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Abstract

Retrieving evidences from tabular and textual001
resources is essential for open-domain question002
answering (OpenQA), which provides more003
comprehensive information. However, training004
an effective dense table-text retriever is diffi-005
cult due to the challenges of table-text discrep-006
ancy and data sparsity problem. To address the007
above challenges, we introduce an optimized008
OpenQA Table-TExt Retriever (OTTER) to009
jointly retrieve tabular and textual evidences.010
Firstly, we propose to enhance mixed-modality011
representation learning via two mechanisms:012
modality-enhanced representation and mixed-013
modality negative sampling strategy. Sec-014
ondly, to alleviate data sparsity problem and015
enhance the general retrieval ability, we con-016
duct retrieval-centric mixed-modality synthetic017
pre-training. Experimental results demonstrate018
that OTTER substantially improves the perfor-019
mance of table-and-text retrieval on the OTT-020
QA dataset. Comprehensive analyses examine021
the effectiveness of all the proposed mecha-022
nisms. Besides, equipped with OTTER, our023
OpenQA system achieves the state-of-the-art024
result on the downstream QA task, with 10.1%025
absolute improvement in terms of the exact026
match over the previous best system. 1027

1 Introduction028

Open-domain question answering (Joshi et al.,029

2017; Dunn et al., 2017; Lee et al., 2019) aims to an-030

swer questions with evidence retrieved from a large-031

scale corpus. The prevailing solution follows a two-032

stage framework (Chen et al., 2017), where a re-033

triever first retrieves relevant evidences and then a034

reader extracts answers from the evidences. Exist-035

ing OpenQA systems (Lee et al., 2019; Karpukhin036

et al., 2020; Mao et al., 2021) have demonstrated037

great success in retrieving and reading passages.038

However, most approaches are limited to questions039

whose answers reside in single modal evidences,040

1All the code and data will be released upon acceptance.

Question:

Retrieved Table:

What date was the location established where the 1920 

Summer Olympics boxing and wrestling events were held?

Venue Sports Capacity

Antwerp [4] Cycling [5] (road) Not listed

Antwerp Zoo [1] Boxing [2], Wrestling[2] Not listed

Retrieved Passages:

[1] Antwerp Zoo: Antwerp Zoo is a zoo in the centre of Antwerp, 

Belgium. It is …, established on 21 July 1843. 

[2] Boxing: These are the results of the boxing competition at the 

1920 Summer Olympics in Antwerp. 

[3] Wrestling: At the 1920 Summer Olympics, ten wrestling events 

were contested, for all men. There were five weight classes … 

[4] Antwerp: … [5] Cycling: … 

Answer: 21 July 1843

venues were used in the 1920 Summer Olympics

Figure 1: An example of the open question answering
over tables and text. Highlighted phrases in the same
color indicate evidence pieces related to the question in
each single modality. The answer is marked in red.

such as free-form text (Xiong et al., 2021b) or 041

semi-structured tables (Herzig et al., 2021). How- 042

ever, solving many real-world questions requires 043

aggregating heterogeneous knowledge (e.g., tables 044

and passages), because massive amounts of human 045

knowledge are stored in different modalities. As 046

the example shown in Figure 1, the supporting ev- 047

idence for the given question resides in both the 048

table and related passages. Therefore, retrieving 049

relevant evidence from heterogeneous knowledge 050

resources involving tables and passages is essential 051

for advanced OpenQA, which is also our focus. 052

There are two major challenges in joint table- 053

and-text retrieval: (1) There exists the discrepancy 054

between table and text, which leads to the difficulty 055

of jointly retrieving heterogeneous knowledge and 056

considering their cross-modality connections; (2) 057

The data sparsity problem is extremely severe be- 058

cause training a joint table-text retriever requires 059

large-scale supervised data to cover all targeted ar- 060

eas, which is labourious and impractical to obtain. 061

In light of this two challenges, we introduce an 062

optimized OpenQA Table-TExt Retriever, dubbed 063
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Venue Sports Capacity

Antwerp Zoo Boxing, Wrestling Not listed

venues were used in the 1920 Summer Olympics

A Fused Table-Text Block

Q: What date was the location established where the 1920 Summer Olympics boxing and wrestling events were held?

