SIDeQ: Complex Program Annotations by Asking Non-Experts Simple
Informative Denotation Questions

Anonymous ACL submission

Abstract

We propose a new framework, SIDeQ, that
enables non-experts to indirectly annotate
the meanings of natural language utterances
by answering Simple Informative Denotation
Questions. We take Text-to-SQL as a case
study. Given a natural-language database query,
SIDeQ generates a prior over SQL candidates
by running a seed semantic parser (e.g., Codex),
but it does not show these candidates to the
annotators. Instead, it asks them to evaluate
the natural-language query on various concrete
databases, and upweights the candidates that
are consistent with their responses. For efficient
interactions, we synthesize these databases to
maximize the expected information gain of
knowing the correct evaluations, while keeping
the question simple by reducing the database
size. We build an interface based on SIDeQ and
recruit non-experts to annotate a random sub-
set of 240 utterances from the SPIDER develop-
ment set. Our system with non-experts achieves
the same annotation accuracy as the original
SPIDER expert annotators (75%) and signifi-
cantly outperforms the top-1 accuracy of Codex
(59%). Finally, we analyze common mistakes
by database experts without SIDeQ and those
by non-experts unfamiliar with databases.

1 Introduction

The goal of semantic parsing is to map a natural lan-
guage utterance u to a program s, which can be exe-
cuted in an environment or possible world w (Dahl,
1989; Berant et al., 2013; Andreas et al., 2020).
For example, given a user utterance u “How old
is the youngest person,” we can map it to the SQL
§$ = SELECT MIN (AGE) FROM PEOPLE, exe-
cute it on a database w about people, and return
a value v to the user.! However, it is challenging
to scalably collect program annotations for natural
language utterances, since this requires experts in
the target programming language.

'Thus, s can be regarded as a function that maps an input
w to an output v.

The programming by examples (PBE) frame-
work (Lavrac and Dzeroski, 1994) opens up a pos-
sibility: even though the non-experts cannot pro-
duce a program s that implements u, they can pro-
duce example input-output pairs (w, v) such that
v = s(w). Then a program synthesis algorithm
can guess the target program s based on the ex-
amples. This framework has been applied to syn-
thesize regular expressions (Gulwani, 2011), SQL
queries (Wang et al., 2017), and visualization pro-
grams (Wang et al., 2021), among others. However,
it might take our non-expert annotators a lot of
effort to write down a sufficient set of example
pairs for each utterance; moreover, some of these
examples might not be necessary to determine the
semantic parse.

We propose a new framework, SIDeQ, which
combines the semantic parsing and the PBE
paradigms and enables non-experts to anno-
tate complex programs by answering Simple
Informative Denotation Questions. Given an ut-
terance u, we generate a prior p over program can-
didates; then we reduce our uncertainty as to the
correct program by synthesizing a possible world
w (e.g. database), evaluating the candidates on w,
and asking the annotators which return value is cor-
rect. Since it is sometimes infeasible to pin down
the correct candidate with one w, we iteratively
reduce the entropy by interactively asking further
questions in the same way. If annotators may make
errors, even more questions are needed to achieve
a small entropy, with redundant questions being
useful (Figure 1 left).

For efficient interactions, we synthesize w at
each step that 1) maximizes the expected informa-
tion gain of knowing the correct return value v* and
2) is simple enough that the annotators can easily
evaluate w (Figure 1 right). Using information gain
spares the annotators from spending their time on
uninformative examples. Our framework is an in-
stantiation of active learning (Settles, 2011), where

@ Our framework iteratively refines the SQL
distribution by asking non-experts what option
they prefer based on synthesized databases.

® We synthesize databases based on the
minimal informative criteria before asking the
non-experts to compute the correct answer.

Utterance: How old is the youngest person from section A?

We use a semantic
parser to generate a
distribution of SQLs.

&

SELECT MIN(Age) from People
SELECT MIN(Age) from People

WHERE Section = ‘A’
SELECT MIN(Age) from People q1
SELECT MIN(Age) from People q— 23
WHERE Section = ‘A’ 92 Svnthesi Name Age Section
nthesis —
SELECT MAX(Age) from People q3 pO A}t]tempt 1 Eren 26 A q2 23
Mikasa | 23 A
NOT INFORMATIVE!! No
— information gain of knowing
We synthesize a which value is correct.
database based on c
the SQL distribution. Name Age Section
a g C
Eren | 26 A
Mikasa | 23 A
Name Age Section Armin | 19 A
. Anni 18 B — 18
Eren | 26 A Synthesis R;I:IZ % B u
M11'<asa 2 A We iteratively Attempt 2 Bertolt | 22 B @— 19
Reiner | 19 B refine the SQL Historia| 20 A
distribution. 1stora NOT SIMPLE!! Might take a
Jean | 29 A long time to answer the
We ask non-experts Csonﬁle ;g i question from this large table.
which returned value q e
is correct.
o 19 ar Name Age Section
Svnthesi Eren | 26 A g — 18
— 23 a2 Ayn e“; Mikasa| 23 | A
a3 — 26 ttempt Reiner | 19 B @— 19
13 20 q3 pl

Execute SQLs on the
synthesized database

Both informative and simple.

Figure 1: Left: Our SIDeQ framework for annotating complex programs with non-experts. Right: We optimize the
database content to generate a simple and informative question about the denotation.

we maintain a prior over the function space and
actively query the annotators with function input
that maximizes information gain.

We apply our framework to annotate Text-to-
SQL data, where each s is a SQL query, p is gener-
ated by Codex (Chen et al., 2021a) , w is a database,
and the annotators’ effort is approximated by the
number of records in w. §3 proposes a practical
optimization algorithm that maximizes the infor-
mation gain of a small database. Using the opti-
mized database w, a simulated perfect annotator
with SIDeQ can achieve 91% accuracy on SPIDER
by inspecting two databases per utterance with on
average 6 records, while using the original database

from SPIDER can only achieve 86% accuracy with
on average 30K records (§5).

We built an interface designed to be user-friendly
based on SIDeQ and evaluated its practical value
(86). We select a random subset of 240 utterances
from the SPIDER development set, improve the
SQL annotation with SIDeQ, and treat them as
our gold standard. We recruit 11 English-speaking
non-expert participants to annotate them with our
interface, with each utterance examined by 2.5 non-
experts on average. Their annotations allow us to
achieve the same accuracy as the original SPIDER
annotation performed by database experts (75%),
which significantly outperforms the top-1 accuracy

of Codex (59%). Finally, §7 analyzes errors made
by database experts without SIDeQ and by our non-
experts unfamiliar with databases.

In summary, we propose the SIDeQ frame-
work that enables non-experts to annotate com-
plex programs, a practical algorithm to find a small
database that maximizes information gain, a soft-
ware interface to annotate Text-to-SQL data, and
an annotation study with non-expert subjects. To
facilitate future research, all code and data will be
distributed under the CC BY-SA 4.0 license upon
publication.

2 Framework

Basic Setup As our case study of SIDeQ, we will
show how to synthesize a SQL query s from a natu-
ral language utterance v in the context of a database
schema c.? s must capture the meaning of u and
work properly for any database with schema c.

We first feed ¢ and u to a baseline semantic
parser (e.g. Codex) to generate a distribution p over
SQLs. We take p(s) as our prior probability that s
is correct. We aim to improve p by posing useful
denotation questions to non-expert annotators.

Each question is generated by the following
steps: 1) synthesize a database w consistent with
the schema c, 2) display w along with w and up to
K most likely return values in random order, and
3) ask the annotator to choose one of the values
(or “none of the above”) as the appropriate return
value for the natural-language question u. Given
the observed response o, our posterior distribution
over s is then

p(s | u,w,0) o< p(s) plo | u,s,w) (1)
= p(s)p(o | s(w))

where p(o | s(w)) is our estimated probability that
the annotator would have responded with o if s
were the correct denotation of u and therefore s(w)
were the correct return value. For example, if we as-
sume that the annotator always responds correctly,
then the posterior is obtained from the prior simply
by zeroing out all SQLs s that are inconsistent with
o (that is, such that s(w) # o, or such that s(w) is
shown as a choice in the case where o =*“none of
the above”) and then renormalizing.

