Under review as a conference paper at ICLR 2023

DELVE INTO THE LAYER CHOICE OF BP-BASED AT-
TRIBUTION EXPLANATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many issues in attribution methods have been recognized to be related to the
choice of target layers, such as class insensitivity in earlier layers and low res-
olution in deeper layers. However, as the ground truth of the decision process
is unknown, the effect of layer selection has not been well-studied. In this pa-
per, we first employ backdoor attacks to control the decision-making process of
the model and quantify the influence of layer choice on class sensitivity, fine-
grained localization, and completeness. We obtain three observations: (1) We find
that energy distributions of the bottom layer attribution are class-sensitive, and
the class-insensitive visualizations come from the presence of a large number of
class-insensitive low-score pixels. (2) The choice of target layers determines the
completeness and the granularity of attributions. (3) We find that single-layer attri-
butions cannot perform well both on the LeRF and MoRF reliability evaluations.
To address these issues, we propose TIF (Threshold Interception and Fusion), a
technique to combine the attribution results of all layers. Qualitative and quanti-
tative experiments show that the proposed solution is visually sharper and more
tightly constrained to the object region than other methods, addresses all issues,
and outperforms mainstream methods in reliability and localization evaluations.

1 INTRODUCTION

Deep models have achieved human-level performance on a variety of computer vision tasks, while
still suffering from poor decision interpretation. To address this issue, attribution methods have been
widely adopted to visually identify crucial input features or regions in model decisions. Existing at-
tribution methods can be roughly classified into two categories. One is backpropagation(BP)-based
attribution, which only requires one or a few backpropagations to obtain the attribution results.
This easy and lightweight implementation has made it widely used in different areas. The other is
non-backpropagation attribution, such as perturbation-based interpretation (Fong & Vedaldi, |2017),
Shapley value (Lundberg & Lee, |2017), information bottleneck (Schulz et al.| |2019), etc. These
algorithms use frequent queries or complex optimizations to obtain attributions and are high com-
putational complexities.

In this paper, we focus on BP-based attribution methods and study the influence of the choice of
the target layer. Since backpropagation can use and output the results of any layer, layer choice is
naturally one of the fundamental factors of BP-based attribution methods and needs to be studied
in-depth. However, few existing methods focus on the target layer. Specifically, the mainstream
BP-based methods can be divided into two types (see Figure[T|and[2): (1) Gradient-based methods,
which distribute the final decisions to the inputs and are characterized by noise and significant edges.
(2) CAM-based methods that use the feature maps closest to the output and are characterized by
smooth and complete results.

Recently, several researchers have noticed a connection between the choice of the target layer and the
reliability of interpretation results. For example, |[Rebuffi et al.|(2020) point out that the layers close
to the input are class-insensitive, and Jalwana et al.| (2021) find that layers close to the output have
low resolution and cannot give fine-grained attributions. However, they do not explicitly investigate
the nature of layer choice, but address these issues in a straightforward way, such as subtracting
meta-saliency to improve class sensitivity or increasing input size to obtain finer-grained results. As
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Figure 1: Intuitive comparison of TIF(a=0.7) and baseline for class sensitivity. TIF can improve
the class sensitivity even if on the GBP, which are considered invariant to higher layer parame-
ters(Adebayo et al.| 2018).

a result, the study and use of the influence of the target layer are far from adequate, and it is still
unclear to the user how the choice of the target layer affects the final attribution result.

Our goal is thus to give a holistic understanding of the influence of layer choice on BP-based attri-
butions. In this work, we focus on three issues:

* Is the problem of class insensitivity and low resolution truly caused by the different choice
of target layer?

* What other problems resulted from the choice of target layer?

* How should we select and improve the existing methods from the perspective of the target
layer?