Table-Text Retrieval

Top-k
Blocks

A: 21 July 1843

Answer Extraction

Antwerp Zoo

… established on

21 July 1843.

Boxing

These are results of 

the boxing 

competition. …

Wrestling

…, ten wrestling 

events were 

contested, …

Longformer
Reader

OTTER

Figure 2: The framework of the overall OpenQA system. It first jointly retrieves top-k table-text blocks with our
OTTER. Then it answers the questions from the retrieved evidence with a reader model.

OTTER, which utilizes mixed-modality dense rep-064

resentations to jointly retrieve tables and text.065

Firstly, to model the interaction between tables066

and text, we propose to enhance mixed-modality067

representation learning via two novel mechanisms:068

modality-enhanced representations (MER) and069

mixed-modality hard negative sampling (MMHN).070

MER incorporates fine-grained representations of071

each modality to enrich the semantics. MMHN072

utilizes table structures and creates hard negatives073

by substituting fine-grained key information in two074

modalities, to encourage better discrimination of075

relevant evidences. Secondly, to alleviate the data076

sparsity problem and empower the model with gen-077

eral retrieval ability, we propose a retrieval-centric078

pre-training task with a large-scale synthesized cor-079

pus, which is constructed by automatically synthe-080

sizing mixed-modal evidences and reversely gener-081

ating questions by a BART-based generator.082

Our primary contributions are three-fold: (1) We083

propose three novel mechanisms to improve table-084

and-text retrieval for OpenQA, namely modality-085

enhanced representation, mixed-modality hard neg-086

ative sampling strategy, and mixed-modality syn-087

thetic pre-training. (2) Evaluated on OTT-QA, OT-088

TER substantially improves retrieval performance089

compared with baselines. Extensive experiments090

and analyses further examine the effectiveness of091

the above three mechanisms. (3) Equipped with092

OTTER, our OpenQA system significantly sur-093

passes previous state-of-the-art models with 10.1%094

absolute improvement in terms of exact match.095

2 Background096

2.1 Problem Formulation097

The task of OpenQA over tables and text is de-098

fined as follows. Given two corpus of tables CT =099

{t1, ..., tT } and passages CP = {p1, ..., pP }, the 100

task aims to answer question q by extracting answer 101

a from the knowledge resources CP and CT . The 102

standard system of solving this task involves two 103

components: a retriever that first retrieves relevant 104

evidences c ⊂ CT ∪ CP , and a reader to extract a 105

from the retrieved evidence set. 106

2.2 Table-and-text Retrieval 107

In this paper, we focus on table-and-text retrieval 108

for OpenQA. To better align the mixed-modality 109

information in table-and-text retrieval, we follow 110

Chen et al. (2020a) and take a table-text block 111

as a basic retrieval unit, which consists of a ta- 112

ble segment and relevant passages. Different from 113

retrieving a single table/passage, retrieving table- 114

text blocks could bring more clues for retrievers to 115

utilize since single modal data often contain incom- 116

plete context. Figure 2 illustrates table-and-text 117

retrieval and our overall system. 118

2.2.1 Table-Text Block 119

Since relevant tables and passages do not neces- 120

sarily naturally coexist, we need to construct table- 121

text blocks before retrieval. One observation is 122

that tables often hold large quantities of entities 123

and events. Based on this observation and prior 124

work (Chen et al., 2020b), we apply entity linking 125

to group the heterogeneous data. Here we apply 126

BLINK (Ledell et al., 2020) to fuse tables and text, 127

which is an effective entity linker and capable to 128

link against all Wikipedia entities and their cor- 129

responding passages. Given a flat table segment, 130

BLINK returns l relevant passages linked to the en- 131

tities in table. However, as table size and passage 132

quantity grow, the input may become too long for 133

BERT-based encoders (Devlin et al., 2019). Thus, 134

we split a table into several segments that each 135
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of them contains only a single row. More details136

