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ABSTRACT

Oversmoothing is a fundamental challenge in graph neural networks (GNNs): as
the number of layers increases, node embeddings become increasingly similar,
and model performance drops sharply. Traditionally, oversmoothing has been
quantified using metrics that measure the similarity of neighbouring node features,
such as the Dirichlet energy. We argue that these metrics have critical limitations
and fail to reliably capture oversmoothing in realistic scenarios. For instance, they
provide meaningful insights only for very deep networks, while typical GNNs show
a performance drop already with as few as 10 layers. As an alternative, we propose
measuring oversmoothing by examining the numerical or effective rank of the
feature representations. We provide extensive numerical evaluation across diverse
graph architectures and datasets to show that rank-based metrics consistently
capture oversmoothing, whereas energy-based metrics often fail. Notably, we reveal
that drops in the rank align closely with performance degradation, even in scenarios
where energy metrics remain unchanged. Along with the experimental evaluation,
we provide theoretical support for this approach, clarifying why Dirichlet-like
measures may fail to capture performance drop and proving that the numerical rank
of feature representations collapses to one for a broad family of GNN architectures.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful framework for learning representations
from graph-structured data, with applications spanning knowledge retrieval and reasoning (Tian
et al., 2022; Peng et al., 2023), personalised recommendation systems (Peng et al., 2022; Damianou
et al., 2024), social network analysis (Fan et al., 2019), and 3D mesh classification (Shi & Rajkumar,
2020). Central to most GNN architectures is the message-passing paradigm, where node features
are iteratively aggregated from their neighbours and transformed using learned functions, such as
multi-layer perceptrons or graph-attention mechanisms.

However, the performance of message-passing-based GNNs is known to deteriorate after only a few
layers, essentially placing a limit on their depth. This issue, often linked to the increasingly similar
learned features as GNNs deepen, is known as oversmoothing (Li et al., 2018; Nt & Maehara, 2019;
Wu et al., 2022; Rusch et al., 2023a; Zhao et al., 2024; Arnaiz-Rodriguez & Errica, 2025).

In recent years, oversmoothing in GNNs, as well as methods to alleviate it, have been studied based
on the decay of some node feature similarity metrics, such as the Dirichlet energy and its variants
(Oono & Suzuki, 2019; Cai & Wang, 2020; Bodnar et al., 2022; Nguyen et al., 2022; Di Giovanni
et al., 2023; Wu et al., 2023; Roth & Liebig, 2023). At a high level, most of these metrics directly
measure the norm of the absolute deviation from the dominant eigenspace of the message-passing
matrix. In linear GNNs without bias terms, this eigenspace is often known and easily computable
via e.g. the power method. However, when nonlinear activation functions or biases are used, the
dominant eigenspace may change, causing these oversmoothing metrics to fail and give false negative
signals about the oversmoothing state of the learned features.

While these metrics are often considered as sufficient but not necessary evidence for oversmoothing
(Rusch et al., 2023a), there is a considerable body of literature using these unreliable metrics as
their evidence for non-occurrence of oversmoothing in GNNs (Zhou et al., 2021; Chen et al., 2022;
Rusch et al., 2022; Wang et al., 2022; Maskey et al., 2023; Nguyen et al., 2023; Rusch et al., 2023b;
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Epping et al., 2024; Scholkemper et al., 2024; Wang & Cho, 2024; Roth, 2024; Wang et al., 2025;
Arnaiz-Rodriguez & Errica, 2025).

However, as we show in Section 6, the performance degradation of GNNs trained on real datasets
often happens well before any noticeable decay in these oversmoothing metrics can be observed. The
vast majority of empirical studies in the literature that observe the decay of Dirichlet-like energy
metrics are conducted over the layers of very deep but untrained (with randomly sampled weights)
or effectively untrained1 GNNs (Wang et al., 2022; Rusch et al., 2022; 2023b; Wu et al., 2023;
Roth, 2024; Wang et al., 2025), where the decay of the metrics is only driven by the small weight
initialization. Instead, we show that when GNNs of different depths are trained with proper weight
initialization, these metrics do not correlate with the model’s performance degradation.

Furthermore, we argue that these metrics can only indicate oversmoothing when their values converge
exactly to zero, corresponding to either an exact alignment to the dominant eigenspace or to the
feature representation matrix collapsing to the all-zero matrix. This double implication presents an
issue: in realistic settings with a large but not excessively large number of layers, we may observe
the decay of the oversmoothing metric by, say, two orders of magnitude while still being far from
zero. In such cases, it is unclear whether the features are aligning with the dominant eigenspace,
simply decreasing in magnitude, or exhibiting neither of the two behaviours. As a result, these types
of metrics provide little to no explanation for the degradation of GNN performance.

As an alternative to address these shortcomings, we advocate for the use of a continuous approximation
of the rank of the network’s feature representations to measure oversmoothing. Collapse of the rank
of the feature representations was already considered as a cause of oversmoothing, e.g. in (Guo
et al., 2023b; Roth & Liebig, 2023), however rank rank-based measures were never explicitly studied,
i.e. they were never compared with other oversmoothing measures and their capacity in measuring
oversmoothing was never quantified, theoretically and/or numerically. Our work fills this gap.
Indeed, our experimental evaluation across various GNN architectures trained for node classification
demonstrates that continuous rank relaxations, such as the numerical rank and the effective rank,
correlate strongly with performance degradation in independently trained GNNs—even in settings
where popular energy-like metrics show little to no correlation.

Overall, the main contributions of this paper are as follows:

• We review popular oversmoothing metrics in the current literature and simplify their theoretical
analysis from a novel perspective of nonlinear activation eigenvectors.

• We notice that the rank can be a better metric for quantifying oversmoothing, and thereby we
redefine oversmoothing in GNNs as the convergence towards a low-rank matrix rather than to a
matrix of exactly rank one.

• We provide extensive numerical evidence that continuous rank relaxation functions provide a much
more compelling measure of oversmoothing than commonly used Dirichlet-like metrics

Additionally, we investigate theoretically the causes of decay of the numerical rank. In particular, we
show that both the aggregation matrices and the nonlinear activation functions can contribute to the
decay. Our theoretical study is restricted to linear GNNs and nonlinear and non-negative GNNs where
the eigenvector of the message-passing matrix is also the eigenvector of the nonlinear activation
function. For these models, we prove that the numerical rank of the features converges exactly to one.
Such results provide theoretical support to our empirical evidence that oversmoothing may occur
independently of the weights’ magnitude and align with our perspective on oversmoothing from the
point of view of nonlinear activation functions.

2 BACKGROUND

2.1 GRAPH CONVOLUTIONAL NETWORK

Let G = (V, E) be an undirected graph with V denoting its set of vertices and E ⊆ V × V its set of
edges. Let Ã ∈ RN×N be the unweighted adjacency matrix with N = |V| being the total number
of nodes, |E| being the total number of edges of G and A the corresponding symmetric adjacency

1Deep networks (with, say, over 100 layers) that are trained but whose loss and accuracy remain far from
acceptable.
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matrix normalized by the node degrees: A = D̃−1/2ÃD̃−1/2, where D̃ = D + I , D is the diagonal
degree matrix of the graph G, and I is the identity matrix. The rows of the feature matrix X ∈ RN×d

are the concatenation of the d-dimensional feature vectors of all nodes in the graph. At each layer l,
the node feature update of Graph Convolutional Network (GCN) (Kipf & Welling, 2016) follows
X(l+1) = σ(AX(l)W (l)) where σ is a nonlinear activation function, applied component-wise, and
W (l) is a trainable weight matrix.

2.2 GRAPH ATTENTION NETWORK

Graph Attention Networks (GATs) (Veličković et al., 2017; Brody et al., 2021) perform graph
convolution via a layer-dependent message-passing matrix A(l) learned through an attention
mechanism A

(l)
ij = softmaxj(σa(p

(l)⊤
1 W (l)⊤Xi,: + p

(l)⊤
2 W (l)⊤Xj,:)) where p(l)i are learnable

parameter vectors, Xi,:, Xj,: denote the feature of the i-th and jth nodes respectively, the ac-
tivation σa is typically chosen to be LeakyReLU, and softmaxj corresponds to the row-wise
normalization softmaxj(Aij) = exp(Aij)/

∑
j′ exp(Aij′). The corresponding feature update is

X(l+1) = σ(A(l)X(l)W (l)) .

3 OVERSMOOTHING

Oversmoothing can be broadly understood as an increase in similarity between node features as inputs
are propagated through an increasing number of message-passing layers, leading to a noticeable
decline in GNN performance. However, the precise definition of this phenomenon varies across
different sources. Some works define oversmoothing more rigorously as the alignment of all feature
vectors with each other. This definition is motivated by the behaviour of a linear GCN: X(l+1) =

A · · ·AX(0)W (0) . . .W (l). Indeed, if Ã is the adjacency matrix of a fully connected graph, A will
have spectral radius equal to 1 with multiplicity 1, andAl will converge toward the eigenspace spanned
by the dominant eigenvector. Precisely, Al → uv⊤ as l → ∞, where Au = u and A⊤v = v, see
e.g. (Tudisco et al., 2015).

As a consequence, if the product of the weight matrices W (0) · · ·W (l) does not diverge in the limit
l → ∞, then the features degenerate to a matrix having rank at most one, where all the features are
aligned with the dominant eigenvector u. Mathematically, if we assume u to be such that ∥u∥ = 1,
this alignment can be expressed by stating that the difference between the features and their projection
onto u, given by ∥X(l) − uu⊤X(l)∥, converges to zero.

3.1 EXISTING OVERSMOOTHING METRICS

Motivated by the discussion about the linear case, oversmoothing is thus typically quantified and
analysed in terms of the convergence of some node similarity metrics towards zero. In particular, in
most cases, it is measured exactly by the alignment of the features with the dominant eigenvector of
the matrixA. The most prominent metric that has been used to quantify oversmoothing is the Dirichlet
energy, which measures the norm of the difference between the degree-normalized neighbouring
node features (Cai & Wang, 2020; Rusch et al., 2023a)

EDir(X) =
∑

(i,j)∈E

∥∥∥∥Xi,:

ui
− Xj,:

uj

∥∥∥∥2
2

, (1)

where ui is the i-th entry of the dominant eigenvector of the message-passing matrix. It thus
immediately follows from our discussion on the linear setting that EDir(X

(l)) converges to zero as
l → ∞ for a linear GCN with converging weights product W (0) · · ·W (l). This intuition suggests
that a similar behaviour may occur for “smooth-enough” nonlinearities.

