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Abstract

Importance sampling (IS) is often used to per-
form off-policy evaluation but it is prone to sev-
eral issues—especially when the behavior policy
is unknown and must be estimated from data. Sig-
nificant differences between target and behavior
policies can result in uncertain value estimates due
to, for example, high variance. Standard practices
such as inspecting IS weights may be insufficient to
diagnose such problems and determine for which
type of inputs the policies differ in suggested ac-
tions and resulting values. To address this, we pro-
pose estimating the behavior policy for IS using
prototype learning. The learned prototypes provide
a condensed summary of the input-action space,
which allows for describing differences between
policies and assessing the support for evaluating a
certain target policy. In addition, we can describe a
value estimate in terms of prototypes to understand
which parts of the target policy have the most im-
pact on the estimate. We find that this provides new
insights in the examination of a learned policy for
sepsis management. Moreover, we study the bias
resulting from restricting models to use prototypes,
how bias propagates to IS weights and estimated
values and how this varies with history length.

1 INTRODUCTION

Historical data on decisions and outcomes provide opportu-
nities for evaluating policies for future decision-making. For
example, the prospect of using patient records to evaluate
new policies for medication dosing in sepsis management
has attracted recent attention [Komorowski et al., 2018,
Gottesman et al., 2019]. An example of off-policy evalua-
tion (OPE), this amounts to estimating the value of a target
policy based on data gathered under a different so-called

behavior policy; see e.g., Thomas [2015] for an overview.

Importance sampling (IS) methods [Precup, 2000] perform
OPE by weighting observed outcomes by the density ratio
of the target policy and the behavior policy. IS methods are
often preferred over alternatives which rely on modeling
outcomes or covariate transitions, due to their simplicity
and the fact that behavior policies often are controllable or
human made. Similarly, the equivalent strategy of inverse-
propensity weighting is fundamental to the study of causal
effects [Rosenbaum and Rubin, 1983, Hirano et al., 2003].

In practice, it is difficult to assess the quality of an IS value
estimate. When the behavior policy is unknown and must
be estimated from data, conditions which guarantee good
estimates are hard to meet and rely on untestable assump-
tions [Rosenbaum et al., 2010, Namkoong et al., 2020].
Standard practices of inspecting weights [Li et al., 2019]
and removing outliers [Crump et al., 2009] give only ag-
gregate or per-sample perspectives on potential issues and
are often insufficient for domain experts to reason about the
validity of the result. There is a clear need to better inspect
and diagnose importance sampling estimates.

In this paper, we propose estimating the unknown behav-
ior policy using prototype learning [Li et al., 2018b, Ming
et al., 2019]. The learned prototypes are selected cases from
the input data, readily interpretable by a domain expert and
representative of the input-action space. In healthcare appli-
cations, the prototypes are trajectories of former patients,
and a prototype-based estimate of the behavior policy is
analogous to how physicians use experience from previous
patients to treat new ones. While offering transparency, a
prototype model is flexible enough to model behavior poli-
cies in large and/or sequential input spaces.

Our main contribution is to use learned prototypes as an
OPE diagnostic tool. In addition to enabling interpretation
of individual predictions, we show that (a) prototypes can be
used to describe areas of similarities/dissimilarities between
behavior and target policies; and (b) prototypes induce a soft
clustering which can be used to explain differences in value
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for different policies. We elaborate on this idea in Section
3.3 and demonstrate our method in Section 4.1 using an
example of sepsis management. Further, we study the added
bias of restricting the model class to use prototypes and how
this bias propagates to the IS weights in Section 4.2.

2 OFF-POLICY EVALUATION

Policy evaluation refers to estimating the value V (π) of a
target policy π ∈ Π, as defined below. We focus on the se-
quential case, where a policy is used to select an action A ∈
A = {1, . . . , k} after a history H ∈ H, comprising a se-
quence of previous actions and contexts X ∈ X . The history
until time t is defined as Ht := (X0, A0, X1, A1, . . . , Xt),
with H0 = X0. A policy π : H → ∆A is a map from a
history to a distribution over A. In a medical example, a
context X could correspond to information about a patient’s
state, an action A to a medical intervention, and the target
policy π to new clinical guidelines.

The value of a policy π is defined as the expectation of
a reward or outcome R ∈ R, accumulated after acting
according to π. Here, we study the special case where
a single reward is awarded at the end of the sequence,
R = RT , but our results generalize to the case where re-
wards are given after every action. Under the distribution
pπ(X0, A0, . . . , XT , AT , R) = pπ(HT , AT , R), induced
by the policy π, the value is V (π) := Eπ[R].