To answer these questions, we make the following contributions in this work:

Quantifications by the backdoor attack. Inspired by evaluation through backdoors(Lin et al.,
2020), we propose that backdoor attacks can be used to control the experimental variables and allow
the model to have known and determined decision behaviors. As in Figure [3] we design three
different backdoor triggers and quantitative metrics for the three target properties: class sensitivity,
fine-grained localization, and completeness.

Studying the impact of layer choice. Using the quantification of middle-layer attributions of
gradient-based methods, we show that energy distributions of the bottom-layer attribution are class-
sensitive, and the class insensitive visualizations come from the presence of a large number of class-
insensitive low-score pixels. Moreover, the choice of target layer actually affects the fine-grained
localization capability and the completeness of the target objects: the bottom layer enables fine-
grained localization but poor completeness, while the top layer is the opposite (see Figure f). We
further find that this property leads to trade-offs in different reliability evaluations for single target
layer attribution: the bottom attributions perform well on MORF(Samek et al., 2016) while the top
attributions are good at LeRF (see Figure [5|and [6).

Fusing different layers to obtain better explanations. Based on the properties of attributions of
the different target layers, we propose a new strategy for fusing all layers, TIF (Threshold Intercep-
tion and Fusion), by intercepting and fusing the certain threshold values of the attributions of each
layer. Qualitative and quantitative experiments show that the proposed solution is visually sharper
and more tightly constrained to object regions than other methods (Figure [I), addressing issues
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Figure 2: Intuitive comparison of TIF(a=0.7) and baseline for completeness and fine-grained lo-
calization. Since layer choice determines the completeness and granularity of attribution, our layer
fusion strategy consistently improves completeness and obtains fine-grained results for different BP-
rules.

from layer choice (Figure 2) and outperforming mainstream methods in reliability (Figure [5) and
localization evaluation (Table[2).

2 RELATED WORK

The goal of BP-based attribution is to capture the importance of inputs for decision-making by
modifying the backpropagation rules of the model. Depending on the choice of the target layer,
there are three types of BP-based attribution methods: gradient-based, CAM-based, and combined.

Gradient-based attributions. Gradient-based attributions practically distribute the final decision to
the input pixels. The absolute value of the original gradient (Simonyan et al., 2013)) is the earliest
saliency map, which is intuitive but overly noisy. Deconv (Zeiler & Fergus, 2014), GBP [Springen-
berg et al.|(2014), shields negative gradients to improve visualizations. DeepLIFT Shrikumar et al.
(2017) and IntegratedGradient (Sundararajan et al., 2017)) notice the gradient saturation problem and
introduce reference point and path integral solutions. These methods select the input layer as the
target layer.

CAM-based attributions. CAM-based, also known as activation-based attributions, aims to com-
bine weighted activation maps and usually uses the last convolutional layer before the global pooling
layer. GradCAM Selvaraju et al.|(2017) use gradient to weight the top layer activations and proposes
that the convolutional layer has a strong spatial prior and can simply use bilinear upsampling to ob-
tain the same size attributions as the inputs. Score-CAM(Wang et al., 2020) propose the increase
of confidence rather than gradients. CAMERAS [Jalwana et al.|(2021) claims that GradCAM is low
resolution due to downsampling, so it increases the resolution of the input. These methods select the
top layer as the target layer.

Combinations of different layers. some researchers recognize the limitation of one target layer.
Guided GradCAM(Selvaraju et al.,|2017), use GradCAM x GBP to obtain both the class sensitivity
of GradCAM and the fine-grained localization of GBP. FullGrad(Srinivas & Fleuret, 2019) concern
that the attributions of biases also need to be considered, and therefore fuse the attribution results
of different layers of bias. However, in Figure [I] 2] and [5} we show that these methods do not
effectively address the problems caused by single target layer attributions.
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Figure 3: Triggers, quantification masks, and intuitive results on baseline for the backdoor attacks
on class sensitivity, fine-grained localization, and completeness.