In particular, in the case of a GCN, the dominant eigenvector u is defined by ui =
√
1 + di and (Cai

& Wang, 2020) have proved that, using LeakyReLU activation functions, it holds EDir(X
(l+1)) ≤

slλ̄EDir(X
(l)), where sl = ∥W (l)∥2 is the largest singular value of the weight matrix W (l), and

λ̄ = (1−mini λi)
2, where λi ∈ (0, 2] varies among the nonzero eigenvalues of the normalized graph

Laplacian ∆̃ = I −A = I − D̃− 1
2 ÃD̃− 1

2 .
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Similarly, in the case of GATs, the matrices Ai are all row stochastic, meaning that ui = 1 for all
i. In this case, it has been proved that whenever the product of the entry-wise absolute value of the
weights is bounded, that is ∥Π∞

k=1|W (k)|∥ <∞, then the following variant of the Dirichlet energy
decays to zero (Wu et al., 2023)

EProj(X) = ∥X − PX∥2F (2)

where P = uu⊤ is the projection matrix on the space spanned by the dominant eigenvector u of the
matrices A(l).

Note that both these metrics, EProj and EDir, can be used only if the dominant eigenvector of A(l) is
the same for all l; this is, for example, the case with row stochastic matrices or when A(l) = A for
all l. Moreover, both these metrics essentially measure the deviation of the feature representations
from the dominant eigenspace of the aggregation matrices A(l). So we expect them to perform
very similarly in capturing oversmoothing. In particular, it is not difficult to show that they are
equivalent metrics from a mathematical point of view, i.e. there exist constants C1, C2 > 0 such that
C1EDir(X) ≤ EProj(X) ≤ C2EDir(X), see Lemma A.1.

3.2 A UNIFYING PERSPECTIVE BASED ON THE EIGENVECTORS OF NONLINEAR ACTIVATIONS

We present here a unifying and more general perspective of the necessary conditions to have over-
smoothing in the sense that EProj and EDir decay to zero, based on the concept of eigenvectors for
a nonlinear activation function. In the interest of space, longer proofs for this and the subsequent
sections are moved to Appendix A.

Definition 3.1. We say that a vector u ∈ RN \ {0} is an eigenvector of the (nonlinear) activation
function σ : RN → Rn if for any t ∈ R \ {0}, there exists µt ∈ R such that σ(tu) = µtu.

With this definition, we can now provide a unifying characterization of message-passing operatorsA(l)

and activation functions σ that guarantee the convergence of the Dirichlet-like energy metrics EProj

and EDir to zero for the feature representation sequence defined by X(l+1) = σ(A(l)X(l)W (l)).
Specifically, Theorem 3.2 shows that this holds provided all matrices A(l) share a common dominant
eigenvector u, which is also an eigenvector of σ.

Theorem 3.2. Let X(l+1) = σ(A(l)X(l)W (l)), l = 1, . . . , L, be a GNN such that u is the dominant
eigenvector of A(l) for any l and also an eigenvector of the activation σ. If σ is 1-Lipschitz, namely
∥σ(x)− σ(y)∥ ≤ ∥x− y∥ for any x, y, and limL→∞

∏L
l=0 ∥(I − P)A(l)∥2∥W (l)∥2 = 0, then

EProj(X
(L)) → 0 as L→ ∞.

The eigenvector assumption shared by A(l) and σ recurs throughout our theoretical analysis, and it
aligns with existing results in the literature. For example, in the case of GCNs, the matrix A(l) = A
is symmetric, and thus ∥I −PA(l)∥2 = λ2. Therefore, when σ = LeakyReLU, we obtain the result
by (Cai & Wang, 2020) as convergence to zero is guaranteed if ∥W (l)∥2 ≤ λ2. Note in fact that the
choice σ = LeakyReLU satisfies our eigenvector assumption since u ≥ 0 by the Perron-Frobenius
theorem, and thus LeakyReLU(tu) = αtu with α depending only on the sign of t. Similarly, in the
case of GATs, the matrices A(l) are stochastic for all l, implying that u = 1 is the constant vector
with (u)i = 1 for all i. If σ = ⊗ψ is a nonlinear activation function acting entry-wise through ψ,
then σ(t1) = ψ(t)1. Therefore, Theorem 3.2 implies that if the weights are sufficiently small, the
features align independently of the activation function used. This is consistent with the results in (Wu
et al., 2023). However, we note that the bounds on the weights required by Theorem 3.2 and those in
(Wu et al., 2023) on the weights W (l) are not identical, and it is unclear which of the two is more
significant. Nonetheless, in both cases, having bounded weights along with any 1-Lipschitz pointwise
activation function is a sufficient condition for EProj to converge to zero as the depth grows in a GAT.
In addition to offering a different and unifying theoretical perspective on the results in (Cai & Wang,
2020; Wu et al., 2023), we highlight the simplicity of our eigenvector-based proof, which provides
added clarity on the theoretical understanding of this phenomenon.
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4 ENERGY-LIKE METRICS: WHAT CAN GO WRONG

Energy-like metrics such as EDir and EProj are among the most commonly used oversmoothing
metrics. However, they suffer from inherent limitations that hinder their practical usability and
informational content.

One important limitation of these metrics is that they indicate oversmoothing only in the limit of
infinitely many layers, when their values converge exactly to zero. Since they measure a form of
absolute distance, a small but nonzero value does not provide any meaningful information. On the
other hand, convergence to zero corresponds to either perfect alignment with the dominant eigenspace
or the collapse of the feature representation matrix to the all-zero matrix. While the former is a
symptom of oversmoothing, the latter does not necessarily imply oversmoothing. Moreover, this
convergence property requires the weights to be strongly bounded. However, in most practical cases,
performance degradation is observed even in relatively shallow networks, far from being infinitely
deep, and with weight magnitudes arbitrarily larger than what is prescribed by (Cai & Wang, 2020;
Wu et al., 2023) or Theorem 3.2. This aligns with our intuition and what occurs in the linear case.
Indeed, for a linear GCN, even when the features X(l) grow to infinity as l → ∞, one observes that
X(l) is dominated by the dominant eigenspace of A, even for finite and possibly small values of l,
depending on the spectral gap of the graph. More precisely, the following theorem holds:

Theorem 4.1. Let X(l+1) = AX(l)W (l) be a linear GCN. Let λ1, λ2 be the largest and second-
largest eigenvalues (in modulus) of A, respectively. Assume the weights {W (l)}∞l=1 are ran-
domly sampled from i.i.d. random variables with distribution ν such that

∫
log+(∥W∥)dν +∫

log+(∥W−1∥)dν <∞, with log+(t) = max{log(t), 0}. If |λ2/λ1| < 1, then almost surely

lim
l→∞

∥(I − P)X(l)∥F
∥PX(l)∥F

= 0

with a linear rate of convergence |λ2/λ1|.

In particular, the theorem above implies that X(l) = λl1
(
uv⊤ + R(l)

)
for some v, with R(l) ∼

O(|λ2/λ1|)l and thus, when the spectral gap is large |λ2/λ1| ≪ 1, X(l) is predominantly of rank one,
even for moderate values of l. This results in weakly expressive feature representations, independently
of the magnitude of the feature weights. This phenomenon can be effectively captured by measuring
the rank ofX(l), whereas Dirichlet-like energy measures may fail to detect it, as it would, for example,
be the case when λ1 > 1, having X(l) → ∞.

Another important limitation of Dirichlet-like metrics is their dependence on a specific dominant
eigenspace, which must either be explicitly known or computed in advance. Consequently, their
applicability is strongly tied to the specific architecture of the network. In particular, the dominant
eigenvector u of A(l) must be known and remain the same for all l. This requirement excludes their
use in cases where A(l) varies with l.

5 THE RANK AS A MEASURE OF OVERSMOOTHING

Inspired by the behaviour observed in the linear case, we argue that measuring the rank of feature
representations provides a more effective way to quantify oversmoothing, in alignment with recent
work on oversmoothing (Guo et al., 2023b; Roth & Liebig, 2023). However, since the rank of a
matrix is defined as the number of nonzero singular values, it is a discrete function and thus not
suitable as a measure. A viable alternative is to use a continuous relaxation that closely approximates
the rank itself.

Examples of possible continuous approximations of the rank include the numerical rank, the stable
rank, and the effective rank (Roy & Vetterli, 2007; Rudelson & Vershynin, 2006; Arora et al., 2019),
defined as follows

StabRank(X) =
∥X∥2∗
∥X∥2F

, NumRank(X) =
∥X∥2F
∥X∥22

, Erank(X) = exp (−
∑
k pk log pk)

5
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# 1 # 2 # 3 # 4

EDir 0 0 13.25 77.78
EProj 0 0 0.83 0.97
MAD 0 0.81 0.81 0.57

NumRank 1 1 1.01 1.78
Erank 1 1 1.36 1.99

Figure 1: Toy scenarios depicting the behaviour of over-
smoothing metrics. Each plot contains 50 nodes, each with
two features plotted on the x-y axis. The features are: # 1 of
the same value; # 2 perfectly aligned with the same vector;
# 3 aligned to the same vector except for one (red) point;
# 4 sampled from a uniform distribution. MAD (Sec. 6) and
EDir give false negative signals in # 3 although features are
oversmoothing by definition. EProj can hardly differentiate
between # 3 and # 4, and is thus not robust in quantifying
oversmoothing. EProj and EDir where computed using the
first feature in place of u in (1) and (2).

where ∥X∥∗ =
∑
i σi is the nuclear norm, and given the singular values σ1 > σ2 > · · · > σmin{N,d}

of X , pk = σk/
∑
i σi is defined as the k-th normalized singular value. These rank relaxation

measures exhibit similar empirical behaviour as shown in Section 6.

In practice, measuring oversmoothing in terms of a continuous approximation of the rank helps to
address the limitations of Dirichlet-like measures. Specifically, it offers the following advantages: (a)
it is scale-invariant, meaning it remains informative even when the feature matrix converges to zero
or explodes to infinity; (b) it does not rely on a fixed, predetermined eigenspace but instead captures
convergence of the feature matrix toward an arbitrary lower-dimensional subspace; (c) it allows for
the detection of oversmoothing in shallow networks without requiring exact convergence to rank
one. A small value of the effective rank directly implies that the feature representations are low-rank,
suggesting a potentially suboptimal network architecture.

