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Abstract
We propose a new framework, SIDeQ, that001
enables non-experts to indirectly annotate002
the meanings of natural language utterances003
by answering Simple Informative Denotation004
Questions. We take Text-to-SQL as a case005
study. Given a natural-language database query,006
SIDeQ generates a prior over SQL candidates007
by running a seed semantic parser (e.g., Codex),008
but it does not show these candidates to the009
annotators. Instead, it asks them to evaluate010
the natural-language query on various concrete011
databases, and upweights the candidates that012
are consistent with their responses. For efficient013
interactions, we synthesize these databases to014
maximize the expected information gain of015
knowing the correct evaluations, while keeping016
the question simple by reducing the database017
size. We build an interface based on SIDeQ and018
recruit non-experts to annotate a random sub-019
set of 240 utterances from the SPIDER develop-020
ment set. Our system with non-experts achieves021
the same annotation accuracy as the original022
SPIDER expert annotators (75%) and signifi-023
cantly outperforms the top-1 accuracy of Codex024
(59%). Finally, we analyze common mistakes025
by database experts without SIDeQ and those026
by non-experts unfamiliar with databases.027

1 Introduction028

The goal of semantic parsing is to map a natural lan-029

guage utterance u to a program s, which can be exe-030

cuted in an environment or possible world w (Dahl,031

1989; Berant et al., 2013; Andreas et al., 2020).032

For example, given a user utterance u “How old033

is the youngest person,” we can map it to the SQL034

s = SELECT MIN(AGE) FROM PEOPLE, exe-035

cute it on a database w about people, and return036

a value v to the user.1 However, it is challenging037

to scalably collect program annotations for natural038

language utterances, since this requires experts in039

the target programming language.040

1Thus, s can be regarded as a function that maps an input
w to an output v.

The programming by examples (PBE) frame- 041

work (Lavrac and Dzeroski, 1994) opens up a pos- 042

sibility: even though the non-experts cannot pro- 043

duce a program s that implements u, they can pro- 044

duce example input-output pairs (w, v) such that 045

v = s(w). Then a program synthesis algorithm 046

can guess the target program s based on the ex- 047

amples. This framework has been applied to syn- 048

thesize regular expressions (Gulwani, 2011), SQL 049

queries (Wang et al., 2017), and visualization pro- 050

grams (Wang et al., 2021), among others. However, 051

it might take our non-expert annotators a lot of 052

effort to write down a sufficient set of example 053

pairs for each utterance; moreover, some of these 054

examples might not be necessary to determine the 055

semantic parse. 056

We propose a new framework, SIDeQ, which 057

combines the semantic parsing and the PBE 058

paradigms and enables non-experts to anno- 059

tate complex programs by answering Simple 060

Informative Denotation Questions. Given an ut- 061

terance u, we generate a prior p over program can- 062

didates; then we reduce our uncertainty as to the 063

correct program by synthesizing a possible world 064

w (e.g. database), evaluating the candidates on w, 065

and asking the annotators which return value is cor- 066

rect. Since it is sometimes infeasible to pin down 067

the correct candidate with one w, we iteratively 068

reduce the entropy by interactively asking further 069

questions in the same way. If annotators may make 070

errors, even more questions are needed to achieve 071

a small entropy, with redundant questions being 072

useful (Figure 1 left). 073

For efficient interactions, we synthesize w at 074

each step that 1) maximizes the expected informa- 075

tion gain of knowing the correct return value v∗ and 076

2) is simple enough that the annotators can easily 077

evaluate u (Figure 1 right). Using information gain 078

spares the annotators from spending their time on 079

uninformative examples. Our framework is an in- 080

stantiation of active learning (Settles, 2011), where 081
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❶ Our framework iteratively refines the SQL 
distribution by asking non-experts what option 
they prefer based on synthesized databases.

We use a semantic 
parser to generate a 
distribution of SQLs.

Name Age Section
Eren 26 A

Mikasa 23 A
Reiner 19 B

We iteratively 
refine the SQL 
distribution.

19

23

26

q1

q2

q3

SELECT MIN(Age) from People 

WHERE Section = ‘A’

SELECT MIN(Age) from People q1

SELECT MAX(Age) from People 

q2

q3

We ask non-experts 
which returned value 
is correct.

q1

q2

q3

We synthesize a 
database based on 
the SQL distribution.

Execute SQLs on the 
synthesized database

❷ We synthesize databases based on the 
minimal informative criteria before asking the 
non-experts to compute the correct answer.

Utterance: How old is the youngest person from section A? 

SELECT MIN(Age) from People 

WHERE Section = ‘A’

SELECT MIN(Age) from People q1

q2

Name Age Section
Eren 26 A

Mikasa 23 A

23

23

q1

q2

NOT INFORMATIVE!! No 
information gain of knowing 
which value is correct.  

Synthesis 
Attempt 1

Not Informative 😔 

Synthesis 
Attempt 2

Name Age Section
Eren 26 A

Mikasa 23 A
Armin 19 A
Annie 18 B
Reiner 20 B
Bertolt 22 B
Historia 20 A

Jean 29 A
Connie 28 A
Sasha 27 A

18

19

q1

q2

NOT SIMPLE!! Might take a 
long time to answer the 
question from this large table. 

Name Age Section
Eren 26 A

Mikasa 23 A
Reiner 19 B

Synthesis 
Attempt 3

18

19

q1

q2

Both informative and simple. 

p0

p1

Figure 1: Left: Our SIDeQ framework for annotating complex programs with non-experts. Right: We optimize the
database content to generate a simple and informative question about the denotation.

we maintain a prior over the function space and082

actively query the annotators with function input083

that maximizes information gain.084

We apply our framework to annotate Text-to-085

SQL data, where each s is a SQL query, p is gener-086

ated by Codex (Chen et al., 2021a) , w is a database,087

and the annotators’ effort is approximated by the088

number of records in w. §3 proposes a practical089

optimization algorithm that maximizes the infor-090

mation gain of a small database. Using the opti-091

mized database w, a simulated perfect annotator092

with SIDeQ can achieve 91% accuracy on SPIDER093

by inspecting two databases per utterance with on094

average 6 records, while using the original database095

from SPIDER can only achieve 86% accuracy with 096

on average 30K records (§5). 097

We built an interface designed to be user-friendly 098

based on SIDeQ and evaluated its practical value 099

(§6). We select a random subset of 240 utterances 100

from the SPIDER development set, improve the 101

SQL annotation with SIDeQ, and treat them as 102

our gold standard. We recruit 11 English-speaking 103

non-expert participants to annotate them with our 104

interface, with each utterance examined by 2.5 non- 105

experts on average. Their annotations allow us to 106

achieve the same accuracy as the original SPIDER 107

annotation performed by database experts (75%), 108

which significantly outperforms the top-1 accuracy 109
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of Codex (59%). Finally, §7 analyzes errors made110

