B.1). Since the vision encoder has to support multiple tasks (while also not
being too large) we opt for an “L+” size; The vision and text encoders are transformers with 450m
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and 300m parameters respectively. We largely follow Bolya et al. (2025), but do not use distillation
and do not perform video fine-tuning in this stage.

Stage 2. This stage is for detector pre-training and trains the (image-level) detector as well as the
vision and text encoders with large-scale image segmentation data (including video frames as images).
This stage uses both psuedo-labelled and human-annotated data, see Tab. 20. The main goal of this
stage is broad concept coverage of (image, noun phrase, masks) tuples. At the end of this stage, the
model is able to do open-vocabulary object detection, instance and semantic segmentation across
many domains fairly well.

An additional goal of this stage is to prepare the base model for tasks in subsequent stages. To prepare
for the PCS task, (image, noun phrase) pairs are randomly (p = 0.2) converted into visual queries
(i.e. noun phrase is dropped) or augmented with input bounding boxes (p = 0.2).

Besides training for the PCS task, in this stage, the model is also pre-trained on the geometric, PVS
task. This is done by adding 4 decoder queries specific to this task following the design of SAM 1,
SAM 2. Training data includes images (e.g., SA-1B) and videos frames (e.g, SA-V), see Tab. 20; the
number of interactivity steps is restricted to 4 for efficiency. We largely follow the settings from Ravi
et al. (2024), but use the Align loss (Cai et al., 2024) in lieu of the IoU prediction loss, co-opting the
classification head for object queries for this task.

We train for ∼95k iterations with a batch size of 896 with 5k warm up and cooldown steps using
AdamW (Loshchilov & Hutter, 2019). We apply layer-wise learning rate decay (Clark et al., 2020) of
0.9 to the vision encoder. We use a reciprocal square-root schedule (Zhai et al., 2022) and weight
decay of 0.1. We use an initial learning rate of 5e-4, 1e-4 for vision and text encoder and 1e-3 for all
other components. For boxes, we use L1 and gIoU losses with weights of 5 and 2. Classification loss
uses a weight of 100 and focal and dice losses use weights of 200 and 10 respectively. The encoder
and decoder use a dropout of 0.1.

Stage 3. This stage further trains the model with the highest-quality human annotated image
segmentation data, expands the interactivity capabilities and introduces post-training to improve
detection performance.

Specifically, in terms of interactivity, (a) in the PVS task, the number of interactivity steps is increased
to 7 and (b) interactivity is introduced into the PCS task, where positive or negative exemplars are
provided based on model error. We iteratively sample box prompts to mimic the real user policy.
Positive boxes are sampled from false negative errors, and we prompt their corresponding ground-
truth boxes. Negative boxes are sampled from high-confidence false positive predictions that do not
have significant overlap with ground truths. At each iteration, the box inputs are added on top of the
previous ones. If both a valid positive and negative box exist, we randomly select one; if no valid
candidates are available, no additional prompt is given. The process is repeated for 5 iterations.

The expanded interactivity in the PCS and PVS in this stage significantly slow down training, but the
extensive pretraining with limited interactivity for the PVS and no interactivity for PCS (but using
image exemplars together with text prompts) prepares the model well to ensure that a short stage 3 is
sufficient.

This stage retains only the highest quality, exhaustivity verified data (e.g., SA-Co/SYN is dropped)
and introduces a presence token (and presence loss) to better model presence of target segments and
their location location greatly increasing the precision of the model. The presence loss is a binary
cross-entropy loss with weight of 20. All learning rates are lowered by a factor of 0.025. We train for
∼5k iterations with a batch size of 512, with other settings identical to stage 2.

Stage 4. The tracker decoder is trained on top of the frozen backbone. Freezing the backbone at
this stage is made possible by pre-training on VOS data in previous stages at the video frame level.
This stage retains the strong spatial grounding of the previous stage and focuses on spatial-temporal
tracking without degrading other capabilities. As in Ravi et al. (2024), we further fine-tune the tracker
with a longer temporal context using 16-frame and 32-frame videos. We largely follow Ravi et al.
(2024)’s recipe. We use a batch size of 512, training for ∼190k iterations using a cosine schedule
with a linear warmup of 1k iterations.
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Dataset Ingested As Train Test Stage 1 Stage 2 Stage 3 Stage 4

Promptable Visual Segmentation- In Images

SA-1B Image ✓ ✓ ✓ ✓
SA-Co/VIDEO Frames ✓ ✓ ✓ ✓
SA-Co/VIDEO-EXT Frames ✓ ✓ ✓ ✓
SA-37 Image ✓ ✓ ✓ ✓

Promptable Visual Segmentation- In Videos

SA-Co/VIDEO Video ✓ ✓
SA-Co/VIDEO-EXT Video ✓ ✓
SA-V val Video ✓ ✓

Promptable Concept Segmentation- In Images

SA-Co/SYN Image ✓ ✓
SA-Co/HQ Image ✓ ✓ ✓
SA-Co/EXT Image ✓ ✓ ✓
SA-Co/VIDEO Frames ✓ ✓ ✓
SA-Co/Gold Image ✓ ✓ ✓
SA-Co/Silver Image ✓ ✓ ✓
SA-Co/Bronze, SA-Co/Bio Image ✓ ✓ ✓

Promptable Concept Segmentation- In Videos

SA-Co/VEval Video ✓ ✓

Table 20: Dataset usage across different tasks and training stages.

D.4.2 ADDITIONAL TRAINING SETTINGS

Data augmentation. For the PCS task, we apply the following transformations:

• Geometric: We use some cropping and resizing to vary the aspect ratios and help with small
objects. The input resolution of our model is always a fixed square (usually 1008× 1008). During
evaluation, the images are resized to this size, without respecting their aspect ratio. During training,
we apply our augmentations, and pad if the resulting size is smaller than 1008× 1008. We found
it important to randomly distribute the padding on all sides, to avoid creating biases towards one
particular region of the image. If the dataset does not contain notions of left and right, we also
apply random horizontal flips.

• Semantic: When training on datasets with a closed vocabulary, we leverage our mapping to
wikidata to further enhance the training. There are three main ways we can leverage the ontology:
to sample synonyms, which expand the vocabulary of the model, to sample negatives (typically, if
the dataset is exhaustively annotated, we can sample any node in the graph that corresponds in to a
category and is not present in the image) and to ensure the hierarchy closure of the concepts (for
example, if we have some annotations for “canoe” and “boat” in the same image, we need to make
sure that all the “canoe” objects are also labeled as “boat” since a canoe is a type of boat).

• Safety: To prevent the model from randomly making predictions for unsafe concepts, we randomly
sample some of them at train time and add them as negatives. These concepts mainly include
slurs of all kinds. We also try to prevent the model from making predictions for subjective and
non-visual adjectives, especially when applied to a person. This includes flattering ones (such as “a
smart person”) as well as derogatory ones (such as “a dull person”)

• Mosaics: On some datasets, we further increase the complexity of the images by doing mo-
saics (Bochkovskiy et al., 2020). The maximal grid size of our mosaics is 3× 3, and we sample
any configuration that is at most that, including irregular ones, as long as the constituents are still
square. For example, in a 3× 3 regular grid, we can have a large image that effectively covers a
2× 2 area, and use 1× 1 for the remaining 5 slots. Unifying different images can be tricky in an
open vocabulary setting, since there is no guarantee that concepts are exhaustively annotated. For
example, if one image has a car annotated, but the second does not (neither as positive nor negative),
then we do not know if the second image has a car or not, and thus could create some labeling noise.
To avoid this, we only mosaic datasets that have low chance of such missing annotations (either
closed vocabulary ones, or some created with specific mining patterns). To merge annotations,
we again rely on the wikidata mapping if available, otherwise rely on plain-text queries to merge
appropriately.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E DATA ENGINE DETAILS

The overview of the SAM 3 data engine’s components is shown in Fig. 4. In this section we provide
further details of how each component is implemented in the image (phases 1-3) and video (phase 4)
versions of the engine. The datasets collected in each phase and the improvements in the model’s
performance are summarized in Tab. 21.

E.1 MEDIA POOL

The media (image and video) pool consists of many sources with varying visual domains, from web-
scraped data to datasets collected for specialized domains such as art, food, or driving. Tab. 28 lists
the datasets used to mine media for each subset of the SA-Co training data. The web-scraped images
and alt captions are sourced from MetaCLIP (Xu et al., 2024b), a curated version of CommonCrawl.
We further expand coverage by mining media from a large pool with the help of a curated ontology.
Compared to previous works such as OWL-V2 (Minderer et al. (2024)) which mainly rely on
uncurated web-scraped data, our target mining strategy resulted in coverage of 12 media domains.

E.2 SA-CO ONTOLOGY

To track and improve the coverage and overall distribution of concepts in our data, we build a custom
SA-Co ontology of visual concepts from Wikidata (Vrandečić & Krötzsch, 2014), which covers a
comprehensive set of entities and offers hierarchical information with its graph data structure. We
manually select high-level Wikidata nodes (e.g., Human, Mammals) and recursively include all of
their descendants. The resulting 22.4 million nodes are classified into 17 top-level categories (e.g.
animal, furnishing & home) and 72 sub-categories (e.g., birds, home appliance). The full list of
categories and Wikidata node counts are shown in Tab. 22. We further develop a mapping process
that can map an arbitrary NP to a node in the SA-Co ontology by leveraging a retrieval model
(Sentence-BERT) to source candidate nodes and an AI annotator as judge (Llama 3.2) to select the
closest match. This mapping is used to track the distribution of nodes in the dataset (see Fig. 10) as
well as to create negative phrases (see below for details).

E.3 PHASE 1: HUMAN VERIFICATION

Data Mining. During this phase, we randomly sample images from MetaCLIP.

Proposing NPs. We generate image-level captions using the BLIP-2 captioner (Li et al., 2023b)
followed by the spaCy parser (Honnibal et al., 2020) to parse the caption into NPs.

Proposing Masks. We prompt an off-the-shelf open-vocabulary detector, FIBER (Dou et al., 2022)
or OWL-V2 (Minderer et al., 2024) with the noun phrase and use the resulting boxes to prompt
SAM 2 to generate mask proposals.

Verification (Human). Verification of mask proposals consists of two tasks which can be performed
by human or AI annotators: mask quality verification and mask exhaustivity verification. In Phase 1,
verification is done by humans only. Each human verifier works exclusively on one task type.

• Mask Verification (MV). Given a triplet of an image, a noun phrase and a set of candidate masks for
that phrase, the task is to accept or reject each of the masks. A mask is accepted if it matches the
given noun phrase and is high quality (no holes, coverage issues, etc.) If the mask is unrelated to
the phrase, or low quality, it is rejected.

SA-Co/HQ SA-Co/SYN SA-Co/EXT SA-Co/VIDEO SAM 3 performance

# Images # Image-NPs # Annotation
Domains # Images # Image-NPs # Images # Image-NPs # Videos # Video-NPs SA-Co/Gold SA-Co/Silver SA-Co/VEval

(CGF1) (val pDetA)

Phase 1 1.2M 4.3M 1 0 0 0 0 0 0 - - -
Phase 2 2.4M 122.2M 5 0 0 0 0 0 0 38.4 18.5 -
Phase 3 1.6M 19.5M 15 39.4M 1.7B 9.3M 136.6M - - 65.0 59.0 45.7
Phase 4 - - - - - - - 52.5K 134.3K 65.0 59.0 48.1

Table 21: Data engine phases and SAM 3 progress.
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1. animals 2.3M 6. electronics 10.2K 12. object parts 101.9K
insects & crustaceans 1.7M electronics 6.9K body parts 75.8K

molluscs 188.4K cameras 3.3K other object parts 26.1K
other animals 166.5K 7. equipments 14.9K 13. other products 3.5K

fish & other chordates 85.7K military equipments 10.2K other products 2.7K
birds 52.4K sport equipments 2.0K celebration supplies 384

mammals 38.3K safety equipments 1.2K animal-related products 359
reptiles 28.2K medical equipments 1.1K tobacco products 51

echinoderms 23.0K agricultural machinery 458 14. patterns & material 896.6K
amphibians 14.2K 8. fashion & beauty 7.5K material 885.6K

2. art, history & religion 3.1M fashion 3.9K patterns & shapes 10.9K
artworks 3.1M beauty & healthcare

products
3.7K 15. plants & fungi 1.5M

collectibles 10.2K 9. food & drinks 33.1K plants 1.1M
religious objects 9.1K dishes 12.9K fungi 376.4K

flags 8.3K other food 6.7K 16. tools & appliances 14.5K
musical instruments 4.9K fruits 6.6K other appliances 6.5K

gemstones 526 drinks 6.3K toys 3.0K
art material 438 vegetables 621 tools 1.8K

3. buildings & locations 2.7M 10. furnishing & home 2.7K kitchenware 1.6K
places 2.4M furnishing 1.3K containers 945

geographical features 343.2K home appliances 486 light sources 672
4. celestial 9.2K stationery 472 17. transportation 258.1K

meteorological phenomena 5.3K household supplies 417 watercraft 178.9K
space related 3.1K 11. human 11.3M land vehicles 41.6K
light related 734 humans 11.0M aircraft 27.4K

5. documents & ocr 201.3K occupations 140.8K other vehicles 6.4K
glyphs 173.4K fictional characters 87.8K transport infrastructures 3.7K

logos 21.0K gestures & expressions 158 construction machines 100
documents 6.0K

cards 435
infographics 324

GUI & layout elements 135
maps 23

Table 22: SA-Co ontology top-level categories and sub-categories with corresponding node counts in Wikidata.

• Exhaustivity Verification (EV). All accepted masks from the verification task are sent to an ex-
haustivity check. Given an image, noun phrase, and any accepted masks that passed the previous
mask verification for that phrase, the task is to decide whether or not the accepted masks (if any)
exhaustively cover all instances of the phrase in the image. If there are unmasked instances of
the phrase, annotators decide whether or not at least one of the remaining instances is separable,
or if the remaining instances are too crowded together to separate. Phrases that are annotated
as non-exhaustive from this step are sent to the correction task. Phrases that are annotated as
exhaustive are directly sent to final annotations.