In Figure 1, we present a toy example illustrating that classical oversmoothing metrics fail to correctly
capture oversmoothing unless the features are perfectly aligned. This observation implies that these
metrics can quantify oversmoothing only when the rank of the feature matrix converges exactly to
one. In contrast, continuous rank functions provide a more reliable measure of approximate feature
alignment. Later, in Figure 2, we demonstrate that the same phenomenon occurs in GNNs trained on
real datasets, where exact feature alignment is rare. In such cases, classical metrics remain roughly
constant, whereas the rank decreases, coinciding with a sharp drop in GNN accuracy.

5.1 THEORETICAL ANALYSIS OF RANK DECAY

In this section, we provide an analytical study proving the decrease of the numerical rank for a
broad class of graph neural network architectures under the assumption of linear models or nonlinear
models with weight matrices that are entry-wise nonnegative. Our results rigorously show that in
these settings, oversmoothing can occur independently of the weight (and thus feature) magnitude
and shed light on the possible causes of rank decay.

We begin with several useful observations. Let u be the dominant eigenvector of A corresponding to
λ1 and satisfying ∥u∥ = 1. Consider the projection P = uu⊤. Given a matrix X , we can decompose
it as X = PX + (I − P)X . Since u is a unit vector, it follows that ∥P∥2 = 1, and therefore,

∥X∥2 = ∥P∥2∥X∥2 ≥ ∥PX∥2. (3)

Moreover, since PX and (I −P)X are orthogonal with respect to the Frobenius inner product, we
have ∥PX + (I − P)X∥2F = ∥PX∥2F + ∥(I − P)X∥2F . Thus, we obtain the following bound:

NumRank(X) =
∥PX + (I − P)X∥2F

∥X∥22
=

∥PX∥2F + ∥(I − P)X∥2F
∥X∥22

≤ 1 +
∥(I − P)X∥2F

∥X∥22
. (4)

The above inequality, together with Theorem 4.1, allows us to establish the convergence of the
numerical rank for linear networks.

The Linear Case Consider a linear GCN of the form X(l+1) = AX(l)W (l), where A has a
simple dominant eigenvalue λ1 satisfying |λ1| ≥ |λ2|. We have already noted that ∥X∥2 ≥ ∥PX∥2,
meaning that the numerical rank converges to one if ∥(I − P)X∥F /∥X∥2 decays to zero. This
occurs whenever the features grow faster in the direction of the dominant eigenvector than in any

6
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other direction. As established in Theorem 4.1, this is almost surely the case in linear GNNs. As a
direct consequence, we obtain the following result:

Theorem 5.1. Let X(l+1) = AX(l)W (l) be a linear GCN. Under the same assumptions as in
Theorem 4.1, the following identity holds almost surely:

lim
l→∞

NumRank(X(l)) = 1.

Extending the result above to general GNNs with nonlinear activation functions is highly nontrivial.
However, a simplified setting to study is the one where the weights are nonnegative. Indeed, exactly
as in the linear case, while generally the rank decreases only on average, considering nonnegative
weights yields a monotone decrease.

The Nonnegative Nonlinear Case To study the case of networks with nonlinear activations, we
make use of tools from the nonlinear Perron-Frobenius theory; we refer to (Lemmens & Nussbaum,
2012; Gautier et al., 2023) and the reference therein for further details.

We assume all the intermediate features of the network to be in the positive open cone K := RN+ =

{x ∈ RN | xi > 0 ∀i = 1, . . . , N}. Here, we consider the partial ordering x ≤K y (x≪K y) if and
only if y − x ≥ 0 (y − x > 0), where the inequalities have to be understood entrywise. Given two
points x, y ∈ K, let

dH(x, y) = log
(
max
i

xi
yi

·max
i

yi
xi

)
(5)

denote the Hilbert distance. Note that dH is not a distance on K, indeed dH(αx, βy) = dH(x, y) for
any x, y ∈ K and α, β > 0. However, it is a distance up to scaling; that is, it becomes a distance
whenever we restrict ourselves to a slice of the cone. Because of this property, dH is particularly
useful for studying the behavior of the rank of the features, which is a scale-invariant function. Indeed,
the next result shows that, under mild assumptions, nonnegative weights generate layers that are
nonexpansive in Hilbert distance.

Lemma 5.2. Let A be a nonnegative and irreducible matrix with dominant eigenvector u ∈ K.
Assume X to be strictly positive, W nonnegative with minj maxiWij > 0, and σ a continuous
(nonlinear) function that is order preserving, subhomogeneous, and such that u is also an eigenvector
of σ. Then

max
i
dH
(
σ
(
(AXW ):,i

)
, u
)
≤ βmax

i
dH(X:,i, u), (6)

with 0 ≤ β ≤ 1. Where Y:,i denotes the i-th column of Y . In particular, if A is contractive in the
Hilbert distance or σ is strictly sub-homogeneous, then β < 1.

In the above statement, order-preserving means that given any x, y ∈ K with x ≥K y, it holds
σ(x) ≥K σ(y), while (strictly) subhomogenenous means that σ(λx)(≪K) ≤K λσ(x) for all x ∈ K
and any λ > 1. We recall that, as discussed in (Sittoni & Tudisco, 2024; Piotrowski et al., 2024),
a broad range of activation functions commonly used in deep learning is subhomogeneous and
order-preserving on K. In particular, whenever an activation function is monotone increasing on R+,
it is trivially also order-preserving. Additionally, as we prove in Proposition A.6, if the activation
function is homogeneous, e.g. LeakyReLU, then any nonnegative vector is an eigenvector of σ. By
contrast, if σ is strictly subhomogeneous, e.g. tanh, then the only strictly positive eigenvector is the
entrywise constant one.

Next, we prove that for neural networks with nonnegative feature representations, the numerical rank
goes to 1 as the depth grows to infinity.

Theorem 5.3. Consider a GNN of the form X(l+1) = σ(A(l)X(l)W (l)) with X(l)
:,i ∈ K for any

i = 1, . . . , d. If there exists u ∈ K such that liml→∞ maxi dH(X
(l)
:,i , u) = 0, then

lim
l→∞

NumRank(X(l)) = 1.

Theorem 5.3 requires that the Hilbert distance between the feature representation and a fixed vector u
goes to zero. Note that this is implied by the relative metricsEDir(X)/∥X∥ orEProj(X)/∥X∥ going
to zero, but is actually quite weaker. Note also that the bound (6) in Lemma 5.2 directly provides
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Dataset Model EDir EProj MAD Erank NumRank Accuracy
ratioStandard Normalized Standard Normalized

Cora GCN -0.7871 0.6644 -0.8106 -0.8309 -0.2460 0.9724 0.5885 0.2693
GAT -0.9189 0.6703 -0.9469 -0.6054 0.8251 0.9722 0.7612 0.2493

Citeseer GCN -0.8442 0.4350 -0.8913 -0.8667 -0.7169 0.9700 0.6795 0.4380
GAT -0.9576 0.0664 -0.9585 -0.9080 0.3722 0.9915 0.8047 0.4672

Pubmed GCN -0.9068 0.7006 -0.8508 -0.1109 0.6205 0.9464 0.9268 0.5225
GAT -0.8735 -0.3684 -0.8541 -0.4102 -0.3932 0.9270 0.9721 0.5564

Squirrel GCN -0.7774 0.4171 -0.7602 -0.3258 -0.8247 0.6316 0.9582 0.8457
GAT -0.6864 -0.5503 -0.7364 -0.7253 0.5002 0.8538 0.6840 0.7533

Chameleon GCN -0.9223 0.1504 -0.9163 -0.8201 -0.8809 0.9387 0.9014 0.6195
GAT -0.8721 0.1942 -0.9089 -0.8234 0.2803 0.9446 0.8799 0.6332

Amazon
Ratings

GCN -0.9297 0.8809 -0.9079 -0.3423 0.9201 0.9301 0.8049 0.8562
GAT -0.9388 0.5277 -0.9089 -0.1617 0.6545 0.9248 0.8764 0.8384

OGB-Arxiv GCN 0.7738 0.9194 0.5740 -0.2738 0.2822 0.9682 0.9091 0.0939
GAT -0.4097 0.9439 -0.7230 0.8985 0.8492 0.7740 0.9781 0.2310

Average correlation -0.7179 0.4036 -0.7571 -0.4504 0.1601 0.9103 0.8374

Table 1: Correlation between the classification accuracy and the logarithm of metric values on GNNs
with LeakyReLU and depths ranging from 2 to 24 layers, separately trained on different homophilic
(Cora, Citeseer, Pubmed), heterophilic (Squirrel, Chameleon, Amazon Ratings) and large-scale
(OGB-Arxiv) datasets. For Erank and NumRank, we subtract 1 so that both metrics approach zero.
The rightmost column reports the ratio of classification accuracy between GNNs with 2 and 24
layers. Some heterophilic datasets may be more resilient to the increasing network depth, in-line
with observations from the literature, e.g. (Guo et al., 2023a). Additional results on other datasets,
activation functions and additional network components are presented in Appendix E and F.

guidance on situations where the hypotheses of Theorem 5.3 are satisfied. We discuss several such
situations along with some alternative and possibly weaker assumptions for Theorem 5.3 in detail
in Appendix A.6. Finally, we recall that, because of Lemma 5.2, the last result applies either to
GCNs with homogeneous activation function or GATs with any kind of activation function. The
convergence of the numerical rank to 1 may not hold, as discussed in Appendix D.

6 EXPERIMENTS

The vast majority of empirical studies in the literature that observe the decay of Dirichlet-like energy
metrics are conducted over the layers of deep but untrained networks (Wang et al., 2022; Rusch
et al., 2022; 2023b; Wu et al., 2023; Roth, 2024; Wang et al., 2025). Moreover, the measurements
are done by looking at the layers of a single network, rather than different networks of increasing
depth. We emphasize that this is an overly simplified and unrealistic setting. In this section, we
perform an extensive numerical investigation on the behaviour of different oversmoothing metrics
when measured on networks of different depths l = 2, . . . , L, trained in isolation at different depths.
Our analysis shows that GNN suffer from significant performance degradation after only few-layers,
at which stage the convergence patterns of Dirichlet-like metrics are difficult to observe, while relaxed
rank metric already show a significant decrease, well-correlating with the performance drop.