This procedure can be iterated by asking a se-
We define pi(s) = p(s |

The schema ¢ specifies the table and column names, along

with constraints that the database must satisfy, e.g., value types,
uniqueness, and foreign key.

ries of questions.

Uy W1, 01, ..., W, 0p) = pr—1(8) plor | s(wy)) to
be the posterior after ¢ rounds of interaction, with
po being the prior and pr being our final estimate.
This basic setup is illustrated at the left of Figure 1.
We output the most likely SQL in pr as our
1-best annotation, which is then compared to a
gold standard to evaluate our framework. In future
work, the “soft labels” provided by the full distri-
bution pr could be used to retrain the semantic
parser p(s) as well as the annotator behavior model
p(o | u,s, w)’>—that is, the two factors of (1)—
and the updated models could then be used in the
same manner as below to select further questions
whose answers would further reduce the models’
uncertainty,* closing the active learning loop.

Criteria for Synthesized Databases In general,
SIDeQ on round ¢ must choose an multiple-choice
denotation question and an annotator to route it to.
In our case study, the annotator is fixed in advance
and the question is fully determined by choosing a
database w;.

We aim to choose an informative question w;.
Ideally we want w; to give different answers on
different high-probability candidates s, so that the
annotator’s response oy is likely to substantially
reduce our entropy. We quantify this reduction as
the expected information gain of wy,

Iy, (wt) = H(pi—1) — Eoinpi—1 [H(pt)] (2)

where H returns the Shannon entropy of a distribu-
tion over the candidates s.’

Recall that p; depends on the question w; and
also on the future response o;, which we assume
will be distributed as p;—1 (o) = >, pe—1(s)p(oy |
s(wy)). Equivalently, the expected information
gain of w; is the mutual information under p;_1
between two random variables—the annotator’s re-
sponse Oy and the SQL S, neither of which is yet
known.

3This can be regarded as an EM procedure for
(locally) maximizing the incomplete-data likelihood
> p(s,01,...,0r | w,wy,...,wr). Estimation of pr for
all utterances (the E step) is alternated with retraining the
models on these soft labels (the M step) until convergence.

*By using a richer model of annotator behavior, we could
estimate the error rates of individual annotators on different
types of questions, which would help us to choose appropriate
questions and route them to appropriate annotators.

SInstead of using the expected reduction in entropy, an
alternative would be the expected reduction in Bayes risk,
]Eot"‘Pt—l [ESNPt [E§~Pt—1 [lOSS(§ | 5)] _E§~Pt [IOSS(§ ‘ 5)]“
Here loss($ | s) quantifies the loss of using § in the application
when s is correct, e.g., some measure of its expected error on
a random database w. This focuses the questions on resolving
consequential errors, not those where §(w)=s(w) for most w.

We also aim to keep our questions simple. For
example, if w; is a database with 1,000 records
(rows), it may take the non-experts a long time to
calculate the correct return value. We denote their
effort to choose o; from the list of < K options as
|w¢| and model it crudely as being proportional to
the total number of records.®

The right of Figure 1 illustrates these two crite-
ria visually. §3 proposes a heuristic algorithm A
that seeks a database w; that is both simple and
informative.’

Choosing u to Ask Questions If only one utter-
ance needs annotation, we would repeatedly ask
non-experts to answer questions for this utterance
until our budget is exhausted. Annotator error
means that we can never be 100% certain to have
identified s. However, we usually need to annotate
a set of utterances; we need to decide when to stop
short of certainty and move on to the next utterance.
In our work, we ask 1-3 questions consecutively
for each utterance, stopping the interaction after
round ¢ if 1) some candidate s has p;(s) > 0.9, or
2) A fails to find a small informative database.’

In principle, we could stop after O questions if
po is already confident about a candidate. However,
Codex is not calibrated on our task and may be
falsely confident, so we reduce risk by asking at
least one question per utterance. We could also
switch freely among utterances in search of ques-
tions that yield the highest information gain per
unit effort. However, followup questions about the
same utterance are presumably cheaper than switch-
ing to a new utterance; this phenomenon should be
reflected in the effort measure (footnote 6) and also
motivates a non-myopic policy (footnote 7). We
leave these refinements to future work.

0f course this effort model could be enriched, to consider
the number of options as well as the detailed structure of «
and w;. We could tune the parameters of such a model to
predict observed annotator response times.

"Note that this is a so-called myopic (greedy) policy that
only optimizes the action w; in isolation. In principle, we
could do a better job by looking ahead to future rounds. How-
ever, the myopic strategy is common in interactive protocols
for information acquisition, such as adaptive quadrature or
Bayesian optimization (Schulz et al., 2018).

8We tuned this threshold such that, under the prior po,
an ideal annotator will end up answering an average of two
questions per utterance.

°For example, the SQL query SELECT B FROM TABLE
LIMIT 100 returns the first 100 records of the column B. It
cannot be distinguished from SELECT B FROM TABLE by
any w whose TABLE has < 100 records.

3 Optimizing the Database Content

We maximize the information gain over all
databases that conform to schema ¢ (which con-
trols the number of tables in the database)and have
at most R = 15 total records. Formally, we search
for

w; = argmax Iy (wy). 3)

we:|we|<R

where p’ is a truncation of p;_; to just the top-16
SQL candidates (for computational efficiency). We
will write I(w) below, suppressing the subscripts
t and p/, since they are fixed throughout the opti-
mization process.

Our algorithm can be summarized as “fuzz-then-
drop.” We first perform fuzzing by randomly gen-
erating a large number of large databases as in
Zhong et al. (2020)—see Appendix A for further
details—and keep the database w" that maximizes
the expected information gain I(w®). We then iter-
atively drop records from w° to attempt to satisfy
the simplicity criterion.

We use superscript ¢ to denote the iteration of
dropping records. Starting from ¢ = 0, we ran-
domly drop 5% of the records from w’ to obtain
w?L. If this results in a worse database, in the
sense that I(w'*') < I(w’), we are willing to
retry up to 20 times in hopes of randomly finding a
w'*! that is not worse than w’. Once we have our
final w’*! (which may or may not be worse), we re-
peat the procedure, continuing through w°, w', ...
until we reach an empty database w’ after L =
O(log |w"|) iterations. Let @ be the best database
smaller than R that we encountered during these
iterations:

w =

argmax I(w) (4)

we{w'le[L]},|w|<R
Since our algorithm is randomized, we repeat it 3
times and let w* be the w with the largest I(w).
Finally, we simplify w* by dropping tables and
columns that were not mentioned by any of the
top-16 SQL candidates (those in p’).

Our algorithm of dropping records from a large
informative database is heavily inspired by Miao
et al. (2019), which, given a database w such that
s1(w) # so(w), provably finds the smallest subset
of records in w such that s; and sy return differ-
ent values. Nevertheless, their algorithm works
only for a restricted family of SQLs and cannot
be adapted to optimize information gain. Our al-
gorithm does not provide any provable optimality
guarantee, but is more flexible and practical.

In practice, however, applying the above algo-
rithm naively can generate unnatural databases and
lead to vacuous SQL execution, confusing the anno-
tators. In Appendix A, we illustrate several typical
confusions (Figure 3) and discuss how we fix them.

4 Dataset and Evaluation Metrics

We benchmark SIDeQ on the development set of
SPIDER (Yu et al., 2018), an English Text-to-SQL
dataset with 1034 utterance-SQL pairs distributed
under the CC BY-SA 4.0 License. SPIDER is di-
vided into domains, where each domain has a col-
lection of (u, s) pairs based on the same database
schema c.