Correction. Human annotators are given the same input as the exhaustivity task: an image, noun
phrase, and any (0 or more) accepted masks from the mask verification task. Annotators manually
add individual masks for the unmasked instances of the noun phrase by prompting SAM 1 with clicks
in a browser based tool. If there are non-separable occurrences of the phrase, annotators use special
group masks to indicate that the mask covers more than a single instance. The output of the task is a
complete set of instance and/or group masks covering all pixels in the image corresponding to the
noun phrase. Noun phrases that are not present are submitted with no masks. If it is not possible to
reach a complete set of masks due to mask complexity, the annotator rejects the job.

In each task, annotators are given the ability to reject the image-NP pairing if they decide the phrase
is un-maskable as a set of objects (e.g “it”, “blue”) or if after research they are still unsure if it is
present (e.g., fine-grained species of animals). Filtering out vague phrases and allowing annotators to
be unsure increases the consistency and agreement in the resulting annotations.

E.4 PHASE 2: HUMAN + AI VERIFICATION

Data Mining. We use a retrieval model (including Perception Encoder, DINOv2, and MetaCLIPv2)
for mining concepts that are challenging and not prevalent in the caption NPs from Phase 1. We
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Input

Image input for AI verifier (left) and UI for human annotation (right)

AI Verifier
Instructions You are an expert annotator of object segmentation masks. For an image and a

pre-defined label, you are given a mask and asked to evaluate the quality of the
mask. Follow the following rules when rating the mask.

1. Rate the mask as “Accept” when the label accurately describes the
masked object and the mask covers the object with good boundaries.
We do not need masks to be pixel-perfect for this task. However, the
mask should cover all important parts of the object.

2. Rate the mask as “Accept as text” when the mask covers text and the
label exactly matches the masked text. The mask should cover all
important parts of the text (all specified letters/punctuation/etc.)

3. Rate the mask as “Flag label” when the label corresponds to Race,
Ethnicity, Sexual orientation, Religion, Socio-economic status, Med-
ical conditions, Disabilities, Derogatory terms/profanity and Animal
phrases for a person.

4. Rate the mask as “Whole image” when the label corresponds to the
entire image. Description that refers to the whole image may describe
setting (e.g., inside, outside, day, night), type of media (e.g., flier,
screenshot, photo), type of image (e.g., close up, an aerial view) and
location (e.g., an airport, the woods, a bedroom).

5. Otherwise, rate the mask as “Reject”.

Please give your rating directly without any explanation. Now let’s start. In the
given figure, the left half shows a fuchsia box highlighting the region of interest
in the original image, and the right half shows a fuchsia mask overlaid on a
zoom-in view of that region.
Rate the fuchsia mask for the label “a computer monitor”: (A). Accept as text.
(B). Flag label. (C). Reject. (D). Accept. (E). Whole image.

Mask
Verification
Result

(D). Accept.

Table 23: An example data point of Mask Verification (either human or AI verifier). The AI-verifier is given
two crops of the image, a zoomed-out view where the object is highlighted via a box and a zoomed-in view
where the mask is highlighted. This allows better visualization of small objects, and avoids color confusion from
mask overlay.The AI-verifier instructions are a condensed version of the annotation guidelines given to human
annotators. Human annotators are also given options to reject the phrase at the image-level as vague. For AI
verifier, we use the model output logits of the choice tokens (e.g., A/B/C/D/E) as the logits for the corresponding
labels, and soft-max over the logits to get their probabilities.
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Input

Image input for AI verifier (left) and UI for human annotation (right)

AI Verifier
Instructions You are an expert annotator of object detection. For an image and a pre-defined label,

you are given some boxes and asked to evaluate if the boxes are exhaustive. Follow the
following rules when rating the boxes.

1. Rate the boxes as “Accept” when there are no undetected objects that match the
label or the label is vague (i.e, “rent”, “it”) or malformed (heavily misspelled).

2. Rate the boxes as “Reject” when there are undetected objects and at least some
undetected instances can be separated.

3. Rate the boxes as “Reject but unseparated” when there are undetected objects
but cannot be separated. This is common with groups where it is not possible to
tell the undetected instances apart or distinguish them from others.

4. Rate the boxes as “Flag label” when the label corresponds to Race, Ethnicity,
Sexual orientation, Religion, Socio-economic status, Medical conditions, Dis-
abilities, Derogatory terms/profanity and Animal phrases for a person.

5. Rate the boxes as “Whole image” when the label corresponds to the entire
image. Description that refers to the whole image may describe setting (e.g.,
inside, outside, day, night), type of media (e.g., flier, screenshot, photo), type of
image (e.g., close up, an aerial view) and location (e.g., an airport, the woods, a
bedroom).

6. Rate the boxes as “Ungroundable / Vague / Unsure” when the label is an
ungroundable or vague concept (e.g., “a corner”, “gap”) or when you are unsure
whether or not the phrase is in the image.

Now let’s start. The given figure shows one or multiple red boxes highlighting the region
of interest in the original image, evaluate the red box for the label “a computer monitor”
and select your answer from the following options: (A). Reject but unseparated. (B).
Whole image. (C). Reject. (D). Ungroundable / Vague / Unsure. (E). Accept. (F). Flag
label.

Exhaustivity
Verification
Result

(E). Accept.

Table 24: An example data point of Exhaustivity verification (either human or AI verifier). For AI verifier,
objects to are highlighted via boxes in the image. If there are no candidate objects, the original image is used
and “one or multiple red boxes” is replaced by “zero red box” in the text prompt. For AI verifier, we use the
model output logits of the choice tokens (e.g., A/B/C/D/E/F) as the logits for the corresponding labels, and
soft-max over the logits to get their probabilities. The presence score from the EV AI verifier is defined as 1
- Prob(Accept|no boxes as input). Prob(Accept|no masks as input) is the probability of Accept (no missing
objects) given zero detections as input, which is equivalent to the probability of NO presence.
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leverage our SA-Co ontology to determine the list of candidate concepts, followed by offline concept
indexing and online mining from MetaCLIP.

• Concept Selection. We use a taxonomy-guided mining strategy to balance the overall ontological
distribution, expand concept coverage and enhance performance on long-tail and fine-grained
phrases. Two groups of concepts are selected from the SA-Co Ontology for targeted mining:
Wiki-Common are nodes judged by an LLM to be common concepts, Wiki-FG are all nodes from
the “sports equipment” and “food and drink” sub-graphs, chosen to test the model’s ability to
generalize to very fine-grained concepts like “kefir”, “pastille”, “kettlebell”.

• Offline Concept Indexing. For every new concept, we collect reference images from Wikimedia and
compute their K-dimensional embedding offline. We aggregate the embeddings from all reference
images resulting in a single embedding per concept. We repeat the process across all N concepts
resulting in an N*K dimensional offline index.

• Online Mining. Relevant images for each concept are retrieved using both image and text based
mining. With image-based retrieval, we compute the embedding on every image, run KNN on the
offline concept index followed by top-k sampling, and apply a threshold before mapping it to a
specific concept. With text-based retrieval, we compute CLIP based similarity scores between the
text embedding from input concepts and image embeddings from the corpus and apply a threshold
before mapping the image to a specific concept.

The following additional mining strategies are used to further refine the selection.

• Image-Type Balancing. Web datasets are usually dominated by a few types of images such as ads
or product photos. To avoid over-representation of certain image types, we use a MLLM (Llama
3.2) and prompt it zero-shot to classify an image into image types (such as ads, product photos,
indoor and outdoor scenes, infographics), and sample based on a type-agnostic probability.

Proposing NPs. We improve this step to generate higher-quality and more diverse noun phrases.

• Image-Level Captioner and Parser. We use an image captioning model (Llama 3.2) to generates
image-level captions and a phrase parser (Llama 3.1) that proposes noun phrases given the caption.
The Llama 3.2 captioning model improved concept recall compared to BLIP-2 from Phase 1. The
phrase parser is fine-tuned for this task and significantly outperforms its zero-shot model variant
and spaCy parser.

• Removing Non-Groundable Phrases. The parser can generate non-specific phrases such as “it”,
“them” or hard to segment phrases such as “middle”. To address this, we use another AI verifier
(MLLM) that is fine-tuned to classify such cases and remove them from the rest of the pipeline.

• NP Balancing. We employ heuristics to avoid collecting too many frequent or easy objects. We
remove NPs if the data engine has already annotated enough instances, if the SAM 3 has high
accuracy when prompted with the NP, and based on a fixed list (e.g. that occur frequently, are
harmful). From Phase 3 we rely on AI verifiers to remove easy cases.

• Cleaning NPs. We singularize noun phrases, deduplicate nearly-identical ones, and remove
possessives.

• Hard Negative Proposal. A hard negative phrase generator proposes image-level negative phrases,
i.e. those that do not exist in the image and are adversarial to SAM 3. Given verified positive NPs
(i.e. that exist in the image), negative NPs are proposed and then checked for adversariality.
– Proposal. The proposal of hard negatives is done in two ways. The first approach maps every

positive NP to a node in the SA-Co ontology, then navigates the ontology graph to find sibling,
cousin, or uncle nodes corresponding to different but related concepts. For example, the noun
phrase “gray Siamese cat” maps to the node “Siamese cat”, which could result in negative
candidates like “tabby cat” (sibling), “dog” (uncle), or “Chihuahua” (cousin). The second
approach relies on an MLLM (Llama 4), which proposes visually similar negatives for every
positive NP.

– Check for Adversariality. Once the negative NPs are proposed, they are filtered to retain only
those adversarial to the current SAM 3 version. For each negative NP candidate, predictions
from SAM 3 are obtained. If the set of predictions is empty, the candidate is discarded. If the
model predicts one or more objects, these predictions are compared to the original segmentation
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masks of the corresponding positive NP. If the overlap between the negative NP predictions and
the positive NP annotations exceeds a certain threshold, the negative NP is retained as a hard
negative. This final check is necessary because initial proposals may not be true negatives and
instead may be only negatives relative to the existing positive NPs (i.e. the object could still be
present somewhere else in the image).

Proposing Masks. We prompt SAM 3 with the set of positive and negative phrases to produce
candidate instance and semantic masks for the image. For pseudo-annotating domains with fine-
grained concepts that SAM 3 fails on (e.g., Zanclus cornutus), we identify the relevant coarse-grained
concept that SAM 3 works well on (e.g., frog), and use this as the prompts to generate masks. We
deduplicate masks generated per NP based on a IoU metric. These noisy pseudo-labels undergo
further cleaning by both human and AI annotators.

Verification (Human+AI). We train “AI verifiers” to perform the mask verification (MV) and
exhaustivity verification (EV) tasks. More specifically, we fine-tune Llama 3.2 Dubey et al. (2024)
on human annotated data collected during Phase 1 of the data engine for both tasks.

• Task Formulation. Tab. 23 provides an example data point of the mask verification task: given an
(image, phrase, mask) triplet, we render the mask on top of the image as the image prompt, provide
the task guidance as text prompt, and use the human annotation (1 out of 5 choices) as output.
Each mask’s quality is evaluated independently from other masks for the same image-phrase pair.
Rendering tricks are used to better visualize small objects, and to avoid color confusion from mask
overlay. Tab. 24 provides an example data point of the exhaustivity verification task: given the
(image, phrase, masks) triplet, we render the bounding boxes of the masks on top of the image
and use this as the image prompt, provide the task guidance as the text prompt, and use the human
annotation (1 out of 6 choices) as the output.

• Evaluation. We construct test sets for “AI verifiers” from jobs that were reviewed by multiple
human annotators for all SA-Co test sets. We leave one human annotation as human prediction,
and use the majority vote of the remaining human annotations as ground truth. This allows us to
compare human and AI verifiers’ accuracy.

• Training. The training data of each task comes from not only the task itself, but also from the
Correction task. For example, each manually added mask is a good data point in the mask
verification task. Each exhaustively finished job in the Correction task results in a good data point
in exhaustivity verification task. We merge all training data for these two tasks together (over 200M
image-text pairs) to pre-train a foundational AI verifier, and then only use high quality human
annotated data from the task itself (around 10M scale) to fine-tune two AI verifiers, one for each
task.

• Result. Thanks to the simplicity of these two tasks (MCQ tasks on image-text pairs) and the large
volume of training data from Phase 1, AI verifiers reach and even surpass human performance
on these two tasks, as shown in Tab. 25. We also evaluate the system of SAM 3 and AI verifiers
end-to-end on the PCS task, and the system always performs better than the single SAM 3 model,
as shown in Tab. 17.

• Generalization to new domains. We also study the generalization ability of AI verifiers. For a
given new domain, the MV AI verifier is typically on par with human verifiers without any domain
specific data; the EV AI annotator is typically worse than human in a zero-shot evaluation, but can
reach human performance with only thousands of domain specific data points.

Attributes Crowded Food&Drinks Sports Equip. MetaCLIP SA-1B Wiki-Common Average

MV EV MV EV MV EV MV EV MV EV MV EV MV EV MV EV

Human 72.3 81.2 72.9 82.4 76.8 76.7 79.2 87.3 72.4 79.5 72.3 73.8 79 91.5 75 81.8
AI verifier 77.1 82.6 74.6 81.3 79.4 75.1 80.1 84.7 75.3 78.8 75.9 76.8 81.3 88.4 77.7 81.1

Table 25: Human/AI verifier performance on mask verification (MV) and exhaustivity verification (EV) tasks

As discussed in §B.4, using AI verifiers is effective and allows human annotators to focus on the
most challenging data points, i.e. those that have poor mask quality or missing masks. This approach
more than doubles the throughput of the SAM 3 data engine. As both SAM 3 and AI verifier models
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improve, more data can be exhaustively annotated using only SAM 3 and AI verifiers. This leads to
increasingly higher throughput and ensures that human annotators only work on SAM 3 failure cases.

Correction. We perform manual correction wherever needed as described in phase 1.

E.5 PHASE 3: SCALING AND DOMAIN EXPANSION

Data Mining. We continue the data mining approaches from Phase 2 and scale to more novel
domains. In addition, we target cases that are rare in web datasets and challenging for the model:
crowded scenes with high object counts and images with very small objects. To mine such images, we
rely on the SA-1B dataset with mask annotations and compute the “crowdedness” metric i.e. calculate
IoU between pair of masks and then aggregate it over all pairs of masks. We also use statistics of the
number of masks and mask area to identify images with high object counts and very small objects.

Proposing NPs. We continue leveraging the approach from phase 2. We also expand concept
coverage to long-tail, fine-grained concepts by extracting NPs from each image’s alt-text where
available and by mining concepts from the SA-Co ontology.

Proposing Masks. Unchanged from Phase 2.