In particular, we compare how different oversmoothing metrics behave compared to the classification
accuracy, varying the GNN architectures for node classification on real-world graph data. In our
experiments, we consider the following metrics:

• The Dirichlet Energy EDir (Cai & Wang, 2020; Rusch et al., 2023a) and its variant EProj (Wu
et al., 2023). Both are discussed in Section 3.1, see in particular (1) and (2).

• Normalized versions of Dirichlet energy and its variant, EDir(X)/∥X∥2F and EProj(X)/∥X∥F .
Indeed, from our previous discussion, a robust oversmoothing measure should be scale invariant
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Figure 2: Four examples of the metric behaviours computed at the last hidden layer of separately
trained GCNs of increasing depths. For Erank and Numrank, we measure Erank(X) − r∗ER and
NumRank(X)− r∗NR for some r∗ > 1. In these particular cases, r∗ER < 1.85, r∗NR < 1.3. Note that
the effective rank and numerical rank of the input features X(0) are about 1084 and 13.6, respectively.
Additional results are attached in Appendix G.

with respect to the features. Metrics with global normalization like the ones we consider here have
also been proposed in (Di Giovanni et al., 2023; Roth & Liebig, 2023; Maskey et al., 2023).

• The Mean Average Distance (MAD) (Chen et al., 2020)

MAD(X) = 1
|E|
∑

(i,j)∈E

(
1− X⊤

i,:Xj,:
|Xi,:||Xj,:|

)
.

It measures the cosine similarity between the neighbouring nodes. Unlike previous baselines, this
oversmoothing metric does not take into account the dominant eigenvector of the matrices A(l).

• Relaxed rank metrics: We consider the Numerical Rank and Effective Rank. Both are discussed in
Section 5. We point out that from our theoretical investigation, in particular from (4), the numerical
rank decays to 1 faster than the decay of the normalized EProj energy to zero. This further supports
the use of the Numerical Rank as an improved measure of oversmoothing.

In Table 1 and Figure 2, we train GNNs of a fixed hidden dimension equal to 32 on homophilic,
heterophilic and large-scale datasets in their default splits. We follow the standard setups of GCN and
GAT as stated in Sections 2.1 and 2.2, and use homogeneous LeakyReLU (LReLU) as the activation
function. For each configuration, GNNs of eight different depths ranging from 2 to 24 are trained. The
oversmoothing metric and accuracy results are averaged over 10 separately trained GNNs. All GNNs
are trained with NAdam Optimizer and a constant learning rate of 0.01. The oversmoothing metrics
are computed at the last hidden layer before the output layer. In Figure 2 and in Appendix G, we plot
the behaviour of the different oversmoothing measures, the norm of the features, and the accuracy
of the trained GNNs with increasing depth. These figures clearly show that the network suffers a
significant drop in accuracy, which is not matched by any visible change in standard oversmoothing
metrics. By contrast, the rank of the feature representations decreases drastically, following closely
the behaviour of the network’s accuracy. These findings are further supported by the results shown
in Table 1, where we compute the Pearson correlation coefficient between the logarithm of every
measure and the classification accuracy of every GNN model. The use of a logarithmic transformation
is based on the understanding that oversmoothing grows exponentially with the length of the network.

Extensions of these results are provided in Appendices E and F. In Appendix D, we perform an
asymptotic ablation study on very deep (300-layer) synthetic networks with randomly sampled,
untrained weights. This study serves to validate our theoretical findings on the convergence of relaxed
rank metrics and to demonstrate that such untrained settings offer little insight into the ability of
existing metrics to quantify oversmoothing in realistic, trained networks.

7 CONCLUSION

In this paper, we have discussed the problem of quantifying oversmoothing in message-passing
GNNs. After simplifying the existing theoretical analysis using nonlinear activation eigenvectors and
discussing the limitations of the leading oversmoothing measures, we propose the use of the rank
of the features as a better measure of oversmoothing. We provide extensive experiments to validate
the robustness of the effective rank against the classical measures. In addition, we have analysed
theoretically the decay of the rank of the features for message-passing GNNs.
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A PROOFS OF THE MAIN RESULTS

A.1 EQUIVALENCE OF EProj AND EDir

Lemma A.1. Assume the graph G to be connected and the eigenvector u to be strictly positive ui > 0
for all i and such that ∥u∥2 = 1. Then there exist C1 > 0 and C2 > 0 such that

C1EDir(X) ≤ EProj(X) ≤ C2EDir(X) ∀X ∈ RN×d.

Proof. First we show that the Dirichlet energy is equivalent to the modified Dirichlet energy where
all the pairs of nodes (i, j) are considered

EDir(X) =
∑

(i,j)∈E

∥∥∥∥Xi,:

ui
− Xj,:

uj

∥∥∥∥2
2

≤
∑
i∈V

∑
j∈V

∥∥∥∥Xi,:

ui
− Xj,:

uj

∥∥∥∥2
2

= ẼDir(X). (7)

Second observe that if i, j ∈ V , since the graph is connected there exists some path i1 =
1, i2, . . . , in+1 = j such that (ik, ik+1) ∈ E for all k. Thus, using the traingular inequality we
get ∥∥∥∥Xi,:

ui
− Xj,:

uj

∥∥∥∥2
2

≤ n

n∑
k=1

∥∥∥∥Xik,:

uik
−
Xik+1,:

uik+1

∥∥∥∥2
2

≤ nEDir(X). (8)

repeating the same argument for any pair of nodes (i, j) we observe that for some constant C > 1

ẼDir(X) ≤ C̃EDir(X). (9)

So, to prove the equivalence of EDir and EProj it is sufficient to prove the equivalence between EProj

and ẼDir.

If we make explicit the expression of the norms in ẼDir we get

ẼDir(X) =
∑
i∈V

∑
j∈V

d∑
k=1

∣∣∣∣Xi,k

ui
− Xj,k

uj

∣∣∣∣2 =

d∑
k=1

∑
i∈V

∑
j∈V

∣∣∣∣Xi,k

ui
− Xj,k

uj
± uTX:,k

∣∣∣∣2

≤
d∑
k=1

∑
i∈V

∑
j∈V

2

ui

∣∣Xi,k − (uTX:,k)ui
∣∣2 + 2

uj

∣∣Xj,k − (uTX:,k)uj
∣∣2

≤ 4|V|
mini{ui}

d∑
k=1

∥∥X:,k − uuTX:,k

∥∥2 =
4|V|

mini{ui}
EProj(X).

(10)

To prove the opposite observe the following

EProj(X) =

d∑
k=1

∑
i∈V

ui

∣∣∣∣Xi,k

ui
− (uTX:,k)

∣∣∣∣2 =

d∑
k=1

∑
i∈V

ui

∣∣∣∣∣Xi,k

ui
−

(∑
h

u2h
Xh,k

uh

)∣∣∣∣∣
2

≤ max
j

{uj}
d∑
k=1

∑
i∈V

max
j

∣∣∣∣Xi,k

ui
− Xj,k

uj

∣∣∣∣2

≤ max
j

{uj}
d∑
k=1

∑
i∈V

∑
j∈V

∣∣∣∣Xi,k

ui
− Xj,k

uj

∣∣∣∣2 = ẼDir(X)

(11)

where in the first inequality we have used that, since ∥u∥2 = 1,
∑
h u

2
h
Xh,k
uh

is a convex combination

of
{
Xh,k
uh

}
h

. In particular, the last inequality concludes the proof.
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A.2 PROOF OF THEOREM 3.2

We start proving that

∥(I − P)X(l+1)∥F ≤ ∥(I − P)A(l)X(l)W (l)∥F , (12)
where P = uu⊤/∥u∥2 is the projection matrix on the linear space spanned by u.

To this end, let π := span{uv⊤ | v ∈ Rd} be the 1-dimensional matrix subspace of the rank-1
matrices having columns aligned to u. Then it is easy to note that given some matrix X , (I − P)X
provides the projection of the matrix X on the subspace π, i.e.

(I − P)X = projπ(X). (13)
Indeed ⟨(I − P)X,uv⊤⟩F = Tr(vu⊤(I − uu⊤/∥u∥2)X) = 0. In particular, since the projection
realizes the minimal distance, we have that

∥X − PX∥F ≤ ∥X − uv⊤∥F ∀v ∈ Rd. (14)

Now observe that σ(uu⊤A(l−1)X(l−1)W (l−1)) = uv̄⊤ for some v̄. Indeed, writing v⊤ =
u⊤A(l−1)X(l−1)W (l−1), we have that the i-th column of σ(uu⊤A(l−1)X(l−1)W (l−1)) is equal
to σ(viu) = v̄iu for some v̄i, because u is an eigenvector of σ. As a consequence we have

∥(I − P)X(l)∥F ≤ ∥X(l) − σ(uu⊤A(l−1)X(l−1)W (l−1))∥F
= ∥σ(A(l−1)X(l−1)W (l−1))− σ(uu⊤A(l−1)X(l−1)W (l−1))∥F
≤ ∥(I − P)A(l−1)X(l−1)W (l−1)∥F

(15)

where we have used the 1-Lipschitz property of σ. This concludes the proof of (12)

To conclude the proof of the theorem observe that, in the decomposition

(I − P)A(l) = (I − P)A(l)P + (I − P)A(l)(I − P),

the matrix (I − P)A(l)P is zero because A(l)u = λl1u for any l. Thus

(I − P)A(l) = (I − P)A(l)(I − P),

and, from (12) and the inequality ∥AB∥F ≤ ∥A∥2∥B∥F , we have

∥(I − P)X(L)∥F ≤
(
ΠL−1
l=0 ∥(I − P)A(l)∥2∥W (l)∥2

)
∥X(0)∥F .

So the thesis follows from the hypothesis about the product ΠL−1
l=0 ∥(I − P)A(l)∥2∥W (l)∥2.

A.3 PROOF FOR THEOREM 4.1

Start by studying the norm of (I −P)X(l). Then looking at the shape of the powers of the Jordan
blocks matrix it is not difficult to note that T̃ l = O(

(
l
N

)
λl−N2 ) for l larger than N . In particular if we

look at the explicit expression of (I − P)X(l)

(I − P )X(l) =
(
0 (I − P)M̃

)(0 0

0 T̃ l

)
M−1X(0)W (0) . . .W (l−1), (16)

we derive the upper bound

∥(I − P )X(l)∥F ≤ C

(
l

N

)
|λ2|l−N∥X(0)W (0) . . .W (l−1)∥F , (17)

for some positive constant C that is independent on l.