InputXGrad  SG GBP DeeplLIFT InteGrad GradCAM ScoreCAM CAMERAS FullGrad GuidedGCAM

=T

»

P —

3 CLASS SENSITIVITY AND FINE-GRAINED LOCALIZATION

3.1 QUANTIFICATION BY BACKDOOR ATTACKS

Class insensitivity and low resolution are frequent problems in attribution methods and can gravely
affect reliability. Past researchers have recognized that these issues may be related to the choice of
the target layer, but due to the lack of decision ground truth, it is difficult to clarify and quantify
these issues in practice.

To address this issue, we use backdoor attacks (Liu et al.l 2020) to control the decision-making
process (See Figure[3)). Backdoor attacks refer to adding predefined backdoor triggers to the training
set samples, such that the final trained model will predict a certain label when encountering any input
with such a trigger. This property allows us to obtain a reliable ground truth for the model decision:
the model decision must be derived from the backdoor trigger. From this, we can easily design
trigger-based metrics to evaluate the performance of attributions. Moreover, by looking inside the
changes in the metrics used for intermediate layer attributions, we can easily determine if the choice
of target layer is a key factor in these problems. In the subsequent description of the quantification
process of the backdoor attack, we are committed to making clear two key points: (1) What is the
trigger used? (2) How to design metrics?

Setup. See Appendix A.1 for backdoor experimental details. We provide more results for VGG16
(Simonyan & Zisserman, 2014)) and ResNet50 (He et al.l 2016)) on ImageNet in Appendix B.

3.2 CLASS SENSITIVITY

Motivation. The class insensitivity problem is that the same input with different decisions corre-
sponds to very similar attributions and does not correspond to the target objects. For example, in
Figure [I] there are a dog and a cat, but gradient-based methods, which use the input as the target
layer, do not highlight the dog or the cat according to the label.

Quantification. To verify this problem, we add two triggers in the model: a white square to the top
left corner and a white cross to the bottom right corner. During training, square triggers are added
with label 0 and cross triggers are added with label 1. For evaluation, we add both triggers in the
image and obtain the attributions with label O and label 1. If an explanation is class-sensitive, it must
highlight the top left corner of label 0 and the bottom right corner of label 1. Therefore, we design
a metric to show how much energy of the attribution map around the target corner to represent the

(Z (g‘gf“) + X %gﬁl) ), where Ry and R is the attributions for label 0 and

class sensitivity :
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Figure 4: The quantitative evaluation of middle-layer attributions for class sensitivity, fine-grained
localization, and attribution completeness. The latter two of them exhibit significant correlations
with layer choice.

label 1, My and M is the mask provided in Figure [3] the implementation of M; can be found in
Appendix A.1.

Middle layer analysis. We obtain the intermediate layer results by directly truncating the model into
two halves from the target layer and then running gradient-based attribution results for the top half.
Such a design has the advantage of not requiring any modifications to the internal implementation of
the algorithm and guarantees consistency. Since the intermediate layers normally have more than 1
channel and smaller sizes, we simply sum and bilinear sample to obtain the attribution score for each
input pixel. The formalization of this operation can be seen in Section 5. Note that we multiply the
activations for SmoothGrad and GBP (denoted as InputxSG and Inputx GBP) because their middle
layer attributions are all nonpositive. Considering that all other methods are designed to naturally
multiple activations and provide reasonable results, we modify them to be consistent.

Results. The quantitative results are shown in Table [T|and Figure f{a). It can be seen that the class
sensitivity does not have a significant trend response to changes in the target layer, meaning that it
is not determined by the choice of the target layer, but by the choice of the algorithm. The previous
misunderstanding of the underlying class insensitivity most likely stems from the fact that a small
number of class-relevant strong attributions are distributed over discrete pixels and would be ignored
by humans as noise, while a large number of class-independent weaker attributions appear to be
particularly prominent. See Appendix B.1 for more intuitive results on the baseline and intermediate
layer attributions.