Verification (Human+AI). We continue to use both human and AI verifiers as described in Phases 1
and 2 respectively, but primarily rely on AI verifiers to increase the data engine throughput.

Correction (Human). We perform manual correction wherever needed, as described in Phase 1.
Annotators are asked to correctly mask all occurrences of the given concept in the image.

E.6 PHASE 4: VIDEO ANNOTATION

In Phase 4, we extend the data engine to video. We use the same high-level stages as the image
version, but with video-specific implementation details which are described next.

Media Pool. We curate a pool of O(1M) hours of video from SA-V, SA-V internal, YouTube-1B and
SA-FARI (wildlife cameras) datasets that covers diverse domains and a range of video quality.

Data Mining. To efficiently utilize human annotation resources, we developed aggressive data mining
filters and selected only videos that presented the most challenging object tracking scenarios. The
mining pipeline finds challenging single-shot video clips that are 5-30s long. Focusing on single-shot
clips largely reduces annotation time and ambiguity originating from attempting to track objects
across camera shots in edited videos. The mining pipeline consists of the following steps:

• Scene and Motion Filters. First, we leverage scene boundary detection and VMAF motion scores
from FFmpeg (FFmpeg developers) to identify non-static single-shot camera clips from the video
pool. To further improve the precision of single-shot clip selection, we also use Shot Boundary
Detection from the PySceneDetect (PySceneDetect Developers) library;

• Content Balancing. We use a video-specific ontology to balance content distribution. We build
the taxonomy by combining 1) frequent NPs annotated in the image data engine that tend to be
associated with higher motion scores, and 2) a taxonomy that emphasizes human activities, animals
and transportation. We then generate a set of text queries based on the video ontology and leverage
PE Bolya et al. (2025) embeddings to retrieve video candidates for each text query. We propose
text queries that elicit grouped objects and crowded scenes, for example “group of dogs” is a text
query based on the concept “dog”;

• Challenging Track Filter. We use an MLLM (PLM (Cho et al., 2025)) as a judge to select videos
with challenging tracking scenarios. This is achieved by performing video-QA on a set of questions
regarding the existence of various difficult scenarios, and selecting videos that receive more
affirmative responses to these questions;

• Targeted Semantic Search. Lastly, we enhance the search for challenging scenarios by performing a
video similarity search (using PE embeddings) using known challenging videos identified in human
annotation as seeds.

Proposing NPs. We obtain candidate noun phrases for objects in the video.
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• Frame-level captioner and parser. We apply the Phase 3 captioner and parser on each video frame,
as opposed to video level, to maximize the diversity and volume of candidate noun phrases.

• NP Filtering. To keep only relevant phrases, we implement a series of filters. First, we filter out
noun phrases that correspond to the overall scene, such as room, using a fine-tuned Llama 3.1 model.
Similarly, we filter out noun phrases that are too ambiguous to be masked, using the previously
trained EV AI Verifier, which has been trained to classify such cases. Next, we remove noun
phrases if they are present in a given list of restricted noun phrases. This list contains 1) phrases
that have been annotated as non-maskable in previous annotation rounds, 2) phrases for which we
already have a lot of annotations, and 3) phrases that correspond to “background” concepts, as our
focus is on challenging moving objects. Next, we optionally filter out phrases that do not belong to
certain pre-specified super-categories, such as “animal” or “vehicle” to further focus on moving
objects. We determine the super-category of a given noun phrase using a Llama 3.1 model.

• NP Cleaning. The same cleaning is applied as in previous phases.

Proposing Masklets. We use the latest iteration of SAM 3 to generate instance masklets by prompting
it with the proposed noun phrases.

• Masklet Generation. Initially, we use SAM 3 at the image level to process frames independently,
and then propagate the masks using SAM 2. If masks detected in non-propagated frames are not
encompassed by the propagated masklets, they are used as starting points for new SAM 2 masklet
propagations. Once SAM 3 video performance surpassed the decoupled system, the pipeline was
updated to use SAM 3 alone.

• Masklet Deduplication. After the masklets are obtained, we deduplicate them based on their IoU.

• Masklet Filtering. We filter out the noun phrases that result in masklets containing the whole scene.

• Filtering Out Easy Cases. We target challenging multi-object scenarios, namely videos that are
relatively crowded and contain multiple objects of the same category. The last step of the pseudo-
labeling pipeline filters out all noun phrases with fewer than N=3 objects, and videos that contain
fewer than M=2 such noun phrases.

Verification and Correction (Human).

• Verification. Human annotators check if the video is well pre-processed, e.g., no scene cuts, split
screen, or explict content. Then they check if the noun phrase is groundable throughout the video,
e.g., there are no comparison or size attributes that might be unclear, and no action attributes which
might change across the timeline. Finally, they check that the masklet is challenging to track
yet possible to annotate i.e. focus on fast motion and highly occluded objects but which are still
identifiable by human annotators and not too blurry to annotate properly.

• Correction. Another annotator reviews the proposed masklets, removing those that are incorrect
(improving precision), and using online SAM 2 in the loop to correct those that can be improved.
Next, they check for any missing masklets, and use SAM 2 to add them if needed (improving
recall). This annotation task results in two types of data: fully exhaustive tracking data where every
object that matches the noun phrase is annotated, or partially exhaustive tracking data, where some
masklets might be missing because they are impossible to annotate (e.g., inseparable background
objects that match the noun phrase).

• Exhaustivity Confirmation. To ensure data quality, a final round of exhaustivity checking is
performed. If there are any remaining missing masklets, they are added as necessary.

Sampling Frame Annotations. To increase the diversity and volume of the annotated video data, we
also sample video frames and annotate them using the image data engine (Phase 3), where they are
treated the same way as other images. The sampling follows two separate strategies. The first one is
just random sampling of a frame within a video. This guarantees we cover the distribution of frames.
The second strategy consists of first running the video data engine pipeline, and using the results to
determine frames that contain many objects.
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F SA-CO DATASET AND METRIC DETAILS

F.1 SA-CO TRAINING DATA

SAM 3 training data includes images and videos from many diverse sources, including existing
datasets with box or mask annotations. The training data consists of three image datasets and one
video dataset. Fig. 10 visualizes statistics on these subsets in comparison with existing open-source
image and video detection and instance segmentation datasets as well as the distribution of top-level
SA-Co ontology categories on image datasets. More detailed statistics for each subset and comparison
with open-source datasets are shown in Tab. 26 and Tab. 27. The original dataset sources by subset
are listed in Tab. 28. .

SA-Co/HQ: High quality. This image dataset is generated by the data engine in Phases 1-3 with
high quality annotations verified either by human annotators or by AI verifiers that have accuracy on
par with humans.

SA-Co/SYN: Synthetic. We generate this synthetic dataset via the data engine in Phase 3, relying
only on AI annotators. We use MetaCLIP images as the media pool and extract NPs from two
sources: 1) alt-text captions associated with the images, 2) captions generated by Llama4. We prompt
SAM 3 using the extracted NPs to generate mask proposals. The image-NP-mask proposals are
then verified by MV and EV AI verifiers resulting in high-quality synthetic data. We also generate
hard negatives proposals (§E.4) and verify them using the EV AI verifier resulting in exhaustive
image-level negatives. This scalable system enabled large-scale synthetic data generation, resulting
in 39M images, 1.7B image-NPs and 1.4B masks.

SA-Co/EXT: External. This dataset includes eighteen external datasets with existing instance mask
or bounding boxes annotations. For datasets with only bounding boxes, we generate instance masks
with SAM 2. We further enrich these external datasets by mapping the original label to SA-Co
ontology and propose additional negative labels using Wikidata hierarchy.

SA-Co/VIDEO: Video. The video dataset is collected via the data engine in phase 4 with high
quality annotations. All the data in SA-Co/VIDEO is verified by human annotators.

(a) (b) (c)

Figure 10: (a) SAM 3 image training data statistics and comparison with existing open-source image detection
and instance segmentation datasets. Bubble size denotes total number of NP-mask/bbox pairs. Bolded datasets
are annotated with masks, others are bboxes only. Datasets with ∗ are exhaustively annotated, datasets with
† are partially exhaustively annotated. (b) SAM 3 video training data statistics and comparison with existing
open-source video instance segmentation datasets. Bubble size denotes total number of NP-masklet pairs.
Datasets with ∗ are exhaustively annotated. (c) Instance masks distribution among SA-Co ontology top-level
categories in SA-Co/HQ and SA-Co/EXT. SA-Co/EXT incorporates several medical and microscopy image
datasets, we categorize them under medical imaging in addition to categories in Tab. 22.

F.2 SA-CO EVALUATION BENCHMARK

We release the Segment Anything with Concepts (SA-Co) Benchmark for promptable concept
segmentation in images and videos. Our benchmark contains images and videos paired with text
labels, each annotated exhaustively with masks on all object instances that match the label. The dataset
is federated, meaning that not all labels are annotated for all images, but only a handful of positive
and negative labels are verified as ground-truth per image. We add large volume of challenging
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Dataset # NPs # Images # Image-NP % Negatives # NP-bbox # NP-mask # masks per pair

Flickr 30k 86.4K 30.1K 193.0K - 312.2K - -
LVIS∗ 1.2K 120.0K 1.6M 72.7% 1.5M 1.5M 3.51
V3Det∗ 13.2K 213.2K 737.7K - 1.6M - -
Visual Genome 542.6K 108.1K 4.3M - 6.3M - -
Open Images 600 1.7M 4.1M - 13.3M 2.7M 2.79
Object365∗ 365 1.7M 10.1M - 22.9M - -

SA-Co/HQ∗ 4.0M 5.2M 146.1M 88.5% 52.3M 52.3M 3.10
SA-Co/EXT† 497.4K 9.3M 136.6M 71.8% 70.5M 70.5M 1.83
SA-Co/SYN∗ 38.0M 39.4M 1.7B 74.0% 1.4B 1.4B 3.17

Table 26: Detailed statistics for image training datasets and comparison with existing open-source image
detection and instance segmentation datasets. Datasets with ∗ are exhaustively annotated, datasets with † are
partially exhaustively annotated. % Negatives denotes percentage of Image-NPs that are negatives.

Dataset # NPs # Videos # Video-NP % Negatives # NP-masklet # masklets per pair

OVIS∗ 25 607 886 - 3.6K 4.04
YTVIS 2021∗ 40 3.0K 3.9K - 6.3K 1.61
BURST 482 2.9K 6.9K - 16.0K 2.33
LVVIS 1.2K 3.9K 13.8K - 19.7K 1.40

SA-Co/VIDEO∗ 24.8K 52.5K 134.3K 26.7% 467.1K 4.75

Table 27: Detailed statistics for video training dataset and comparison with existing open-source video instance
segmentation datasets. Datasets with ∗ are exhaustively annotated. % Negatives denotes percentage of Video-
NPs that are negatives.

hard negative label annotations to test model ability to handle large vocabularies. In particular,
the SA-Co/Gold benchmark has ∼ 50× more unique phrases compared to existing exhaustively
annotated mask dataset LVIS-test. SA-Co benchmark covers a diverse array of sub-domains including
common objects, fine-grained concepts, food, art, robotics, etc. See Tab. 29 for detailed benchmark
statistics and Tab. 30 for the list of sub-domains.

F.3 METRICS

We introduce the classification-gated F1 (CGF1) to evaluate the PCS task on images. The traditional
AP (Average Precision) metric designed for closed-vocabulary detection tasks (e.g., COCO), breaks
down when applied to open-vocabulary detection with very large label spaces. While averaging AP
over 80 classes is feasible, with tens of thousands most appear just once in the test set and the average
is dominated by noise. Computing full precision-recall curves for all labels is also computationally
infeasible and unnecessary for practical use cases. AP also does not account for the model calibration,
which means that high-scoring models can be difficult to use in practice. F1 at a fixed confidence
threshold presents a good alternative, however it is sensitive to high ratios of negative annotations:
no extra credit is given for correctly predicting nothing for a negative, but the score is lowered by
predicting false positives.

SA-Co/HQ SA-Co/SYN SA-Co/EXT SA-Co/VIDEO SA-Co/VIDEO-EXT
MetaCLIP (Xu et al., 2024b;a)
SA-1B (Kirillov et al., 2023)
Armbench (Mitash et al., 2023)
National Gallery of Art (nga)
Ego4d (Grauman et al., 2022)
MyFoodRepo-273 (Mohanty et al., 2021)
GeoDE (Ramaswamy et al., 2023)
DROID (Khazatsky et al., 2024)
BDD100k (Yu et al., 2020)
SA-V (Ravi et al., 2024)
SA-V internal (Ravi et al., 2024)
YT-Temporal-1B (Zellers et al., 2022)

MetaCLIP Objects365 (Shao et al., 2019)
OpenImages (Kuznetsova et al., 2020)
ImageNet (Russakovsky et al., 2015)
VisualGenome (Krishna et al., 2017)
Sapiens Body-Parts (Khirodkar et al., 2024)
EDEN (Le et al., 2021)
Fashionpedia (Jia et al., 2020)
Fathomnet (Katija et al., 2021)
iNaturalist-2017 (Horn et al., 2017)
BDD100k (Yu et al., 2020)
Livecell (Edlund et al., 2021)
PanNuke (Gamper et al., 2019; 2020)
MedSAM2 (Ma et al., 2025)
SNOW (Ding et al., 2023)
Visdrone (Zhu et al., 2021)
WCS Camera Traps (WCS)
HierText (Long et al., 2023; 2022)
FSC-147 (Ranjan et al., 2021)

SA-V (Ravi et al., 2024)
SA-V internal (Ravi et al., 2024)
YT-Temporal-1B (Zellers et al., 2022)
SA-FARI

DAVIS2017 (Pont-Tuset et al., 2017b)
MOSEv2 (Ding et al., 2025)
YTVOS2019 (Xu et al., 2018)

Table 28: Media pool used to construct each SA-Co train subset. See Figs. 11 to 15 for examples of each domain
and annotations.
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Dataset # NPs # Images # Image-NP % Negatives # NP-masks % 0-shot NPs

LVIS test 1.2K 19.8K - - - -
COCO test2017 80 40.7K - - - -
ODinW-35 test 290 15.6K 26.1K - 131.1K -

SA-Co/Gold 59.2K 20.4K 215.4K 85.1% 157.5K 6.65%
SA-Co/Silver 54.6K 66.1K 1.8M 94.0% 219.8K 8.00%
SA-Co/Bronze 105.3K 32.5K 1.0M 84.9% 261.5K 57.25%
SA-Co/Bio 166 5.4K 35.9K 71.8% 264.6K -

(a)

Dataset # NPs # Videos # Video-NP % Negatives # NP-masklets % 0-shot NPs

LVVIS test 1.2K 908 - - 5.7K -
BURST test 482 1.4K 3.4K - 8.0K -

SA-Co/VEval 6.2K 1.7K 12.3K 71.5% 18.2K 7.62%

(b)

Table 29: (a) Summary statistics of SA-Co image benchmark by subsets and comparison with existing image
instance segmentation benchmarks. (b) Summary statistics of SA-Co/VEval benchmark and comparison video
instance segmentation benchmarks. % Negatives denotes percentage of Image-NPs or Video-NPs that are
negative. Percentages of zero-shot NPs in each subset are reported. A zero-shot NP is defined as a phrase that
has not been seen in the combined set of SA-Co/HQ, SA-Co/EXT and SA-Co/VIDEO.