Similarly we can observe that

∥PX(l)∥F ≥ ∥u⊤AlX(0)W (0) . . .W (l−1)∥F =

= ∥
(
λl1v

⊤
1 + u⊤M̃O

(( l

N

)
λl−N2

)
M̃ ′
)
X(0)W (0) . . .W (l−1)∥F ≥

≥ |λ1|l
(
∥v⊤1 X(0)W (0) . . .W (l−1)∥F −

∥∥∥u⊤M̃O
(( l

N

)(λ2
λ1

)l
M̃ ′X(0)W (0) . . .W (l−1)

∥∥∥
F

)
≥

≥ |λ1|l∥v⊤1 X(0)W (0) . . .W (l−1)∥F
(
1−O

(( l

N

)∣∣∣λ2
λ1

∣∣∣l ∥X(0)W (0) . . .W (l−1)∥F
∥v⊤1 X(0)W (0) . . .W (l−1)∥F

)
(18)
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Now observe that under the randomness hypothesis from (Furstenberg & Kifer, 1983) and more
generally from the Oseledets ergodic multiplicative theorem, we have that for almost any the limit
w ∈ Rd liml→∞

1
l log ∥w

⊤W (0) . . .W (l−1)∥ = c(ν) exists and is equal to the maximal Lyapunov
exponent of the system. In particular for any w and ϵ > 0 there exists lw,ϵ sufficiently large such that
for any l > lw,ϵ

c(ν)− ϵ ≤ 1

l
log ∥w⊤W (0) . . .W (l−1)∥ < c(ν) + ϵ (19)

i.e.
el(c(ν)−ϵ) ≤ ∥w⊤W (0) . . .W (l−1)∥ < el(c(ν)+ϵ) ∀l ≥ lw,ϵ. (20)

Now take as vector w first the rows of X(0) and then the vector v⊤1 X
(0), then almost surely for any ϵ

there exists lϵ such that for any l > lϵ

el(c(ν)−ϵ) ≤ ∥w⊤W (0) . . .W (l−1)∥ < el(c(ν)+ϵ), (21)

holding for any l ≥ lϵ and any w ∈ {v1} ∪ {X⊤
0 ei}Ni=1.

Next recall that ∥X(0)W (0) . . .W (l−1)∥F =
√∑

i ∥e⊤i X(0)W (0)∥2, meaning that almost surely, for
l ≥ lϵ:

Nel(c(ν)−ϵ) ≤ ∥X(0)W (0) . . .W (l−1)∥F ≤ Nel(c(ν)+ϵ). (22)

In particular for any ϵ, there exists l sufficiently large such that((
l

N

)∣∣∣λ2
λ1

∣∣∣l ∥X(0)W (0) . . .W (l−1)∥F
∥v⊤1 X(0)W (0) . . .W (l−1)∥F

)
≤
((

l

N

)∣∣∣λ2
λ1

∣∣∣le2lϵ) (23)

and thus, since |λ2| < |λ1| and we can choose ϵ arbitrarily small, almost surely it has limit equal to
zero. In particular we can write

lim
l

∥(I − PX(l))∥F
∥PX(l)∥F

∼ lim
l

(
l
N

)
|λ2|l−N∥X(0)W (0) . . .W (l)∥F

|λ1|l∥v⊤1 X(0)W (0) . . .W (l)∥F
= 0 (24)

where we have used the same argument as before to state that the limit is zero.

A.4 PROOF OF LEMMA 5.2

Since A is nonnegative, then from Perron Frobenius theory (Lemmens & Nussbaum, 2012), we know
that

dH

(
(AX):,i, u

)
= dH

(
(AX):,i, λ1(A)u

)
= dH

(
(AX):,i, Au

)
≤ βdH

(
X:,i, u

)
∀i. (25)

for some β ≤ 1, where we have used λ1(A) > 0 and the scaling invariant property of the Hilbert
distance. In particular if A is contractive in Hilbert distance β < 1.

Then note that, for any i, we can write (AXW ):,j as follows(
AXW

)
:,j

=
∑
j

Wij(AX):,j . (26)

Thus we CLAIM that given x1, x2, y ∈ K then

dH(x1 + x2, y) ≤ max{dH(x1, y), dH(x2, y)}. (27)

Observe that if the claim holds, by induction it can trivially be extended from 2 to d points yielding

dH

(
(AXW ):,j , u

)
≤ max

i
dH

(
Wij(AX):,i, u

)
≤ max

j
dH

(
(AX):,j , u

)
≤ βmax

j
dH

(
X:,j , u

)
,

(28)
where we have used the scale-invariance property of the Hilbert distance and the fact that maxiWij >
0 for all j.
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We miss to prove the claim. To this end, exploiting the expression of the Hilbert distance we write

dH(x1 + x2, y) = log

(
sup
j

sup
i

(x1)i + (x2)i
(y)i

(y)j
(x1)j + (x2)j

)
≤ log

(
sup
i

sup
j

max
x1,x2

{
(x1)i
(x1)j

,
(x2)i
(x2)j

}
(y)j
(y)i

)
= max
x1,x2

{
dH(x1, y), dH(x2, y)

}
.

(29)

concluding the proof.

Next we prove that, a continuous subhomogeneous and order-preserving function σ with eigenvector
u in the cone, is not nonexpansive in Hilbert distance with respect to u. Formally we claim that

dH
(
σ(y), u

)
≤ dH

(
y, u
)

∀y ∈ K. (30)

To prove it, let y ∈ K and assume w.l.o.g. that ∥y∥1 = t > 0 and ∥u∥1 = 1, then

M(y/tu) = max
i=1,...,N

yi
t(u)i)

≥ ∥y∥1
t∥u∥

= 1 m(y/tu) = min
i=1,...,N

yi
t(u)i

≤ ∥y∥1
t∥u∥1

= 1. (31)

By definition given x, y ∈ K, m(y/x)x ≤K y ≤K M(y/x)x. Moreover we recall that since u
is an eigenvector for any t > 0 there exists λt > 0 such that σ(tu) = λtu. Thus we use the
subhomogeneity of σ and the fact that u is an eigenvector of σ to get the following inequalities:

m(y/tu)λttu ≤K σ
(
m(y/tu)tu

)
≤K f(y) ≤K f

(
M(y/tu)tu

)
≤K M(y/xc)λttu, (32)

where the inequalities are strict if σ is strictly subhomogeneous. In particular we have m(f(y)/tu) ≥
λtm(y/tu) and M(f(y)/tu) ≤ λtM(y/tu). Finally the last inequalities and the scale invariance
property of dH yield the thesis:

dH(f(y), u) = dH(f(y), tu) = log
(M(f(y)/tu)

m(f(y)/tu)

)
≤ log

(M(y/tu)

m(y/tu)

)
= dH(y, tu) = dH(y, u) .

(33)
with the inequality that is strict if σ is strictly subhomogeneous.

Then the thesis of the Lemma follows by applying (30) to (28).

A.5 PROOF OF THEOREM 5.3

We will prove that, as a consequence of the hypothesis liml→∞ maxi dH(X
(l)
:,i , u) = 0,

lim
l→∞

∥(I − P)X(l)∥F
∥PX(l)∥F

= 0, (34)

where P = uuT /∥u∥22. Indeed (34) is equivalent to proving that the numerical rank goes to 1 as l
goes to ∞:

1 ≤ NumRank(X(l)) ≤ 1 +
∥(I − P)X(l)∥2F

∥X(l)∥22
≤ 1 +

∥(I − P)X(l)∥2F
∥PX(l)∥2F

. (35)

To prove (34), we recall from Lemma 2.5.1 in (Lemmens & Nussbaum, 2012) that for any w such
that u⊤w = c

∥w − Pw∥u ≤ ∥Pw∥u(edT (w,Pw) − 1), (36)
where dT (x, y) = log(max{M(x/y),m(x/y)−1}) and where since the dual cone of Rn+ is Rn+
itself, we are considering the norm induced by u on the cone, i.e. ∥x∥u = u⊤x for any x in the
cone. In practice the norm induce by u ∥ · ∥u can be defines by the Minkowki functional of the set
Ω = ConvexHull{{Ω1} ∪ {−Ω1}} where Ω1 = {x ∈ K u⊤x ≤ 1}
Then since ∥Pw∥u = ∥w∥u = u⊤w, we have that M(w/Pw) ≥ 1 and m(w/Pw) ≤ 1. Thus
dT (w,Pw) ≤ dH(w,Pw), yielding

∥w − Pw∥u ≤ ∥Pw∥u(edH(w,Pw) − 1). (37)
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From the equivalence of the norms there exists some constant c > 0 such that we can equivalently
write

∥w − Pw∥2 ≤ C∥Pw∥2(edH(w,Pw) − 1). (38)

Now recall that the squared frobenius norm of a matrix is the sum of the squared 2-norms of the its
columns, so we can apply the last inequality to the matrix X(l) columnwise obtaining:

∥(I − P)X(l)∥2F ≤ C∥PX(l)∥2F
(
emaxi{dH(X

(l)
:,i ,PX

(l)
:,i )} − 1

)2
. (39)

the proof is concluded using the hypothesis and observing that by the scale invariance property of the
Hilbert distance dH(X

(l)
:,i ,PX

(l)
:,i ) = dH(X

(l)
:,i , u), yielding:

1 ≤
(
NumRank(X(l))

)
≤ 1 +

∥(I − P)X(l)∥2F
∥PX(l)∥2F

≤ 1 + C
(
emaxi{dH(X

(l)
:,i ,u)} − 1

)2
(40)

and concluding the proof.

A.6 SOME SITUATIONS WHERE liml→∞ maxi dH(X
(l)
:,i , u) = 0

In this section we explore three different situations where the Hilbert distance of the features from
the dominant eigenvector u of the thea aggregation matrices is guaranteed to converge to 1.

1st situation A first situation where the Hilbert distance of the features from the dominant eigen-
vector u converges to zero is the case of all matrices A(l) are contractive.