about block constructions and representations can137

be found in Appendix A.1.138

3 Methodology139

We present OTTER, an OpenQA Table-TExt140

Retriever. We first introduce the basic dual-encoder141

architecture for dense retrieval (§ 3.1). We then142

describe three mechanisms to mitigate the table-143

text discrepancy and data sparsity problems, i.e.,144

modality-enhanced representation (§ 3.2), mixed-145

modality hard negative sampling (§ 3.3), and146

mixed-modality synthetic pre-training (§ 3.4).147

3.1 The Dual-Encoder Architecture148

The prevailing choice for dense retrieval is the dual-149

encoder method. In this framework, a question q150

and a table-text block b are separately encoded151

into two d-dimensional vectors by a neural encoder152

E(·). Then, the relevance between q and b is mea-153

sured by dot product over these two vectors:154

s(q, b) = q⊤ · b = E(q)⊤ · E(b). (1)155

The benefit of this method is that all the table-text156

blocks can be pre-encoded into vectors to support157

indexed searching during inference time. In this158

work, we initialize the encoder with a pre-trained159

RoBERTa (Liu et al., 2019), and take the repre-160

sentation of the first [CLS] token as the encoded161

vector. When an incoming question is encoded, the162

approximate nearest neighbor search can be lever-163

aged for efficient retrieval (Johnson et al., 2021).164

Training The training objective aims to learn rep-165

resentations by maximizing the relevance of the166

gold table-text block and the question. We follow167

Karpukhin et al. (2020) to learn the representations.168

Formally, given a training set of N instances, the169

ith instance (qi, b
+
i , b

−
i,1, ..., b

−
i,m) consists of a pos-170

itive block b+i and m negative blocks {b−i,j}mj=1, we171

minimize the cross-entropy loss as follows:172

L(qi, b
+
i , {b

−
i,j}

m
j=1) = − log

es(qi,b
+
i
)

es(qi,b
+
i
) +

∑m

j=1
e
s(qi,b

−
i,j

)
.173

Negatives are a hard negative and m− 1 in-batch174

negatives from other instances in a mini-batch.175

3.2 Modality-enhanced Representation176

Most dense retrievers use a coarse-grained single-177

modal representation from either the representation178

of the [CLS] token or the averaged representations179

BERT-based Encoder

modality-enhanced representation

[CLS] [PSG] Antwerp Zoo zoois in …[TAB] Antwerp ZooisVenue ……

𝐡 CLS 𝐡𝑡𝑎𝑏𝑙𝑒 𝐡𝑡𝑒𝑥𝑡

Figure 3: The illustration of modality-enhanced repre-
sentation in OTTER. Segments in green and blue denote
information of tables and passages respectively.