by database experts without SIDeQ and by our non-111

experts unfamiliar with databases.112

In summary, we propose the SIDeQ frame-113

work that enables non-experts to annotate com-114

plex programs, a practical algorithm to find a small115

database that maximizes information gain, a soft-116

ware interface to annotate Text-to-SQL data, and117

an annotation study with non-expert subjects. To118

facilitate future research, all code and data will be119

distributed under the CC BY-SA 4.0 license upon120

publication.121

2 Framework122

Basic Setup As our case study of SIDeQ, we will123

show how to synthesize a SQL query s from a natu-124

ral language utterance u in the context of a database125

schema c.2 s must capture the meaning of u and126

work properly for any database with schema c.127

We first feed c and u to a baseline semantic128

parser (e.g. Codex) to generate a distribution p over129

SQLs. We take p(s) as our prior probability that s130

is correct. We aim to improve p by posing useful131

denotation questions to non-expert annotators.132

Each question is generated by the following133

steps: 1) synthesize a database w consistent with134

the schema c, 2) display u along with w and up to135

K most likely return values in random order, and136

3) ask the annotator to choose one of the values137

(or “none of the above”) as the appropriate return138

value for the natural-language question u. Given139

the observed response o, our posterior distribution140

over s is then141

p(s | u,w, o) ∝ p(s) p(o | u, s, w) (1)142

= p(s) p(o | s(w))143

where p(o | s(w)) is our estimated probability that144

the annotator would have responded with o if s145

were the correct denotation of u and therefore s(w)146

were the correct return value. For example, if we as-147

sume that the annotator always responds correctly,148

then the posterior is obtained from the prior simply149

by zeroing out all SQLs s that are inconsistent with150

o (that is, such that s(w) ̸= o, or such that s(w) is151

shown as a choice in the case where o =“none of152

the above”) and then renormalizing.153

This procedure can be iterated by asking a se-154

ries of questions. We define pt(s)
def
= p(s |155

2The schema c specifies the table and column names, along
with constraints that the database must satisfy, e.g., value types,
uniqueness, and foreign key.

u,w1, o1, . . . , wt, ot) = pt−1(s) p(ot | s(wt)) to 156

be the posterior after t rounds of interaction, with 157

p0 being the prior and pT being our final estimate. 158

This basic setup is illustrated at the left of Figure 1. 159

We output the most likely SQL in pT as our 160

1-best annotation, which is then compared to a 161

gold standard to evaluate our framework. In future 162

work, the “soft labels” provided by the full distri- 163

bution pT could be used to retrain the semantic 164

parser p(s) as well as the annotator behavior model 165

p(o | u, s, w)3—that is, the two factors of (1)— 166

and the updated models could then be used in the 167

same manner as below to select further questions 168

whose answers would further reduce the models’ 169

uncertainty,4 closing the active learning loop. 170

Criteria for Synthesized Databases In general, 171

SIDeQ on round t must choose an multiple-choice 172

denotation question and an annotator to route it to. 173

In our case study, the annotator is fixed in advance 174

and the question is fully determined by choosing a 175

database wt. 176

We aim to choose an informative question wt. 177

Ideally we want wt to give different answers on 178

different high-probability candidates s, so that the 179

annotator’s response ot is likely to substantially 180

reduce our entropy. We quantify this reduction as 181

the expected information gain of wt, 182

Ipt−1(wt)
def
= H(pt−1)− Eot∼pt−1 [H(pt)] (2) 183

where H returns the Shannon entropy of a distribu- 184

tion over the candidates s.5 185

Recall that pt depends on the question wt and 186

also on the future response ot, which we assume 187

will be distributed as pt−1(ot) =
∑

s pt−1(s)p(ot | 188

s(wt)). Equivalently, the expected information 189

gain of wt is the mutual information under pt−1 190

between two random variables—the annotator’s re- 191

sponse Ot and the SQL S, neither of which is yet 192

known. 193
3This can be regarded as an EM procedure for

(locally) maximizing the incomplete-data likelihood∑
s p(s, o1, . . . , oT | u,w1, . . . , wT ). Estimation of pT for

all utterances (the E step) is alternated with retraining the
models on these soft labels (the M step) until convergence.

4By using a richer model of annotator behavior, we could
estimate the error rates of individual annotators on different
types of questions, which would help us to choose appropriate
questions and route them to appropriate annotators.

5Instead of using the expected reduction in entropy, an
alternative would be the expected reduction in Bayes risk,
Eot∼pt−1 [Es∼pt [Eŝ∼pt−1 [loss(ŝ | s)]−Eŝ∼pt [loss(ŝ | s)]]].
Here loss(ŝ | s) quantifies the loss of using ŝ in the application
when s is correct, e.g., some measure of its expected error on
a random database w. This focuses the questions on resolving
consequential errors, not those where ŝ(w)=s(w) for most w.
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We also aim to keep our questions simple. For194

example, if wt is a database with 1,000 records195

(rows), it may take the non-experts a long time to196

calculate the correct return value. We denote their197

effort to choose ot from the list of ≤ K options as198

|wt| and model it crudely as being proportional to199

the total number of records.6200

The right of Figure 1 illustrates these two crite-201

ria visually. §3 proposes a heuristic algorithm A202

that seeks a database wt that is both simple and203

informative.7204

Choosing u to Ask Questions If only one utter-205

ance needs annotation, we would repeatedly ask206

non-experts to answer questions for this utterance207

until our budget is exhausted. Annotator error208

means that we can never be 100% certain to have209

identified s. However, we usually need to annotate210

a set of utterances; we need to decide when to stop211

short of certainty and move on to the next utterance.212

In our work, we ask 1–3 questions consecutively213

for each utterance, stopping the interaction after214

round t if 1) some candidate s has pt(s) > 0.9,8 or215

2) A fails to find a small informative database.9216

In principle, we could stop after 0 questions if217

p0 is already confident about a candidate. However,218

Codex is not calibrated on our task and may be219

falsely confident, so we reduce risk by asking at220

least one question per utterance. We could also221

switch freely among utterances in search of ques-222

tions that yield the highest information gain per223

unit effort. However, followup questions about the224

same utterance are presumably cheaper than switch-225

ing to a new utterance; this phenomenon should be226

reflected in the effort measure (footnote 6) and also227

motivates a non-myopic policy (footnote 7). We228

leave these refinements to future work.229

6Of course this effort model could be enriched, to consider
the number of options as well as the detailed structure of u
and wt. We could tune the parameters of such a model to
predict observed annotator response times.

7Note that this is a so-called myopic (greedy) policy that
only optimizes the action wt in isolation. In principle, we
could do a better job by looking ahead to future rounds. How-
ever, the myopic strategy is common in interactive protocols
for information acquisition, such as adaptive quadrature or
Bayesian optimization (Schulz et al., 2018).

8We tuned this threshold such that, under the prior p0,
an ideal annotator will end up answering an average of two
questions per utterance.

9For example, the SQL query SELECT B FROM TABLE
LIMIT 100 returns the first 100 records of the column B. It
cannot be distinguished from SELECT B FROM TABLE by
any w whose TABLE has ≤ 100 records.