SA-Co/Gold SA-Co/Silver SA-Co/Bronze SA-Co/Bio SA-Co/VEval

MetaCLIP
SA-1B
Attributes
Crowded Scenes
Wiki-Common1K
Wiki-Food/Drink
Wiki-Sports Equipment

BDD100k
DROID
Ego4D
MyFoodRepo-273
GeoDE
iNaturalist-2017
National Gallery of Art
SA-V
YT-Temporal-1B
Fathomnet

BDD100k
EDEN
Fashionpedia
Visdrone
WCS Camera Traps

Livecell
PanNuke
MedSAM2
SNOW

SA-V
YT-Temporal-1B
SmartGlasses

Table 30: Domains in each SA-Co test subset. See Figs. 11 to 15 for examples of each domain and annotations.

To remedy these issues we design new metrics for the PCS task. Given datapoints consisting of
predicted and ground truth (media, phrase, masks) triplets we compute the following metrics to
measure localization and classification separately:

• Localization. We measure this only on positive datapoints with at least one ground-truth mask
and one predicted mask. For one sample, assume we have N predicted masks m1, · · · ,mN and
M ground-truth masks m̂1, · · · , m̂M . We compute the IoU matrix ioui,j = iou(mi, m̂j), then
deduce the optimal bipartite matching σ̂ = argmaxσ

∑
i ioui,σ(i). We fix an IoU threshold τ , then

for every prediction i, if it is matched and ioui,σ(i) ≥ τ , then it is counted as TP (true positive),
otherwise FP (false positive). Unmatched ground truths are counted as FN (false negative). We
measure Fτ

1 = 2TP
2TP+FP+FN for each datapoint, then average over all datapoints to obtain pmFτ

1

(“positive macro F1”). We compute pmFτ
1 for all τ ∈ [0.5, 0.95] with increments of 0.05, then

average to obtain the final pmF1.

• Classification. This metric between [−1, 1] computes the ability of the model to predict one or
several masks, if and only if the datapoint is positive. This can be seen as a binary prediction task
at the image level (“is the object present or not?”), and crucially, in this metric we do not care
about the quality of the predicted masks. If the datapoint is positive, and if the model has predicted
any mask (with confidence greater than 0.5), then it is an IL TP (image level TP), otherwise
an IL FN. If the datapoint is negative, and if the model has predicted any mask, then it is an
IL FP, otherwise an IL TN. We summarize this confusion matrix into a single metric, and measure
potential imbalances with the Matthews Correlation Coefficient (MCC) as:

IL MCC =
IL TP · IL TN− IL FP · IL FN√

(IL TP + IL FP) · (IL TP + IL FN) · (IL TN + IL FP) · (IL TN + IL FN)
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SA-Co/Gold SA-Co/VEval

3-Reviewed Subset YT-Temporal-1B test SmartGlasses test

Evaluation Protocol CGF1 IL MCC pmF1 CGF1 pHOTA pDetA pAssA CGF1 pHOTA pDetA pAssA

Best Pair 83.7 0.99 84.7 82.4 85.8 80.9 91.4 73.3 79.9 70.5 90.9
Random Pair 63.3 0.87 72.6 71.8 78.3 68.3 90.1 52.6 67.3 50.8 89.5

Table 31: Human instance segmentation performance comparison between the Best and Random Pair protocols
on SA-Co benchmark. The comparison is shown on subsets of the benchmark with three human annotations.

As our main metric, we combine these two metrics to compute CGF1 (“classification-gated F1”),
defined as CGF1 = 100 · pmF1 · IL MCC.

The PCS task is quite ambiguous in many cases, and to alleviate this issue our SA-Co/Gold subset
contains three independent ground-truth annotations for each datapoint. To adapt our metric, we use
an oracle setting, where we compare the model’s predictions to each ground-truth for each datapoint,
and select the one that yields the best score.

F.4 HUMAN PERFORMANCE ON SA-CO

As described in §2, the PCS task is intrinsically ambiguous. Given an image-NP or video-NP pair,
even trained annotators can have different interpretations that are all valid. When the phrase is
vague, annotators can even disagree on the presence of the NP. Hence when evaluating on the SA-Co
benchmark, disagreement with ground truth does not necessarily mean the prediction is wrong. To
this end, it is important to study the human-level performance (i.e. the agreement among skilled
annotators) on the PCS task to facilitate interpreting model performance.

Human Performance on SA-Co/Gold. On the image benchmark, we provide three sets of annota-
tions by different annotators. These annotations are done from scratch, meaning that the annotators
create masks (using SAM 1) without seeing any SAM 3 model interpretations. We define the “Best
Pair” metric as follows to measure the upper bound of human performance. For each image-NP,
the best pair (out of all three pairs of annotations) is selected by maximizing the local F1 score or
minimizing the sum of false negatives (FN) and false positives (FP) when there is a tie in local F1
scores. We then report the CGF1 metric based on these selected best pairs using one annotation as
ground truth and the other as prediction. To make the model performance comparable, the “Best
Pair” model performance is calculated by comparing model predictions to all three annotations and
selecting the best pairs.

Alternative to the “Best Pair” protocol, human performance can also be measured on randomly
selected pairs. Specifically, we adopt the following protocol to compute “Random Pair” human
performance on SA-Co benchmark with three sets of annotations: 1) randomly choosing a pair of
annotations for each image/video-NP, then aggregate over all image/video-NPs to get the metric
values, 2) repeating the process a thousand times and reporting the 0.5 quantile for each metric. As
shown in Tab. 31, there is a noticeable gap between Best Pair and Random Pair performance on both
image and video benchmarks, suggesting that the PCS task is inherently ambiguous.

The image benchmark has a large portion of hard negatives. These phrases go through human
verification, but as it is costly to collect three sets of human annotations on the entire dataset due
to the large volume, the negative noun phrases only have one ground-truth label. The human
performance on these phrases is estimated by collecting additional human annotations on a subsample
of phrases and comparing them with the initial annotation (i.e., the ground truth). Specifically,
we collect additional human annotations on about one thousand image-NPs for each domain in
SA-Co/Gold. Since the ground truths are all negatives, these phrases only contribute to the IL MCC
metric. We compute counts of IL TN and IL FP on these samples, and then extrapolate these results
to estimate the corresponding counts for the entire set of hard negatives. These estimated counts
are then combined with image-level counts from the rest of the benchmark where NPs have three
annotations to get the final IL MCC.

During the additional human review, some hard negative NPs are marked as ambiguous by annotators.
To reflect this uncertainty in the final IL MCC metric, we estimated a lower bound by counting all
ambiguous responses as IL FP (i.e. incorrect), and an upper bound by counting them as IL TN (i.e.
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correct). Hence we report human performance on image PCS task as an interval defined by the lower
and upper bounds, capturing the uncertainty introduced by ambiguous phases.

Human Performance on SA-Co/VEval. Annotating videos is much more expensive than static
images, so we collect only one set of annotations per NP on the video benchmark. To guarantee
annotation quality, these ground-truth annotations undergo multiple rounds of human refinement.
To measure human performance in a way that is directly comparable to model evaluation in video
PCS, we collect one additional from-scratch human annotation for every NP in the test set across all
sub-domains. Human performance on video PCS task is then reported by comparing this additional
annotation to the ground truth, using the same metrics as for model evaluation (CGF1 and pHOTA).

Additionally, to study the gap between the Random Pair and the Best Pair protocols, we collect two
further human annotations (for a total of three) on the YT-Temporal-1B and SmartGlasses test splits
of the SA-Co/VEval dataset. This allows us to verify that the gap observed in the image domain also
exists in the video domain (see Tab. 31).

F.5 ADDITIONAL DATASET EXAMPLES

Figs. 11 to 15 show examples of each visual domain in our image and video datasets. Fig. 16 show an
example image from our synthetic data set SA-Co/SYN, with its positive noun phrases in the figure
and negative noun phrases in the caption.
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MetaCLIP alt-text
(Xu et al., 2024b; Chuang et al., 2025)

MetaCLIP Common WikiNodes MetaCLIP Food and Drink MetaCLIP Sports Equipment SA-1B
(Kirillov et al., 2023)

SA-1B Crowded Scenes Food Recognition
2022 Challenge

(Mohanty et al., 2021)

SA-V internal
(Ravi et al., 2024)

National Gallery of Art
(nga)

SA-V
(Ravi et al., 2024)

Ego4d
(Grauman et al., 2022)

BDD100K
(Yu et al., 2020)

Armbench
(Mitash et al., 2023)

DROID
(Khazatsky et al., 2024)

GeoDE
(Ramaswamy et al., 2023)

Figure 11: Per-domain examples in SA-Co/HQ. Shown with annotated phrases and masks overlaid.
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Fathomnet
(Katija et al., 2021)

iNaturalist
(Horn et al., 2017)

SNOW
Ding et al. (2023)

Livecell
(Edlund et al., 2021)

Pannuke
(Gamper et al., 2019)

BDD100K
(Yu et al., 2020)

MedSAM2
(Ma et al., 2025)

Visdrone
Zhu et al. (2021)

WCS Camera Traps
(WCS)

EDEN
(Le et al., 2021)

Figure 12: Per-domain examples in SA-Co/EXT. Shown with annotated phrases and masks overlaid.

Figure 13: Example annotations from the SmartGlasses media in the SA-Co/VEval dataset.
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Figure 14: Example annotations from the SA-V media in the SA-Co/VIDEO and SA-Co/VEval datasets.
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Figure 15: Example annotations from the SA-FARI dataset.

Figure 16: Example annotations on one image from the SA-Co/SYN dataset. There are 19 positive noun phrases
for this image, which we visualize in 4 groups for better visualization quality. AI verifier assigned an exhaustivity
label for each noun phrase: noun phrases in green box means the masks for that noun phrase is exhaustive, noun
phrases in pink box means not exhaustive. There are 20 negative noun phrases that are verified and confirmed by
AI verifier for this image: a black and white post, a blue and yellow post, a large red and white truck, an orange
and black post, large orange and white boat, the green and red post, the large orange and white motorcycle,
the orange and white bollard, the purple and yellow post, yellow sash, the Malaysian Air Boeing 737-800,
display vehicle, Zamboni ice resurfacer, boot, the small folded paper package, long yellow vehicle, the small
gift-wrapped package, small trailer, bunker gear, two-seat model.
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G ADDITIONAL EXPERIMENTS AND DETAILS

G.1 PCS WITH NPS ON IMAGES

This section describes the experiments in Tab. 1 in detail. We compare to OWLv2 (Minderer et al.,
2024), GroundingDino (Liu et al., 2024a) and LLMDet (Fu et al., 2025). Since they only produce
bounding boxes, we convert them to masks using SAM 1 to evaluate segmentation. We also compare
to APE (Shen et al., 2024) and DINO-X (Ren et al., 2025), two SoTA segmentation models, and
finally Gemini 2.5 Flash (Comanici et al., 2025), a generalist LLM.

We report performance on LVIS (Gupta et al., 2019), COCO (Lin et al., 2014), COCO-O (Mao et al.,
2023), Cityscapes (Cordts et al., 2016), ADE (Zhou et al., 2019), and Pascal context (Mottaghi et al.,
2014), reporting their official metrics. For LVIS, we report AP-fixed (Dave et al., 2022). On our new
SA-Co benchmark, we report the average across every split. We report CGF1, except for SA-Co/Bio
where we report pmF1 (this split does not have negatives, so only localization is meaningful). On
SA-Co/Gold we have three ground-truth annotations per datapoint, so we report the oracle metric and
estimated human performance (human performance measurement detailed in §F.4).

We employ the following Hugging Face model checkpoints: “google/owlv2-large-patch14” for
OWLv2, “google/owlv2-large-patch14-ensemble” for OWLv2⋆, “IDEA-Research/grounding-dino-
tiny” for gDino-T, and “iSEE-Laboratory/llmdet large” for LLMDet-L. OWLv2⋆ utilizes an ensemble
of checkpoint weights after self-training and after fine-tuning the model on LVIS base, demonstrating
improved open-world generalization compared to fine-tuning alone (Minderer et al., 2024). In
Tab. 32, we provide per-domain performance of instance segmentation on SA-Co/Gold for all
baselines, SAM 3, and human in Tab. 1. We also provide the per-domain performance for AI
verifier ablation study in Tab. 9d. In Tab. 33, we provide comparisons with additional baselines
using “IDEA-Research/grounding-dino-base” for gDino-B and “iSEE-Laboratory/llmdet base” for
LLMDet-B.

For OWLv2, GroundingDino, and LLMDet, we swept over the detection threshold at 0.1 intervals
and determined the best threshold using the LVIS CGF1 metric for the box detection task. Then, we
applied this threshold to compute CGF1 on the remaining datasets for the box detection and instance
segmentation tasks. The detection threshold is set to 0.4 for LLMDet-L, LLMDet-B, and gDino-T;
0.3 for OWLv2⋆; and 0.2 for OWLv2 and gDino-B. For DINO-X, we find the detection threshold
0.5 gives the best CGF1 metric. Additionally, we found that prompting multiple noun phrases at
once for a given image greatly improved performance for GroundingDino and LLMDet, compared to
prompting one noun phrase at a time. For example, we prompted GroundingDino and LLMDet with
30 prompts for SA-Co/Gold and 20 prompts for SA-Co/Silver, SA-Co/Bronze, and SA-Co/Bio.