4.1 Dataset

We use half of the 1034 (u, s) pairs (the validation
split) to tune our annotator interface (§6) and our
fuzz-then-drop algorithm, using a simulated annota-
tor (§5). We use the remaining half (the evaluation
split) to evaluate our system with simulated annota-
tors (§5), and from these drew a random subset of
240 utterances'” to evaluate our system with actual
human annotators (§6). To make the latter evalua-
tion less noisy, we checked and corrected the SQL
annotations on these 240 utterances (§7.1), result-
ing in corrections to 61 of them. We also identified
and fixed several issues with the SPIDER database
schema and content, with details in Appendix B.
The corresponding author of the SPIDER dataset
endorses our re-annotation and database updates.

4.2 Obtaining the SQL Query Prior pg

We generate a prior over SQL candidates using the
Codex (Chen et al., 2021b) language model with
few-shot prompting. Given an utterance u with
schema c from the validation or evaluation split,
we create the prompt (Figure 4) by concatenating a
linearization of ¢, then eight (u;, s;) pairs from the
validation split!! associated with the same schema
¢, and finally the utterance u itself. Some of the
examples (u;, s;) are chosen randomly while others
are chosen because u; has high TF-IDF similarity
to u. We randomly sample 200 prompts for u by
choosing different examples, and for each prompt,
we ask Codex to generate 20 completions (SQL
queries). Full details are given in Appendix C.1.
We then filter out non-executable candidates and
merge apparently semantically equivalent ones by

19Balanced across domains as much as possible.
"Excluding pairs where s; matches the correct answer s.

testing them on 1K randomly generated databases
with code from Zhong et al. (2020). This merging
eliminates competition among equivalent surface
forms (Holtzman et al., 2021), i.e., spurious ambi-
guity. We define pg to be the empirical distribution
of semantic equivalence classes in our samples;
thus, each s in §2 is not actually a SQL query but
an equivalence class.

Treating the original SPIDER annotation as the
ground truth, the top-1 accuracy on the entire devel-
opment set is 72% and the top-16 accuracy is 94%.
More details are in Appendix C.2. These numbers
are not comparable to prior works, which usually
evaluate on unseen database domains in a zero-shot
manner (harder than our setting) but do not require
predicting string literals and DISTINCT keywords
(which we need for execution).

4.3 Evaluation Metrics

As mentioned in §2, our method produces a 1-best
SQL query for each utterance. We decompose its
errors into three categories. First, recall from §4.2
that we only consider 4000 samples (some being
duplicates), so the correct SQL might not appear
in our candidate list. Second, recall from §2 that
the interaction may stop before the correct candi-
date becomes the most probable one. Finally, the
annotators sometimes respond incorrectly.

To reflect these three types of error, we calcu-
late 1) the candidate ceiling—whether any can-
didate is semantically correct; 2) the interaction
ceiling—our 1-best accuracy if the annotator al-
ways responds correctly; and 3) the annotation
accuracy—our 1-best accuracy given the actual
annotations we collected.

5 Simulated Evaluation

We benchmark SIDeQ on the evaluation split under
the idealistic assumption that 1) the SQL query
provided by SPIDER is always correct, and 2) our
annotator always responds correctly by choosing
the value returned by that SQL query.

The candidate ceiling is 96% and the interaction
ceiling is 91%, which is in fact much higher than
the current annotation error rate in SPIDER, as we
will see in §6. We only need to interact with our
idealized annotator for 1.8 rounds on average, and
the databases that we present contain only 5.52
records on average. More detailed statistics can be
seen in Appendix D.

While SIDeQ aims to construct simple and in-

formative questions about utterances, the example
databases that were released along with the SPIDER
domains yield less informative questions: using
them lowers the interaction ceiling by 5%. They
are also far less simple: their median size is 72
records (and their mean size is 33,295 records due
to large outliers). Human annotators cannot feasi-
bly evaluate an utterance on such large databases.

6 Human Interaction Study

We built an interface designed to be user-friendly
(§6.1). We recruited 11 non-experts to annotate
them with our interface (§6.3), aggregated their re-
sponses by learning a model of annotator accuracy
(§6.4), and benchmarked their performance with
the newly established gold standard (§6.5).

Question:
What is the most common singer citizenship ?

aaaaaaaa

SoNGD A SNGERIDO

SINGERIDO

Figure 2: A screen shot of our annotation interface
(§6.1). Appendix F and Figure 7 include more details.

6.1 Annotation Interface

Figure 2 shows our interface. As described in §2,
the annotator needs to choose the correct value on
the right of the screen based on the utterance w (top)
and the database w (left). In general, a value may
be a relational table. The annotator can also choose
to report that the question is ambiguous/confusing
or none of the choices are correct. To make it
easier to reason about w, we highlight all cells in
all tables that have the same value as the the cell
that the cursor hovers on. Appendix F includes
more details about our interface.

6.2 Expert Annotation

To establish a clean gold standard, two of the au-
thors annotated all 240 utterances using our own
SIDeQ system. Whenever our two responses to a
SIDeQ question were different, we reached a con-
sensus through discussion. We closely examined
the utterances where SPIDER’s SQL did not yield
our consensus response on one or more questions,

and corrected the SPIDER annotation if we felt that
our responses were strictly better. To avoid bias-
ing against the original annotations, we stuck to
the original ones whenever there were ambiguities,
and we double-checked each corrected annotation
by additionally writing down reasons why it we felt
it was better. As mentioned in §4.1, we ultimately
corrected 61 out of the 240 SQL annotations. §7.1
analyzes these corrections in greater detail.

6.3 Non-Expert Annotation

We split the 240 utterances into 8 units, each of
which contains 30 utterances across 4-5 database
domains and proved to take 1-2 hours to annotate
with our interface (2—4 minutes per utterance).

In this experiment, we configured our system
to treat all annotators identically. Thus, all an-
notators for utterance u received the same first
question—the questions for one annotator were
not influenced by the responses from previous an-
notators (even though that is a more effective way
to choose questions). For the annotator behavior
model p(o | u, s,w) in equation (1), we assumed
that every annotator would have an 0.3 chance of
responding uniformly at random, and would other-
wise give the correct response.

Recruiting Non-Experts We recruited university
students who 1) are not pursuing/have not received
a Computer Science degree and 2) have no prior
experience with SQL to complete the annotation
tasks. Each annotator could annotate any number
of units (from 1 to 8) as they wished, but had to
annotate them fully. For each unit we reward them
with $15 as a base payment and $5($10) bonus if
their response agreed with our corrected gold stan-
dard > 85%(95%) of the time. We recruited in total
11 participants and received 20 units of annotation,
and hence each utterance was examined by 2.5 par-
ticipants on average. For each utterance, we asked
them 1.84 denotation questions on average and the
databases that we present contain only 8.71 records
on average

Participation Procedure We ask each non-
expert annotator to: 1) sign a consent form to par-
ticipate in the study, 2) watch a 12-minute video
tutorial that contains our annotation instructions
and explains the basics of foreign and primary keys,
3) complete the annotation task, and 4) fill out an
exit survey which collects information about their
major and prior programming experiences. Our

tutorial video!? can be seen here and its transcript
can be seen in Appendix G. An example unit of the
annotation task can be seen here.

6.4 Learning an Annotator Accuracy Model

After the annotations were collected, we used them
to improve the annotator error model of §6.3 by
learning parameters v, for each annotator n and 3,4
for each SPIDER domain d. For a given n and d, the
chance that the annotator answers at random is no
longer fixed at 0.3, but is modeled as o (v, +84+b),
where ¢ is the logistic function and b is a bias term.
Larger o, and /3, predict higher error rates.