3 Optimizing the Database Content 230

We maximize the information gain over all 231

databases that conform to schema c (which con- 232

trols the number of tables in the database)and have 233

at most R = 15 total records. Formally, we search 234

for 235

w∗
t = argmax

wt:|wt|≤R
Ip′(wt). (3) 236

where p′ is a truncation of pt−1 to just the top-16 237

SQL candidates (for computational efficiency). We 238

will write I(w) below, suppressing the subscripts 239

t and p′, since they are fixed throughout the opti- 240

mization process. 241

Our algorithm can be summarized as “fuzz-then- 242

drop.” We first perform fuzzing by randomly gen- 243

erating a large number of large databases as in 244

Zhong et al. (2020)—see Appendix A for further 245

details—and keep the database w0 that maximizes 246

the expected information gain I(w0). We then iter- 247

atively drop records from w0 to attempt to satisfy 248

the simplicity criterion. 249

We use superscript ℓ to denote the iteration of 250

dropping records. Starting from ℓ = 0, we ran- 251

domly drop 5% of the records from wℓ to obtain 252

wℓ+1. If this results in a worse database, in the 253

sense that I(wℓ+1) < I(wℓ), we are willing to 254

retry up to 20 times in hopes of randomly finding a 255

wℓ+1 that is not worse than wℓ. Once we have our 256

final wℓ+1 (which may or may not be worse), we re- 257

peat the procedure, continuing through w0, w1, . . . 258

until we reach an empty database wL after L = 259

Θ(log |w0|) iterations. Let ŵ be the best database 260

smaller than R that we encountered during these 261

iterations: 262

ŵ = argmax
w∈{wl:ℓ∈[L]},|w|≤R

I(w) (4) 263

Since our algorithm is randomized, we repeat it 3 264

times and let w∗ be the ŵ with the largest I(ŵ). 265

Finally, we simplify w∗ by dropping tables and 266

columns that were not mentioned by any of the 267

top-16 SQL candidates (those in p′). 268

Our algorithm of dropping records from a large 269

informative database is heavily inspired by Miao 270

et al. (2019), which, given a database w such that 271

s1(w) ̸= s2(w), provably finds the smallest subset 272

of records in w such that s1 and s2 return differ- 273

ent values. Nevertheless, their algorithm works 274

only for a restricted family of SQLs and cannot 275

be adapted to optimize information gain. Our al- 276

gorithm does not provide any provable optimality 277

guarantee, but is more flexible and practical. 278
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In practice, however, applying the above algo-279

rithm naïvely can generate unnatural databases and280

lead to vacuous SQL execution, confusing the anno-281

tators. In Appendix A, we illustrate several typical282

confusions (Figure 3) and discuss how we fix them.283

4 Dataset and Evaluation Metrics284

We benchmark SIDeQ on the development set of285

SPIDER (Yu et al., 2018), an English Text-to-SQL286

dataset with 1034 utterance-SQL pairs distributed287

under the CC BY-SA 4.0 License. SPIDER is di-288

vided into domains, where each domain has a col-289

lection of (u, s) pairs based on the same database290

schema c.291

4.1 Dataset292

We use half of the 1034 (u, s) pairs (the validation293

split) to tune our annotator interface (§6) and our294

fuzz-then-drop algorithm, using a simulated annota-295

tor (§5). We use the remaining half (the evaluation296

split) to evaluate our system with simulated annota-297

tors (§5), and from these drew a random subset of298

240 utterances10 to evaluate our system with actual299

human annotators (§6). To make the latter evalua-300

tion less noisy, we checked and corrected the SQL301

annotations on these 240 utterances (§7.1), result-302

ing in corrections to 61 of them. We also identified303

and fixed several issues with the SPIDER database304

schema and content, with details in Appendix B.305

The corresponding author of the SPIDER dataset306

endorses our re-annotation and database updates.307

4.2 Obtaining the SQL Query Prior p0308

We generate a prior over SQL candidates using the309

Codex (Chen et al., 2021b) language model with310

few-shot prompting. Given an utterance u with311

schema c from the validation or evaluation split,312

we create the prompt (Figure 4) by concatenating a313

linearization of c, then eight (ui, si) pairs from the314

validation split11 associated with the same schema315

c, and finally the utterance u itself. Some of the316

examples (ui, si) are chosen randomly while others317

are chosen because ui has high TF-IDF similarity318

to u. We randomly sample 200 prompts for u by319

choosing different examples, and for each prompt,320

we ask Codex to generate 20 completions (SQL321

queries). Full details are given in Appendix C.1.322

We then filter out non-executable candidates and323

merge apparently semantically equivalent ones by324

10Balanced across domains as much as possible.
11Excluding pairs where si matches the correct answer s.

testing them on 1K randomly generated databases 325

with code from Zhong et al. (2020). This merging 326

eliminates competition among equivalent surface 327

forms (Holtzman et al., 2021), i.e., spurious ambi- 328

guity. We define p0 to be the empirical distribution 329

of semantic equivalence classes in our samples; 330

thus, each s in §2 is not actually a SQL query but 331

an equivalence class. 332

Treating the original SPIDER annotation as the 333

ground truth, the top-1 accuracy on the entire devel- 334

opment set is 72% and the top-16 accuracy is 94%. 335

More details are in Appendix C.2. These numbers 336

are not comparable to prior works, which usually 337

evaluate on unseen database domains in a zero-shot 338

manner (harder than our setting) but do not require 339

predicting string literals and DISTINCT keywords 340

(which we need for execution). 341

4.3 Evaluation Metrics 342

As mentioned in §2, our method produces a 1-best 343

SQL query for each utterance. We decompose its 344

errors into three categories. First, recall from §4.2 345

that we only consider 4000 samples (some being 346

duplicates), so the correct SQL might not appear 347

in our candidate list. Second, recall from §2 that 348

the interaction may stop before the correct candi- 349

date becomes the most probable one. Finally, the 350

annotators sometimes respond incorrectly. 351

To reflect these three types of error, we calcu- 352

late 1) the candidate ceiling—whether any can- 353

didate is semantically correct; 2) the interaction 354

ceiling—our 1-best accuracy if the annotator al- 355

ways responds correctly; and 3) the annotation 356

accuracy—our 1-best accuracy given the actual 357

annotations we collected. 358

5 Simulated Evaluation 359

We benchmark SIDeQ on the evaluation split under 360

the idealistic assumption that 1) the SQL query 361

provided by SPIDER is always correct, and 2) our 362

annotator always responds correctly by choosing 363

the value returned by that SQL query. 364

The candidate ceiling is 96% and the interaction 365

ceiling is 91%, which is in fact much higher than 366

the current annotation error rate in SPIDER, as we 367

will see in §6. We only need to interact with our 368

idealized annotator for 1.8 rounds on average, and 369

the databases that we present contain only 5.52 370

records on average. More detailed statistics can be 371

seen in Appendix D. 372

While SIDeQ aims to construct simple and in- 373
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formative questions about utterances, the example374

databases that were released along with the SPIDER375

domains yield less informative questions: using376

them lowers the interaction ceiling by 5%. They377

are also far less simple: their median size is 72378

records (and their mean size is 33,295 records due379

to large outliers). Human annotators cannot feasi-380

bly evaluate an utterance on such large databases.381

6 Human Interaction Study382

We built an interface designed to be user-friendly383

(§6.1). We recruited 11 non-experts to annotate384

them with our interface (§6.3), aggregated their re-385

sponses by learning a model of annotator accuracy386

(§6.4), and benchmarked their performance with387

the newly established gold standard (§6.5).388

Figure 2: A screen shot of our annotation interface
(§6.1). Appendix F and Figure 7 include more details.