of tokens (Zhan et al., 2020), which is insufficient 180

to represent cross-modal information. To remedy 181

this, we propose to learn modality-enhanced repre- 182

sentation (MER) of table-text blocks. 183

As illustrated in Figure 3, instead of using only 184

the coarse representation h[CLS] at the [CLS] 185

token, MER incorporates tabular and textual repre- 186

sentations (htable and htext) to enhance the seman- 187

tics of table and text. Thus, the modality-enhanced 188

representation is b = [h[CLS];htable;htext], 189

where ; denotes concatenation. 190

Given the tokens in a tabular/textual modality, 191

we calculate a representation in the following ways: 192

(1) FIRST: representations of the beginning token 193

(i.e., [TAB] and [PSG]); (2) AVG: averaged to- 194

ken representations; (3) MAX: max pooling over 195

token representations ; (4) SelfAtt: weighted aver- 196

age over token representations where weights are 197

computed by a self attention layer. We discuss the 198

impact of different types of MERs in § 5.4. Our 199

best model adopts FIRST as the final setting. To 200

ensure the same vector dimensionality with the en- 201

riched representation, we represent the question by 202

replicating the encoded question representation. 203

3.3 Mixed-modality Hard Negative Sampling 204

Prior studies (Nogueira and Cho, 2019; Gillick 205

et al., 2019) have found that hard negative sam- 206

pling is essential in training a dense retriever. These 207

methods take each evidence as a whole and retrieve 208

the most similar irrelevant one as the hard negative. 209

Instead of finding an entire irrelevant block, we 210

propose a mixed-modality hard negative sampling 211

mechanism, which constructs more challenging 212

hard negatives by only substituting partial informa- 213

tion in the table or text. 214

Formally, suppose a positive block bj+ = 215

(tj , pj) is from the j-th row in the table, the answer 216

a resides in either table segment tj or passages pj . 217

We decide to replace either the table row or the 218
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passage depending on where the answer exists. If a219

exists in the table row, we construct a hard negative220

bj− = (tk, pj) by replacing tj with a random row221

tk in the same table. Similarly, if a resides in the222

passages, we create hard negative bj− = (tj , pk)223

by replacing passages with pk in other blocks.224

3.4 Mixed-modality Synthetic Pre-training225

To alleviate the issue of data sparsity, we propose226

a mixed-modality synthetic pre-training (MMSP)227

task. MMSP enhances the retrieval ability by pre-228

training on a large-scale synthesized corpus, which229

involves mixed-modality pseudo training data with230

(question, table-text block) pairs. Here, we intro-231

duce a novel way to construct the pseudo training232

corpus in two steps, including table-text block min-233

ing and question back generation.234

(1) Mine relevant table-text pairs. One observa-235

tion is that Wikipedia hyperlinks often link explana-236

tory passages to entities in tables, which provides237

high-quality relevant table-text pairs. Based on this,238

we believe Wikipedia is an excellent resource for239

parsing table-text pairs. Specially, we select a row240

in a table, and find corresponding passages with241

the hyperlinks to form a fused table-text block. We242

only keep the first section in each Wikipedia page243

as it always contains the most important informa-244

tion about the linked entity. (2) Write pseudo ques-245

tions for fused blocks. The questions are expected246

to not only contain the mixed-modality information247

from the blocks, but also have good fluency and248

naturalness. Therefore, instead of using template-249

based synthesizing methods, we use a generation-250

based method to derive more fluent and diverse251

questions, which is called back-generation. Spe-252

cially, we use BARTbase (Lewis et al., 2019) as253

the backbone of our generator, which is fine-tuned254

with oracle pairs of (question, table-text block) in255

the OTT-QA training set. The input to the gener-256

ator is a sequence of the flat table and linked pas-257

sages, and the output is a mixed-modality question.258

Finally, we automatically construct a large-scale259

pre-training corpus. We present some examples of260

generated pseudo questions in Appendix A.2.261

During pre-training, we adopt a similar ranking262

task where the training objective is the same as de-263

scribed in § 3.1. As for negative sampling, we use264

in-batch negatives and one hard negative randomly265

sampled from the same table. Finally, we obtain266

a synthesized corpus with 3M pairs of table-text267

blocks and pseudo questions.268

4 Experiment Settings 269

In this section, we describe the experiment settings 270

on the task of open-domain question answering 271

over tables and text, and report the performance 272

of our system on the table-and-text retrieval, and 273

downstream question answering. 274

4.1 Dataset 275

Our system is evaluated on the OTT-QA dataset 276

(Chen et al., 2020a), which is a large-scale open- 277

domain table-text question answering benchmark. 278

Answering questions in OTT-QA requires aggregat- 279

ing multi-modal information from both tables and 280

text. OTT-QA dataset contains over 40K questions 281

with human annotated answers and ground truth 282

evidences. It also provides a corpus of over 400K 283

tables and 6M passages collected from Wikipedia. 284

Data statistics of OTT-QA dataset and table-text 285

corpus are shown in Table 1. 286

# questions (train/dev/test) 41,469 / 2,214 / 2,158
# of tables in the corpus 410,740
# of passages in the corpus 6,342,314
# of fused table-text blocks in the corpus 5,409,903
Average tokens in fused blocks 357.5
Average fused table-text blocks in each table 12.9

Table 1: Statistics of OTT-QA and table-text corpus.