We learn the parameters as outlined in foot-
note 3, by optimizing the log of the incomplete-data
likelihood)" p(s,o01,...,0r | w,wi,...,wr),
summed over all utterances u. Of course, the con-
ditional distribution shown here is now sensitive
to the domain d of u and the annotator n; who an-
swered question wy. Notice that just as in other
adaptive crowdsourcing work (§8), we assume that
we do not have access to the gold value of s, but
must impute it. We will tend to learn a lower error
rate for annotators who tend to agree with other an-
notators and with Codex, in order to explain these
apparently non-random agreements.

6.5 Results

After tuning the annotator error model as above, '
we make our 1-best SQL predictions as explained
in §2. On this dataset, the candidate ceiling is 88%
and the interaction ceiling is 84%. Our method
achieves 75% accuracy, which significantly outper-
forms the top-1 candidate of Codex (59%) and is
comparable to the accuracy of the original SPIDER
annotation performed by database experts (75%).
A breakdown is shown in Table 3.

This does not imply that non-experts with SIDeQ
can necessarily replace expert annotators. At least
in this experiment, our non-experts are still far from
recovering the full gold standard, which was estab-
lished by experts with the help of SIDeQ (§6.2).
The breakdown statistics based on difficulty split
can be seen in Table 3. In addition, our method
relied on a baseline semantic parser pg that was
constructed using existing expert annotations (in
our case, used to prompt for Codex). Still, our

12Voiceover removed due to the anonymity requirement.

3We do not tune the semantic parser in this paper. Indeed,
we do not even have the ability to fine-tune Codex (although
in principle we could have built our own tunable semantic
parser, which might consult Codex).

hope is that if we start with any baseline semantic
parser that assigns non-negligible probability to the
correct denotations, then instead of improving it
by ordinary supervised training on a set of imper-
fect expert denotations, we could instead reach or
even surpass the same accuracy by running SIDeQ
with experts and/or non-experts for long enough,
perhaps even at lower total cost.

7 Analysis

7.1 Sources of Error in Expert Annotations

We discuss two representative cases below, and
more in Appendix H.

Ties for Extremals For the utterance “Who
is the youngest person?”’, the SPIDER annota-
tionis SELECT NAME FROM PEOPLE ORDER
BY AGE LIMIT 1. AsSIDeQ discovers,in case
of ties, non-experts prefer a SQL that will return
all of the people who have the smallest age, not
just return the first one. 28 out of the 61 updated
annotations fall into this category.

INNER JOIN vs. LEFT JOIN Suppose the ut-
terance is “List singer names and number of con-
certs for each singer.” and the database contains
a table of singers and a table with records (s, ¢) if
singer s performed in concert c. The SPIDER an-
notation only uses INNER JOIN and hence fails
to return singers with count O (who have not per-
formed in any concert). 8 of the updates fall into
this category.

Remark Since most of the Text-to-SQL models
had low performance 3 years ago, Yu et al. (2018)
favored short SQL annotations to make learning
easier. These annotation conventions were shared
between training and test sets to form a coherent
structured prediction task (internal validity). Now
that structured prediction is working well enough
that the predictions could be used in real-world
settings, we should turn to assuring that the SQL
annotations actually have the desired effects (exter-
nal validity). SIDeQ can help here (§6.2).

7.2 Sources of Error in Non-Expert Responses

Ambiguous Utterances Consider the utterance
“What are the names of properties that are either
houses or apartments with more than 1 room?”
Should it be parsed as “(house) or (apartment and
room > 1)”, or “(house or apartment) and room
> 17?7 Another example: “Count the number of

https://youtu.be/-MlIcCQ21xs
http://35.225.126.31:4200/v0104_4pm_8

friends Kyle has.” What to do when there are two
students named “Kyle”?

Unnatural Databases Database schemas some-
times omit to specify common-sense constraints.
For example, according to common sense,
“BIRTHDAY + AGE" should always yield the cur-
rent year, so sorting by BIRTHDAY ascendingly is
equivalent to sorting by AGE descendingly. How-
ever, SIDeQ looks for databases w that distin-
guish between these two strategies, and in fact it
is able to synthesize them from the SPIDER exam-
ple database because some of the records in that
database do not conform to this unstated constraint.
These databases are obviously unnatural and con-
fuse the non-experts.

Heavy Computations It is hard for the annotator
to do arithmetic, e.g., find the average of eight 9-
digit values. To help SIDeQ avoid demanding such
computations, we should improve our annotator
effort model to recognize their difficulty.

8 Related Work

Semantic Parsing Semantic parsers have im-
proved significantly over the past decades (Zettle-
moyer and Collins, 2007; Jia and Liang, 2016;
Scholak et al., 2021a). Recent large pretrained
models can perform the task without task-specific
architectures (Scholak et al., 2021b) or even in a
zero/few-shot manner (Shin et al., 2021; Brown
et al., 2020; Chen et al., 2021a). However, gen-
erating semantic parsing datasets is still challeng-
ing since it requires experts. Wang et al. (2015)
addresses this by synthetically generating logical
forms, using templates to explain them in natural
language, and asking non-expert crowdworkers to
paraphrase them. However, the paraphrases are usu-
ally restricted in linguistic diversity (Larson et al.,
2020). Ideally we want non-experts to annotate
programs based on naturally occurring utterances,
and we predict SIDeQ will achieve higher accuracy
with better seed semantic parser in the future.

Programming by Example PBE has been ap-
plied to synthesize regular expressions (Gulwani,
2011), tensor manipulation (Shi et al., 2020), data
analysis (Bavishi et al., 2019), and visualization
(Wang et al., 2021) programs, etc. Our work can
be extended to tackle these problems as well as
long as there is a seed semantic parser and we can
optimize program inputs/worlds to design simple
and informative denotation questions.

Some other recent works such as Ye et al. (2020);
Baik et al. (2020) also try to combine semantic pars-
ing with PBE. However, both of them require the
users to provide the input output examples, which
can be time-consuming to write. Pasupat and Liang
(2016) asked non-experts denotation questions by
synthesizing table inputs, but they did not optimize
for question simplicity and focused on a simpler
single-table setting.

Database Research The semantics of SQL have
been extensively studied by the database research
community. More related to our work, Green et al.
(2007) and Chu et al. (2017b) develop methods to
prove semantic equivalence of SQLs, Wang et al.
(2017) synthesizes SQL from input-output exam-
ples, Chu et al. (2017a) searches for a database
(counterexample) that makes two SQL return dif-
ferent values and Miao et al. (2019) minimizes the
size of such a counterexample.

Adaptive Crowdsourcing Under SIDeQ, some
questions are inherently difficult to answer and
competent annotators significantly contribute to-
wards the final accuracy. How to find the right
annotators to answer the right questions and weight
their responses appropriately, with as little super-
vision as possible? Like us, Bachrach et al. (2012)
and Whitehill et al. (2009) model each individual
annotator’s capability and each question’s difficulty
and learn these parameters through agreement in-
formation, and Yan et al. (2011) explores an active
learning setup. The line of work emerging from
these papers strongly influenced our perspective.

Al-Augmented Annotation An emerging line of
“human-in-the-loop” systems (which have a long
history in machine translation) constructs datasets
using Al-generated candidates re-ranked/filtered
by (a learned model of) human preferences (Sti-
ennon et al., 2020; Wiegrefte et al., 2021). It is
increasingly important to determine human pref-
erences over complex outputs, such as full-book
summaries (Wu et al., 2021). Our work presents a
strategy for an Al system to rerank complex outputs
(formal representations of denoted meanings) by
asking simple informative questions of annotators
who do not have to understand the outputs directly.
The annotators’ responses feed back to improve the
system’s predictions and focus its future questions.

9 Ethical Considerations

Our human interaction study was approved by the
university Institutional Review Board and our sur-
vey and interface did not collect any personal iden-
tifiable information. We note that our system is
still far from perfect, so it should not be used to
synthesize SQL queries or other semantic forms for
high-stakes scenarios without a careful analysis of
errors and the downstream harms that they might
cause.