Estimating V (π) is trivial given a large enough number of
samples from the target policy pπ. In off-policy evaluation
(OPE), we have access to no such samples, but must es-
timate V (π) using an observational dataset of m samples
D = ((h1

t1 , a
1
t1 , r

1), . . . , (hm
tm , amtm , rm)), drawn according

to a distribution pµ(HT , AT , R), controlled by a behavior
policy µ ∈ Π. In the medical example, the behavior pol-
icy represents current clinical practice. In this work, the
behavior policy µ is unknown and an estimate p̂µ(A | H) is
learned from the samples D.

A common method for OPE is importance sampling (IS).1

The IS estimator uses an estimate p̂µ in a weighted average
over the samples D [Hanna et al., 2019]:

V̂IS(π; µ̂) :=
1

m

m∑
i=1

wir
i, (1)

with

wi :=

ti∏
t=0

pπ(At = ait | Ht = hi
t)

p̂µ(At = ait | Ht = hi
t)
. (2)

Sufficient conditions for the estimator V̂IS(π; µ̂) to be an
unbiased estimator of V (π) include (sequential) ignorability
and overlap [Rosenbaum and Rubin, 1983, Robins, 1986].

1Importance sampling estimators are often also referred to as
“importance weighting” estimators.

In our setting, ignorability may be defined as for all t, the
conditional distribution of R given At and Ht is the same
under π and µ, i.e., ∀t : pπ(R | Ht, At) = pµ(R | Ht, At).
Overlap is satisfied for a pair (h, a) if it being observable
under π implies that it is observable under µ, pπ(At = a |
Ht = h) > 0 ⇒ pµ(At = a | Ht = h) > 0. We say that
overlap is partially violated if this condition is violated for
some pairs of histories and actions.

Even when ignorability and overlap are satisfied, if µ and
π differ significantly, the estimator V̂IS(π; µ̂) suffers from
high variance. The weighted importance sampling (WIS)
estimator [Rubinstein and Kroese, 2016], V̂WIS(π; µ̂) :=

1∑m
i=1 wi

∑m
i=1 wir

i, introduces bias, but often has less vari-
ance. Under the Markov assumption, i.e., that context (or
“state”) transitions, actions and rewards depend only on the
most recent context-action pair, the history Ht in (2) can be
replaced by Xt. We leave out the subscript t where clear.

2.1 CAN WE TRUST AN IS ESTIMATE?

A fundamental challenge with off-policy evaluation is that
no ground truth value, or even samples of it, is available.
What is worse, the assumption of ignorability cannot be
verified statistically [Rosenbaum et al., 2010] and the extent
of overlap is unknown if µ is unknown. As a result, assessing
the quality of an estimate V̂IS inherently relies on domain
expertise.

By examining importance weights {wi}mi=1 and estimated
propensities p̂µ(At | Ht), analysts can spot outliers with
extremely large weights, and compute the effective sample
size (ESS) [Gottesman et al., 2018, Owen, 2013, Chapter 9].
These practices give a per-sample and an average view of
potential issues with variance and the potential for removing
samples with excessive weights [Crump et al., 2009, Stürmer
et al., 2010]. However, several questions remain regarding
what replacing µ with π would imply in practice:

• Where do π and µ differ? How can we describe the
inputs for which the most probable actions under π
differ from those under µ?

• If V̂ (π) > V̂ (µ), what gives π the edge? In which
situations does acting according to π result in higher
rewards than acting according to µ?

Inspecting weights and propensities in aggregate or on a per-
sample basis is insufficient to answer these questions as they
concern patterns in policy decisions, weights and rewards.
For example, extreme weights and small ESS may indicate
lack of overlap between π and µ but do not explain the cause
of the problem. Next, we show that a case-based model of
the behavior policy µ can help identify said patterns by
inducing a soft clustering over the space of histories.
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Figure 1: A schematic drawing of the prototype setup using
a medical example. Each subsequence hi

t of the patient
histories in the training data have a representation in the
learned latent space Z . A few subsequences are selected as
prototypes—samples that are representative of the history-
action space. In this example, there are three prototypes
which are treated with different drug doses. Note that a
patient can belong to different prototype clusters during the
course of medication, as indicated with the arrows pointing
out from the column vector. The action propensity pµ(a | ht)
of a test sample ht is computed by weighting the similarity
between ht and each prototype.