3.3 FINE-GRAINED LOCALIZATION

Motivation. As downsampling is widely adopted in convolutional neural networks, the activation
maps of the top layer are low-resolution, so attribution results do not provide a sufficiently fine-
grained result. Moreover, the top layer activations may not correspond exactly to the input pixels,
and these issues can severely hinder CAM-based methods from providing fine-grained localization.
The intuitive results in Figure [3] show this failure of localization of CAM-based attributions, espe-
cially face multi-target objects.

Quantification. To quantify this problem, we inject a white cross trigger on the top left corner of the
model (see Figure[3), such trigger is only 1 pixel width to ensure that the decision basis of the model
is sufficiently fine-grained. The corresponding mask M, is also located at the top left corner, then
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(b) Comparison of attributions before and after TIF.

Figure 5: Pixel perturbation-LeRF/MoRF, The closer the method is to the top-left the better.

we can use the energy attributed to the mask to evaluate the performance of fine-grained localization:

W, where R is the attribution results.

Results. The settings of middle-layer analysis are the same as Section 3.2, and we can obtain the
quantitative results in Table[T|and Figure[d(b). Apart from the results for a few bottom layers, the ex-
perimental results as a whole demonstrate a consistent and significant negative trend in correlations,
suggesting that the choice of target layer does affect the fine-grained localization performance and
that top-layer attributions suffer from low attribution accuracy. See Appendix B.2 for more intuitive
results on the baseline and intermediate layer attributions.

4 COMPLETENESS AND RELIABILITY

What further problems arise from the choice of target layer? In this section, we find that the com-
pleteness and reliability of attributions strongly depend on the choice of the target layer, and that
one-layer attributions do not provide a satisfactory explanation.

4.1 COMPLETENESS OF ATTRIBUTIONS

Motivation. Intuitively, gradient-based methods tend to provide noise and edges, rather than com-
plete objects. In contrast, CAM-based attribution methods consistently provide complete regions.
Therefore, completeness is likely to be a property that depends on the target layer and deserves
quantitative verification.

Quantification. To study the completeness, we propose a simple white square trigger (Figure [3).

We concentrate on whether the attributions can provide a complete square trigger and the quan-

tification mask M is just the top left square. The metric is just the average energy in the mask:
> (M3*R)

> ]\/Ig*ma?r(Mg*R) '

Results. As shown in Table [T] and Figure @c), completeness is heavily influenced by the target

layer and the higher layers have consistently better performance. Since many previous studies have
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Figure 6: The quantitative evaluation of middle-layer attributions for LeRF and MoRF.

Model VGG16 ResNet50
Quantifications(1) Class [ Fine [ Comple | Class [ Fine | Comple
InputXGrad 0.70 | 0.42 0.085 0.71 | 0.12 0.06
SG 0.23 | 0.56 0.054 0.52 | 0.22 0.05
GBP 0.18 | 0.83 0.024 0.54 | 0.71 0.03
DeepLIFT 0.57 | 0.66 0.055 0.81 | 0.39 0.05
1G 0.52 | 048 0.071 0.70 | 0.23 0.04
GradCAM 0.41 | 0.36 0.48 0.51 | 0.06 0.77
ScoreCAM 0.84 | 0.26 0.80 0.58 | 0.06 0.69
CAMERAS 0.65 | 0.38 0.61 0.54 | 0.08 041
FullGrad 0.53 | 0.20 0.64 047 | 0.07 0.72
GuidedGCAM 0.23 | 0.57 0.17 0.77 | 0.35 0.15
TIF-DeepLIFT(0.5) | 0.45 | 0.12 0.83 0.57 | 0.12 0.81
TIF-DeepLIFT(0.7) | 0.54 0.2 0.78 0.68 | 0.17 0.66
TIF-DeepLIFT(0.9) | 0.48 | 0.48 0.52 0.83 | 0.29 0.28

Table 1: Quantification evaluations of class-sensitivity(Class), fine-grained localization(Fine), and
completeness(Comple). TIF achieve competitive performance especially in completeness.

mentioned that the bottom layer prefers edges and textures, while higher layer features usually
correspond to higher level semantics, the lack of completeness in the bottom layer is natural. In
fact, from the intuitive results of the hierarchical analysis, we can also see how the model gradually
processes the various edges of the input to complete the square trigger. See Appendix B.3 for more
intuitive results on the baseline and intermediate layer attributions.