References

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-
drei Vorobeyv, Izabela Witoszko, Jason Wolfe, Abby
Wray, Yuchen Zhang, and Alexander Zotov. 2020.
Task-oriented dialogue as dataflow synthesis. Trans-
actions of the Association for Computational Linguis-
tics, 8:556-571.

Yoram Bachrach, Thore Graepel, Thomas P. Minka, and
Jo W Guiver. 2012. How to grade a test without
knowing the answers - a bayesian graphical model
for adaptive crowdsourcing and aptitude testing. In
ICML.

Christopher Baik, Zhongjun Jin, Michael J Cafarella,
and HV Jagadish. 2020. Constructing expressive
relational queries with dual-specification synthesis.
In CIDR.

Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik
Sen, and Ion Stoica. 2019. Autopandas: neural-
backed generators for program synthesis. Pro-
ceedings of the ACM on Programming Languages,
3(OOPSLA):1-27.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533—1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Anthony Chen, Pallavi Gudipati, Shayne Longpre, Xiao
Ling, and Sameer Singh. 2021a. Evaluating entity
disambiguation and the role of popularity in retrieval-
based NLP. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 4472-4485, Online. Association for Computa-
tional Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021b. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and
Alvin Cheung. 2017a. Cosette: An automated prover
for sql. In CIDR.

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan
Suciu. 2017b. Hottsql: Proving query rewrites with
univalent sql semantics. ACM SIGPLAN Notices,
52(6):510-524.

Deborah A. Dahl. 1989. Book reviews: Computer inter-
pretation of natural language descriptions. Computa-
tional Linguistics, 15(1).

Todd J Green, Grigoris Karvounarakis, and Val Tannen.
2007. Provenance semirings. In Proceedings of
the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
31-40.

Sumit Gulwani. 2011. Automating string processing
in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317-330.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,
and Luke Zettlemoyer. 2021. Surface form com-
petition: Why the highest probability answer isn’t
always right. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7038—7051, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12-22, Berlin, Germany. Association for Computa-
tional Linguistics.

Stefan Larson, Anthony Zheng, Anish Mahendran,
Rishi Tekriwal, Adrian Cheung, Eric Guldan, Kevin
Leach, and Jonathan K. Kummerfeld. 2020. Iterative
feature mining for constraint-based data collection
to increase data diversity and model robustness. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8097-8106, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.1162/tacl_a_00333
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://doi.org/10.18653/v1/2021.acl-long.345
https://doi.org/10.18653/v1/2021.acl-long.345
https://doi.org/10.18653/v1/2021.acl-long.345
https://doi.org/10.18653/v1/2021.acl-long.345
https://doi.org/10.18653/v1/2021.acl-long.345
https://aclanthology.org/J89-1008
https://aclanthology.org/J89-1008
https://aclanthology.org/J89-1008
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://aclanthology.org/2021.emnlp-main.564
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://doi.org/10.18653/v1/2020.emnlp-main.650
https://doi.org/10.18653/v1/2020.emnlp-main.650

Nada Lavrac and Saso Dzeroski. 1994. Inductive logic
programming. In WLP, pages 146—160. Springer.

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Ex-
plaining wrong queries using small examples. In
Proceedings of the 2019 International Conference on
Management of Data, pages 503-520.

Panupong Pasupat and Percy Liang. 2016. Inferring log-
ical forms from denotations. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
23-32, Berlin, Germany. Association for Computa-
tional Linguistics.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau,
Harm de Vries, and Chris Pal. 2021a. DuoRAT: To-
wards simpler text-to-SQL models. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1313-1321,
Online. Association for Computational Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021b. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Eric Schulz, Maarten Speekenbrink, and Andreas
Krause. 2018. A tutorial on Gaussian process regres-
sion: Modelling, exploring, and exploiting functions.
Journal of Mathematical Psychology, 85:1-16.

Burr Settles. 2011. From theories to queries: Active
learning in practice. In Active Learning and Exper-
imental Design workshop In conjunction with AIS-
TATS 2010, pages 1-18. IMLR Workshop and Con-
ference Proceedings.

Kensen Shi, David Bieber, and Rishabh Singh. 2020. Tf-
coder: Program synthesis for tensor manipulations.
arXiv preprint arXiv:2003.09040.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699-7715, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2020. Learning
to summarize from human feedback. arXiv preprint
arXiv:2009.01325.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik.
2017. Synthesizing highly expressive sql queries
from input-output examples. In Proceedings of the

10

38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 452—
466.

Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig,
Alvin Cheung, and Amy J Ko. 2021. Falx: Synthesis-
powered visualization authoring. In Proceedings of
the 2021 CHI Conference on Human Factors in Com-
puting Systems, pages 1-15.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1332-1342, Beijing,
China. Association for Computational Linguistics.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier
Movellan, and Paul Ruvolo. 2009. Whose vote
should count more: Optimal integration of labels
from labelers of unknown expertise. In Advances in
Neural Information Processing Systems, volume 22.
Curran Associates, Inc.

Sarah Wiegreffe, Jack Hessel, Swabha Swayamdipta,
Mark Riedl, and Yejin Choi. 2021. Reframing
human-ai collaboration for generating free-text ex-
planations. arXiv preprint arXiv:2112.08674.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Sti-
ennon, Ryan Lowe, Jan Leike, and Paul Christiano.
2021. Recursively summarizing books with human
feedback. arXiv preprint arXiv:2109.10862.

Yan Yan, Romer Rosales, Glenn Fung, and Jennifer G.
Dy. 2011. Active learning from crowds. In Proceed-
ings of the 28th International Conference on Interna-
tional Conference on Machine Learning, ICML’11,
page 1161-1168, Madison, WI, USA. Omnipress.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2020. Benchmarking multimodal regex synthesis
with complex structures. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6081-6094, Online. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678—687, Prague,
Czech Republic. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/2021.naacl-main.103
https://doi.org/10.18653/v1/2021.naacl-main.103
https://doi.org/10.18653/v1/2021.naacl-main.103
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.779
https://aclanthology.org/2021.emnlp-main.608
https://aclanthology.org/2021.emnlp-main.608
https://aclanthology.org/2021.emnlp-main.608
https://doi.org/10.3115/v1/P15-1129
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f899139df5e1059396431415e770c6dd-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.541
https://doi.org/10.18653/v1/2020.acl-main.541
https://doi.org/10.18653/v1/2020.acl-main.541
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071
https://aclanthology.org/D07-1071

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396411, Online. Association for Computa-
tional Linguistics.

11

https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

Supplementary Material we always add into S a small probability mass of

A Other Synthesis Constraints

Overall, we follow the recipe of Zhong et al. (2020)
to generate large informative databases that con-
form to a given schema c. We draw upon an exist-
ing database in this domain (provided by the SPI-
DER dataset in our experiments) to obtain plausible
cell values. Following Zhong et al., we first synthe-
size cell values for all the “parent” columns (i.e.,
the columns that are being referenced), and then
populate child columns with random subsamples
from the parent columns.

Naturalness of v As shown in Figure 3 (a), unre-
stricted random cell values can confuse non-expert
annotators unfamiliar with databases. Therefore,
we now always use individual cell values in the
existing databases'# or their minor perturbations'>
to generate large informative databases, rather than
synthesizing completely random values.

Database records might also be confusing even
if individual cell values are not. For example, the
annotator can be confused by counterfactual infor-
mation where U.S. is in Asia as shown in Figure
(b); therefore, we sometimes initializes w" with
the existing database. The annotator can also be
confused by uncommon patterns where two people
have the same name but different IDs; therefore,
we sometimes enforce a column to contain unique
values as long as the column content in the existing
database satisfies the uniqueness constraint.