3 OFF-POLICY EVALUATION WITH
PROTOTYPES

We propose performing off-policy evaluation using proto-
type learning [Li et al., 2018b, Ming et al., 2019]. The idea
is to express the behavior policy pµ(A | H) by comparing
the history H to a relatively small set of prototype histories
from the training data, see Figure 1. In a clinical setting,
such a policy may correspond to physicians choosing treat-
ment for a new patient based on their prior experience in
treating similar patients. For a domain expert, trained in
interpreting such cases, a prototype-based estimate is trans-
parent as long as the number of prototypes is small enough.
By examining how policy overlap and value estimates vary
with prototypes, we can answer the questions raised above.

3.1 MODELING BEHAVIOR WITH PROTOTYPES

Let H̃ = [h̃1, . . . , h̃n]⊺ be a list of n prototype histories.2

Each prototype is a subsequence of an observed history,
h̃j = hi

t for hi ∈ D and t ≤ ti. We allow the prototypes to
be subsequences of full-length histories since OPE requires
evaluating the behavior policy at each time step. The behav-
ior policy pµ(At | Ht = ht) is approximated based on the
similarity between an observation ht and the prototypes in
a learned representation. The prototypes H̃ are themselves
selected by the learning algorithm.

To learn H̃ , we follow Li et al. [2018b], Ming et al. [2019]

2From now, we refer to these as “prototypes”.

by first learning a set of latent prototypes as free parame-
ters Z̃ = [z̃1, . . . , z̃n]

⊺ in an encoding space Z . Given an
encoder e : H → Z , for an arbitrary history ht, let

S(Z̃, e(ht)) = [s(z̃1, e(ht)), . . . , s(z̃n, e(ht))]
⊺

be the similarity vector for the encoding of ht comparing
e(ht) to Z̃ using a fixed function s : Z ×Z → R+. We use
an RBF-kernel with unit bandwidth (γ = 1),

s(z̃, e(h)) := exp(−∥z̃ − e(h)∥22/γ2), (3)

which takes values between 0 (no similarity) and 1 (full sim-
ilarity). With B ∈ Rk×n, we estimate the behavior policy µ
through logistic regression in the space induced by S,

p̂µ(At | Ht = ht) = fσ(BS(Z̃, e(ht)) + c), (4)

where fσ denotes the softmax function over rows and c ∈
Rk is a bias term. Column j of B represents the coefficients
determining the action probabilities associated with h̃j . If
the coefficient Bij is positive, higher similarity between
ht and h̃j makes action i more probable for ht; a negative
coefficient makes action i less probable.

The model parameters Θ = (e,B, c, H̃), comprising the
parameters of the encoder e, coefficients B, c and the set of
prototypes H̃ , are all unknown and must be learned from
data. As encoder, we use either feedforward or recurrent
neural networks. Following Ming et al. [2019], we learn
Θ by minimizing the regularized negative log-likelihood
(NLL)

J(Θ) = NLL(D; Θ) + λdRd(Θ) + λcRc(Θ) + λeRe(Θ)
(5)

using stochastic gradient descent. The regularization terms
Rd(Θ), Rc(Θ) and Re(Θ) encourage diversity, clustering
and evidence, respectively, and are defined in Appendix A.

To make sure that prototypes represent real cases, i.e., to
select H̃ , latent prototypes are projected onto encodings of
training samples at regular intervals between descent steps,

h̃j ← argmax
hi
t∈D

s(z̃j , e(h
i
t)) and z̃j ← e(h̃j), (6)

with D the set of all subsequences of trajectories in D.

Is there a good prototype model? Modeling the behav-
ior policy using prototypes places additional restrictions on
the functional form of estimates. It is natural to ask: As-
suming that adjusting for the history Ht is sufficient for
unbiased policy evaluation, do there exist prototype histo-
ries H̃ , an encoding e and a similarity function s such that
evaluation using the prototype model is exact or accurate?
In Section 4, we study this question empirically. Addition-
ally, in Appendix A.2, we show constructively that there are
indeed problems for which a prototype model exists that
exactly describes the behavior policy µ.



3.2 PREDICTING WITH PROTOTYPES

When computing the estimated behavior policy (4) for a his-
tory h, the similarity vector S(e(H̃), e(h)) determines how
similar each of the n prototypes are to h. The number n is a
hyperparameter. The more prototypes are used, the greater
the flexibility of the model, but a large n may result in S con-
sisting of multiple elements close to 1, making predictions
difficult to interpret. For example, if s(e(h̃j), e(h)) ≈ 1
for more than 10 prototypes j, it may be difficult to reason
about the policy decision after all.