For Gemini 2.5 Flash, we run inference via the Gemini API. For each (image, text query) pair,
we prompt Gemini 2.5 using the same prompt template that is used in Gemini Flash 2.5 image
segmentation demo (Paul Voigtlaender, Valentin Gabeur and Rohan Doshi, 2025) with the same
generation settings. In addition, we prompt the model multiple times if there are any errors in
generation, or parsing the result into a set of masks and bounding boxes.

Average Metaclip SA-1B Crowded Food&Drink Sports Equip. Attributes Wiki-Common
CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1 CGF1 IL MCC pmF1

gDino-T 9.1 .15 57.7 13.6 .21 64.0 12.4 .20 62.1 3.8 .09 42.3 4.64 .09 51.0 5.+ .09 59.9 20.8 .28 73.9 3 .06 50.5
OWLv2⋆ 34.3 .58 58.9 32.1 .53 60.9 25.3 .51 50.0 23.8 .53 45.1 40.7 .65 62.8 42.7 .64 66.9 45.0 .63 71.1 30.4 .55 55.7
OWLv2 22.9 .46 49.1 21.1 .40 52.4 17.3 .46 37.4 15.1 .38 39.8 27.2 .51 53.5 29.8 .52 56.9 31.3 .53 58.6 18.7 .42 44.8
LLMDet-L 12.9 .21 59.5 14.3 .23 61.9 13.7 .24 58.2 7.6 .17 44.9 11.9 .2 60.0 10.3 .17 61.7 29.6 .39 76.4 2.8 .05 53.2
DINO-X 27.7 .38 71.8 24.9 .35 70 27.2 .43 62.3 15.8 .33 47.7 38.6 .51 75.2 36.6 .44 82.8 37.8 .43 87.5 13.3 .17 77.4
Gemini 2.5 18.7 .29 65.8 16.5 .29 57.3 22.5 .41 54.5 12.3 .28 43.6 24.5 .33 74.0 21.1 .28 74.2 24.5 .3 82.7 9.7 .13 74.1
SAM 3 65 .82 79.7 63.0 .81 78.1 63.6 .85 75.0 63.0 .90 69.9 67.9 .81 83.7 73.5 .89 82.3 66.5 .76 87.3 57.6 .70 81.8
SAM 3 +EV 68.1 .86 78.8 64.1 .85 75.6 65.1 .89 73.1 61.1 .88 69.3 71.3 .86 82.5 73.3 .90 81.5 80.5 .91 88.3 61.6 .76 81.5
SAM 3 +EV&MV 69.2 .85 81.3 66.2 .85 78 65 .85 76.7 63.2 .89 71.2 73.3 .87 84.3 74.2 .89 83.4 81.1 .89 90.8 61.4 .73 84.4
Human-Lower 74.2 .88 84.6 68.2 .86 79.8 73.1 .93 78.9 64.7 .85 76.4 79.2 .91 87.3 83.1 .94 88.8 84.8 .93 91.2 66 .73 90.2
Human-Upper 81.4 .96 84.6 76.3 .96 79.8 76.4 .97 78.9 73.3 .96 76.4 85 .97 87.3 86.8 .98 88.8 87.9 .96 91.2 84.2 .93 90.2

Table 32: Per-domain results of instance segmentation on SA-Co/Gold. ⋆partially trained on LVIS.

G.2 VISUAL EXEMPLARS AND INTERACTIVITY

In Tab. 34, visual exemplar experiments, we report performance in 3 settings: (1) text prompt only,
(2) visual prompt only, and (3) both text and visual prompt. We note that (2) is quite ambiguous. For
example, given a visual example of a dog, one could want to detect all dogs, or only dogs of the same
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Box Detection
LVIS COCO SA-Co

Model CGF1 AP AP APo Gold Silver Bronze Bio

Humanmin – – – – 76.2 – – –
Humanmax – – – – 83.6 – – –
OWLv2 (Minderer et al., 2024) 35.2 35.2 38.2 42.4 23.3 11.7 8.5 1.6
OWLv2⋆ (Minderer et al., 2024) 47.4 45.5 46.1 23.9 35.4 19.2 19.4 0.3
gDino-B (Liu et al., 2024a) 31.6 25.7 52.5 45.5 7.6 5.6 13.9 0.9
gDino-T (Liu et al., 2024a) 33.8 20.5 45.7 35.3 9.4 6.8 12.3 0.7
LLMDet-L (Fu et al., 2025) 53.7 42.0 55.6 49.8 13.5 11.5 20.6 0.6
LLMDet-B (Fu et al., 2025) 51.9 37.8 54.2 39.4 9.9 11.0 21.2 0.9
Gemini 2.5 (Comanici et al., 2025) 23.7 – – – 18.7 12.2 10.1 12.0
SAM 3 57.5 51.7 53.5 55.5 67.7 58.0 53.1 60.0

Table 33: Additional evaluation on image concept segmentation tasks. APo corresponds to performance on the
COCO-O dataset. Models with a star were partially trained on LVIS.

SA-Co/Gold

Model pmF1
T

pmF1
I

pmF1
T+I

T-Rex2 (Jiang et al., 2024) – 57.6 –
SAM 3 63.2 69.6 73.5

Table 34: Visual prompting on SA-Co/Gold. We report pmF1 metric in different prompt types: T (text-only), I
(image-only), and T+I (combined text and image).

color or breed. As a result, SAM 3 performs worse on SA-Co/Gold in setting (2) compared to (1).
Therefore, setting (3) is better suited, as the text lifts most of the ambiguity, and the additional input
box gives a hint for unfamiliar concepts.

G.3 FEW-SHOT FINE-TUNING

We evaluate SAM 3’s object detection capabilities on real-world data through comprehensive zero-
shot and few-shot experiments using two established benchmarks: OdinW13 Li et al. (2022a) and
Roboflow-100VL Robicheaux et al. (2025). These benchmarks encompass 13 and 100 diverse object
detection datasets, respectively, capturing a wide range of real-world scenarios with standardized
train and test splits that enable fair comparison with existing methods.

Few-shot training and evaluation. For OdinW13 few-shot experiments, we train on all three official
few-shot training splits and report mean performance with standard deviation on the test split. For
Roboflow-100VL, we utilize the official FSOD training splits provided by the benchmark and report
numbers on the test split. We treat few-shot fine-tuning runs similarly to traditional training runs,
but with some differences. We train for 40 epochs a reduced learning rate that is one-tenth of the
standard value on a batch size of 2. Since these benchmarks focus exclusively on object detection
without mask annotations, we disable all mask-specific components and losses during training.

OdinW13 results. Fig. 17a presents our few-shot performance on OdinW13, comparing SAM 3
against previous state-of-the-art methods Ren et al. (2024); Wu et al. (2024b); Xu et al. (2023); Zhang
et al. (2022b). We report mean BoxAP averaged across all 13 datasets, with SAM 3 consistently
achieving superior performance and establishing new state-of-the-art results. Complete dataset-
specific results for each OdinW13 dataset are provided in Fig. 17b.

Roboflow-100VL results. Tab. 35 summarizes our comprehensive evaluation across zero-shot,
few-shot, and full fine-tuning settings on Roboflow-100VL, with results averaged across all 100
datasets. While SAM 3 underperforms the current state-of-the-art Liu et al. (2023) in zero-shot
evaluation, it surpasses leading methods Liu et al. (2023); Chen et al. (2024a) in both few-shot and
full fine-tuning scenarios. This demonstrates SAM 3’s strong visual generalization capabilities when
provided with task-specific training data. We attribute the zero-shot performance gap to the use
of specialized, dataset-specific prompts that may lack broad generalizability in Roboflow-100VL.
However, even minimal fine-tuning closes this gap and enables substantial performance improvements.
Roboflow-100VL also categorizes its 100 datasets into seven dataset types; we report averages per
each such dataset type in Tab. 36.
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Model zero-shot 1-Shot 3-Shot 5-Shot 10-Shot All
AP

GLIPv2-H 55.5 61.7± 0.5 64.1± 0.8 64.4± 0.6 65.9± 0.3 70.4
GLEE-Pro 53.4 59.4± 1.5 61.7± 0.5 64.3± 1.3 65.6± 0.4 69.0
MQ-GLIP-L 54.1 62.4 64.2 65.4 66.6 71.3
Grounding DINO 1.5 Pro 58.7 62.4± 1.1 66.3± 1.0 66.9± 0.2 67.9± 0.3 72.4

SAM 3 59.9 63.0± 2.4 67.3± 0.7 69.1± 1.1 71.6± 0.2 75.6

(a) Comparison of different models under few-shot settings on ODinW13.

Aerialmaritimedrone(l) Aquarium Rabbits Egohands(g) NAMushrooms Packages PascalVOC
AP

0-Shot 22.3 41.7 82.9 69.8 89.4 72.9 64.0
1-Shot 29.6± 0.4 46.0± 2.8 81.6± 1.9 70.6± 1.3 92.3± 8.4 84.2± 3.8 67.1± 0.5
3-Shot 34.5± 0.3 51.5± 3.7 82.8± 3.0 70.5± 2.9 98.7± 1.3 88.2± 4.2 68.0± 0.5
5-Shot 36.9± 2.1 53.2± 0.7 83.2± 2.0 71.1± 1.2 99.1± 1.0 89.2± 4.4 68.2± 0.2
10-Shot 40.2± 1.9 55.0± 0.8 84.1± 1.5 72.1± 0.7 100.0± 0.0 93.3± 0.3 68.6± 0.3
All 39.7 62.1 83.3 79.8 100.0 98.0 76.3

Raccoon Shellfish Vehicles Pistols Pothole ThermalDP 13-Average
AP

0-Shot 70.5 58.8 65.6 59.6 27.5 53.4 59.9
1-Shot 62.6± 22.0 49.4± 8.5 59.9± 3.9 68.8± 2.1 36.4± 2.5 70.6± 5.8 63.0± 2.4
3-Shot 78.9± 2.8 51.3± 2.4 65.8± 2.2 69.9± 0.7 42.0± 3.8 73.5± 6.1 67.3± 0.7
5-Shot 81.1± 1.1 52.6± 3.1 64.7± 1.0 71.3± 2.7 44.4± 2.7 82.7± 7.2 69.1± 1.1
10-Shot 86.0± 1.3 56.7± 0.6 68.0± 2.0 72.3± 1.3 47.4± 1.8 87.4± 1.4 71.6± 0.2
All 87.4 58.4 71.6 78.5 58.1 89.2 75.6

(b) ODinW13 per-dataset results for SAM 3.

Figure 17: Zero-shot and few-shot results on ODinW13.

G.4 OBJECT COUNTING

We evaluate on object counting benchmarks CountBench (Paiss et al., 2023) and PixMo-Count (Deitke
et al., 2025) to compare with MLLMs (Wang et al., 2024; Deitke et al., 2025; Comanici et al., 2025)
and detection expert models (Ren et al., 2025). See Tab. 37 for results. The metrics include
Accuracy(%) and Mean Absolute Error (MAE). CountBench (Paiss et al., 2023) contains 540 images
and their captions, with 2-10 objects in each image. By removing images with unavailable links, we
test on 487 images. PixMo-Count (Deitke et al., 2025) contains 540 images and their text descriptions
in the form of simple noun phrases, with 2 to 10 objects in each image. By removing images with
unavailable links, we test on 529 images.

To evaluate MLLMs on CountBench, we apply the same question set as Molmo (Deitke et al., 2025),
which is inherited from PaliGemma (Beyer et al., 2024). When evaluating SAM 3 on CountBench,
we modify the question sentence to the simple noun phrase. To evaluate MLLMs on PixMo-Count,
we construct the question as “How many {} are there in this image” or “Count the {}”, where {} is
the simple noun phrase provided by PixMo-Count annotations.

We find that presence token does not help SAM 3 on counting tasks, so we do not use it. For a group
of objects, we find that SAM 3 outputs predictions for both each individual and the group as a whole,
which contradicts the counting task.

As a post-processing step, we perform Non-Maximal Suppression (NMS) to remove duplicate
detections. Instead of the usual Intersection-over-Union (IoU) criterion, we use Interaction over

Model 0-Shot 10-Shot All
AP

Grounding Dino 15.7 33.7 —
LW-DETRm — — 59.8
SAM 3 14.3 35.7 61.0

Table 35: Comparison on Roboflow100-VL.

Aerial Docu-
ment

Flora-
Fauna

Indus-
trial

Medi-
cal

Other Sports Aver-
age

AP

0-Shot 20.7 11.9 23.4 8.2 2.0 15.7 16.4 14.3

10-Shot 33.9 34.0 38.8 39.7 24.9 34.7 40.3 35.7

All 56.0 63.0 59.8 67.4 51.5 63.4 61.6 61.0

Table 36: SAM 3 Roboflow100-VL results by dataset type.
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Minimum (IoM), where the area of overlap is divided by the area of the smaller mask, rather than by
the area of the union. By doing this, we can detect whole-vs-part situations: if a mask is fully covered
by another, the IoM will be high, even if the covering mask is much bigger (which would lead to
low IoU). We set the IoM threshold to 0.5 in our NMS process. Finally, we select the predictions
with confidence higher than 0.5 as the final predictions and count the number of predictions as the
counting result.

CountBench PixMo-Count
Model Presence IoM MAE ↓ Acc (%) ↑ MAE ↓ Acc (%) ↑

SAM 3 × × 0.36 81.9 0.36 75.4
SAM 3 ✓ × 0.46 84.1 0.43 75.6
SAM 3 × ✓ 0.11 95.6 0.22 87.3
SAM 3 ✓ ✓ 0.30 92.6 0.30 86.7

Table 37: Ablation on counting results.

G.5 VIDEO PCS DETAILS

In this section, we provide additional details for the video PCS evaluation (in §6 and Tab. 5).

Benchmarks. We evaluate the video PCS capabilities of the SAM 3 model based on an input text
prompt (similar to the open-vocabulary video instance segmentation task (Wang et al., 2023)) on
both our collected video benchmark SA-Co/VEval and public benchmarks. For SA-Co/VEval, we
evaluate separately on each subset (SA-V, YT-Temporal-1B, and SmartGlasses) based on their data
sources, and report classification-gated F1 (CGF1), phrase-based HOTA (pHOTA), and Track Every
Thing Accuracy (TETA). The SA-Co/VEval benchmarks contain a large number of noun phrases
(5.1K in SA-V and YT-Temporal-1B subsets and 4.9K in SmartGlasses), and provides each video
with a list of noun phrases as text prompts. During evaluation, for each evaluation video, we prompt
SAM 3 with the list of noun phrases provided for that video, as shown in Tab. 38 (a, b, c).