Non-vacuous Execution Extremely small w fre-
quently leads to undefined denotations. For exam-
ple, since the maximum value for zero element is
undefined, the correct denotation is NULL, which
confuses non-expert annotators without computer
science background (Figure 3 b). Therefore, we
always add a small probability mass of RETURN
NULL to the distribution &, which incentivizes our
algorithm to produce w such that other SQL candi-
dates will return non-NULL values.

Even if the returned value is well-defined, small
w can lead to confusion if some operators are not
needed to answer the question. For example, in Fig-
ure 3 (e), asking the maximum over one element
might appear confusing, as we do not need the max
operator to obtain a correct denotation. Therefore,

14Text-to-SQL datasets are usually released with databases

with values.
15E.g., 41 for integer values.

12

“neighbor queries" (Zhong et al., 2020) obtained by
dropping aggregation operators and WHERE clauses
from SQL candidates in S. This incentivizes our al-
gorithm to produce w such that the SQL candidates
will meaningfully use their operators.

Managing Tradeoffs between two Criteria All
the above tweaks make a tradeoff between the infor-
mative and the simplicity criteria in some way: we
impose restrictions on w or modify S to decrease
the annotator effort while sacrificing information
gain we can potentially achieve. How do we decide
when to apply certain tweaks?

In our paper, we always add small probabilities
of neighbor queries and RETURN NULL to S and
use cell values from the existing database. We
then consider 3 types of tweaks that we sometimes
apply: 1) wy satisfies the uniqueness constraint, 2)
wy is initialized with an existing database, and 3)
|@| < 15 rather than 30. We define in total 2° = 8
different “configurations” 0 < ¢ < 8, each of
which specifies what subset of tweaks to apply. For
example, c = 6 = B110 means we apply tweaks
1) and 2). We enumerate from ¢ = 7 to 0 until
I(w) # 0; in other words, we start by applying all
the tweaks and drop the tweaks gradually until we
obtain a w with positive expected information gain.

B Fixing SPIDER Databases

We found several issues with the SPIDER databases
and modified them as follows:

* Some SPIDER databases do not conform to the
foreign key constraint, i.e. some of the chil-
dren columns contain values not in the parent
columns they are referring to. We enforce the
foreign key constraint by dropping the illegal
records.

We identify missing foreign key constraints
under some domains and add them.

Some Date typed columns are string-valued
and use English words to represent values,
e.g. "novl,2021"; as a result, "dec1,2021",
which is chronologically later, will be con-
sidered smaller alphabetically. We fix this
by canonacalizing date representations in a
“yyyy-mm-dd" format.

The voter_1 domain does not contain an
appropriate foreign key design; since fixing it

Name Age Section

Unnatural
(a) asdg | 102 | r&@@ | o -
qwerty | 200 | pqogen
Country Continent Counterfactual
n ounterfactua
(b) US. As.1a content
Canada Africa
ID A
Uncommon
(©) 1 Eren 26
pattern
2 Eren 23

Utterance: How old is the youngest person from section A?

Name Age Section IR

(d) Reiner | 26 B answer NULL
() Name Age Section RN 26
Eren 26 A operator

Figure 3: Examples of unnatural databases (above) and
vacuous execution (below), which motivates several
tweaks in Appendix A. In (a) the individual cell val-
ues are unnatural. In (b) the records contradict world
knowledge. In (c) the database contains two persons
with the same name, which is atypical (but possible). In
(d) the denotation of the utterance is undefined, since
we cannot take the maximum over zero element. In (e)
we do not need the max operator to obtain the correct
denotation, since there is only one person in section A.

would require an effort of re-annotating all 15
associated SQLs, we chose to exclude them
from our evaluation.

We update the test suite for semantic evaluation
(Zhong et al., 2020) accordingly based on the new
database schema.

C Generating SQL Candidates

C.1 Prompting Codex

As sketched in §4.2, we obtain SQL program
candidates through few-shot prompting, where
the database schema is followed by 4 or 8 (with
50% probability) pairs of natural language ut-
terances with their corresponding SQL queries
from the SPIDER development set from the subset
of utterance-SQL pairs associated with the same
database schema. To select each in-context exam-
ple, with probability 50% we choose a random
example that has not been selected from the vali-
dation split, and with probability 50% we choose
the most similar example that has not been selected

13

k | easy medium hard extra | all
1 |0.87 0.80 0.56 0.45 | 0.72
2 |1 094 0.89 0.74 0.63 | 0.84
4 1096 0.93 0.87 0.70 | 0.89
8 1097 0.95 0.95 0.78 | 0.92
16 | 0.98 0.96 0.98 0.81 | 0.94
32| 0.98 0.96 0.98 0.85 | 0.95

Table 1: The top-k accuracy for the SQL candidates gen-
erated by Codex on SPIDER (Yu et al., 2018), calculated
on each split.

easy med hard extra | all
Candidate | 0.99 097 098 0.88 | 0.96
OurDB 093 095 097 0.75 | 091
OrigDB 098 090 0.83 0.66 | 0.86

Table 2: The accuracy ceilings on each difficulty split.
“med" stands for medium difficulty. Candidate means
the candidate ceiling. OurDB means the accuracy
ceiling achieved by querying a simulated annotator
with the small informative databases we synthesize.
OrigDB means the accuracy ceiling by querying with
the databases released by the SPIDER dataset.

based on TF-IDF similarity. Finally we append
the target natural language utterance u to be anno-
tated, and ask Codex to continue generating text
after this prompt, which generates a candidate SQL
program corresponding to u. An example prompt
can be seen in Figure 4. We sampled 200 different
prompts, which varied in their selected examples,
and for each prompt we sampled 20 candidates
from Codex with temperature=1.0 and top_p=0.95.

C.2 Top-K Accuracy

We report the top-k accuracy from the prior py over
SQL queries (§4.2) in Table 1, and graph the top-k
accuracy curve in Figure 5.

D Simulated Interaction Statistics

The breakdown statistics of candidate and interac-
tion ceiling (see §4.3) can be seen in Table 2, and
the distribution database sizes and number of round
of interaction can be seen in Figure 6.

E Human Annotation

We provide breakdown statistics on the annotation
accuracy of different sources based on difficulty in
Table 3.

CREATE TABLE Highschooler(
ID int primary key,
name text,
grade int)
CREATE TABLE Friend/(
student_id int,
friend_id int,
primary key (student_id, friend_id),
foreign key(student_id) references Highschooler (ID) ON DELETE CASCADE,
foreign key (friend_id) references Highschooler(ID) ON DELETE CASCADE

)
[Other table schema omitted]

Write a query that answers "Count the number of high schoolers."
SELECT count(*) FROM Highschooler

Write a query that answers "What are the names of high schoolers who have 3 or more

friends?"
SELECT T2.name FROM Friend AS T1 JOIN Highschooler AS T2 ON Tl.student_id = T2.id

GROUP BY Tl.student_id HAVING count(*) >= 3
[6 More examples omitted]

Write a query that answers "Find the average grade of all students who have some

friends."
[Models’ Completion]

Figure 4: An example prompt we use for the Codex API. We obtain SQL program candidates through 4/8-shot
prompting, where the database schema (orange) is followed by 4/8 pairs of natural language utterance and their
corresponding SQL queries from the SPIDER development set, randomly sampled from the subset of queries
associated with the same database schema. Finally we concatenate the target natural language utterance u to be
annotated, and ask Codex to complete the prompt, which results in a candidate SQL program corresponding to u.

SQL Candidates

Top-k Acc
|w| Across # Interaction Rounds
Interaction Rounds Across Utterances
% % 200 §
£ 5 g
(&} 2 100 I
o easy @ £
< 0.60 medium * -
extra 0 0 10 20 ° 2 4 6
—all Total # Relations in Database # Rounds per Utterance
1 2 4 8 16 32
Top-k (log-scaled) Figure 6: The interaction statistics using the SPIDER

annotation to simulate an ideal annotator. Left: the
distribution of the size of the database ¢ across each
round of interaction. Right: the distribution of the
number of rounds across difference utterance.