To address this, we use only a limited number of q ≤ n
prototypes—so-called prediction prototypes—when mak-
ing predictions with the trained model. Let sq(h) be the
similarity between e(h) and its qth most similar latent pro-
totype. For j = 1, . . . , n, we truncate the similarity vector
according to

s(z̃j , e(h))←
{

s(z̃j , e(h)) if s(z̃j , e(h)) ≥ sq(h),
0 otherwise.

As an example, with q = 2 the (sorted) similarity vector in
Figure 1 would become [0.9, 0.6, 0]⊺.

We perform the truncation step independently for all con-
texts h. In Section 4.2, we study the resulting trade-off
between transparency (small q and n) and bias as we vary
the number of (prediction) prototypes, (q) n. Note that we
optimize the regularization parameters λd, λc and λe with
respect to the choice of q.

3.3 USING PROTOTYPES FOR EVALUATION

Prototypes induce a soft clustering of the space of histories.
Each prototype represents a group of similar histories which
can be associated with a certain distribution over actions. In
Figure 1, we see for example that the “green prototype”—
representing the patients in the “green cluster”—is given
a higher dose of the drug than the other prototypes. Given
characteristics of the “green prototype”, a domain expert
should be able to explain why it receives this type of treat-
ment. While it is possible to use other methods to cluster the
space of histories, prototypes have the advantage of being
based in cases and trained to describe groups of subjects
who are treated differently under the behavior policy. We
see in Section 4.2 that this is beneficial also for accuracy.

When modeling the behavior policy µ using prototypes, we
can utilize the induced clustering structure to answer the
questions raised in Section 2.1. First of all, the prototypes
h̃j and their action probabilities

p̂jµ(a) = p̂µ(A = a | H = h̃j) (7)

give an overview of the estimated behavior policy. By com-
paring the action probabilities p̂jµ(a) with the corresponding
action probabilities under π, pjπ(a) = pπ(A = a | H = h̃j),

we can explain input regions for which π and µ differ in their
suggested actions. Domain experts can use this overview to
assess how well the data supports evaluation of the target
policy. For example, if π, for a certain prototype, suggests
actions that are extremely rare under µ, there may not be
enough data on these decisions to accurately estimate V (π).

It is good practice to compare V̂ (π) with V̂ (µ), i.e., the
mean reward in data. If V̂ (π) is different from V̂ (µ), we
would like to know for which inputs π gain or lose perfor-
mance in relation to µ. The prototypes allow us to divide
the estimated values into prototype-based contributions and
answer this question. To make the implicit clustering ex-
plicit, we define Jt to be a random variable with values
in {1, . . . , n}, representing an assignment of a history Ht

to prototype j at time t. We let the probability of being
assigned to prototype j be proportional to the similarity s,

p(Jt = j | Ht = ht) =
s(z̃j , e(ht))∑n
k=1 s(z̃k, e(ht))

. (8)

Now, we define the value Vj,t(π) of prototype j at time t,
obtained under a policy π, as the expected future reward
under π given the assignment Jt = j:

Vj,t(π) := Eπ[RT | Jt = j]. (9)

With p(Jt = j) the marginal probability of being assigned
to prototype j at time t, by the law of total expectation,
V (π) =

∑n
j=1 Vj,t(π)p(Jt = j) for any t. Each term

Vj,t(π)p(Jt = j) (10)

in the sum represents the contribution to the overall value
V (π) from histories which are similar to prototype j at
time t, effectively stratifying the value by types of situa-
tions. Note that we can compute Vj,t(µ) in a similar way to
compare the estimated values of π and µ from a prototype
perspective.

We may express Vj,t(π) as a weighted expectation under
the behavior policy µ, with importance weights W ,

Vj,t(π) := Eµ

[
p(Jt = j | Ht = ht)

pπ(Jt = j)
WRT

]
,

where pπ(Jt) is found by importance-weighted marginaliza-
tion over Ht (see derivation in Appendix A.1). We use this
strategy to estimate Vj,t(π) from finite samples.