4.2 Evaluation Metrics 287

A well-recognized metric for information retrieval 288

is the recall at top k ranks (Recall@k), which is 289

the proportion of relevant items found in the top-k 290

returned items. In this paper, we use two metrics 291

to evaluate the retrieval system: one is table recall 292

and the other is table-text block recall. Table re- 293

call indicates whether the top-k retrieved blocks 294

come from the ground-truth table. However, in 295

table-and-text retrieval, table recall is imperfect as 296

an coarse-grained metric since our basic retrieval 297

unit is a table-text block corresponding to a spe- 298

cific row in the table. Therefore we propose a 299

more fine-grained and challenging metric: table- 300

text block recall at top k ranks, where a fused block 301

is considered as a correct match when it meets two 302

requirements. Firstly, it comes from the ground 303

truth table. Second, it contains the correct answer. 304

On the downstream QA task, we report the exact 305

match (EM) and F1 score (Chen et al., 2020a) to 306

evaluate OpenQA system. 307

5 Experiments: Table-and-Text Retrieval 308

In this section, we evaluate the retrieval per- 309

formance of our OpenQA Table-Text Retriever 310

4



(OTTER). We first compare OTTER with previous311

retrieval approaches on OTT-QA. Then we conduct312

extensive experiments to examine the effectiveness313

of the three proposed mechanisms.314

5.1 Baseline Methods315

We compare with the following retrievers. (1)316

BM25 (Chen et al., 2020a) is a sparse method to317

retrieve tabular evidence, where the flat table with318

metadata (i.e., table title and section title) and con-319

tent are used for retrieval. (2) Bi-Encoder (Kosti’c320

et al., 2021) is a dense retriever which uses a BERT321

encoder for questions, and a shared BERT encoder322

to separately encode tables and text as representa-323

tions for retrieval. (3) Tri-Encoder (Kosti’c et al.,324

2021) is a dense retriever that uses three individ-325

ual BERT encoders to separately encode questions,326

tables and text as representations. (4) Iterative327

Retriever (Chen et al., 2020a) is a dense retriever328

which iteratively retrieves tables and passages in 3329

steps. (5) Fusion Retriever (Chen et al., 2020a) is330

the only existing dense method to retrieve table-text331

block, which uses a GPT2 (Radford et al., 2019) to332

link passages and the Inverse Cloze Task (Lee et al.,333

2019) to pre-train the encoder. We also report re-334

sults of OTTER-baseline (removing three proposed335

strategies) and OTTER w/o text (removing textual336

passages during retrieval).337

5.2 Implementation Details338

We use RoBERTa-base (Liu et al., 2019) as the339

backbone of our retrievers with a maximum input340

length of 512 tokens per table-text block and 70 to-341

kens per question. The retrievers are trained using342

the in-batch negative and one additional hard neg-343

ative setting for both pre-training and fine-tuning.344

On the pre-training stage, we pre-train on the syn-345

thesized corpus for 5 epochs on 8 Nvidia Tesla346

V100 32GB GPUs with a batch size of 168. We use347

AdamW optimizer (Loshchilov and Hutter, 2019)348

with a learning rate of 3e-5, linear scheduling with349

5% warm-up. On the fine-tuning stage, we train350

the retrievers for 20 epochs with a batch size of 64,351

learning rate of 2e-5 and warm-up ratio of 10 % for352

all encoders on 8 Nvidia Tesla V100 16GB GPUs.353

5.3 Main Results354

Table 2 compares different retrievers on OTT-QA355

dev. set, using the table recall at top k ranks356

(k ∈ {1, 10, 20, 50, 100}) because the results from357

other papers are mainly reported in table recall. We358

find that: (1) OTTER significantly outperforms359

Models R@1 R@10 R@20 R@50 R@100 Hit@4K
BM25 41.0 68.5 73.7 80.4 - -
Bi-Encoder - 72.9 78.0 - 89.4 -
Tri-Encoder - 73.8 79.7 - 90.1 -
Iterative Retriever - - - - - 27.2
Fusion Retriever - - - - - 52.4
OTTER-baseline 46.3 69.4 74.4 80.1 83.9 54.6
OTTER w/o text 48.7 73.9 79.5 85.8 88.8 34.6
OTTER 58.5 82.0 86.3 90.6 92.8 66.4