6.1 Annotation Interface389

Figure 2 shows our interface. As described in §2,390

the annotator needs to choose the correct value on391

the right of the screen based on the utterance u (top)392

and the database w (left). In general, a value may393

be a relational table. The annotator can also choose394

to report that the question is ambiguous/confusing395

or none of the choices are correct. To make it396

easier to reason about w, we highlight all cells in397

all tables that have the same value as the the cell398

that the cursor hovers on. Appendix F includes399

more details about our interface.400

6.2 Expert Annotation401

To establish a clean gold standard, two of the au-402

thors annotated all 240 utterances using our own403

SIDeQ system. Whenever our two responses to a404

SIDeQ question were different, we reached a con-405

sensus through discussion. We closely examined406

the utterances where SPIDER’s SQL did not yield407

our consensus response on one or more questions,408

and corrected the SPIDER annotation if we felt that 409

our responses were strictly better. To avoid bias- 410

ing against the original annotations, we stuck to 411

the original ones whenever there were ambiguities, 412

and we double-checked each corrected annotation 413

by additionally writing down reasons why it we felt 414

it was better. As mentioned in §4.1, we ultimately 415

corrected 61 out of the 240 SQL annotations. §7.1 416

analyzes these corrections in greater detail. 417

6.3 Non-Expert Annotation 418

We split the 240 utterances into 8 units, each of 419

which contains 30 utterances across 4–5 database 420

domains and proved to take 1–2 hours to annotate 421

with our interface (2–4 minutes per utterance). 422

In this experiment, we configured our system 423

to treat all annotators identically. Thus, all an- 424

notators for utterance u received the same first 425

question—the questions for one annotator were 426

not influenced by the responses from previous an- 427

notators (even though that is a more effective way 428

to choose questions). For the annotator behavior 429

model p(o | u, s, w) in equation (1), we assumed 430

that every annotator would have an 0.3 chance of 431

responding uniformly at random, and would other- 432

wise give the correct response. 433

Recruiting Non-Experts We recruited university 434

students who 1) are not pursuing/have not received 435

a Computer Science degree and 2) have no prior 436

experience with SQL to complete the annotation 437

tasks. Each annotator could annotate any number 438

of units (from 1 to 8) as they wished, but had to 439

annotate them fully. For each unit we reward them 440

with $15 as a base payment and $5($10) bonus if 441

their response agreed with our corrected gold stan- 442

dard > 85%(95%) of the time. We recruited in total 443

11 participants and received 20 units of annotation, 444

and hence each utterance was examined by 2.5 par- 445

ticipants on average. For each utterance, we asked 446

them 1.84 denotation questions on average and the 447

databases that we present contain only 8.71 records 448

on average 449

Participation Procedure We ask each non- 450

expert annotator to: 1) sign a consent form to par- 451

ticipate in the study, 2) watch a 12-minute video 452

tutorial that contains our annotation instructions 453

and explains the basics of foreign and primary keys, 454

3) complete the annotation task, and 4) fill out an 455

exit survey which collects information about their 456

major and prior programming experiences. Our 457
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tutorial video12 can be seen here and its transcript458

can be seen in Appendix G. An example unit of the459

annotation task can be seen here.460

6.4 Learning an Annotator Accuracy Model461

After the annotations were collected, we used them462

to improve the annotator error model of §6.3 by463

learning parameters αn for each annotator n and βd464

for each SPIDER domain d. For a given n and d, the465

chance that the annotator answers at random is no466

longer fixed at 0.3, but is modeled as σ(αn+βd+b),467

where σ is the logistic function and b is a bias term.468

Larger αn and βd predict higher error rates.469

We learn the parameters as outlined in foot-470

note 3, by optimizing the log of the incomplete-data471

likelihood
∑

s p(s, o1, . . . , oT | u,w1, . . . , wT ),472

summed over all utterances u. Of course, the con-473

ditional distribution shown here is now sensitive474

to the domain d of u and the annotator nt who an-475

swered question wt. Notice that just as in other476

adaptive crowdsourcing work (§8), we assume that477

we do not have access to the gold value of s, but478

must impute it. We will tend to learn a lower error479

rate for annotators who tend to agree with other an-480

notators and with Codex, in order to explain these481

apparently non-random agreements.482

6.5 Results483

After tuning the annotator error model as above,13484

we make our 1-best SQL predictions as explained485

in §2. On this dataset, the candidate ceiling is 88%486

and the interaction ceiling is 84%. Our method487

achieves 75% accuracy, which significantly outper-488

forms the top-1 candidate of Codex (59%) and is489

comparable to the accuracy of the original SPIDER490

annotation performed by database experts (75%).491

A breakdown is shown in Table 3.492

This does not imply that non-experts with SIDeQ493

can necessarily replace expert annotators. At least494

in this experiment, our non-experts are still far from495

recovering the full gold standard, which was estab-496

lished by experts with the help of SIDeQ (§6.2).497

The breakdown statistics based on difficulty split498

can be seen in Table 3. In addition, our method499

relied on a baseline semantic parser p0 that was500

constructed using existing expert annotations (in501

our case, used to prompt for Codex). Still, our502

12Voiceover removed due to the anonymity requirement.
13We do not tune the semantic parser in this paper. Indeed,

we do not even have the ability to fine-tune Codex (although
in principle we could have built our own tunable semantic
parser, which might consult Codex).