4 EXPERIMENTS

In Section 4.1, we illustrate our method by examining an
example of sepsis management. Using patient data from the
MIMIC-III database [Johnson et al., 2016], we evaluate a
replication of the so-called AI Clinician implemented by
Komorowski et al. [2018], see below for details. In Section



4.2, we inspect the prototype model in more detail. We study
the trade-off between transparency and bias and compare the
model to several baseline estimators. By utilizing a sepsis
simulator, we also investigate the bias induced by prototypes
as a function of the sequence length.

AI Clinician. The AI Clinician is a clinical decision sup-
port model for sepsis management [Komorowski et al.,
2018]. The model is learned from data of sepsis patients ex-
tracted from the MIMIC-III database [Johnson et al., 2016].
The patient data (e.g., demographics, vital signs and lab-
oratory values) are coded as multidimensional time series
with a discrete time step of 4 hours. There are two treat-
ment variables: the total volume of intravenous (IV) flu-
ids (f) and maximum dose of vasopressors (v) adminis-
tered over each 4-hour period. In short, the AI Clinician
is built by clustering the data into 750 states, discretizing
the combinations of treatment doses into 25 possible ac-
tions (f, v) ∈ {0, 1, 2, 3, 4}2, and solving the correspond-
ing Markov decision process using value iteration. The final
reward ri is +100 if the patient survived and −100 if the
patient died. This process is repeated 500 times, each time
with a new train-test split, and the model with the highest
WIS value estimate on the test set is taken as the target pol-
icy, πAIC. We use the data split associated with πAIC in our
experiments.

Experimental setup. We consider two types of encoders
for the prototype framework: a feedforward neural network
(FNN) and a recurrent neural network (RNN). Both en-
coders have two layers of size 64 with ReLu and tanh,
respectively, as activation function. We name these mod-
els ProNet and ProSeNet, respectively. We compare the
prototype framework to several baseline models: a logistic
regression classifier (LR), a random forest classifier (RF), a
vanilla FNN, a vanilla RNN, and a model based on post-hoc
clustering of RNN-encoded histories. The neural network
baselines have the same structure as the corresponding pro-
totype encoder. In the main sepsis experiment, we train all
neural networks over 400 epochs, using a batch size of 64
for RNN and ProSeNet, and 1024 for FNN and ProNet. We
use the Adam algorithm for optimization with learning rate
0.001, weight decay 0.001 and otherwise default parameters.
Furthermore, we use the NLL loss when training the vanilla
neural networks. All models are calibrated using sigmoid
calibration on a held-out validation set (25% of the training
data). Further details, including hyperparameter selection,
are provided in Appendix B.3

4.1 DEMONSTRATING THE FRAMEWORK

To demonstrate the benefit of learning prototypes in OPE,
we estimate the behavior policy µ, i.e., the policy followed

3The code is available at https://github.com/
Healthy-AI/case_based_ope.
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Figure 2: A PCA plot of encoded training data, colored w.r.t.
the action (dose of IV fluids and vasopressors) taken by
the physicians. The prototypes are numbered 1–10. Note
that prototype learning affects the structure of the encoding
space. Post-hoc clustering of the latent space of a model
trained without prototypes gives a substantially worse ap-
proximation of the behavior policy, see Table 1.

by clinicians in the MIMIC-III data, using a prototype model
with n = 10 prototypes, q = 2 prediction prototypes and an
RNN encoder (i.e., a ProSeNet model). As an overview of
the relationship between prototypes, a PCA plot of encoded
training data is shown in Figure 2. The latent prototypes are
numbered 1–10 and the colors indicate action chosen by µ
in the data. Note that the figure is intended to help the reader
to orient him/herself in this section; we do not rely on this
projection in itself.

We can interpret the prototypes by visualizing trajectories of
the corresponding patients. In Figure 3, we take a closer look
at prototypes 5, 7 and 8, which represent each of the major
clusters in Figure 2. By plotting three key features—heart
rate (HR), mean blood pressure (BP) and SOFA score—and
the treatment variables against time, we immediately get a
sense of which type of patients the prototypes represent. For
example, the patient corresponding to prototype 5 has high
heart rate, low blood pressure and high SOFA score—signs
of severe sepsis—and receives an aggressive treatment.4

The prototype 7 patient, who has lower heart rate, higher
blood pressure and lower SOFA score, receives low doses
of IV fluids and vasopressors.