Lemma A.2. Let A(l) be nonnegative and irreducible matrices with dominant eigenvector u ∈ K.
Assume also X(0) to be strictly positive, W (l) nonnegative with minj maxiW

(l)
ij > 0 and σ ∈

C(RN+ ,RN+ ) a nonlinear function that is order preserving, subhomogeneous and such that u is
also an eigenvector of σ. Any matrix A(l) is known to satisfy dH(A(l)x,A(l)y) ≤ dH(x, y) for all
x, y ∈ K, then if limk→∞

∏k
l=1 βl = 0

lim
l→∞

max
i
dH(X

(l)
:,i , u) = 0. (41)

Proof. The proof is a trivial consequence of Lemma 5.2. Indeed iterating the result in the thesis we
know that

max
i
dH

(
σ
(
X

(l)
:,i

)
, u
)
≤

l−1∏
i=1

βimax
i
dH(X

(0)
:,i , u), (42)

concluding the proof

In particular we remind that from the Perron-Frobenius theory any strictly positive matrix A is known
to be contractive of a parameter β < 1, see (Lemmens & Nussbaum, 2012).

2nd situation A second situation where the Hilbert distance of the features from the dominant
eigenvector u converges to zero is the case of a strictly subhomogeneous activation function.

Lemma A.3. Let A(l) be nonnegative and irreducible matrices with dominant eigenvector u ∈
K. Assume also X(0) to be strictly positive, W (l) nonnegative with minj maxiW

(l)
ij > 0 and

σ ∈ C(RN+ ,RN+ ) a nonlinear function that is order preserving, strongly subhomogeneous and such
that u is also an eigenvector of σ. Since σ is strongly subhomogeneous, for any l there exists
βl < 1 such that maxi dH(σ(A(l)X(l)W (l)):,i, u) ≤ βldH((A(l−1)X(l−1)W (l−1)):,i, u), then if
limk→∞

∏k
l=1 βl = 0

lim
l→∞

max
i
dH(X

(l)
:,i , u) = 0. (43)
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Proof. The proof is again a trivial consequence of Lemma 5.2. Indeed iterating the result in the thesis
we know that

max
i
dH

(
σ
(
X

(l)
:,i

)
, u
)
≤

l−1∏
i=1

βimax
i
dH(X

(0)
:,i , u), (44)

concluding the proof.

Note that whenever we have a strongly concave activation function σ on R+, e.g. tanh, then it is
strongly subhomogeneous and so the result above applies.

3rd situation Here we discuss a third situation, possibly weaker than the previous ones. This is
essentially an adaptation of the ergodic theorem proved in (Nussbaum, 1990). Consider the cone
K′ = RN×d

+ and introduce the set Π = {Y ∈ K′ s.t. Y:,i = αiu ∀i = 1, . . . , d}. Moreover let
ψ ∈ Int(K′) and define Σψ = {Y ∈ K′ s.t. ψ(Y ) = 1}. Finally given X ∈ K′ define

π(X) := argmin
Y ∈Σψ

dH(X,Y ). (45)

Definition A.4 (Hypotheses H). We say that a GNN X(l+1) = f (l)(X(l)) = σ(A(l)X(l)W (l)) with
X(0) ∈ K′ satisfies hypotheses [H] if the following conditions are verified:

H1 A(l) is nonnegative and minj maxiW
(l)
ij > 0 for any l.

H2 The function σ is subhomogeneous and differentiable in R+.

H3 u ∈ K is the dominant eigenvector of all of the matrices A(l) and it is also an eigenvector of
σ.

H4 There exists an integer p > 0 and a sequence of dN × dN strictly positive matrices {B(l)}
such that ∀X with m

(
X(lp), π(X(lp))

)
π(X(lp)) ≤ X ≤M

(
X(lp), π(X(lp))

)
π(X(lp))

∂Xg
(l)(X) ≥ B(l) ∀l ≥ 1

where g(l)(X) := f ((l+1)p−1) ◦ · · · ◦ f (lp)(X).

H5 ∀l ≥ 0 there exists η(l) > 0 s.t. B(l)π(X(lp)) ≥ η(l)g(l)
(
π(X(lp))

)
.

H6 limM→∞
∑M
l=0 η

(l)exp
(
−∆(B(l))

)
= ∞ where ∆(B) = supx,y∈K′ dH(Bx,By) < ∞

is the projective diameter of the matrix B.

Theorem A.5. Let X(l+1) = f (l)(X(l)) = σ(A(l)X(l)W (l)), with X(0) ∈ K′, be a GNN satisfying
hypotheses [H]. Then

lim
l→∞

max
i

(
dH(X

(l)
:,i , u)

)
= 0.

Proof. We claim that under hypotheses [H]

lim
l→∞

dH(X(l),Π) = 0. (46)

As a consequence of this it is easy to note that liml→∞ maxi
(
dH(X

(l)
:,i , u)

)
= 0. Indeed it is not

difficult to check that

exp
(
dH
(
X(l), π

(
X(l)

))
=
M(X(l), π

(
X(l)

)
m(X(l), π

(
X(l)

) = max
ji

max
hk

X
(l)
ji π

(
X(l)

)
hk

X
(l)
hkπ

(
X(l)

)
ij

≥

≥ max
i

max
j

max
h

X
(l)
ji π

(
X(l)

)
hi

X
(l)
hi π

(
X(l)

)
ji

= max
i
exp
(
dH(X

(l)
:,i , u)

)
.

(47)
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where we have used that by definition π
(
X(l)

)
:,i

= αiu for all i, where necessarily αi > 0 for all i.

Otherwise, since X(l) ∈ K′, we would have dH
(
X(l), π

(
X(l))

)
= ∞, against the minimality.

Next we prove the claim. The proof is adapted for our scopes from the proof of the weak ergodic
theorem 2.1 proved in (Nussbaum, 1990) for homogeneous mappings. To simplify the notation we
denote by X := X(lp), π := π(X(lp)), g := g(l), m := m(X(lp), π(X(lp))), B := B(l), η := η(l)

andM :=M(X(lp), π(X(lp))). Then consider z1(t) = (1−t)mπ+tX and z2(t) = (1−t)X+tMπ.
Then from hypothesis [H4] we have the following inequalities:

g(X)− g(mπ) =

∫ 1

0

∂Xg(z
1(t))

(
X −mπ

)
≥ B

(
X −mπ

)
g(Mπ)− g(x) =

∫ 1

0

∂Xg(z
2(t))

(
Mπ −X

)
≥ B

(
Mπ −X

)
.

(48)

In particular, since g is subhomogeneous and by definition of π m ≤ 1 and M ≥ 1 we have:

mg(π) +B(X −mπ) ≤ g(mπ) +B(X −mπ) ≤ g(X) ≤
≤ g(Mπ)−B(Mπ −X) ≤Mg(π)−B(Mπ −X)

(49)

Since B(X −mπ) +B(Mπ −X) = (M −m)Bπ, we can use Lemma 2.2 in (Nussbaum, 1990)
we know that

B(X −mπ) ≥ γ(M −m)Bπ or B(Mπ −X) ≥ γ(M −m)Bπ, (50)

where γ = (1/2)exp(−∆(B)). Without loss of generality assume thatB(X−mπ) ≥ γ(M−m)Bπ
the second case can be handled analogously. Then, since B(Mπ −X), from (51), we have

mg(π) + γη(M −m)g(π) ≤ mg(π) + γ(M −m)Bπ ≤ g(X) ≤Mg(π). (51)

In particular

dH(g(X), g(π)) ≤ log(
M

m+ ηγ(M −m
) = log

( M

m+ ηγ(M −m)

)
=

= log(M/m)
log
(
M
m

1
1+ηγ(M/m−1)

)
log(M/m)

≤

≤ log(M/m)(1− ηγ) = (1− ηγ)dH(X,π).

(52)

In the last we have used the following fact: if ξ1(s) = log
(
s(1 + ηγ(s− 1))−1

)
and ξ2(s) = log(s)

with s > 1 then since ξ1,2(1) = 0 and 1 + ηγ(s′ − 1) > 1 for s′ > 1, for any s > 1 there exists
some s′ > 1 such that

ξ1(s)/ξ2(s) = ξ′1(s
′)/ξ′2(s

′) = (1− ηγ)(1 + ηγ(s′ − 1))−1 ≤ (1− ηγ). (53)

Now note that dH(X,π) = dH(X,Π) by the minimality of π and the fact that dH(X,αY ) =
dH(X,Y ) for any α > 0. Second, using [H1] and [H3] it is very easy to observe that g(π) ∈ Π. So
dH(g(X),Π) ≤ dH(g(X), g(π)). In conclusion we have proved that

dH
(
X(lp),Π

)
= dH

(
g(l)(X(l)

)
,Π) ≤

(
1− η(l)

exp
(
−∆(B(l)

)
2

)
dH(X(l),Π). (54)

In particular iterating, using (47) and recalling that maxi dH(X
(l1)
i , u) ≤ maxi dH(X

(l2)
i , u) if

l2 > l1 (see Lemma 5.2) we have that for any L > lp:

max
i
dH(X

(L)
i , u) ≤ max

i
dH(X

(lp)
i , u) ≤ dH

(
X

(lp)
i ,Π

)
≤

≤
l∏

j=0

(
1− η(j)

exp
(
−∆(B(j)

)
2

)
dH(X(0),Π).

(55)

Moreover, we have that
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lim
l→∞

l∏
j=0

(
1− η(j)

exp
(
−∆(B(j)

)
2

)
= 0 ⇐⇒

lim
l→∞

l∑
j=0

− log

(
1− η(j)

exp
(
−∆(B(j)

)
2

)
= ∞ ⇐⇒

lim
l→∞

l∑
j=0

(
η(j)

exp
(
−∆(B(j)

)
2

)
= ∞,

(56)

which concludes the proof.

Next, we discuss briefly the hypothesis H4 which is the most technical one. In particular, such
hypothesis recalls the property of a primitive matrix. Actually we note that, if the matrices A(l) are
primitive, under few additional mild assumptions, it is possible to prove that the hypothesis H4 is
always satisfied. Assume that there exists an index p such that:

1. The matrices A(l) with l = 0, . . . , p− 1 satisfy A(l) ≥ α1A
∗ where A∗ is the unweighted

adjacency matrix of the graph; i.e. A∗
ij = 1 if the edge (i, j) belongs to the graph, A∗

ij = 0

otherwise. And assume that A∗ is primitive of index smaller then p, i.e.
(
(A∗)p

)
ij
> 1 for

all i, j

2. ∂xσ(Xij) ≥ α2 for all X with X = f (l) ◦ · · · ◦ f (0)(X∗) varying l = 0, . . . , p −
1 and X∗ among the matrices that satisfy m

(
X(0), π(X(0)

)
π(X(0)) ≤ X ≤

M
(
X(0), π(X(0))

)
π(X(0)).