hope is that if we start with any baseline semantic 503

parser that assigns non-negligible probability to the 504

correct denotations, then instead of improving it 505

by ordinary supervised training on a set of imper- 506

fect expert denotations, we could instead reach or 507

even surpass the same accuracy by running SIDeQ 508

with experts and/or non-experts for long enough, 509

perhaps even at lower total cost. 510

7 Analysis 511

7.1 Sources of Error in Expert Annotations 512

We discuss two representative cases below, and 513

more in Appendix H. 514

Ties for Extremals For the utterance “Who 515

is the youngest person?”, the SPIDER annota- 516

tion is SELECT NAME FROM PEOPLE ORDER 517

BY AGE LIMIT 1. As SIDeQ discovers, in case 518

of ties, non-experts prefer a SQL that will return 519

all of the people who have the smallest age, not 520

just return the first one. 28 out of the 61 updated 521

annotations fall into this category. 522

INNER JOIN vs. LEFT JOIN Suppose the ut- 523

terance is “List singer names and number of con- 524

certs for each singer.” and the database contains 525

a table of singers and a table with records (s, c) if 526

singer s performed in concert c. The SPIDER an- 527

notation only uses INNER JOIN and hence fails 528

to return singers with count 0 (who have not per- 529

formed in any concert). 8 of the updates fall into 530

this category. 531

Remark Since most of the Text-to-SQL models 532

had low performance 3 years ago, Yu et al. (2018) 533

favored short SQL annotations to make learning 534

easier. These annotation conventions were shared 535

between training and test sets to form a coherent 536

structured prediction task (internal validity). Now 537

that structured prediction is working well enough 538

that the predictions could be used in real-world 539

settings, we should turn to assuring that the SQL 540

annotations actually have the desired effects (exter- 541

nal validity). SIDeQ can help here (§6.2). 542

7.2 Sources of Error in Non-Expert Responses 543

Ambiguous Utterances Consider the utterance 544

“What are the names of properties that are either 545

houses or apartments with more than 1 room?” 546

Should it be parsed as “(house) or (apartment and 547

room > 1)”, or “(house or apartment) and room 548

> 1”? Another example: “Count the number of 549

7

https://youtu.be/-MlIcCQ21xs
http://35.225.126.31:4200/v0104_4pm_8


friends Kyle has.” What to do when there are two550

students named “Kyle”?551

Unnatural Databases Database schemas some-552

times omit to specify common-sense constraints.553

For example, according to common sense,554

“BIRTHDAY + AGE" should always yield the cur-555

rent year, so sorting by BIRTHDAY ascendingly is556

equivalent to sorting by AGE descendingly. How-557

ever, SIDeQ looks for databases w that distin-558

guish between these two strategies, and in fact it559

is able to synthesize them from the SPIDER exam-560

ple database because some of the records in that561

database do not conform to this unstated constraint.562

These databases are obviously unnatural and con-563

fuse the non-experts.564

Heavy Computations It is hard for the annotator565

to do arithmetic, e.g., find the average of eight 9-566

digit values. To help SIDeQ avoid demanding such567

computations, we should improve our annotator568

effort model to recognize their difficulty.569

8 Related Work570

Semantic Parsing Semantic parsers have im-571

proved significantly over the past decades (Zettle-572

moyer and Collins, 2007; Jia and Liang, 2016;573

Scholak et al., 2021a). Recent large pretrained574

models can perform the task without task-specific575

architectures (Scholak et al., 2021b) or even in a576

zero/few-shot manner (Shin et al., 2021; Brown577

et al., 2020; Chen et al., 2021a). However, gen-578

erating semantic parsing datasets is still challeng-579

ing since it requires experts. Wang et al. (2015)580

addresses this by synthetically generating logical581

forms, using templates to explain them in natural582

language, and asking non-expert crowdworkers to583

paraphrase them. However, the paraphrases are usu-584

ally restricted in linguistic diversity (Larson et al.,585

2020). Ideally we want non-experts to annotate586

programs based on naturally occurring utterances,587

and we predict SIDeQ will achieve higher accuracy588

with better seed semantic parser in the future.589

Programming by Example PBE has been ap-590

plied to synthesize regular expressions (Gulwani,591

2011), tensor manipulation (Shi et al., 2020), data592

analysis (Bavishi et al., 2019), and visualization593

(Wang et al., 2021) programs, etc. Our work can594

be extended to tackle these problems as well as595

long as there is a seed semantic parser and we can596

optimize program inputs/worlds to design simple597

and informative denotation questions.598

Some other recent works such as Ye et al. (2020); 599

Baik et al. (2020) also try to combine semantic pars- 600

ing with PBE. However, both of them require the 601

users to provide the input output examples, which 602

can be time-consuming to write. Pasupat and Liang 603

(2016) asked non-experts denotation questions by 604

synthesizing table inputs, but they did not optimize 605

for question simplicity and focused on a simpler 606

single-table setting. 607

Database Research The semantics of SQL have 608

been extensively studied by the database research 609

community. More related to our work, Green et al. 610

(2007) and Chu et al. (2017b) develop methods to 611

prove semantic equivalence of SQLs, Wang et al. 612

(2017) synthesizes SQL from input-output exam- 613

ples, Chu et al. (2017a) searches for a database 614

(counterexample) that makes two SQL return dif- 615

ferent values and Miao et al. (2019) minimizes the 616

size of such a counterexample. 617

Adaptive Crowdsourcing Under SIDeQ, some 618

questions are inherently difficult to answer and 619

competent annotators significantly contribute to- 620

wards the final accuracy. How to find the right 621

annotators to answer the right questions and weight 622

their responses appropriately, with as little super- 623

vision as possible? Like us, Bachrach et al. (2012) 624

and Whitehill et al. (2009) model each individual 625

annotator’s capability and each question’s difficulty 626

and learn these parameters through agreement in- 627

formation, and Yan et al. (2011) explores an active 628

learning setup. The line of work emerging from 629

these papers strongly influenced our perspective. 630

AI-Augmented Annotation An emerging line of 631

“human-in-the-loop” systems (which have a long 632

history in machine translation) constructs datasets 633

using AI-generated candidates re-ranked/filtered 634

by (a learned model of) human preferences (Sti- 635

ennon et al., 2020; Wiegreffe et al., 2021). It is 636

increasingly important to determine human pref- 637

erences over complex outputs, such as full-book 638

summaries (Wu et al., 2021). Our work presents a 639

strategy for an AI system to rerank complex outputs 640

(formal representations of denoted meanings) by 641

asking simple informative questions of annotators 642

who do not have to understand the outputs directly. 643

The annotators’ responses feed back to improve the 644

system’s predictions and focus its future questions. 645
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9 Ethical Considerations646

Our human interaction study was approved by the647

university Institutional Review Board and our sur-648

vey and interface did not collect any personal iden-649

tifiable information. We note that our system is650

still far from perfect, so it should not be used to651

synthesize SQL queries or other semantic forms for652

high-stakes scenarios without a careful analysis of653

errors and the downstream harms that they might654

cause.655
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Supplementary Material874

A Other Synthesis Constraints875

Overall, we follow the recipe of Zhong et al. (2020)876

to generate large informative databases that con-877

form to a given schema c. We draw upon an exist-878

ing database in this domain (provided by the SPI-879

DER dataset in our experiments) to obtain plausible880

cell values. Following Zhong et al., we first synthe-881

size cell values for all the “parent" columns (i.e.,882

the columns that are being referenced), and then883

populate child columns with random subsamples884

from the parent columns.885

Naturalness of ŵ As shown in Figure 3 (a), unre-886

stricted random cell values can confuse non-expert887

annotators unfamiliar with databases. Therefore,888

we now always use individual cell values in the889

existing databases14 or their minor perturbations15890

to generate large informative databases, rather than891

synthesizing completely random values.892

Database records might also be confusing even893

if individual cell values are not. For example, the894

annotator can be confused by counterfactual infor-895

mation where U.S. is in Asia as shown in Figure896

(b); therefore, we sometimes initializes w0 with897

the existing database. The annotator can also be898

confused by uncommon patterns where two people899

have the same name but different IDs; therefore,900

we sometimes enforce a column to contain unique901

values as long as the column content in the existing902

database satisfies the uniqueness constraint.903

Non-vacuous Execution Extremely small ŵ fre-904

quently leads to undefined denotations. For exam-905

ple, since the maximum value for zero element is906

undefined, the correct denotation is NULL, which907

confuses non-expert annotators without computer908

science background (Figure 3 b). Therefore, we909

always add a small probability mass of RETURN910

NULL to the distribution S , which incentivizes our911

algorithm to produce ŵ such that other SQL candi-912

dates will return non-NULL values.913

Even if the returned value is well-defined, small914

ŵ can lead to confusion if some operators are not915

needed to answer the question. For example, in Fig-916

ure 3 (e), asking the maximum over one element917

might appear confusing, as we do not need the max918

operator to obtain a correct denotation. Therefore,919

14Text-to-SQL datasets are usually released with databases
with values.