For public benchmarks, we evaluate on LVVIS (Wang et al., 2023), BURST (Athar et al., 2023),
YTVIS (Ke et al., 2022), OVIS (Qi et al., 2022), BDD100K (Yu et al., 2020), GMOT40 (Bai et al.,
2021), and DeepSeaMOT (Barnard et al., 2025), and report the official metrics on each dataset (for
DeepSeaMOT, we report the average performance over its 4 subsets). These public benchmarks are
often based on a set of categories, with a relatively large vocabulary size in LVVIS and BURST (1196
categories in LVVIS and 482 categories in BURST) and much smaller numbers of categories in other
datasets. We use the category name as the text prompt, and prompt SAM 3 with all category names
in the dataset on every evaluation video, as shown in Tab. 38 (d).

Video PCS Metrics. Similar to its definition in the image domain in §F.3, we define the classification-
gated F1 (CGF1) metric on videos as the multiplication between the video-level Matthews correlation
coefficient (VL MCC) on whether the noun phrase exists in the video and the localization positive
macro F1 (pmF1) on positive noun phrases. To decide whether a predicted masklet matches a
ground-truth masklet, we measure their volume intersection-over-union (IoU), defined by their total
intersection volume divided by their total union volume over the video. When computing pmF1, we
averaged the results over multiple volume IoU thresholds from 0.5 to 0.95 with increments of 0.05,
similar to how it is computed on images.

We also evaluate the phrase-based HOTA (pHOTA) metric, where we compute the Higher Order
Tracking Accuracy (HOTA) metric (Luiten et al., 2021) over all video-NP pairs along with their
breakdown into phrase-based detection accuracy (pDetA) and phrase-based association accuracy
(pAssA). As the HOTA metric was originally designed for category-based evaluation, to get its phrase-
based variant pHOTA for open-vocabulary prompts, we remap each video-NP pair in the evaluation
benchmark as a new unique video ID and then set all ground-truth annotations and predictions to have
the same category ID (i.e., the total number of video IDs after remapping equals the total number
of video-NP pairs in the evaluation benchmark). That is, each video-NP pair in the benchmark is
treated as an isolated sample for prediction and evaluation, and the results are aggregated over all
video-NP pairs in a class-agnostic manner. More specifically, we save the remapped ground-truth
annotations and the predictions as JSON files under the YTVIS format, and use the TrackEval package
(Jonathon Luiten, 2020) to obtain the mask HOTA statistics on this remapped dataset (using the
YTVIS dataset wrapper in TrackEval along with its default parameters), and report their results as
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pHOTA, pDetA, and pAssA. Similarly, we also evaluate the Track Every Thing Accuracy (TETA)
metric (Li et al., 2022c) over the masklet predictions on these datasets.

Baselines. We compare the SAM 3 model with several baselines, including GLEE (Wu et al., 2024a)
(a previous work on open-vocabulary image and video segmentation), “LLMDet as detector + SAM 3
Tracker”, by replacing the Detector component in SAM 3 with a state-of-the-art open-vocabulary
model LLMDet (Fu et al., 2025), and “SAM 3 Detector + T-by-D as tracker”, by replacing the Tracker
component in SAM 3 with a simple association module commonly used in tracking-by-detection
approaches (Wojke et al., 2017; Zhang et al., 2022c).

For GLEE (Wu et al., 2024a), we follow its official implementation. Since GLEE supports taking as
inputs multiple text prompt simultaneously, we evaluate it in two ways: a) prompting it with all the
noun phrases from an evaluation video at once, denoted as “GLEE (prompted w/ all NPs at once)” in
Tab. 38, and b) looping over each noun phrase in the evaluation video and prompting GLEE with
one noun phrase at a time, denoted as “GLEE (prompted w/ one NP at a time)”. We find that for
open-vocabulary segmentation on videos, it is usually better to prompt GLEE with one noun phrase
at a time instead of prompting it with all noun phrases at once.

For “LLMDet as Detector + SAM 3 Tracker”, we replace the detection outputs from the SAM 3
detector with LLMDet (Fu et al., 2025) bounding box outputs, and obtain the mask output by
prompting it with the SAM 3 component. Then we apply the SAM 3 Tracker similar to how it
is applied over the SAM 3 Detector output. We also note that GLEE and LLMDet have not been
trained on the noun phrases in the SA-Co dataset, so their results should be seen as zero-shot on the
SA-Co/VEval benchmark.

For “SAM 3 Detector + T-by-D as tracker”, we replace the SAM 3 Tracker with a detection-to-masklet
association module as commonly used in the tracking-by-detection paradigm, e.g. Wojke et al. (2017);
Zhang et al. (2022c). The detection-to-masklet association module tries to match the masklets already
tracked in previous frames with detected objects in the current frame, based on a dot product between
the visual features of each detected object and the visual features of the past 16 frames of a masklet.
If a high-confidence detection isn’t matched to any existing masklet, we add it as a new object and
start a new masklet for it. The association module is trained on the SA-Co dataset.

Results. As shown in Tab. 38, SAM 3 largely outperforms these baselines across the benchmarks.
On SA-Co/VEval with a very large number of noun phrases, SAM 3 excels in both frame-level
detection (pDetA) and cross-frame association (pAssA). Comparisons with “LLMDet as Detector
+ SAM 3 Tracker” and “SAM 3 Detector + T-by-D as tracker” demonstrate that both the Detector
module and the Tracker module in SAM 3 play a critical role in the final video performance. In public
benchmarks, SAM 3 also achieves a strong performance, including new state-of-the-art results on
LVVIS and OVIS. We also note that GLEE and LLMDet have not been trained on the SA-Co dataset,
so their results should be seen as zero-shot on SA-Co/VEval. In addition, the SmartGlasses subset in
SA-Co/VEval contains many egocentric videos, which might be out of the training distribution for
GLEE and LLMDet.

Strategies on Temporal Disambiguation. As described in §D.3, SAM 3 adopts several strategies to
address ambiguities in videos. In Tab. 38, we also report two other settings where we turn off all
these temporal disambiguation strategies (“SAM 3 w/o any temporal disambiguation”) or only turn
off re-prompting (“SAM 3 w/o re-prompting”). The results show that the disambiguation strategies
boost the video PCS performance (especially under the pHOTA metric). We also find that these
disambiguation strategies (especially re-prompting) notably improve the qualitative outputs on videos.

G.6 PVS DETAILS

We evaluate SAM 3 on a range of geometric tasks. The standard semi-supervised Video Object
Segmentation (VOS) task requires tracking an object throughout a video given an input segmentation
mask. In Tab. 6,

Baselines. We compare SAM 3 with recent state-of-the-art models on the VOS task, including
SAMURAI (Yang et al., 2024), SAM2Long (Ding et al., 2024), and SeC (Zhang et al., 2025). SAM 3
brings gains on all datasets, including the challenging MOSEv2 benchmark (Ding et al., 2025).
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SA-Co/VEval SA-V val (2.0K NPs) SA-Co/VEval SA-V test (2.0K NPs)

Model CGF1 VL MCC pmF1 pHOTA pDetA pAssA TETA CGF1 VL MCC pmF1 pHOTA pDetA pAssA TETA

Human 52.5 0.76 68.6 68.1 50.9 91.6 63.4 53.2 0.78 68.0 68.0 51.3 90.7 66.0
GLEE† (prompted w/ all NPs at once) 0.1 0.13 0.6 7.3 2.3 28.4 5.7 0.2 0.14 1.2 8.8 2.6 33.5 6.6
GLEE† (prompted w/ one NP at a time) 0.1 0.02 3.5 12.7 3.7 45.1 15.7 0.0 0.01 4.2 12.3 3.5 46.0 14.9
LLMDet† as detector + SAM 3 Tracker 3.0 0.11 25.9 33.2 13.7 80.9 34.4 3.6 0.13 27.3 31.2 12.2 80.5 32.3
SAM 3 Detector + T-by-D as tracker 20.1 0.58 34.4 50.8 35.6 73.2 44.7 22.2 0.61 36.5 49.0 32.4 74.9 45.0

SAM 3 w/o any temporal disambiguation 24.3 0.51 47.6 54.6 36.2 83.0 52.4 26.5 0.56 47.6 53.9 34.9 84.0 52.0
SAM 3 w/o re-prompting 26.0 0.55 47.1 55.3 37.4 82.6 48.8 27.8 0.59 47.2 54.0 35.1 83.9 49.0
SAM 3 26.0 0.55 47.2 55.4 37.4 82.9 48.6 27.8 0.59 47.2 53.9 35.1 83.8 48.7

(a) Results on SA-Co/VEval SA-V val and test

SA-Co/VEval YT-Temporal-1B val (1.6K NPs) SA-Co/VEval YT-Temporal-1B test (1.7K NPs)

Model CGF1 VL MCC pmF1 pHOTA pDetA pAssA TETA CGF1 VL MCC pmF1 pHOTA pDetA pAssA TETA

Human 72.9 0.95 77.1 78.1 68.0 90.0 82.2 73.8 0.97 76.2 79.2 70.0 90.0 82.4
GLEE† (prompted w/ all NPs at once) 1.9 0.32 6.0 18.7 9.3 39.4 15.6 2.1 0.32 6.4 18.9 9.4 39.1 15.4
GLEE† (prompted w/ one NP at a time) 3.4 0.29 11.7 22.8 13.1 40.4 22.8 3.2 0.26 11.9 22.6 12.4 42.3 22.0
LLMDet† as detector + SAM 3 Tracker 11.6 0.38 30.3 43.2 22.9 81.6 41.5 9.2 0.31 29.3 41.5 21.6 79.6 38.3
SAM 3 Detector + T-by-D as tracker 46.5 0.94 49.6 66.4 58.6 75.6 68.0 44.6 0.94 47.6 64.4 56.8 73.5 65.4

SAM 3 w/o any temporal disambiguation 50.5 0.90 55.9 69.5 59.9 81.1 69.8 50.2 0.91 55.1 68.4 58.8 80.1 68.5
SAM 3 w/o re-prompting 52.0 0.93 56.0 69.8 60.1 81.6 70.0 51.2 0.93 55.1 68.7 59.1 80.4 68.1
SAM 3 52.4 0.93 56.5 70.2 60.3 82.3 70.2 51.7 0.93 55.5 69.2 59.4 81.2 68.7

(b) Results on SA-Co/VEval YT-Temporal-1B val and test

SA-Co/VEval SmartGlasses val (2.5K NPs) SA-Co/VEval SmartGlasses test (2.5K NPs)

Model CGF1 VL MCC pmF1 pHOTA pDetA pAssA TETA CGF1 VL MCC pmF1 pHOTA pDetA pAssA TETA

Human 53.0 0.88 60.5 66.3 49.9 88.4 69.8 57.6 0.89 64.8 70.3 55.3 89.7 74.2
GLEE† (prompted w/ all NPs at once) 0.0 0.20 0.2 4.9 2.2 12.0 7.9 0.1 0.19 0.4 5.5 2.2 15.0 8.7
GLEE† (prompted w/ one NP at a time) 0.1 0.19 0.3 5.7 2.4 14.4 13.0 0.1 0.16 0.4 6.4 2.3 18.5 14.1
LLMDet† as detector + SAM 3 Tracker 0.0 0.00 1.8 7.5 0.8 72.4 4.3 0.0 0.00 1.8 7.4 0.8 75.7 4.5
SAM 3 Detector + T-by-D as tracker 27.7 0.85 32.5 54.9 45.3 67.2 57.7 29.3 0.85 34.4 57.1 47.1 69.8 59.4

SAM 3 w/o any temporal disambiguation 34.2 0.77 44.2 59.8 45.7 78.8 63.5 35.7 0.78 45.5 61.3 46.9 80.7 64.8
SAM 3 w/o re-prompting 36.0 0.82 44.0 60.7 46.9 79.1 63.3 37.8 0.82 45.9 62.4 48.6 80.7 64.5
SAM 3 36.0 0.82 44.0 60.8 47.0 79.3 63.4 38.2 0.82 46.5 62.9 48.8 81.7 64.8

(c) Results on SA-Co/VEval SmartGlasses val and test

LVVIS test BURST test YTVIS21 val OVIS val BDD100K val GMOT40 DeepSeaMOT
(1.2K NPs) (482 NPs) (40 NPs) (25 NPs) (8 NPs) (10 NPs) (29 NPs)

Model mAP mAPbase mAPnovel HOTA HOTAcommon HOTAuncommon mAP mAP TETA HOTA HOTA

GLEE (prompted w/ all NPs at once) 20.8 24.0 18.4 28.4 46.4 24.8 62.2 38.7 18.0 36.8 6.8
GLEE (prompted w/ one NP at a time) 9.3 13.9 5.9 20.2 42.9 15.7 56.5 32.4 14.9 29.9 22.9
LLMDet as detector + SAM 3 Tracker 15.5 15.6 15.5 35.1 49.8 32.1 32.4 47.5 15.2 26.8 25.5
SAM 3 Detector + T-by-D as tracker 37.3 33.5 40.1 40.7 60.2 36.9 57.3 54.9 49.6 57.8 35.3

SAM 3 38.2 33.4 41.9 45.9 63.6 42.4 56.9 59.9 48.2 59.9 37.0

(d) Results on public benchmarks

Table 38: More details on video PCS from a text prompt (open-vocabulary video instance segmentation) on SA-
Co/VEval and public benchmarks (# NPs of each benchmark in parentheses). SAM 3 excels in both frame-level
detection (pDetA) and cross-frame association (pAssA) and largely outperforms the baselines, especially on
benchmarks with a very large number of noun phrases. †: GLEE and LLMDet have not been trained on the
SA-Co dataset, so their results should be seen as zero-shot on SA-Co/VEval.

For the interactive image segmentation task, we evaluate SAM 3 on the 37-dataset benchmark
introduced in SAM 2. As shown in Tab. 7, SAM 3 outperforms SAM 1 and SAM 2 on average mIoU,
producing more accurate segmentation masks when prompted with 1 or 5 clicks.
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G.6.1 ADDITIONAL MODEL OUTPUTS FOR DIFFERENT TASKS

Figure 18: Example predictions on the SACO Gold dataset.
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Figure 19: Example video concept segmentation predictions on the SA-Co/VEval SA-V test set (top two rows)
and the SA-Co/VEval SmartGlasses test set (bottom two rows).