Figure 5: The top-k accuracy for the candidate SQL pro-
grams generated by Codex, after filtering and merging
candidates. On each difficulty split we plot the curve of
top-k accuracy (y-axis) and k (x-axis, log-scaled). The
numbers can be seen in Appendix Table 1.

14

easy medium hard extra | all
Candidate Ceiling | 0.91 0.91 092 0.69 | 0.88
SPIDER 0.93 0.78 0.63 0.50 | 0.75
Codex 0.78 0.65 043 0.36 | 0.59
SIDeQ " 0.75 0.71 0.65 049 | 0.67
SIDeQ ™ 0.83 0.80 0.73 047 | 0.75

Table 3: 1-best accuracy of various SQL prediction methods, broken down by the difficulty level of the utterance
(as categorized by SPIDER). Codex returns the most probable SQL according to po. SIDeQ r does the same, after
eliminating SQLs that are inconsistent with the responses of a single randomly chosen annotator. SIDeQ ™ is our
full method, which returns the SQL with the highest posterior probability after we fit our model of annotator error.

Question:

What are the first name and last name of the professionals who have done treatment with cost
below average?

//> Time Limit: 03:38

1) 4:00 time limit.

Database: dog_kennels

rere: (v0104_4pm_1/description?

4) click to merge
foreign keys.

Please choose from one of the 5
ptions:

professionals ° . ore
2) foreign key / value =~ oo om0 v
highlight on hover. LI
Oanny Considine Vemice Tilimen
Monte Kshig Monte Kshlerin
3) click to collapse .
table) o I . Vernice Tillman

- -
Monte Kshlerin
.
Progress: 1 of 30

5) Select option B and
answer follow up
questions.

Question:
What are the first name and last name of the professionals who have done treatment with cost
below average?

You selected: Why didn't you select:
_ ¢
Vernice Tilman Vernice Tilman
Monte. Kahlerin Danny Considine
Monte Kshlerin

(0ptional) If you think the question is ambiguous, tel us wh.

(Optional) If the question looks confusing, tell us why.

(Required) Why didn't you select E7

Progress: 1 of 30

Figure 7: A detailed screenshot of our interface,

15

6) Select “No Answer is Correct”
and answer follow up questions.

Question:
What are the first name and last name of the professionals who have done treatment with cost
below average?

You have selected no answer is correct.

(0ptional) If you think the question is ambiguous, tel us why.
(0ptional) If the question looks confusing, tell us why.

(Required) What is the answer you have in mind, and why?

Progress: 1 of 30

and the logical flow of follow up questions.

You don't have to read through the table content in detail, and you can always refer back to it with this link: /v0104_4pm_1

kennel.

Database: dog_kennels

This is a database about dogs, their breeds, their owners; there are also information about the (medical) treatment information and the professionals who treated them

treatment_types

Each row contains information about a treatment type. For example, EXAM is the code for Physical examination.

TREATMENT_TYPE_CODE

EXAM
VAC

WALK

breeds
Each row contains information about a breed type of a dog.

BREED_CODE

TREATMENT_TYPE_DESCRIPTION

Physical examination

Vaccination

Take for a Walk

BREED_NAME

Eskimo

Husky

Bulldog

Figure 8: An example database description page presented to users before they start answering questions for that

database.

F Interface

See Figure 7 for a detailed screenshot of our inter-
face. We implemented the front-end of our inter-
face with Angular and the back-end was built with
flask and Redis. Users presented with a sequence
of 40 distinct questions, and each question may
have multiple rounds. For each round, the user is
given a 4 minute time-limit before the interface au-
tomatically transitions to the next question. Before
being asked questions on a new database, the user
is presented with a page displaying all the tables
in the database alongside descriptions we wrote
for each table (see Figure Figure 8 for an example
screenshot). When answering questions, the user
is given a link back to this page for reference.

The user can either select one of the multiple
choice questions presented or select "No Answer
is Correct", and depending on their selection the
user is presented with a differing set of followup
questions. Regardless of their selection, we always
ask the user two optional followups: "if you think
the question is ambiguous, tell us why." and "if the
question looks confusing, tell us why." In addition
to these optional questions, we sometimes ask re-
quired followup questions. Specifically, if the user
is on their final round and selects an answer which
does not agree with the SPIDER annotation, we ask

16

them why they didn’t select the correct answer ac-
cording to spider. Or if the user selects "No Answer
is Correct"”, we ask "What is the answer you have
in mind and why?" We use the users’ answers to
these followups to collect information on the users’
reasoning in answering questions and to determine
issues with the SPIDER dataset.

We implemented a number of features in our
interface to minimize the annotator effort. One
of the largest challenges in this task is answering
questions across several foreign keys. We imple-
ment two distinct mechanisms to make this easier
for users. Firstly we highlight all table values or
foreign keys matching the value the mouse is cur-
rently hovering over. Secondly, we give the user
the option to merge all foreign keys into a single
table by pressing a "merge" button. We allow the
users to choose when to merge because there is a
trade-off; while merged mode can make reasoning
about foreign keys easier, it also can significantly
increase the width of the tables visible to the user.

Sometimes there are tables presented to the user
that are not necessary for answering the question,
so we give users the option to collapse tables to
simplify their display.

G Video Transcript

Page 1 In this task, you will be asked to answer
questions from several tables.

Page 2 Here is the overall idea. You will be given
a question on the top of the page, several tables
on the left of the page, and you need to choose
one of the options on the right, that corresponds
to the correct answer. In this question, you are
asked to “Show name, country, age for all singers
ordered by age from the oldest to the youngest.”.
Therefore, we expect the correct option to list the
information about Joe Sharp first, since he is older.
We look at the options and B is correct. Notice that
A is wrong because it does not list the information
for all singers, and C is wrong because it lists the
singers from the youngest to the oldest.

After you submit the answer, our system will ask
you whether there is anything that appears ambigu-
ous or confusing. We don’t need it for this question
now.

Page 3 Let’s go through some more examples.

Paged4 In this question you are asked “How many
singers do we have?” This is a tricky question. First
notice that the tables have changed from before,
so you need to re-read the table. Secondly, there
are actually two singers, but they have the same
name. You should consider them to be two different
persons with the same name but different SSN, and
hence choose B.

There is a time limit shown at the top of the page,
and after 4 minutes the system will move on to the
next question.

Page S Takeaways:

* Names are different from IDs. Two different
people can have the same name.

¢ There is a time limit of 4 minutes for each
question.

Page 6 In this question you are asked to find the
song names of the singers above the average age.
The average age is the mean of these 4 numbers,
which is 34.5. The singers John and Rose have age
above 34.5, so we can find their songs, which are
sun and gentle man, which is D. Use a calculator if
you need to!

Also, notice that there are other tables, but they
are not relevant to the question. Feel free to ignore
them. You can also choose to collapse them if that

17

makes it easier, and you can click the button again
to view it.

Page 7 Takeaways:
* Use a calculator if you need to.
* Not every table is needed.

Page 8 Here’s the same question and the same
table. Let’s say somehow Sun and Gentleman is
not one of the options, and then you should report
that no answer is correct. Then we will ask you
why you think no answer is correct. For example,
you can write “gentleman and sun is correct. the
average age is 34.5, John and Rose are above this
age and have song gentleman and Sun”.

The system asks us why we didn’t choose A,
we can answer “‘sun is by Rose, who is older than
34.5”. Please tell us enough information so that we
can know why your choice is correct - for example
if you just say “sun is also a correct answer”, it only
describes the difference between the two options
rather than explaining why it is correct. Giving us
more information can help you win more bonus.

Page 9 Takeaways:

* Choose no option is correct and tell us why
when you think no options are correct

* Tell us why you didn’t choose an answer when
we ask you to do so.