15E.g., ±1 for integer values.

we always add into S a small probability mass of 920

“neighbor queries" (Zhong et al., 2020) obtained by 921

dropping aggregation operators and WHERE clauses 922

from SQL candidates in S . This incentivizes our al- 923

gorithm to produce ŵ such that the SQL candidates 924

will meaningfully use their operators. 925

Managing Tradeoffs between two Criteria All 926

the above tweaks make a tradeoff between the infor- 927

mative and the simplicity criteria in some way: we 928

impose restrictions on w or modify S to decrease 929

the annotator effort while sacrificing information 930

gain we can potentially achieve. How do we decide 931

when to apply certain tweaks? 932

In our paper, we always add small probabilities 933

of neighbor queries and RETURN NULL to S and 934

use cell values from the existing database. We 935

then consider 3 types of tweaks that we sometimes 936

apply: 1) w0 satisfies the uniqueness constraint, 2) 937

w0 is initialized with an existing database, and 3) 938

|ŵ| ≤ 15 rather than 30. We define in total 23 = 8 939

different “configurations" 0 ≤ c < 8, each of 940

which specifies what subset of tweaks to apply. For 941

example, c = 6 = B110 means we apply tweaks 942

1) and 2). We enumerate from c = 7 to 0 until 943

I(ŵ) ̸= 0; in other words, we start by applying all 944

the tweaks and drop the tweaks gradually until we 945

obtain a ŵ with positive expected information gain. 946

B Fixing SPIDER Databases 947

We found several issues with the SPIDER databases 948

and modified them as follows: 949

• Some SPIDER databases do not conform to the 950

foreign key constraint, i.e. some of the chil- 951

dren columns contain values not in the parent 952

columns they are referring to. We enforce the 953

foreign key constraint by dropping the illegal 954

records. 955

• We identify missing foreign key constraints 956

under some domains and add them. 957

• Some Date typed columns are string-valued 958

and use English words to represent values, 959

e.g. "nov1,2021"; as a result, "dec1,2021", 960

which is chronologically later, will be con- 961

sidered smaller alphabetically. We fix this 962

by canonacalizing date representations in a 963

“yyyy-mm-dd" format. 964

• The voter_1 domain does not contain an 965

appropriate foreign key design; since fixing it 966
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Unnatural 
values

Counterfactual 
content

Uncommon 
pattern

Vacuous 

answer

Name Age Section
asdg 102 ^&(#@
qwerty 200 pqogen

Country Continent
U.S. Asia
Canada Africa

ID Name Age
1 Eren 26
2 Eren 23

Utterance: How old is the youngest person from section A? 

Name Age Section
Reiner 26 B

Name Age Section
Eren 26 A

Vacuous 
operator

NULL

26

(a)

(b)

(c)

(d)

(e)

Figure 3: Examples of unnatural databases (above) and
vacuous execution (below), which motivates several
tweaks in Appendix A. In (a) the individual cell val-
ues are unnatural. In (b) the records contradict world
knowledge. In (c) the database contains two persons
with the same name, which is atypical (but possible). In
(d) the denotation of the utterance is undefined, since
we cannot take the maximum over zero element. In (e)
we do not need the max operator to obtain the correct
denotation, since there is only one person in section A.

would require an effort of re-annotating all 15967

associated SQLs, we chose to exclude them968

from our evaluation.969

We update the test suite for semantic evaluation970

(Zhong et al., 2020) accordingly based on the new971

database schema.972

C Generating SQL Candidates973

C.1 Prompting Codex974

As sketched in §4.2, we obtain SQL program975

candidates through few-shot prompting, where976

the database schema is followed by 4 or 8 (with977

50% probability) pairs of natural language ut-978

terances with their corresponding SQL queries979

from the SPIDER development set from the subset980

of utterance-SQL pairs associated with the same981

database schema. To select each in-context exam-982

ple, with probability 50% we choose a random983

example that has not been selected from the vali-984

dation split, and with probability 50% we choose985

the most similar example that has not been selected986

k easy medium hard extra all
1 0.87 0.80 0.56 0.45 0.72
2 0.94 0.89 0.74 0.63 0.84
4 0.96 0.93 0.87 0.70 0.89
8 0.97 0.95 0.95 0.78 0.92
16 0.98 0.96 0.98 0.81 0.94
32 0.98 0.96 0.98 0.85 0.95

Table 1: The top-k accuracy for the SQL candidates gen-
erated by Codex on SPIDER (Yu et al., 2018), calculated
on each split.

easy med hard extra all
Candidate 0.99 0.97 0.98 0.88 0.96
OurDB 0.93 0.95 0.97 0.75 0.91
OrigDB 0.98 0.90 0.83 0.66 0.86

Table 2: The accuracy ceilings on each difficulty split.
“med" stands for medium difficulty. Candidate means
the candidate ceiling. OurDB means the accuracy
ceiling achieved by querying a simulated annotator
with the small informative databases we synthesize.
OrigDB means the accuracy ceiling by querying with
the databases released by the SPIDER dataset.

based on TF-IDF similarity. Finally we append 987

the target natural language utterance u to be anno- 988

tated, and ask Codex to continue generating text 989

after this prompt, which generates a candidate SQL 990

program corresponding to u. An example prompt 991

can be seen in Figure 4. We sampled 200 different 992

prompts, which varied in their selected examples, 993

and for each prompt we sampled 20 candidates 994

from Codex with temperature=1.0 and top_p=0.95. 995

C.2 Top-K Accuracy 996

We report the top-k accuracy from the prior p0 over 997

SQL queries (§4.2) in Table 1, and graph the top-k 998

accuracy curve in Figure 5. 999

D Simulated Interaction Statistics 1000

The breakdown statistics of candidate and interac- 1001

tion ceiling (see §4.3) can be seen in Table 2, and 1002

the distribution database sizes and number of round 1003

of interaction can be seen in Figure 6. 1004

E Human Annotation 1005

We provide breakdown statistics on the annotation 1006

accuracy of different sources based on difficulty in 1007

Table 3. 1008
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CREATE TABLE Highschooler(

        ID int primary key, 

        name text, 

        grade int)

CREATE TABLE Friend(

        student_id int, 

        friend_id int,

        primary key (student_id,friend_id),

        foreign key(student_id) references Highschooler(ID) ON DELETE CASCADE,

        foreign key (friend_id) references Highschooler(ID) ON DELETE CASCADE

)

[Other table schema omitted]


Write a query that answers "Count the number of high schoolers."

SELECT count(*) FROM Highschooler


Write a query that answers "What are the names of high schoolers who have 3 or more 
friends?"

SELECT T2.name FROM Friend AS T1 JOIN Highschooler AS T2 ON T1.student_id  =  T2.id 
GROUP BY T1.student_id HAVING count(*)  >=  3


[6 More examples omitted]


Write a query that answers "Find the average grade of all students who have some 
friends."

_________[Models’ Completion] ______

Figure 4: An example prompt we use for the Codex API. We obtain SQL program candidates through 4/8-shot
prompting, where the database schema (orange) is followed by 4/8 pairs of natural language utterance and their
corresponding SQL queries from the SPIDER development set, randomly sampled from the subset of queries
associated with the same database schema. Finally we concatenate the target natural language utterance u to be
annotated, and ask Codex to complete the prompt, which results in a candidate SQL program corresponding to u.

Figure 5: The top-k accuracy for the candidate SQL pro-
grams generated by Codex, after filtering and merging
candidates. On each difficulty split we plot the curve of
top-k accuracy (y-axis) and k (x-axis, log-scaled). The
numbers can be seen in Appendix Table 1.

Figure 6: The interaction statistics using the SPIDER
annotation to simulate an ideal annotator. Left: the
distribution of the size of the database c across each
round of interaction. Right: the distribution of the
number of rounds across difference utterance.
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easy medium hard extra all
Candidate Ceiling 0.91 0.91 0.92 0.69 0.88
SPIDER 0.93 0.78 0.63 0.50 0.75
Codex 0.78 0.65 0.43 0.36 0.59
SIDeQ r 0.75 0.71 0.65 0.49 0.67
SIDeQ m 0.83 0.80 0.73 0.47 0.75

Table 3: 1-best accuracy of various SQL prediction methods, broken down by the difficulty level of the utterance
(as categorized by SPIDER). Codex returns the most probable SQL according to p0. SIDeQ r does the same, after
eliminating SQLs that are inconsistent with the responses of a single randomly chosen annotator. SIDeQ m is our
full method, which returns the SQL with the highest posterior probability after we fit our model of annotator error.