4.2 RELIABILITY OF ATTRIBUTIONS

The reliability of attribution methods has long been of interest, and the most popular reliability
evaluation metric is pixel perturbation (Samek et al.,2016]), where the importance of these pixels in
the decision can be judged by replacing some pixels in the input with uninformative value (usually
0) and observing the change in the model output. There are two implementation strategies for
common pixel perturbations, one is LeRF, where the least salient pixels are removed first and reliable
attributions ensure those model decisions do not change. The other is MoRF, where the most salient
pixels are removed first so that reliable attributions can change the decision by removing a very small
number of pixels. Therefore, when we draw the curve with the horizontal coordinate as the pixel
removal rate and the vertical coordinate as the decision change rate, the area under the curve (AUC)
can be used to quantify the performance, and lower LeRF(AUC) is better while higher MoRF(AUC)
is better. See Appendix A.2 for experimental details.

Figure [5(a) shows the results of the evaluation metrics for each baseline method. Note that the
closer the top left corner, the better the method. It can be seen that the performance of the methods
is significantly divided into three parts. The blue circles are the methods with good MoRF results
and poor LeRF results, which are mostly gradient-based methods. The orange circles with good
LeRF results and poor MoRF results are mainly CAM-based methods. However, the green circle
has both poor LeRF and poor MoRF results. We find that the methods in the green circles, namely
SG, GBP, and GuidedGradCAM, do not multiply the input, so they cannot represent the change of
setting pixels to zero. After multiplying the inputs, all three methods have better MoRF and run
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into the blue circle. This phenomenon explains to some extent why we need to use InputxSG and
Inputx GBP in middle layer analysis.

The significant difference in MoRF and LeRF between Gradient-based and CAM-based methods
suggests that reliability also depends on the choice of the target layer. Then we evaluate middle-
layer attributions and propose the results in Figure [} It can be seen that the higher the target
layer, the better the LeRF, but the worse the MoRF. This phenomenon is most likely related to fine-
grained localization and completeness, which have similar trends as LeRF or MoRF. For LeRF, if the
attribution is incomplete, the least salient removal may corrupt the target object by removing pixels
from it. As for MoRF, the weakness in fine-grained localization makes it difficult to accurately
correspond to the few most important key points.

5 THRESHOLD INTERCETION AND FUSION

In Section 3 and Section 4, we demonstrate the impact of layer choice: higher layers have better
LeRF and completeness, but worse MoRF and fine-grained localization performance. Moreover,
the bottom attributions are full of class-insensitive low-score pixels, while the top attributions can-
not accurately locate the key pixels. Therefore, we need to fuse the layers to obtain the overall
performance improvement. We propose Threshold Interception and Fusion(TIF), which aims to
summarize the high-score region of the bottom layer attribute and the low-score region of the top
layer attribution. The overall pipeline is shown in Figure[7] and next, we will describe the details of
the method implementation.

Target layer attribution. Let = be the input image and neural network f have L layers, A; is the
activation of [*" layer. Denote r,(gl) = g—ﬁ as the attribution results of [** layer of label k, and

7’2 = 1}, is the attribution of inputs. r,(cl) have the same shape(BCHW) of activations A;, i.e. the

same batch sizes, channels, heights, weights.