Page 10 The question is “What are the full names
of all players, sorted by birth date?”” First, notice
that there are a lot of answers in this case, and you
need to scroll down to read through all of them.
Secondly, there are a lot of ambiguities: for ex-
ample, the question didn’t mention whether we
should sort from youngest to oldest, or the reverse;
secondly, the question does not mention whether
the first and last name should be in the same col-
umn. For these reasons, A, B are both correct.
C, D are wrong because the question does not ask
for birthday information; F is wrong because it
only lists one player and G is wrong for including
birthday information. Then we can write in the re-
sponse: “ABE are all correct; not sure if we should
sort them from the oldest to youngest or reverse;
also not sure whether to put the first and last name
into the same column.” But still, make your best
guess, let’s say, A.

Then we click submit, and the system asks us
why we didn’t choose C. We explain that “the ques-
tion does not ask us for the birthday and it contains
redundant information”.

Page 11 Takeaways:

* There can be a lot of options. Make sure to
read through every of them

* When the question is ambiguous and multiple
answers are plausible, tell us why it is ambigu-
ous and what are the plausible answers. But
still, first make your best guess and submit.

Page 12 The question is “Give the names of coun-
tries that are in Europe and have a population equal
to 80000.” In this fictitious table, Brazil is in Eu-
rope and has a population of 80,000. Therefore,
the correct answer is A, even though we know that
Brazil is in fact in South America. However, it still
cannot stop us from answering the question based
on the table. Finally, there are many more coun-
tries in the world, beyond these three countries in
the table, but we should pretend that there are only
three countries in the world here.

Page 13 Takeaways:

* Try accepting the information from this table
as much as possible and focus on the part
useful for answering the question.

* If something is not present in the tables, pre-
tend that it does not exist.

Page 14 Here are some more difficult tables.This
is a database that contains information about battles
and death. The overall description of the databases
can be seen at the top of the page, which says: This
database contains information about battles, death
events, and ships. And then each table has its own
description as well. For example, in the ship table,
each row contains information about a ship, the 4th
row means the ship D was lost in battle with ID
4, and you can look up information about battle 4
in the battle table. To make it convenient for you,
whenever you move your cursor to a value, all the
same values will be highlighted. Here we notice
that according to the 5th row, Ship E was also lost
in battle 4.

To view multiple tables at the same time, you
can choose to zoom out, like this. Then you can
zoom back in, like this. You can typically find this
option in the Help panel of your browser. Again, if

18

you think some tables are irrelevant, just collapse
them like this.

You don’t have to study the tables in detail, since
they will probably change for the next question.

Page 15 Takeaways:

* You don’t have to study the table content in
great detail, since they will be changing.

* Zoom-in/out if you need to. You can find them
in the helper panel of your browser.

Page 16 This question is “Show names, results
and bulgarian commanders of the battles with no
ships lost in the English Channel”.

The question asks for certain battles namely,
those that did not lose ships in the English Channel
[pause]. Let’s start by finding the battles that did
lose ships in the English channel [pause]. Only
Battle 5 did; it lost ship C there. So the other bat-
tles, Battles 0 and 7, lost no ships there. In fact,
Battle 0 lost no ships at all, which is why it doesn’t
show up in the second table. We find the names
of Battle 0 and 7, along with their other informa-
tion. Therefore, the answer is E. One very common
mistake people make is that they ignored the word
“no”, and they chose the battles that lost the ship.
Be careful and pay close attention to every word!

Notice that there was originally the death table.
We removed it from the display to make it easier
for you.

The phrase ’Bulgarian commander’ might send
you looking for a table that tells you each
commander’s nationality. But actually, Bulgar-
ian_commander is a column in the battles table.
Presumably this table lists battles that Bulgaria
fought. Each battle had two sides, and this column
is naming the commander for the Bulgarian side.
You don’t have to fully understand how the tables
are set up, but you should figure out enough to
answer the question.

Just to repeat, to make it easier for you to process
this information, whenever your cursor moves to an
ID or a piece of text, its counterpart in other tables
will light up; whenever you click on a text, the
counterpart in the answer will also be highlighted.

You can also choose to merge the tables. After
you merge the table, there will still be two tables.
Each of the rows in the battle table will still contain
information about a battle, and each of the rows in
the ship table will still contain information about
a ship. However, the battle information where the

ship is lost is merged into the ship table. Notice that
battle O will not appear in the ship table, because
no ship is lost in the battle, so be careful when you
try to interpret the merged table. Click unmerge to
recover to the original view.

Finally, if you forgot what each table means, you
can always view them here.

Page 17 Takeaways:

* Pay close attention to how the question is be-
ing asked. They might lead to different op-
tions. Many mistakes people make are be-
cause they did not read the questions carefully.

Sometimes we choose not to show you certain
tables and columns if we know for sure they
are not needed.

Use the highlight functionality if that helps
you to reason across tables.

Use the merge functionality if you need to.
Each table will contain information about the
same object/entity, but the information about
its related objects will be pooled in.

Page 18 The question is “List the name and date
of the battle that has lost the ship named ’Lettice’
and the ship named "HMS Atalanta’”. Since there
is no ship named “HMS atlanta”, there is no battle
that lost both of these ships. So you should choose
A, “no result found".

Page 19 Takeaways: Choose no_result_found if
no answer satisfies the question.

Page 20 To summarize, here are a couple of
things you need to remember to answer the ques-
tions correctly:

Pay close attention to how the question is
asked; most mistakes are made because of
not reading the question carefully.

Accept the information in the table even if
they are changing and might be different from
the knowledge you have for the real world

IDs are different from names

Some questions might have a lot of options to
choose from and you need to read through all
of them.

19

Page 21 To make it easier for you to answer the
questions:

* Use the highlight and merge operations when
you need to

* Use a calculator if you need to

e Zoom out to fit the tables into the screen and
prevent scrolling.

e Not all table or column is needed to answer
the questions

Page 22 For freeform response:

* Reporting ambiguities or tell us why the ques-
tion is confusing only if you need to

* Explaining why you did not choose another
option when we ask you. Giving us more in-
formation can you help you win more bonus.

H More Analysis on Updated Annotations

Interpreting Database Schema Properly If
each row contains information about an orchestra,
the year it was founded, and its associated record-
ing company, when user asks ‘“Which recording
company was founded the earliest?", our system
should response “Not enough information to tell",
rather than finding the recording company of the
earliest-founded orchestra.

Accounting for all Allowed Values The anno-
tated SQL should account for all legal cell values,
either specified by the database schema or a hid-
den generation process of the database. For ex-
ample, when we are asked about the maximum
value in a column that allows NULL value, we pre-
fer SQL that returns the actual maximum value
rather than the NULL value. For another exam-
ple, if the utterance is “How many countries have
a republic government form?", the where clause
GOVERNMENT = “Republic" will ignore any
countries with the government form “Federal Re-
public", and hence the correct annotation should be
GOVERNMENT LIKE “%$Republic%".
Nevertheless, it is difficult to handle arbitrary
cell values allowed by the schema. For example,
if a user asks how many dogs are there, an ideal
annotated SQL might need to account for cell val-
ues like Chihuahua, Husky, etc, which requires
common sense reasoning and is hard to implement
with a logical form. Therefore, we either need to

make stronger assumptions about what cell values
are allowed in a database, or introduce additional
modules to handle common sense. We were par-
ticularly lenient when evaluating the SPIDER anno-
tated SQLs and only test them on cell values that
appear in their released database, even though their
database schema allows for a much larger set of
possible cell values.

I Computation

The simulation evaluation on the evaluation split
in §5 takes around 240 CPU hours. Finding an
informative small database can take up to several
minutes; therefore, to support real-time interac-
tion, we pre-compute the databases for all possible
choices a participant might choose. Pre-computing
the choices for all 240 utterances takes around 100
CPU hours.

20