Figure 7: A detailed screenshot of our interface, and the logical flow of follow up questions.
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Figure 8: An example database description page presented to users before they start answering questions for that
database.

F Interface1009

See Figure 7 for a detailed screenshot of our inter-1010

face. We implemented the front-end of our inter-1011

face with Angular and the back-end was built with1012

flask and Redis. Users presented with a sequence1013

of 40 distinct questions, and each question may1014

have multiple rounds. For each round, the user is1015

given a 4 minute time-limit before the interface au-1016

tomatically transitions to the next question. Before1017

being asked questions on a new database, the user1018

is presented with a page displaying all the tables1019

in the database alongside descriptions we wrote1020

for each table (see Figure Figure 8 for an example1021

screenshot). When answering questions, the user1022

is given a link back to this page for reference.1023

The user can either select one of the multiple1024

choice questions presented or select "No Answer1025

is Correct", and depending on their selection the1026

user is presented with a differing set of followup1027

questions. Regardless of their selection, we always1028

ask the user two optional followups: "if you think1029

the question is ambiguous, tell us why." and "if the1030

question looks confusing, tell us why." In addition1031

to these optional questions, we sometimes ask re-1032

quired followup questions. Specifically, if the user1033

is on their final round and selects an answer which1034

does not agree with the SPIDER annotation, we ask1035

them why they didn’t select the correct answer ac- 1036

cording to spider. Or if the user selects "No Answer 1037

is Correct", we ask "What is the answer you have 1038

in mind and why?" We use the users’ answers to 1039

these followups to collect information on the users’ 1040

reasoning in answering questions and to determine 1041

issues with the SPIDER dataset. 1042

We implemented a number of features in our 1043

interface to minimize the annotator effort. One 1044

of the largest challenges in this task is answering 1045

questions across several foreign keys. We imple- 1046

ment two distinct mechanisms to make this easier 1047

for users. Firstly we highlight all table values or 1048

foreign keys matching the value the mouse is cur- 1049

rently hovering over. Secondly, we give the user 1050

the option to merge all foreign keys into a single 1051

table by pressing a "merge" button. We allow the 1052

users to choose when to merge because there is a 1053

trade-off; while merged mode can make reasoning 1054

about foreign keys easier, it also can significantly 1055

increase the width of the tables visible to the user. 1056

Sometimes there are tables presented to the user 1057

that are not necessary for answering the question, 1058

so we give users the option to collapse tables to 1059

simplify their display. 1060
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G Video Transcript1061

Page 1 In this task, you will be asked to answer1062

questions from several tables.1063

Page 2 Here is the overall idea. You will be given1064

a question on the top of the page, several tables1065

on the left of the page, and you need to choose1066

one of the options on the right, that corresponds1067

to the correct answer. In this question, you are1068

asked to “Show name, country, age for all singers1069

ordered by age from the oldest to the youngest.”.1070

Therefore, we expect the correct option to list the1071

information about Joe Sharp first, since he is older.1072

We look at the options and B is correct. Notice that1073

A is wrong because it does not list the information1074

for all singers, and C is wrong because it lists the1075

singers from the youngest to the oldest.1076

After you submit the answer, our system will ask1077

you whether there is anything that appears ambigu-1078

ous or confusing. We don’t need it for this question1079

now.1080

Page 3 Let’s go through some more examples.1081

Page 4 In this question you are asked “How many1082

singers do we have?” This is a tricky question. First1083

notice that the tables have changed from before,1084

so you need to re-read the table. Secondly, there1085

are actually two singers, but they have the same1086

name. You should consider them to be two different1087

persons with the same name but different SSN, and1088

hence choose B.1089

There is a time limit shown at the top of the page,1090

and after 4 minutes the system will move on to the1091

next question.1092

Page 5 Takeaways:1093

• Names are different from IDs. Two different1094

people can have the same name.1095

• There is a time limit of 4 minutes for each1096

question.1097

Page 6 In this question you are asked to find the1098

song names of the singers above the average age.1099

The average age is the mean of these 4 numbers,1100

which is 34.5. The singers John and Rose have age1101

above 34.5, so we can find their songs, which are1102

sun and gentle man, which is D. Use a calculator if1103

you need to!1104

Also, notice that there are other tables, but they1105

are not relevant to the question. Feel free to ignore1106

them. You can also choose to collapse them if that1107

makes it easier, and you can click the button again 1108

to view it. 1109

Page 7 Takeaways: 1110

• Use a calculator if you need to. 1111

• Not every table is needed. 1112

Page 8 Here’s the same question and the same 1113

table. Let’s say somehow Sun and Gentleman is 1114

not one of the options, and then you should report 1115

that no answer is correct. Then we will ask you 1116

why you think no answer is correct. For example, 1117

you can write “gentleman and sun is correct. the 1118

average age is 34.5, John and Rose are above this 1119

age and have song gentleman and Sun”. 1120

The system asks us why we didn’t choose A, 1121

we can answer “sun is by Rose, who is older than 1122

34.5”. Please tell us enough information so that we 1123

can know why your choice is correct - for example 1124

if you just say “sun is also a correct answer”, it only 1125

describes the difference between the two options 1126

rather than explaining why it is correct. Giving us 1127

more information can help you win more bonus. 1128

Page 9 Takeaways: 1129

• Choose no option is correct and tell us why 1130

when you think no options are correct 1131

• Tell us why you didn’t choose an answer when 1132

we ask you to do so. 1133

Page 10 The question is “What are the full names 1134

of all players, sorted by birth date?” First, notice 1135

that there are a lot of answers in this case, and you 1136

need to scroll down to read through all of them. 1137

Secondly, there are a lot of ambiguities: for ex- 1138

ample, the question didn’t mention whether we 1139

should sort from youngest to oldest, or the reverse; 1140

secondly, the question does not mention whether 1141

the first and last name should be in the same col- 1142

umn. For these reasons, A, B are both correct. 1143

C, D are wrong because the question does not ask 1144

for birthday information; F is wrong because it 1145

only lists one player and G is wrong for including 1146

birthday information. Then we can write in the re- 1147

sponse: “ABE are all correct; not sure if we should 1148

sort them from the oldest to youngest or reverse; 1149

also not sure whether to put the first and last name 1150

into the same column.” But still, make your best 1151

guess, let’s say, A. 1152
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Then we click submit, and the system asks us1153