3.
(
W (0) · · · · ·W (p−1)

)
ij
> α3 > 0 for all i, j.

Then for any matrix X satisfying m
(
X(0), π(X(0))

)
π(X(0)) ≤ X ≤ M

(
X(0), π(X(0))

)
π(X(0))

we have (
∂Xg(X)

)
ij
≥ αp1α

p
2α3 ∀ij

where g(X) := f (p−1) ◦ · · · ◦ f (0)(X).

Indeed, vectorizing the matrix X we can write ∂Xf (i)(X) = diag
(
σ′((WT ⊗A)vec(X)

))
(WT ⊗

A) ≥ α2(W
T ⊗A). Then we can apply the chain rule to the function g to get(

∂Xg(X
∗)
)
≥ αp2

(
W (p−1)T ⊗A(p−1)

)
. . .
(
W (0)T ⊗A(0)

)
. (57)

Finally we use the properties of the matrices W (i) and A(i) and the properties of the Kronecker
product to obtain(

∂Xg(X
∗)
)
≥ αp2

(
W (p−1)T . . .W (0)T

)
⊗
(
A(p−1) . . . A(0)

)
≥ αp2α

p
1α31 (58)

where 1 is the matrix with every entry equal to 1.

A.7 EIGENPAIRS OF ENTRY-WISE SUBHOMOGENEOUS MAPS

We conclude with a formal investigation of the eigenpairs of activation functions that are entry-wise
subhomogeneous. Let σ = ⊗Nψ with ψ ∈ C(R,R) that is subhomogeneous on R+. Then one can
easily show that σ is itself subhomogeneous on RN+ . We have the following result,

Proposition A.6. Let σ = ⊗Nψ with ψ ∈ C(R+,R+) be order preserving. Then: 1) If σ is
homogeneous, any positive vector is an eigenvector of σ, 2) If σ is strictly subhomogeneous, the only
eigenvector of σ in K is the constant vector.
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We start from the homogenous case. Note that since ψ is homogeneous we have that necessarily
f(t) = ct for all t, c ≥ 0, this in particular means that every u ∈ RN+ is an eigenvector of σ with
corresponding eigenvalue λ1 = c.

Then we can consider the subhomogeneous case. Assume that we have u ∈ RN+ that is an eigenvector
of σ with eigenvalue λ and ui > 0 for all i, then

ψ(ui) = λui ∀i = 1, . . . , N. (59)

By strict subhomogeneity this means that necessarily u is constant, indeed if ui > uj > 0 then

λuj = ψ(uj) = ψ
(
uj
ui
ui

)
>
uj
ui
ψ(ui) = λuj , (60)

yielding a contradiction. In particular any constant vector u in RN+ is easily proved to be an eigenvector
of σ relative to the eigenvalue λ = ∥σ(u)∥1/∥u∥1 = ψ(ui)/ui where ui is any entry of u.
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B LIMITATIONS

Although a small effective rank or numerical rank indicates oversmoothing and can be subsequently
linked to the underperformance of GNNs, a large effective rank or numerical rank does not necessarily
correspond to a good network performance. Prior study has suggested some degree of smoothing
can be beneficial (Keriven, 2022), and as an extreme example, features sampled from a uniform
distribution and with randomly assigned labels would almost surely have a large effective rank, but
they cannot be classified accurately due to the lack of any underlying pattern. We note that this
limitation is not specific to the two relaxed rank measures, as the same argument is directly applicable
to all other oversmoothing metrics.

Consequently, as shown in Table 4, when additional components are used to (partially) alleviate
oversmoothing, particularly when residual connections are used, the accuracy ratio may remain large
over the layers, and all oversmoothing metrics correlate poorly with the accuracy of GNNs. This in
turn suggests these oversmoothing metrics become less informative as the oversmoothing problem is
mitigated or alleviated.

C COMPUTATIONAL COMPLEXITY ANALYSIS

Let N , D, E the number of nodes, features and edges of a graph G, the computational cost of the
Dirichlet energy isO(E×D), while the cost of the Projection Energy isO(N×D). In contrast, most
of the computational cost for the numerical rank and the effective rank is given by the computation of
the spectral radius of X , and of all the singular values of X for the effective rank, respectively.

Standard results show that it is always possible to compute the full singular value decomposition
(SVD), and subsequently the spectral radius, in O(N × D × min{N,D}). However, in typical
cases, the latter cost can be drastically reduced using different strategies. Firstly, in the case of
numerical rank, the computational cost of the 2-norm is generally much smaller than the cost of the
full SVD. Indeed, using Lanczos or power methods to compute it, the cost scales as O(N ×D), and
the methods converge typically very fast. In addition, both the effective rank and the numerical rank
can be efficiently controlled by computing only the k-largest singular values of X . In particular, a
truncated SVD containing the k-largest singular values can be computed in O(N ×D × k) using
either deterministic algorithms or randomized SVD methods.

In general, the computational cost of metrics to quantify oversmoothing is marginal compared to
the cost of training. In production, measuring the emergence of oversmoothing is done by training
the model and checking the performance on the validation and test sets as the number of layers
changes. The cost of additionally computing effective or numerical ranks is marginal. Moreover, we
note that computing the metrics on a subsection of a graph can be sufficiently informative, and as a
consequence, most oversmoothing metrics studied in this paper can be computed in less than 10ms
for a graph (or a subsection of it) with less than 2000 nodes.
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D ADDITIONAL EXPERIMENTAL RESULTS WITH SYNTHETIC WEIGHTS

In this section, we conduct an asymptotic ablation study using randomly sampled (synthetic) untrained
weights. The aim of these experiments is twofold:

• to demonstrate that similar untrained asymptotic experiments are inherently unrealistic, despite
being extensively used in the literature (Wang et al., 2022; Rusch et al., 2022; 2023b; Wu et al.,
2023; Roth, 2024; Wang et al., 2025), as they fail to reliably capture oversmoothing in shallower
GNNs where the performance degradation occurs.

• to examine the convergence properties of different oversmoothing metrics with weight size control
and to empirically validate Theorems 5.1 and 5.3.

We construct a 10-node Barabasi-Albert graph with each node having 32 features. The weights are
either an identity matrix or randomly sampled at each layer from a uniform distribution U(0, s), where
s depends on the settings: small weights (s = 0.05) lead to an exponentially decaying ∥X(l)∥F , and
large weights (s = 0.1) lead to an exploding ∥X(l)∥F for uncapped activation functions. For identity
weights, ∥X(l)∥F is roughly constant (LReLU) or slowly decaying (Tanh). The feature initialization
X(0) is sampled from U(0, 1), and is iterated over 300 layers.

In this asymptotic synthetic setting, as presented in Table 2, the normalized EDir and EProj exhibit
decay patterns similar to those of the effective rank and numerical rank, suggesting these metrics are
equally sensitive to asymptotic rank collapse. However, this behaviour stands in stark contrast to
results on trained networks presented in Tables 1 and 3 and Appendix G, where the normalized EDir

and EProj often fail to detect oversmoothing.

Moreover, these asymptotic results validate Theorems 5.1 and 5.3, showing that the numerical rank
converges to one for GCN + LReLU and GAT + any subhomogeneous activation functions. Without
making any additional assumption on the normalization of the adjacency matrix, the effective rank
and numerical rank do not generally decay to one when subhomogeneous activation functions, e.g.
Tanh, are used in GCNs.

Architecture EDir EProj MAD Erank NumRank
standard normalized standard normalized

GCN+LReLU+identity weights ✓ ✓ ✓ ✓ ✓ ✓ ✓
GCN+Tanh+identity weights ✓ ✓ ✓ ✓ ✗ ✓ ✓
GAT+LReLU+identity weights ✓ ✓ ✓ ✓ ✓ ✓ ✓
GAT+Tanh+identity weights ✓ ✓ ✓ ✓ ✗ ✓ ✓

GCN+LReLU+small weights ✓ ✓ ✓ ✓ ✗ ✓ ✓
GCN+Tanh+small weights ✓ ✓ ✓ ✓ ✗ ✓ ✓
GAT+LReLU+small weights ✓ ✓ ✓ ✓ ✗ ✓ ✓
GAT+Tanh+small weights ✓ ✓ ✓ ✓ ✗ ✓ ✓

GCN+LReLU+large weights ✗ ✓ ✗ ✓ ✓ ✓ ✓
GCN+Tanh+large weights ✗ ✗ ✗ ✗ ✗ ✗ ✗
GAT+LReLU+large weights ✗ ✓ ✗ ✓ ✓ ✓ ✓
GAT+Tanh+large weights ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Additional results on very deep (300 layers) synthetic networks with randomly sampled
weights. For Erank and NumRank, we subtract 1 so that both metrics converge to zero. ✓ indicates
a decay of the corresponding metric to zero, ✗ indicates otherwise. Note that GAT has similar
asymptotic behaviour to GCN with adjacency normalization D−1Ã.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E ADDITIONAL EXPERIMENTAL RESULTS ON ACTIVATION FUNCTIONS AND
DIFFERENT DATASETS

We extend Table 1 to subhomogenous Tanh activation function and a few additional datasets. The
experimental setting is consistent with that of Section 6.