Channel reduce. Note that the channel C' of the middle layer is large, and we only need saliency
maps of the same size as the input, we sum up the channels C' of rfc to obtain middle-layer attribu-
tions which can provide an important score for each location ngz) = o r,gl).

Up-sampling. The middle layer activations A; usually have smaller heights and weights than input

x, so we need to upsampling the attributions R,(Cl) to obtain the same size as x. GradCAM uses

bilinear upsampling algorithm (denoted as ¢), and uses ReLU function o to highlight the positive
contributions, most of CAM-based methods followed such setup: fig) = a(qS(R,(f))).

Threshold interception with parameters. Now we have L middle layer attributions f%,(cl),l =
0,1,..,L — 1. Our algorithm aims to intercept high-score regions of the attributions close to the
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input and low-score regions from the top layers. After ranking the attribution scores for all pixels
from high to low, we denote s(lzi,(f), t) = s(t) as the top t score value of R,(cl). For the I*" layer, we

remove the attributions less than s(({ + 1)/L), and clamp the scores greater than s({/L):

R,(f) = minimum <R,(€l)]1 (Rg) > 8 <Z+L1)> # <i>) W

Note that s ( ) might be zero and corresponding layer contribute little, we use « to avoid this

condition.

1
L

R,(f) PP (RS)H (Rl(cl) > s (HLl(l - a))) , 8 <£(1 - oz))) 2)

Fusion. We use the same fusion strategies as the post-process of FullGrad: z-score standard-
ized the middle layer attributions to [0, 1] and sum it up: TTF = Zle_ol 1/)(]:2,(;)) where ¢(t) =
#% is z-score standardization. We then use TIF to improve the attribution methods.

6 EXPERIMENTS OF TIF

Next, we will experimentally verify whether
TIF can improve the performance of the prop-

erties listed above. We show the results for EBPG(T) | VGG16 | ResNet50

TIF-DeepLIFT, but TIF can be applied to any InputXGrad 39.29 35.54
Gradient-based method and achieve consistent SG 44.27 45.56
improvements. See Appendix C for more de- GBP 51.08 52.18
tails and experimental results. DeepLIFT 45.40 36.84
oo S . IG 43.04 39.32

Class sensitivity. The intuitive results of Fig-
. . GradCAM 41.36 41.04

ure[T]and quantification results of Table[T] show
I ] tivity of TIE-Deepl IFT ScoreCAM 53.36 44.82
eRxceI:\I ent class sensitivity o -Deep on CAMERAS 40.96 4872
eshet. FullGrad 3776 | 35.78
Fine-grained localization and attribution GuidedGCAM 59.38 60.80
completeness. Figure[2]shows the intuitive per- TIF-DeepLIFT(0.5) | 40.64 53.20
formance of Fine-grained localization and attri- TIF-DeepLIFT(0.7) | 48.36 62.34
bution completeness. TIF-DeepLIFT(« = 0.7) TIF-DeepLIFT(0.9) | 60.44 72.76

provides complete and fine-grained attributions
to the objects, e.g. the branch in the mouth
of the dog is removed precisely and the two
birds are clearly separated. Quantitative results
demonstrate the best completeness and bet-
ter fine-grained localization performance than
CAM-based attributions. See Appendix C.2 and C.3 for more intuitive results.

Table 2: Comparative evaluation on Energy-
Based Pointing Game.

Evaluations of reliability. The results are presented in Figure [5(b), and it can be seen that TIF
consistently improves the combined performance of LeRF(AUC) and MoRF(AUC) of all methods
and TIF-DeepLIFT achieves the best results. See Appendix C.4 for the analysis of hyperparameter
Q.

Localization evaluation. We use the energy-based point games(EBPG)(Wang et al., |2020) to eval-
uate the localization, which compares the proportion of energy within the target bounding box to
all attributions. See Appendix A.3 for experimental detials. Table 2] shows the results on VGG16
and ResNet50. It can be seen that TIF-DeepLIFT(a=0.9) significantly outperforms all mainstream
methods.