why we didn’t choose C. We explain that “the ques-1154

tion does not ask us for the birthday and it contains1155

redundant information”.1156

Page 11 Takeaways:1157

• There can be a lot of options. Make sure to1158

read through every of them1159

• When the question is ambiguous and multiple1160

answers are plausible, tell us why it is ambigu-1161

ous and what are the plausible answers. But1162

still, first make your best guess and submit.1163

Page 12 The question is “Give the names of coun-1164

tries that are in Europe and have a population equal1165

to 80000.” In this fictitious table, Brazil is in Eu-1166

rope and has a population of 80,000. Therefore,1167

the correct answer is A, even though we know that1168

Brazil is in fact in South America. However, it still1169

cannot stop us from answering the question based1170

on the table. Finally, there are many more coun-1171

tries in the world, beyond these three countries in1172

the table, but we should pretend that there are only1173

three countries in the world here.1174

Page 13 Takeaways:1175

• Try accepting the information from this table1176

as much as possible and focus on the part1177

useful for answering the question.1178

• If something is not present in the tables, pre-1179

tend that it does not exist.1180

Page 14 Here are some more difficult tables.This1181

is a database that contains information about battles1182

and death. The overall description of the databases1183

can be seen at the top of the page, which says: This1184

database contains information about battles, death1185

events, and ships. And then each table has its own1186

description as well. For example, in the ship table,1187

each row contains information about a ship, the 4th1188

row means the ship D was lost in battle with ID1189

4, and you can look up information about battle 41190

in the battle table. To make it convenient for you,1191

whenever you move your cursor to a value, all the1192

same values will be highlighted. Here we notice1193

that according to the 5th row, Ship E was also lost1194

in battle 4.1195

To view multiple tables at the same time, you1196

can choose to zoom out, like this. Then you can1197

zoom back in, like this. You can typically find this1198

option in the Help panel of your browser. Again, if1199

you think some tables are irrelevant, just collapse 1200

them like this. 1201

You don’t have to study the tables in detail, since 1202

they will probably change for the next question. 1203

Page 15 Takeaways: 1204

• You don’t have to study the table content in 1205

great detail, since they will be changing. 1206

• Zoom-in/out if you need to. You can find them 1207

in the helper panel of your browser. 1208

Page 16 This question is “Show names, results 1209

and bulgarian commanders of the battles with no 1210

ships lost in the ’English Channel”. 1211

The question asks for certain battles namely, 1212

those that did not lose ships in the English Channel 1213

[pause]. Let’s start by finding the battles that did 1214

lose ships in the English channel [pause]. Only 1215

Battle 5 did; it lost ship C there. So the other bat- 1216

tles, Battles 0 and 7, lost no ships there. In fact, 1217

Battle 0 lost no ships at all, which is why it doesn’t 1218

show up in the second table. We find the names 1219

of Battle 0 and 7, along with their other informa- 1220

tion. Therefore, the answer is E. One very common 1221

mistake people make is that they ignored the word 1222

“no”, and they chose the battles that lost the ship. 1223

Be careful and pay close attention to every word! 1224

Notice that there was originally the death table. 1225

We removed it from the display to make it easier 1226

for you. 1227

The phrase ’Bulgarian commander’ might send 1228

you looking for a table that tells you each 1229

commander’s nationality. But actually, Bulgar- 1230

ian_commander is a column in the battles table. 1231

Presumably this table lists battles that Bulgaria 1232

fought. Each battle had two sides, and this column 1233

is naming the commander for the Bulgarian side. 1234

You don’t have to fully understand how the tables 1235

are set up, but you should figure out enough to 1236

answer the question. 1237

Just to repeat, to make it easier for you to process 1238

this information, whenever your cursor moves to an 1239

ID or a piece of text, its counterpart in other tables 1240

will light up; whenever you click on a text, the 1241

counterpart in the answer will also be highlighted. 1242

You can also choose to merge the tables. After 1243

you merge the table, there will still be two tables. 1244

Each of the rows in the battle table will still contain 1245

information about a battle, and each of the rows in 1246

the ship table will still contain information about 1247

a ship. However, the battle information where the 1248
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ship is lost is merged into the ship table. Notice that1249

battle 0 will not appear in the ship table, because1250

no ship is lost in the battle, so be careful when you1251

try to interpret the merged table. Click unmerge to1252

recover to the original view.1253

Finally, if you forgot what each table means, you1254

can always view them here.1255

Page 17 Takeaways:1256

• Pay close attention to how the question is be-1257

ing asked. They might lead to different op-1258

tions. Many mistakes people make are be-1259

cause they did not read the questions carefully.1260

• Sometimes we choose not to show you certain1261

tables and columns if we know for sure they1262

are not needed.1263

• Use the highlight functionality if that helps1264

you to reason across tables.1265

• Use the merge functionality if you need to.1266

Each table will contain information about the1267

same object/entity, but the information about1268

its related objects will be pooled in.1269

Page 18 The question is “List the name and date1270

of the battle that has lost the ship named ’Lettice’1271

and the ship named ’HMS Atalanta’”. Since there1272

is no ship named “HMS atlanta”, there is no battle1273

that lost both of these ships. So you should choose1274

A, “no result found".1275

Page 19 Takeaways: Choose no_result_found if1276

no answer satisfies the question.1277

Page 20 To summarize, here are a couple of1278

things you need to remember to answer the ques-1279

tions correctly:1280

• Pay close attention to how the question is1281

asked; most mistakes are made because of1282

not reading the question carefully.1283

• Accept the information in the table even if1284

they are changing and might be different from1285

the knowledge you have for the real world1286

• IDs are different from names1287

• Some questions might have a lot of options to1288

choose from and you need to read through all1289

of them.1290

Page 21 To make it easier for you to answer the 1291

questions: 1292

• Use the highlight and merge operations when 1293

you need to 1294

• Use a calculator if you need to 1295

• Zoom out to fit the tables into the screen and 1296

prevent scrolling. 1297

• Not all table or column is needed to answer 1298

the questions 1299

Page 22 For freeform response: 1300

• Reporting ambiguities or tell us why the ques- 1301

tion is confusing only if you need to 1302

• Explaining why you did not choose another 1303

option when we ask you. Giving us more in- 1304

formation can you help you win more bonus. 1305

H More Analysis on Updated Annotations 1306

Interpreting Database Schema Properly If 1307

each row contains information about an orchestra, 1308

the year it was founded, and its associated record- 1309

ing company, when user asks “Which recording 1310

company was founded the earliest?", our system 1311

should response “Not enough information to tell", 1312

rather than finding the recording company of the 1313

earliest-founded orchestra. 1314

Accounting for all Allowed Values The anno- 1315

tated SQL should account for all legal cell values, 1316

either specified by the database schema or a hid- 1317

den generation process of the database. For ex- 1318

ample, when we are asked about the maximum 1319

value in a column that allows NULL value, we pre- 1320

fer SQL that returns the actual maximum value 1321

rather than the NULL value. For another exam- 1322

ple, if the utterance is “How many countries have 1323

a republic government form?", the where clause 1324

GOVERNMENT = “Republic" will ignore any 1325

countries with the government form “Federal Re- 1326

public", and hence the correct annotation should be 1327

GOVERNMENT LIKE “%Republic%". 1328

Nevertheless, it is difficult to handle arbitrary 1329

cell values allowed by the schema. For example, 1330

if a user asks how many dogs are there, an ideal 1331

annotated SQL might need to account for cell val- 1332

ues like Chihuahua, Husky, etc, which requires 1333

common sense reasoning and is hard to implement 1334

with a logical form. Therefore, we either need to 1335
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make stronger assumptions about what cell values1336

are allowed in a database, or introduce additional1337

modules to handle common sense. We were par-1338

ticularly lenient when evaluating the SPIDER anno-1339

tated SQLs and only test them on cell values that1340

appear in their released database, even though their1341

database schema allows for a much larger set of1342

possible cell values.1343

I Computation1344

The simulation evaluation on the evaluation split1345

in §5 takes around 240 CPU hours. Finding an1346

informative small database can take up to several1347

minutes; therefore, to support real-time interac-1348

tion, we pre-compute the databases for all possible1349

choices a participant might choose. Pre-computing1350

the choices for all 240 utterances takes around 1001351

CPU hours.1352
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