Dataset Architecture EDir EProj MAD Erank NumRankAccuracy
ratioStandardNormalizedStandardNormalized

Cora

GCN+LReLU-0.7871 0.6644 -0.8106 -0.8309 -0.24600.9724 0.5885 0.2693
GCN+Tanh 0.5243 0.9403 0.8610 0.9768 0.9734 0.9923 0.9784 0.1937
GAT+LReLU -0.9189 0.6703 -0.9469 -0.6054 0.8251 0.9722 0.7612 0.2493
GAT+Tanh 0.8300 0.8501 0.8676 0.9066 0.8603 0.9600 0.9515 0.1900

Citeseer

GCN+LReLU-0.8442 0.4350 -0.8913 -0.8667 -0.71690.9700 0.6795 0.4380
GCN+Tanh 0.3420 0.8957 0.4631 0.9045 0.9605 0.9906 0.9457 0.3509
GAT+LReLU -0.9576 0.0664 -0.9585 -0.9080 0.3722 0.9915 0.8047 0.4672
GAT+Tanh 0.9234 0.8949 0.8276 0.8997 0.9176 0.9287 0.9024 0.3045

Pubmed

GCN+LReLU-0.9068 0.7006 -0.8508 -0.1109 0.6205 0.9464 0.9268 0.5225
GCN+Tanh -0.2330 0.2657 0.2029 0.9137 0.8745 0.9328 0.9940 0.3883
GAT+LReLU -0.8735 -0.3684 -0.8541 -0.4102 -0.39320.9270 0.9721 0.5564
GAT+Tanh 0.2977 0.8411 0.7160 0.9331 0.8546 0.9303 0.8551 0.4464

Squirrel

GCN+LReLU-0.7774 0.4171 -0.7602 -0.3258 -0.82470.6316 0.9582 0.8457
GCN+Tanh 0.6026 0.7736 0.1689 0.9377 0.7727 0.9680 0.9837 0.8152
GAT+LReLU -0.6864 -0.5503 -0.7364 -0.7253 0.5002 0.8538 0.6840 0.7533
GAT+Tanh -0.3606 -0.6557 -0.0363 0.8714 -0.70330.8911 0.8861 0.9103

Chameleon

GCN+LReLU-0.9223 0.1504 -0.9163 -0.8201 -0.88090.9387 0.9014 0.6195
GCN+Tanh 0.2742 0.8796 -0.2541 0.8492 0.9272 0.9869 0.9841 0.7093
GAT+LReLU -0.8721 0.1942 -0.9089 -0.8234 0.2803 0.9446 0.8799 0.6332
GAT+Tanh 0.4090 0.5699 0.0743 0.8230 0.6006 0.9613 0.9143 0.7052

Amazon
Ratings

GCN+LReLU-0.9297 0.8809 -0.9079 -0.3423 0.9201 0.9301 0.8049 0.8562
GCN+Tanh -0.6960 -0.6289 -0.6910 0.8576 0.9423 0.9871 0.9327 0.8574
GAT+LReLU -0.9388 0.5277 -0.9089 -0.1617 0.6545 0.9248 0.8764 0.8384
GAT+Tanh 0.8354 0.8507 -0.6595 0.9245 0.9418 0.8954 0.8883 0.8382

Roman
Empire

GCN+LReLU-0.5635 0.7703 -0.6772 0.2575 0.6420 0.5833 0.5368 0.3891
GCN+Tanh 0.8018 0.9225 -0.6808 0.8359 0.8124 0.8570 0.8090 0.4067
GAT+LReLU -0.9174 0.5390 -0.9407 0.1868 0.7582 0.7221 0.8722 0.3705
GAT+Tanh 0.5767 0.5844 -0.4716 0.8819 0.7263 0.7332 0.8589 0.3652

OGB-Arxiv

GCN+LReLU 0.7738 0.9194 0.5740 -0.2738 0.2822 0.9682 0.9091 0.0957
GCN+Tanh -0.6409 0.7041 -0.6808 0.9494 0.9487 0.9900 0.9876 0.1204
GAT+LReLU -0.4097 0.9439 -0.7230 0.8985 0.8492 0.7740 0.9781 0.2310
GAT+Tanh 0.7834 0.7896 -0.9277 0.9393 0.8222 0.7671 0.7861 0.2376

Average correlation -0.1956 0.5137 -0.3886 0.2669 0.4960 0.9007 0.8684

Table 3: Additional correlation coefficient results on homophilic (Cora, Citeseer, Pubmed), het-
erophilic (Squirrel, Chameleon, Amazon Ratings, Roman Empire) and large-scale (OGB-Arxiv)
dataset.
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F ADDITIONAL EXPERIMENTAL RESULTS WITH DIFFERENT NETWORK
COMPONENTS

Prior literature indicates that when adding additional components, such as bias (Rusch et al., 2023a)
or residual terms (Scholkemper et al., 2024), the Dirichlet energy does not decay. Therefore,
we compare the correlation coefficients in Table 4 between existing oversmoothing metrics when
additional components are added, such as bias, LayerNorm, BatchNorm, PairNorm (Zhao & Akoglu,
2019), DropEdge (Rong et al., 2019; Huang et al., 2020) and residual connections (Scholkemper
et al., 2024).

All experiments follow the setup described in Section 6. In addition, DropEdge has a probability of
0.5 in removing each edge at each layer. The residual connection is implemented as follows

X(l+1) = σ(AX(l)W
(l)
1 ) +X(0)W

(l)
2 .

Table 4 demonstrates that both the effective rank and numerical rank achieve a higher average
correlation with the classification accuracy than alternative metrics. This finding confirms their
superior consistency in detecting oversmoothing across a variety of architectural variants.

Furthermore, we note that when oversmoothing is effectively alleviated, e.g. when residual connection
is used, all metrics have a poor correlation with the classification accuracy. This generic limitation is
discussed in Appendix B.

Architecture EDir EProj MAD Erank NumRankAccuracy
ratioStandardNormalizedStandardNormalized

GCN+LReLU+Bias -0.9300 0.7505 -0.9414 -0.3642 -0.2828 0.9847 0.7833 0.2110
GCN+Tanh+Bias 0.4086 0.8950 0.7479 0.9026 0.8996 0.9926 0.9814 0.2133
GCN+LReLU+LayerNorm-0.9132 0.8445 -0.9424 0.5591 0.9753 0.9736 0.9736 0.4882
GCN+Tanh+LayerNorm -0.7119 0.2560 -0.2069 0.9716 0.8695 0.9576 0.9684 0.1886
GCN+LReLU+BatchNorm 0.8789 0.7300 0.8872 0.7175 0.5094 0.6005 0.6577 0.8761
GCN+Tanh+BatchNorm -0.6033 0.2883 -0.6587 0.7717 0.4984 0.7377 0.7038 0.8157
GCN+LReLU+PairNorm -0.8165 0.3731 -0.8106 0.3885 0.4850 0.5597 0.6244 0.8556
GCN+Tanh+PairNorm -0.5963 0.0346 -0.5401 -0.3358 -0.0631 0.9838 0.9298 0.3123
GCN+LReLU+DropEdge -0.7497 0.7185 -0.7939 -0.7974 -0.4619 0.9720 0.5782 0.2515
GCN+Tanh+DropEdge 0.2319 0.8388 0.5872 0.8887 0.8763 0.9934 0.9558 0.2096
GCN+LReLU+Residual -0.0857 -0.3072 -0.0559 -0.1611 -0.1656-0.2466 -0.1296 1.0046
GCN+Tanh+Residual -0.6751 -0.7406 -0.3031 -0.4019 -0.6043-0.5425 -0.4897 1.0122

Average correlation -0.3801 0.3901 -0.2525 0.2616 0.2946 0.6638 0.6280

Table 4: Additional correlation coefficient results on GCNs with different network components.
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G METRIC BEHAVIOUR EXAMPLES ON CORA, CITESEER AND PUBMED

We extend Figure 2 to additional datasets and network components. The experimental setting is
consistent with that of Section 6.

GCN + LReLU
r∗ER = 1.450100, r∗NR = 1.207918

GCN + Tanh
r∗ER = 1.690520, r∗NR = 1.007135

GCN + LReLU + Bias
r∗ER = 1.454981, r∗NR = 1.020319

GCN + Tanh + Bias
r∗ER = 1.858602, r∗NR = 1.021634

GCN + LReLU + LayerNorm
r∗ER = 1.017424, r∗NR = 1.000101

GCN + Tanh + LayerNorm
r∗ER = 1.528688, r∗NR = 1.003682

GAT + LReLU
r∗ER = 1.295623, r∗NR = 1.079250

GAT + Tanh
r∗ER = 1.002191, r∗NR = 1.000006

Table 5: The table showcases the behaviour of different metrics and the classification accuracies for 8
GNNs separately trained on Cora Dataset. This table is an extension of figure 2
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GCN + LReLU
r∗ER = 1.750563, r∗NR = 1.142120

GCN + Tanh
r∗ER = 1.436012, r∗NR = 1.003035

GCN + LReLU + Bias
r∗ER = 1.526297, r∗NR = 1.045451

GCN + Tanh + Bias
r∗ER = 1.752850, r∗NR = 1.007417

GCN + LReLU + LayerNorm
r∗ER = 1.006405, r∗NR = 1.000009

GCN + Tanh + LayerNorm
r∗ER = 1.473417, r∗NR = 1.002555

GAT + LReLU
r∗ER = 1.541711, r∗NR = 1.148837

GAT + Tanh
r∗ER = 1.003797, r∗NR = 1.000005

Table 6: The table showcases the behaviour of different metrics and the classification accuracies for 8
GNNs separately trained on Citeseer Dataset.
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GCN + LReLU
r∗ER = 1.420913, r∗NR = 1.085279

GCN + Tanh
r∗ER = 1.838982, r∗NR = 1.014851

GCN + LReLU + Bias
r∗ER = 1.450100, r∗NR = 1.207918

GCN + Tanh + Bias
r∗ER = 1.443576, r∗NR = 1.018361

GCN + LReLU + LayerNorm
r∗ER = 1.002088, r∗NR = 1.000074

GCN + Tanh + LayerNorm
r∗ER = 1.668289, r∗NR = 1.009275

GAT + LReLU
r∗ER = 1.577163 r∗NR = 1.119213

GAT + Tanh
r∗ER = 1.016096, r∗NR = 1.000019

Table 7: The table showcases the behaviour of different metrics and the classification accuracies for 8
GNNs separately trained on Pubmed Dataset.

28


	Introduction
	Background
	Graph Convolutional Network
	Graph Attention Network

	Oversmoothing
	Existing Oversmoothing Metrics
	A Unifying Perspective Based on the Eigenvectors of Nonlinear Activations

	Energy-like Metrics: What Can Go Wrong
	The Rank as a Measure of Oversmoothing
	Theoretical Analysis of Rank Decay

	Experiments
	Conclusion
	Proofs of the main results
	Equivalence of EProj and EDir
	Proof of thm:mainlinear
	Proof for theoremdecaylinearmodel
	Proof of Lemmahilbcontractivitylinearnetwork
	proof of thmcollapseinhilbertdistance
	Some situations where lidH(X:,i(l),u)=0
	Eigenpairs of entry-wise subhomogeneous maps

	Limitations
	Computational Complexity Analysis
	Additional Experimental Results with Synthetic Weights
	Additional Experimental Results on Activation Functions and Different Datasets
	Additional Experimental Results with Different Network Components
	Metric Behaviour Examples on Cora, Citeseer and Pubmed