Figure 20: Example predictions on the countbench dataset.
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H SAM 3 AGENT

H.1 AGENT DESIGN

In this section, we introduce SAM 3 Agent, an agentic pipeline that turns natural-language seg-
mentation requests into precise masks through iteratively prompting a multimodal LLM (MLLM)
and SAM 3. Given an input image and a user request, an MLLM acts as a planner/controller: it
analyzes the image, devises a step-by-step plan, invokes SAM 3 to generate masks, inspects the
results, and finalizes candidate masks. After each action, the agent receives visual and textual feed-
back describing the updated environment state, enabling it to revise the plan and decide the next
action. This perception-action loop continues until the agent is confident it has satisfied the goal (or
determines that no valid mask exists), at which point it returns a final set of masks. The resulting
pipeline handles queries far more complex than simple noun phrases which require understanding
relationships between scene elements and visual common sense.

Each action consists of calling one of several “tools”. We define the following four basic tools for the
MLLM to call: segment phrase, examine each mask, select masks and return, and report no mask.
Among these four tools, select masks and return and report no mask are return tools, which will
trigger a return function and end the current task. The other two functions: segment phrase and
examine each mask, are intermediate tools, which will either call the SAM 3 model on a noun phrase
or trigger an iterative process for the MLLM to examine each generated mask.

Tool #1: Segment Phrase

(1) Definition: Use the Segment Anything 3 model to ground all instances of a simple noun phrase
by generating segmentation mask(s) that cover those instances on the raw input image. At the
same time, all previously generated mask(s) will be deleted and cannot be referred to in future
messages.

(2) Use cases: Given a simple, direct, and singular noun phrase (not a referring expression that re-
quires additional understanding/reasoning), segment phrase will try to locate all object instance(s)
on the raw input image that match the simple noun phrase you provided. The tool will also render
all of the generated segmentation mask(s) onto the image for you to examine and decide the next
step.

(3) Parameters: {”type”: ”object”, ”properties”: {”text prompt”: {”type”: ”string”, ”description”:
”A short and simple noun phrase, e.g., rope, bird beak, speed monitor, brown handbag, person
torso”}}, ”required”: [”text prompt”]}

(4) Return type: A new image with differently colored segmentation mask(s) rendered on it, and a
text message indicating the number of mask(s) generated by the Segment Anything 3 model for
this ”text prompt” only.

Tool #2: Examine Each Mask

(1) Definition: Use this tool when the segment phrase tool generates multiple small or overlapping
mask(s), making it difficult to distinguish the correct mask(s). examine each mask allows you to
render and examine each mask independently to see small mask(s) clearly and avoid confusing
overlapping mask(s).

(2) Use cases: Sometimes there are multiple small mask(s) or overlapping mask(s) rendered on an
image, making it difficult to distinguish each mask from others. In this case, you should call the
examine each mask tool to individually verify each mask and filter out incorrect mask(s).

(3) Parameters: None

(4) Return type: A new image with colored segmentation mask(s) accepted by the exam-
ine each mask tool, and a text message indicating how many masks were accepted.
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Tool #3: Select Masks And Return

(1) Definition: Call this tool to select a subset of or all of the mask(s) rendered on the most recent
image as your final output. When calling select masks and return, you cannot select any mask(s)
generated by previous rounds other than the most recent round in your ”final answer masks”.
You can only use mask(s) from the most recent image in your message history.

(2) Use cases: Given an image with one or more segmentation mask(s) already rendered on it,
select masks and return returns the set of mask(s) you select as the final output.

(3) Parameters: {”type”: ”object”, ”properties”: {”final answer masks”: {”type”: ”array”, ”descrip-
tion”: ”An array of integers representing the selected mask(s) you want to choose as your final
output, e.g., [1, 4, 5]”}}, ”required”: [”final answer masks”]}

(4) Return type: None (End of Conversation)

Tool #4: Report No Mask

(1) Definition: Call this tool when you are absolutely sure that there are no object(s) in the image
that match or answer the initial user input query.

(2) Use cases: Reporting that the given image does not contain any target object(s) that match or
answer the initial user input query.

(3) Parameters: None

(4) Return type: None (End of Conversation)

After each intermediate tool call has been executed, the system will provide the MLLM with the
following two pieces of information:

• The user input image with all generated and currently available segmentation masks rendered on it
in a Set-of-Marks (Yang et al., 2023) manner. The masks are randomly colored and numbered from
1 to N based on SAM 3 confidence scores received at the time of mask generation. This defines the
environment state of the SAM 3 Agent at the current step, which includes the original user input
image and all available masks.

• An automatically generated text message stating all changes from the previous environment state
(e.g. how many masks have been generated by the segment phrase tool, or how many masks were
removed by the examine each mask tool).

After analyzing the updated image with available masks (current environment state) along with the
initial user query (goal), the MLLM must update its tool-calling plan and generate its next tool call
(current action). We allow the MLLM to call each intermediate tool as many times as it needs, before
arriving at a set of segmentation masks (final state) that it is satisfied with.

Empirically, we observe that for especially challenging queries, SAM 3 Agent may produce as many
as 60 steps of trial and error before being satisfied with its grounding outcome and calling a return
tool. This results in an extremely long environment-state context history with each step containing
a new image, pushing both the context limit and multi-image reasoning capability of even current
state-of-the-art MLLMs.

To resolve this issue, we propose an aggressive context engineering mechanism that prunes all
intermediate trial-and-error states between the initial user text query and the most recent agent call
to the segment phrase tool. We also replace all previously generated masks after each new MLLM
call to the segment phrase tool with newly generated masks. Empirically we found this design to be
much simpler and more performant compared to allowing previously generated masks to accumulate
and clutter the newly rendered images. To avoid losing important failure experience from pruned
steps, we provide a continuously updated list of all previously used (and discarded) SAM 3 noun
phrase prompts for the model to note.

H.2 QUALITATIVE ANALYSIS

In this section, we provide success 21 and failure 22 examples of SAM 3 Agent on the ReasonSeg (Lai
et al., 2024) and RefCOCOg (Kazemzadeh et al., 2014) datasets, as they are currently the most
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What object in this picture might reflect this person's marital status?

If the person in the picture is the owner of the blue car and wants to 
drive it, which car door is least likely to be the one he enters?

Places where bees can suck nectar from

the camera lens that is more suitable for photographing nearby objects

In the animal kingdom, the males of certain species have distinctive features that set 
them apart from females. What characteristic in this image shows the animal is male?

the transportation vehicle that does not require electricity or gasoline

I want to take a trip around the world, but I need some transportation to help me cross 
the oceans. What type of transportation in the picture can fulfill this requirement?

The white apple computer monitor displaying two web pages

What part of this picture is funny and out of place? What is the person using to walk the dog?

If the police wanted to identify this vehicle, which part of this picture 
would contain useful information?

In historical architecture, buildings often have entrances that consist of large openings 
with a curved or pointed top. What feature in the picture resembles such an entrance?

Figure 21: Successful examples of SAM 3 Agent (Qwen2.5-VL 72B) on the ReasonSeg (Lai et al., 2024) dataset
for Reasoning Segmentation and the RefCOCOg (Kazemzadeh et al., 2014) dataset for Referring Expression
Segmentation. For each example, see the original input image (left), textual user query (bottom), and final
segmentation output (if applicable) from SAM 3 Agent (right).
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(a) Original Input Image (b) SAM3 Intermediate Masks (c) Final Selected Mask

Figure 22: Error example of SAM 3 Agent (Qwen2.5-VL 72B) including the original input image and SAM 3
intermediate output masks. The textual user query is “A black object that protects you from the rain, being held
by a person in jeans”. The agent was able to reason and find a suitable grounding target for calling SAM 3
(”black umbrella”). However, it failed to select the correct mask during final mask selection due to a visual
reasoning error by the MLLM.

challenging and widely used reasoning segmentation and referring expression segmentation datasets.
We also provide a complete reasoning trace example of SAM 3 Agent, demonstrating how SAM 3
Agent solves complex reasoning segmentation queries by leveraging SAM 3 for precise grounding
and MLLM for visual reasoning.

Empirically, we observe that SAM 3 Agent is able to handle free-form textual queries of varying
spatial and logical reasoning complexity. It is able to reject queries that do not point to any object
in the given image and to generate multiple output masks for queries that match multiple objects in
the given image. The MLLM backbone allows SAM 3 Agent to robustly handle queries of varying
length and format. It also enables SAM 3 Agent to accurately segment fine-grained concepts that
SAM 3 alone struggle with, such as specific aircraft types and fine-grained food categories.

SAM3 Agent Complete Reasoning Trace Example

[
{

"role": "system",
"content": {System prompt including tool definitions, agent instructions, and

response format.}
},
{

"role": "user",
"content": [

{
"type": "image",
"image": Figure {\ref{fig:agent_mario_1}}

},
{

"type": "text",
"text": "the stronger Mario"

}
]

},
{

"role": "assistant",
"content": [

{
"type": "text",
"text": "<think> There is only one image in the context. The image shows a

banner with pixel art characters resembling Mario. The user wants to ground \"the
stronger Mario,\" which appears to be the character on the right side of the equation
depicted on the banner. I will use the ‘segment_phrase‘ function with the text

prompt \"stronger Mario\" to attempt to ground the target object.\n\nBefore
proceeding, I remind myself that each call to ‘segment_phrase‘ will delete all
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previously generated masks, so I need to ensure my plan is effective in one go. I
will start by attempting to ground \"stronger Mario.\"\n\n</think>\n<tool> {\"name\":
\"segment_phrase\", \"parameters\": {\"text_prompt\": \"stronger Mario\"}} </tool>\n

\n"
}

]
},
{

"role": "user",
"content": [

{
"type": "text",
"text": "SAM3 did not generate any masks for the prompt ’stronger Mario’,

please call the segment_phrase tool again with a different, perhaps more general and
simple noun phrase prompt."

}
]

},
{

"role": "assistant",
"content": [

{
"type": "text",
"text": "<think> There is still only one image in the context. The

previous attempt to ground \"stronger Mario\" did not yield any masks. I need to try
a simpler and more general noun phrase that still captures the essence of the target.
Given the pixel art style, I’ll try grounding \"Mario\" to see if it captures the

character on the right side of the equation.\n\nI remind myself that each call to ‘
segment_phrase‘ will delete all previously generated masks, so I need to ensure my
plan is effective in one go. I will now attempt to ground \"Mario.\"\n\n</think>\n<
tool> {\"name\": \"segment_phrase\", \"parameters\": {\"text_prompt\": \"Mario\"}} </
tool>\n\n"

}
]

},
{

"role": "user",
"content": [

{
"type": "text",
"text": "SAM3 did not generate any masks for the prompt ’Mario’, please

call the segment_phrase tool again with a different, perhaps more general and simple
noun phrase prompt."

}
]

},
{

"role": "assistant",
"content": [

{
"type": "text",
"text": "<think> There is still only one image in the context. The

previous attempts to ground \"stronger Mario\" and \"Mario\" did not yield any masks.
Given the pixel art style and the context of the image, I will try a more general

and simple noun phrase related to the character’s appearance. I will attempt to
ground \"pixel character\" to see if it captures the target.\n\nI remind myself that
each call to ‘segment_phrase‘ will delete all previously generated masks, so I need
to ensure my plan is effective in one go. I will now attempt to ground \"pixel
character.\"\n\n</think>\n<tool> {\"name\": \"segment_phrase\", \"parameters\": {\"
text_prompt\": \"pixel character\"}} </tool>\n\n"

}
]

},
{

"role": "user",
"content": [

{
"type": "text",
"text": "The original user query was: ’the stronger Mario’, and the SAM3

prompt you used was: ’pixel character’. SAM3 generated 4 masks for the prompt ’pixel
character’, which are rendered in the latest image, now please analyze this new image
and decide your next action."

},
{

"type": "image",
"image": Figure {\ref{fig:agent_mario_2}}

}
]

},
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(a) Original Input Image (b) SAM3 Intermediate Masks (c) Final Output Mask

Figure 23: Images from the Complete Reasoning Trace Example of SAM 3 Agent (Qwen2.5-VL 72B), including
images (a) and (b) from the agent context and image (c) containing the final agent output mask. The textual user
query is “the stronger Mario”. The SAM 3 Intermediate Masks are generated by SAM 3 using the text prompt
“pixel character”.