We understand that trajectories that are most similar to proto-
type 7 in the latent space belong to patients who are currently
relatively healthy, which they are more likely to be at an
early stage of the course. Interestingly, we observe that all
encoded histories until time t = 0 are most similar to either
prototype 7 or prototype 9. Is it therefore relevant to ask
the question: If we were to follow the AI Clinician instead
of the behavior policy, how would the treatment strategy

4SOFA is an abbreviation for sequential organ failure assess-
ment.

https://github.com/Healthy-AI/case_based_ope
https://github.com/Healthy-AI/case_based_ope
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Figure 3: Vital signs and SOFA score plotted against time for
three different prototype patients (upper three panels). The
dashed black lines show the data average of each feature and
the shaded areas mark ±3 standard deviations. The lower
two panels show the actions taken by physicians. The time
index of each prototype subsequence is marked with filled
marker; for example, prototype 5 is the subsequence ending
at time step 4 of the corresponding patient history.

change in an initial stage? That is, how do µ and πAIC differ
for prototypes 7 and 9?

We can answer this question by comparing the distributions
of actions taken under µ and πAIC for these prototypes, see
Figure 4. For prototype 7, we see that the most likely treat-
ment under both µ and πAIC is to not give any IV fluids or
vasopressors. However, under πAIC, there is also a relatively
high probability of increasing the dose of IV fluids—a rare
action under µ. The differences are even greater for proto-
type 9, where πAIC has a nonzero probability of giving an
aggressive treatment with combinations of IV fluids and
vasopressors. Under µ, these treatments have almost zero
probability. A domain expert can reason about the validity
of πAIC: given characteristics of the patient corresponding
to prototype 9, would it be medically sound to treat this type
of patient as suggested by πAIC in Figure 4?

From an OPE perspective, the initial differences between
µ and πAIC make it difficult to accurately estimate V (πAIC).
A known problem with importance sampling is that the
variance of the weights wi can grow exponentially with the
sequence length [Liu et al., 2018]. Here, the assumption of
overlap is potentially partially violated already at the first
time step, and regardless of model of the behavior policy,
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Figure 5: Bootstrap estimates of the value of the target pol-
icy of following the AI Clinician and the zero-drug policy,
respectively, for one time step and then following the be-
havior policy. The estimated value of the behavior policy µ,
V̂ (µ), is included as a reference.

we observe high variance in the IS weights (ranging from
≪ 1 to the order of 103) and an extremely small effective
sample size (< 10). To reduce variance, we instead evaluate
a different target policy where we follow πAIC in the first
time step and then follow µ until the end of the sequence.
For comparison, we do the same with a zero-drug policy π0

which suggests leaving patients untreated.

Figure 5 shows 100 bootstrap estimates of the policy values
using five different estimators of µ: the baselines LR, RF,
FNN and RNN, and our prototype model. For all models
except the RNN baseline and the prototype model, we make
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the Markov assumption and model p(A | H) using only
the last context-action pair of the history. We note that the
results are consistent across estimators. In comparison with
the estimated value of µ, V̂ (µ), the results indicate that it
could be beneficial to avoid giving drugs to patients at the
initial time step, while it seems less favorable to follow πAIC.

The prototypes allow us to break down the result and an-
swer the question: If V̂ (π) ̸= V̂ (µ), where does π gain
or lose performance? In Figure 6, we show 100 bootstrap
estimates of the contribution to the overall value, see (10),
for prototypes 1, 7 and 9 at time t = 0. These prototypes
define the bottom right cluster of Figure 2 where all encoded
histories until time t = 0 belong. As expected, prototype 7
and 9 contribute the most to the overall value. Note that the
difference in variance between these prototypes is explained
by Figure 4 where πAIC and µ differ more for prototype 9
than for prototype 7. Also note that the trend in Figure 5 is
repeated here: following the zero-drug policy at the initial
time step is generally better than following the AI Clinician.

4.2 PERFORMANCE OF THE PROTOTYPE
MODEL

While increasing transparency, the use of prototypes im-
poses restrictions on the model, possibly increasing the
approximation error. In Figure 7, we show the accuracy of
two different prototype models—ProNet and ProSeNet—in
approximating pµ(A | Ht) on the sepsis test data for a vary-
ing number of prototypes n and prediction prototypes q (see
Section 3.2). As encoder, the models use an FNN (ProNet)
and an RNN (ProSeNet), respectively. The sequential model,
making use of the entire history Ht, performs the best, es-
pecially for q = 1 and q ≥ 4. Interestingly, the effect of
increasing the number of prototypes from 10 to 50 or even
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Figure 7: Accuracy on the sepsis test data for ProNet and
ProSeNet using a varying number of (prediction) prototypes
(q) n. The setting with n = 10 and q = 2 works well here.
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Figure 8: The relative error of estimated importance weights
for increasing sequence lengths in the sepsis simulator. Ide-
ally, if µ̂ is a good estimator of µ, the ratio wµ̂/wµ should
be equal to 1. We see that approximating µ with prototype
models gives rise to a bias in relation to modeling µ with a
plain FNN.