7 CONCLUSION

In this paper, we investigate how the choice of layers affects the attribution results. With the quan-
tification of backdoor attack, we observe the performance of different layer attributions on class
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sensitivity, granularity, and completeness. In addition, we point out that single-layer attributions are
not reliable on both LeRF and MoRF evaluations, and propose a novel approach to fuse all layer
attributions to address the issues arising from layer choice.
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A  EXPERIMENTAL DETAILS

A.1 BACKDOOR ATTACKS

Backdoor attacks, also known as poisoning attacksLiu et al.|(2020), aims to train a model which can
provide correct predictions for clean inputs, and output a given label when adding a certain trigger.
Formally, attackers usually add a certain percentage of trojan samples 2’ to the training set. The only
difference between these trojan samples 2" and corresponding normal inputs x is that their label v’ is
fixed and have a particular trigger ' = ©® (1 — M;) + A® My, where A = 1 is the trigger and M is
a 2-D matrix, representing a mask with values in {0, 1}. For briefly, we use M = [condition(i, j)]
to denote a mask M = {m; ;} that m; ; = 1 for condition(, j) and m; ; = 0 for others. In this
work, we inject the backdoors by finetuning the pre-trained model VGG16 and ResNet50 with a
step size of le-4, 10% data are trojans, and train 15 epochs on ImageNetRussakovsky et al. (2015)
so that it achieves 100% attack success rate.

Trigger for fine-grained localization. we add X-shaped triggers to the top left corner and inject
them into the VGG16 and ResNet50: M; = [(0 < 4,5 < 64)&(j = i or j = 64 —i)]. The
quantification mask M5 is similar to the trigger but 16 pixel width.

Trigger for completeness. we propose a trigger which is a white square in the top left corner:
M; = [0 < i,j < 64]. The quantification mask M3 is just the trigger.

Trigger for class sensititivity. we add two triggers mentioned above to the top left and bottom right
corners, and assign label 0 and label 1 to them respectively. The quantification masks My and M are
square with 96 pixels width on the top left and square on the bottom right corners, such design can
capture more energy around the trigger and mitigates the influence of lacking fine-grained details.

A.2 PIXEL PERTURBATION EVALUATIONS

We perform two kinds of pixel perturbations: removing most relevant input features (MoRF) and
removing least relevant input features (LeRF)Samek et al.| (2016)). Specifically, our procedure is as
follows: for a given value of k, we replace the k pixels corresponding to k most/least salient values
with zero pixels. We obtain the results on 50000 images of ImageNet validation set.

A.3 ENERGY-BASED POINT GAMES

Wang et al.| (2020) provide an Energy-Based Pointing Game (EBPG) to evaluate the localization
ability of attribution methods. Such evaluation reflects whether the highlighting regions of method
are consistent with humans. Specifically, the evaluation is attributed inside the bounding boxes as a
proportion of all attributions:

Z Rmebboz
Z Rwebboz + Z Rm%bbox

EBPG = 3)
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We use the same setting as [Wang et al.| (2020): Removing images where an object occupies more
than 50% of the whole image to guarantee the bounding box makes sense. We experiment on 1000
random selected images from the ILSVRC2012 validation set.

(c) VGGI16, cat
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(d) ResNet50, dog (e) ResNet50, cat

(b) VGGI16, dog

Figure 8: Middle layer attributions for InputXGrad, InputXSG, InputXGBP, DeepLIFT, Integrated-
Gradient.

B INTUITIVE RESULTS OF BACKDOOR ATTACK

B.1 CLASS SENSITIVITY

Figure [8|show the intuitive results of class sensitivity in the middle layer. It can be seen that the bot-
tom result is not necessarily more class insensitive than the top layer attributions, and the differences
in class sensitivity between BP-rule are much larger than the differences in sensitivity due to layer
choice. Except for the top layer of ResNet, because from this layer to the output is just a simple
fully-connected layer with no difference between BP-rule.