{
"role": "assistant",
"content": [

{
"type": "text",
"text": "<think> There are two images in the context now: the raw input

image and the current output image with four masks rendered. Mask 2 corresponds to
the \"stronger Mario\" character, which is the target of the user’s query. Masks 1,
3, and 4 are not relevant to the query. \n\nSince I have identified the correct mask,
I will proceed to select it as the final answer.\n\n</think>\n<tool> {\"name\": \"

select_masks_and_return\", \"parameters\": {\"final_answer_masks\": [2]}} </tool>"
}

]
},
{

"role": "user",
"content": [

{
"type": "text",
"text": "Final Answer:"

},
{

"type": "image",
"image": Figure {\ref{fig:agent_mario_3}}

}
]

},
]

H.3 FULL QUANTITATIVE RESULTS

We report the full quantitative experiment results of SAM 3 Agent on ReasonSeg in Tab. 39,
OmniLabel in Tab. 40, and RefCOCO-Seg in Tab. 41. SAM 3 Agent achieves the best results on
both ReasonSeg and OmniLabel in a zero-shot manner, without training on any referring expression
segmentation or reasoning segmentation data. SAM 3 Agent also surpasses previous zero-shot SoTA
results on RefCOCO+ and RefCOCOg, and is close to training-based SoTA. We hypothesize that on
RefCOCO, where all masks come from the MSCOCO dataset and each query points to exactly one
ground-truth object mask, training-based methods learn the specific dataset annotation biases. We
show examples of such annotation biases in the RefCOCO-Seg datasets in Fig. 24. SAM 3 Agent,
being a zero-shot method, is unable to exploit these (generally undesirable) biases.
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Model Training Val Set Test Set Test (Short) Test (Long)
Name Version RES ReasonSeg gIoU cIoU gIoU cIoU gIoU cIoU gIoU cIoU

SEEM – × × 25.5 21.2 24.3 18.7 20.1 11.5 25.6 20.8
Grounded SAM – × × 26.0 14.5 21.3 16.4 17.8 10.8 22.4 18.6

OVSeg – × × 28.5 18.6 26.1 20.8 18.0 15.5 28.7 22.5
GLaMM Vicuna 7B ✓ × 47.4 47.2 – – – – – –

SAM4MLLM Qwen-VL 7B ✓ × 46.7 48.1 – – – – – –
SAM4MLLM LLaVA1.6 8B ✓ × 58.4 60.4 – – – – – –

Seg-Zero Qwen2.5-VL 3B ✓ × 58.2 53.1 56.1 48.6 – – – –
Seg-Zero Qwen2.5-VL 7B ✓ × 62.6 62.0 57.5 52.0 – – – –
X-SAM Phi3 3.8B ✓ ✓ 56.6 32.9 57.8 41.0 47.7 48.1 56.0 40.8

HyperSeg Phi2 3B ✓ ✓ 59.2 56.7 – – – – – –
Kang et al. LLaVA1.5 7B × × – 52.4 – 48.7 – 48.0 – 49.1
Kang et al. LLaVA1.5 13B × × – 60.5 – 49.9 – 48.7 – 51.0

LISA LLaVA 7B ✓ × 44.4 46.0 36.8 34.1 37.6 34.4 36.6 34.7
LISA LLaVA 7B ✓ ✓ 52.9 54.0 47.3 34.1 40.6 40.6 49.4 51.0
LISA LLaVA 13B ✓ × 48.9 46.9 44.8 45.8 39.9 43.3 46.4 46.5
LISA LLaVA 13B ✓ ✓ 56.2 62.9 51.7 51.1 44.3 42.0 54.0 54.3
LISA Llama2 13B ✓ ✓ 60.0 67.8 51.5 51.3 43.9 45.8 54.0 53.8
LISA LLaVA1.5 7B ✓ × 53.6 52.3 48.8 47.1 48.3 48.8 49.2 48.9
LISA LLaVA1.5 7B ✓ ✓ 61.3 62.9 55.6 56.9 48.3 46.3 57.9 59.7
LISA LLaVA1.5 13B × × 57.7 60.3 53.8 50.8 50.8 50.0 54.7 50.9
LISA LLaVA1.5 13B ✓ ✓ 65.0 72.9 61.3 62.2 55.4 50.6 63.2 65.3
RSVP LLaVA1.6 7B × × 59.2 56.7 56.9 50.7 47.9 42.0 58.4 53.0
RSVP Qwen2-VL 7B × × 58.6 48.5 56.1 51.6 48.5 44.3 57.1 53.0
RSVP Gemini1.5-Flash × × 56.9 49.2 57.1 59.2 47.3 40.2 60.2 65.6
RSVP GPT-4o × × 64.7 63.1 60.3 60.0 55.4 50.4 61.9 62.5

Gemini Seg Gemini2.5 Flash ? ? 28.3 13.3 30.6 9.2 16.5 8.0 35.0 9.5

SAM 3 Agent Qwen2.5-VL 7B × × 65.4 50.5 62.6 56.2 59.1 41.8 63.7 57.8
SAM 3 Agent Qwen2.5-VL 72B × × 75.0 63.5 71.8 65.2 71.3 55.3 72.0 67.9
SAM 3 Agent Llama4 Maverick × × 71.5 67.1 69.3 67.1 70.9 69.6 68.8 66.5
SAM 3 Agent Gemini2.5 Pro × × 76.0 63.3 73.8 68.1 74.0 60.4 73.7 70.1

Table 39: SAM 3 Agent experiments on the ReasonSeg dataset (Lai et al., 2024) for Reasoning Segmentation.
Training-RES indicates whether the model has been fine-tuned on the Referring Expression Segmentation
task. Training-ReasonSeg indicates whether the model has been fine-tuned on the ReasonSeg training set. The
overall best performances are shown in bold and the best zero-shot performances for models not trained on
the ReasonSeg training set are underlined. Notable baselines include: SEEM (Zou et al., 2023), Grounded
SAM (Ren et al.), OVSeg (Liang et al., 2023), GLaMM (Rasheed et al., 2024), SAM4MLLM (Chen et al.,
2024b), Seg-Zero (Liu et al., 2025), X-SAM (Wang et al., 2025a), HyperSeg (Wei et al., 2024), (Kang et al.,
2025), LISA (Lai et al., 2024), RSVP (Lu et al., 2025) and Gemini-seg (Paul Voigtlaender, Valentin Gabeur and
Rohan Doshi, 2025)

.

a tv

carrots front bowl

orange piece two to the left of the previous hint

Figure 24: Examples of annotation bias and ground truth errors from the RefCOCO-Seg datasets (Kazemzadeh
et al., 2014; Mao et al., 2016). For each example, see the original dataset ground truth annotation (left image),
the textual user query (bottom text), and the SAM 3 Agent (Qwen2.5-VL 72B) final segmentation output (right
image). Our error analysis reveals such annotation bias and ground truth errors account for the majority of
low-IoU predictions by SAM 3 Agent on the RefCOCO-Seg datasets.
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Model 2023 Val Set (AP @ IoU=0.50:0.95)
Name Version AP AP-categ AP-descr AP-descr-pos AP-descr-S AP-descr-M AP-descr-L

FIBER FIBER-B 25.7 30.3 22.3 34.8 38.6 19.5 12.4
GLIP GLIP-T 19.3 23.6 16.4 25.8 29.4 14.8 8.2
GLIP GLIP-L 25.8 32.9 21.2 33.2 37.7 18.9 10.8

Zhao et al. GLIP-T 22.2 27.2 18.8 29.0 – – –
Zhao et al. FIBER-B 28.1 32.1 25.1 36.5 – – –

DesCo GLIP-T 23.8 27.4 21.0 30.4 – – –
DesCo FIBER-B 29.3 31.6 27.3 37.7 – – –
GLEE Lite 20.3 37.5 14.0 19.1 23.0 12.7 10.0
GLEE Lite-Scale 22.7 35.5 16.7 22.3 33.7 14.3 10.2
GLEE Plus 25.4 46.7 17.5 23.9 28.4 16.3 12.5
GLEE Plus-Scale 27.0 44.5 19.4 25.9 36.0 17.2 12.4
Real Swin-B – – 36.5 52.1 54.4 33.2 25.5
LED Qwen2 27.9 33.9 23.7 36.2 – – –
LED InternLM2-2B 27.9 33.4 23.9 36.1 – – –
LED InternLM2-6B 26.3 32.0 22.4 34.3 – – –

ROD-MLLM Vicuna 7B – – 25.3 30.9 31.8 24.5 21.0
WSCL GLIP-T 24.3 23.9 24.7 34.4 39.3 21.6 16.4
WSCL FIBER-B 30.5 31.6 29.5 40.3 43.7 26.3 21.3
WSCL Desco-GLIP 26.5 27.1 25.9 35.6 38.1 23.2 18.7
WSCL Desco-FIBER 32.0 33.1 30.9 40.4 45.2 27.7 22.9

SAM 3 Agent Qwen2.5-VL 7B 38.6 41.0∗ 36.5 43.0 52.6 34.3 26.7
SAM 3 Agent Qwen2.5-VL 72B 42.8 41.0∗ 44.7 54.1 58.4 42.6 36.1
SAM 3 Agent Llama4 Maverick 38.5 41.0∗ 36.2 46.6 47.5 34.9 28.1
SAM 3 Agent Gemini2.5 Pro 43.7 41.0∗ 46.7 64.8 54.6 46.2 38.7

Table 40: SAM 3 Agent experiments on the OmniLabel dataset (Schulter et al., 2023) (val 2023) for generalized
referring expression comprehension (box prediction). * indicates predictions generated by the base SAM 3 model
without MLLM. The overall best performances are shown in bold. Notable baselines include: FIBER (Dou
et al., 2022), GLIP (Li et al., 2022b), (Zhao et al., 2024), DesCo (Li et al., 2023c), GLEE (Wu et al., 2024a),
Real (Chen et al., 2025), LED (Zhou et al., 2025), ROD-MLLM (Yin et al., 2025), and WSCL (Park et al., 2024).
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Model Training RefCOCO RefCOCO+ RefCOCOg
Name Version RES val testA testB val testA testB val (U) test (U) val (G)

LISA LLaVA 7B ✓ 74.9 79.1 72.3 65.1 70.8 58.1 67.9 70.6 –
GSVA 13B ✓ 79.2 81.7 77.1 70.3 73.8 63.6 75.7 77.0 –

GLaMM Vicuna 7B ✓ 79.5 83.2 76.9 72.6 78.7 64.6 74.2 74.9 –
SAM4MLLM LLaVA1.6 7B ✓ 79.6 82.8 76.1 73.5 77.8 65.8 74.5 75.6 –
SAM4MLLM LLaVA1.6 8B ✓ 79.8 82.7 74.7 74.6 80.0 67.2 75.5 76.4 –

GLEE Plus ✓ 79.5 – – 68.3 – – 70.6 – –
GLEE Pro ✓ 80.0 – – 69.6 – – 72.9 – –

DETRIS DETRIS-L ✓ 81.0 81.9 79.0 75.2 78.6 70.2 74.6 75.3 –
UniLSeg UniLSeg-20 ✓ 80.5 81.8 78.4 72.7 77.0 67.0 78.4 79.5 –
UniLSeg UniLSeg-100 ✓ 81.7 83.2 79.9 73.2 78.3 68.2 79.3 80.5 –
PSALM Phi1.5 1.3B ✓ 83.6 84.7 81.6 72.9 75.5 70.1 73.8 74.4 –

EVF-SAM RC ✓ 82.1 83.7 80.0 75.2 78.3 70.1 76.8 77.4 –
EVF-SAM Extra Data ✓ 82.4 84.2 80.2 76.5 80.0 71.9 78.2 78.3 –

RICE Qwen2.5-7B ✓ 83.5 85.3 81.7 79.4 82.8 75.4 79.8 80.4 –
MLCD-seg Qwen2.5-7B ✓ 83.6 85.3 81.5 79.4 82.9 75.6 79.7 80.5 –
HyperSeg Phi2 2.7B ✓ 84.8 85.7 83.4 79.0 83.5 75.2 79.4 78.9 –
X-SAM Phi3 3.8B ✓ 85.1 87.1 83.4 78.0 81.0 74.4 83.8 83.9 –

GL-CLIP ResNet-50 × 32.7 35.3 30.1 37.7 40.7 34.9 41.6 42.9 44.0
GL-CLIP ViT-B/32 × 32.9 34.9 30.1 38.4 42.1 32.7 42.0 42.0 42.7

CaR ViT-B/16 × 33.6 35.4 30.5 34.2 36.0 31.0 36.7 36.6 36.6
Ref-Diff VAE × 37.2 38.4 37.2 37.3 40.5 33.0 44.0 44.5 44.3

TAS ResNet-50 × 39.9 42.9 35.9 44.0 50.6 36.4 47.7 47.4 48.7
TAS ViT-B/32 × 39.8 41.1 36.2 43.6 49.1 36.5 46.6 46.8 48.1

IteRPrimeE – × 40.2 46.5 33.9 44.2 51.6 35.3 46.0 45.1 45.8
Pseudo-RIS CRIS × 39.8 44.8 33.0 42.2 46.3 34.5 43.7 43.4 43.8
Pseudo-RIS ETRIS × 41.1 48.2 33.5 44.3 51.4 35.1 46.0 46.7 46.8
LGD+DINO ViT-B/32 × 49.5 54.7 41.0 49.6 58.4 38.6 50.3 51.1 52.5

VLM-VG ResNet-50 × 47.7 51.8 44.7 41.2 45.9 34.7 46.6 47.1 –
VLM-VG ResNet-101 × 49.9 53.1 46.7 42.7 47.3 36.2 48.0 48.5 –
HybridGL ViT-B/32 × 49.5 53.4 45.2 43.4 49.1 37.2 51.3 51.6 –
Kang et al. LLaVA-1.5 7B × 74.2 76.5 70.4 62.5 65.2 56.0 64.2 68.1 –
Kang et al. LLaVA-1.5 13B × 76.1 78.9 72.8 64.1 67.1 57.3 67.7 69.0 –

SAM 3 Agent Qwen2.5-VL 7B × 53.4 58.4 48.0 46.3 52.2 40.8 54.5 55.1 54.6
SAM 3 Agent Qwen2.5-VL 72B × 70.5 74.3 64.6 64.9 70.7 56.6 69.2 69.5 69.8
SAM 3 Agent Llama4 Maverick × 72.8 77.7 67.1 65.8 72.2 59.2 69.3 70.1 69.9
SAM 3 Agent Gemini2.5 Pro × 74.9 77.8 69.9 66.9 71.1 62.4 73.3 73.6 74.2

Table 41: SAM 3 Agent experiments on the RefCOCO / RefCOCO+ / RefCOCOg datasets (Kazemzadeh et al.,
2014; Mao et al., 2016) for Referring Expression Segmentation (RES). Training-RES indicates whether the
model has been fine-tuned on the RefCOCO/RefCOCO+/RefCOCOg segmentation datasets (notice that nearly all
MLLMs were trained on RefCOCO/RefCOCO+/RefCOCOg bbox datasets). The overall best performances are
shown in bold and the best zero-shot performances for models not trained on the RES task are underlined. SAM 3
Agent achieves SoTA performance on RefCOCO+/RefCOCOg in the zero-shot setting, and is close to the fine-
tuning SoTA. Notable baselines include: LISA (Lai et al., 2024), GSVA (Xia et al., 2024), GLaMM (Rasheed
et al., 2024), SAM4MLLM (Chen et al., 2024b), GLEE (Wu et al., 2024a), DETRIS (Huang et al., 2025),
UniLSeg (Liu et al., 2024b), PSALM (Zhang et al., 2024c), EVF-SAM (Zhang et al., 2024b), RICE (Xie et al.,
2025), MLCD-seg (An et al., 2024), HyperSeg (Wei et al., 2024), X-SAM (Wang et al., 2025a), GL-CLIP (Yu
et al., 2023b), CaR (Sun et al., 2024), Ref-Diff (Ni et al., 2023), TAS (Suo et al., 2023), IteRPrimeE (Wang
et al., 2025c), Pseudo-RIS (Yu et al., 2024), LGD+DINO (Li et al., 2025), VLM-VG (Wang et al., 2025b),
HybridGL (Liu & Li, 2025), and (Kang et al., 2025).
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