100 is small. Using only two prediction prototypes works
well for this dataset.

In Table 1, we compare the prototype models with n = 10
and q = 2 to the baseline estimators in approximating
pµ(A | Ht). Here, we report accuracy, the area under
the ROC curve (AUC) and the static calibration error
(SCE) [Nixon et al., 2019], a multiclass extension of the
expected calibration error. The prototype models are supe-
rior to the (regularized) LR but they perform slightly worse
than the black-box models RF, FNN and RNN. However,
as we see in Figure 7, with increased number of prototypes,
ProSeNet has the capacity to approach the performance of
these models, at least in terms of accuracy. Finally, we note
that the prototype models are superior to a model where
post-hoc clustering of the RNN encodings are used to iden-
tify “prototypes”, showing the power of learning prototypes



in a supervised manner.

In practice, the trade-off between transparency and bias is
likely less of a problem. In the process of diagnosing policy
value estimates, we may sacrifice some accuracy in favor
of interpretability. That is, we can learn a model with few
prototypes to reason about the target and behavior policies.
Then, if the initial analysis indicates that the data supports
evaluation of the target policy, we can learn a more complex
model for the actual policy evaluation.

4.2.1 Bias Due to Increased Sequence Length

If the use of prototypes introduces a bias in the estimated
propensity, it is natural to ask what it means for the se-
quential setting, where multiple propensities are multiplied
together to form the importance weights. To quantity this
effect, we consider the synthetic environment of sepsis man-
agement provided by Oberst and Sontag [2019]. By sam-
pling a large amount of data from the environment, we
estimate the true parameters of the underlying Markov de-
cision process. We then learn an optimal behavior policy
using policy iteration. We refer to Appendix B.2 for details.

We collect trajectories of the behavior policy of various
lengths, from 5 to 30 time steps. For each trajectory length,
we use the data to (a) estimate the behavior policy µ using a
vanilla FNN and FNN-based prototype models with varying
number of (prediction) prototypes, respectively; (b) learn a
target policy π using policy iteration; and (c) estimate the
value of π using both the true behavior policy µ and its esti-
mators µ̂. Note that any difference in the estimated values
stems from a difference in the importance weights w. In Fig-
ure 8, we plot the relative error of estimated weights against
the trajectory length for four estimators of µ.5 Averaging
over 100 iterations of the sampling and learning process,
we see that the ratio wµ̂/wµ generally differs from 1 for all
estimators and that modeling with prototypes induces larger
bias than using an FNN. For longer sequences, the number
of prediction prototypes q becomes critical.

Finally, we quantify the absolute effect prototypes have on
the value estimate for sequences of length 15, which is close
to the average sequence length in the MIMIC-III data. We
compute the true value of π by running it in the simulator
and compare this value to weighted IS estimates using the
estimators in Figure 8. We observe final rewards ri = ±1 if
a simulated patient is discharged or dies; otherwise ri = 0.
Averaging over 100 iterations, the estimated value has an
absolute difference from the true value that amounts to
0.39 for the FNN (standard deviation 0.27), 0.46 (0.33)
for ProNet with n = 10 and q = 2, 0.50 (0.34) for ProNet
with n = 10 and q = 5 and 0.41 (0.31) for ProNet with
n = 100 and q = 5. These results should be compared to

5Note that the probabilities under π cancel when considering
the ratio of the weights.

the average value of π (0.06 (0.10)) and the WIS estimate
using the true behavior policy (0.38 (0.27)).

5 RELATED WORK

Issues with importance sampling methods for OPE are well
known. Several works aim at describing issues related to
high variance [Gottesman et al., 2019], or mitigating them
using methodological advances [Precup, 2000, Thomas and
Brunskill, 2016, Jiang and Li, 2016, Schneeweiss et al.,
2009, Swaminathan and Joachims, 2015]. Others aim to
use weights to identify a new study population for which
the policy’s value can be more efficiently estimated [Li
et al., 2018a, Fogarty et al., 2016]. Oberst et al. [2020]
emphasize the value of interpretability in this endeavour
to communicate the generalizability of the estimate. Our
method is compatible with all three approaches, allowing
for transparent descriptions of variance issues, identifying
new study populations and for use as plug-in estimates.