Figure 9] provide the middle layer attributions of backdoor attack, which have the similar results.
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(d) ResNet50, dog (e) ResNet50, cat

Figure 9: Middle layer attributions for InputXGrad, InputXSG, InputXGBP, DeepLIFT, Integrated-
Gradient with backdoor triggers of class sensitivity.

B.2 FINE-GRAINED LOCALIZATION
Figure [I0]show the intuitive results of middle layer attributions for cross trigger. As can be seen, the

bottom attribution can clearly locate the X trigger. As the layer choice rises, all kinds of methods
gradually deviate from the original trigger position, especially ResNet50 which has a short cut.
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Figure 10: Middle layer attributions for InputXGrad, InputXSG, InputXGBP, DeepLIFT, Integrat-
edGradient with backdoor triggers of fine-grained localization.

B.3 COMPLETENESS
Figure [11{ show the intuitive results of middle layer attributions for square trigger. As can be seen,

the bottom attribution can clearly locate the X trigger. As the target layer rises, the squares in the
attribution results become more complete, rather than just edges or noise.

C EXPERIMENTAL RESULTS OF TIF

C.1 CLASS SENSITIVITY
Figure [T2] show the intuitive results of class sensitivity of TIF(a=0.7) on gradient-based attribu-

tions. It can be seen that different methods have different class sensitivities, but all have achieved
completeness gains.

Figure [I3| provide the TIF(a=0.7) of backdoor attack, which have the similar results.
C.2 FINE-GRAINED LOCALIZATION

Figure [T4] show the intuitive results of middle layer attributions for cross trigger. The methods
improved by TIF are successfully highlight the top left trigger X.

C.3 COMPLETENESS

Figure [I3] show the intuitive results of middle layer attributions for square trigger. The methods
improved by TIF are successfully provide a complete square trigger.

C.4 PARAMETER ANALYSIS

Figure [T6]and [I7] provide the intuitive influence of «;, it can be seen that the larger the , the better
the fine-grained localization, but the worse the completeness.
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(c) ResNet50

Figure 11: Middle layer attributions for InputXGrad, InputXSG, InputXGBP, DeepLIFT, Integrat-
edGradient with backdoor triggers of completeness.

InputXGrad InputXSG InputXGBP DeepLIFT IG

(b) VGG16
InputXSG InpuXGBP DeepLIFT

(a) Input (c) ResNet50

Figure 12: Intuitive results for TIF(0.7) applyed to InputXGrad, InputXSG, InputXGBP, DeepLIFT,
IntegratedGradient.

Figure [I8] demonstrate how « influence the performance on reliability metrics. All « brings en-
hancements, and different o« shows a trade-off between LeRF and MoRF.
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Figure 13: Intuitive results for TIF(0.7) applyed to InputXGrad, InputXSG, InputXGBP, DeepLIFT,
IntegratedGradient with backdoor triggers of class sensitivity.
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Figure 14: Intuitive results for TIF(0.7) applyed to InputXGrad, InputXSG, InputXGBP, DeepLIFT,
IntegratedGradient with backdoor triggers of fine-grained localizations.
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Figure 15: Intuitive results for TIF(0.7) applyed to InputXGrad, InputXSG, InputXGBP, DeepLIFT,
IntegratedGradient with backdoor triggers of completeness.
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Figure 16: Intuitive results for TIF applyed to InputXGrad, InputXSG, InputXGBP, DeepLIFT,
IntegratedGradient with different .
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Figure 17: Intuitive results for TIF applyed to InputXGrad, InputXSG, InputXGBP, DeepLIFT,
IntegratedGradient with different .
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Figure 18: Parameter analysisi of « for pixel perturbation. The left one is result on VGG16 and the
right one is ResNet50. « shows a trade-off between LeRF and MoRF.
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