Interpretability is a an important component of learning
systems deployed in increasingly critical functions [Rudin,
2019, Lipton, 2018]. Rule-based estimators, such as rule
list [Wang and Rudin, 2015] and decision trees, are often
favored for their short descriptions but generalize poorly to
sequential inputs which are the focus of this work. Gottes-
man et al. [2020] proposed an approach for interpretable
OPE which highlights transitions in data whose removal
would have a large impact on the estimate. This approach is
related to ours but answers a different set of questions.

Evaluating policies using direct sample-to-sample compari-
son has a long tradition in policy evaluation through the use
of matching estimators of causal effects, see e.g., [Rosen-
baum and Rubin, 1983, Rubin, 2006, Kallus, 2020]. While
favored for its transparency, this approach is typically only
used to compare two deterministic policies such as “treat
all” or “treat none”. Matching often relies either on speci-
fying a similarity function in advance or on an estimate of
the behavior policy. In high-dimensional settings, this often
leads to bias or lost interpretability. Our approach aims to
combine the transparency of matching estimators with the
flexibility of representation learning methods.

6 CONCLUSION

In this work, we have studied off-policy evaluation (OPE)
using importance sampling (IS) in the case where the behav-
ior policy µ is unknown and must be estimated from data.
While IS is a popular OPE method, it may be difficult to
assess the quality of an IS value estimate. Standard practices,
such as inspecting importance weights, provide only an av-
erage or a per-sample view of potential issues. To address
this issue, we proposed estimating the behavior policy for IS
using prototype learning to better explain patterns in policy



Table 1: A summary of performance on the sepsis test data for different estimators of the behavior policy pµ(A | Ht). For
ProNet and ProSeNet, n = 10 and q = 2. The 95 percent confidence intervals are calculated from 1000 bootstraps.

Model Accuracy (↑) SCE (↓) AUC (↑)
LR 0.38 (0.38, 0.39) 0.0112 (0.0110, 0.0115) 0.88 (0.88, 0.88)
RF 0.62 (0.61, 0.62) 0.0037 (0.0034, 0.0039) 0.93 (0.93, 0.93)
Post-hoc clustering 0.44 (0.44, 0.45) 0.0097 (0.0096, 0.0101) 0.86 (0.85, 0.86)
FNN 0.61 (0.61, 0.61) 0.0041 (0.0039, 0.0044) 0.93 (0.92, 0.93)
ProNet (n = 10, q = 2) 0.56 (0.55, 0.56) 0.0069 (0.0067, 0.0072) 0.90 (0.90, 0.90)
RNN 0.62 (0.62, 0.63) 0.0056 (0.0053, 0.0058) 0.94 (0.94, 0.94)
ProSeNet (n = 10, q = 2) 0.57 (0.57, 0.58) 0.0057 (0.0054, 0.0059) 0.91 (0.91, 0.91)

decisions and value estimates. We demonstrated our idea
using a real-world example of sepsis management. While
the use of prototypes increases the approximation error, we
found that prototype models have the capacity to perform
similarly to plain neural networks.

When reflecting upon the results of the sepsis study it may
seem strange that it would be advantageous to never treat pa-
tients at the onset of sepsis. Even though prototypes serve as
a tool for inspecting policies and value estimates, they do not
answer all questions. For example, there may be variables
affecting both the treatment and the outcome that are not
present in the observed data. In such a case, the ignorability
assumption defined in Section 2 no longer holds. Failure
to detect such an issue is not a limitation of prototypes;
ignorability cannot be verified by statistical means.

A limitation of our analysis is that it does not separate dif-
ferent types of errors introduced by prototype learning. We
conjecture that a model with fewer prototypes is more likely
to overestimate overlap between behavior and target policies,
rather than underestimate it, due to increased smoothness in
the estimated behavior policy. This will likely result in less
extreme importance weights and lower variance, potentially
at the cost of increased bias. We hope to provide analysis
which more precisely characterizes the approximation error
as a function of the number of prototypes in future work.

Finally, we have used subsequences of all variables in pa-
tient histories as prototypes. This choice is aligned with the
literature on sequence prototypes but is not the only option.
For example, in applications of prototype learning to image
classification, parts of images were used as prototypes [Li
et al., 2018b], not entire images from the training set. To
simplify description further and improve interpretability in
policy evaluation, we may define prototypes as sequences of
only variables which are important for the behavior policy.
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