Table 2: Overall retrieval results on OTT-QA dev set.
Hit@4K (Chen et al., 2020a) is used to measure whether
the answer exists in the retrieved 4096 subword tokens.

previous sparse and dense retrievers and the gap is 360

especially large when k is smaller (e.g., 8.2% abso- 361

lute gain for R@10), which demonstrates the effec- 362

tiveness of OTTER; (2) When textual passages are 363

removed during retrieval (OTTER w/o text), the 364

performance of OTTER drops dramatically, espe- 365

cially when k is smaller. This phenomenon shows 366

the importance of taking textual information as a 367

complement to tables. 368

5.4 Ablation Study 369

To examine the effectiveness of the three mecha- 370

nisms in OTTER, we conduct extensive ablation 371

studies on OTT-QA and discuss our findings below. 372

Effect of Modality-enhanced Representation 373

In this experiment, we explore the effect of 374

modality-enhanced representations (MER) on re- 375

trieval performance. Table 3 reports the table recall 376

and block recall of our models with different MER 377

strategies on the OTT-QA dev. set. We also report 378

the result after eliminating MER, i.e., using only 379

the representation of the [CLS] token for rank- 380

ing. We find that integrating modality-enhanced 381

representations improves the retrieval performance 382

significantly. As MER incorporates single-modal 383

representations to enrich the mixed-modal repre- 384

sentation, retrievers can easily capture the compre- 385

hensive semantics of table-text blocks. In addi- 386

tion, among all the strategies for MER, the FIRST 387

strategy using the representation of the beginning 388

special token of each modality achieves the best 389

performance. This observation verifies the stronger 390

representative ability of the FIRST strategy com- 391

pared with other pooling strategies. 392

Effect of Mixed-modality Negative Sampling 393

To investigate the effectiveness of hard negative 394

sampling on retrieval performance, we evaluate 395

our system under following settings of hard nega- 396

tive sampling on the OTT-QA development set: (1) 397

Mixed-modality hard negative (MMHN) described 398
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Table Recall Block Recall
Models R@1 R@10 R@100 R@1 R@10 R@100
OTTER

MER=FIRST 58.5 82.0 92.8 30.9 66.4 87.0
MER=AVG 57.1 81.2 92.5 29.8 65.3 85.9
MER=MAX 56.7 81.4 92.2 29.0 65.1 86.4
MER=SelfAtt 57.9 81.2 92.6 29.5 65.3 86.0
w/o MER 50.0 76.8 89.9 22.7 55.2 79.3

Table 3: Retrieval performance of OTTER under differ-
ent modality-enhanced representations (MER) settings.

in § 3.3; (2) BM25: the most similar irrelevant399

table-text block searched by BM25; (3) Random: a400

random table-text block in the same table contain-401

ing no answer.402

From the results shown in Table 4, we can ob-403

serve that training the retriever with MMHN yields404

the best performance compared with other hard neg-405

ative sampling strategies. Since mixed-modality406

hard negatives is constructed by only replacing par-407

tial information from the positive block, it is more408

challenging and it enables the retriever to better409

distinguish important information in the evidence.410

Table Recall Block Recall
Models R@1 R@10 R@100 R@1 R@10 R@100
OTTER

HN=MMHN 58.5 82.0 92.8 30.9 66.4 87.0
HN=BM25 51.4 79.8 92.4 25.8 58.2 81.9
HN=Random 50.3 79.0 92.7 28.4 58.7 80.1

Table 4: Retrieval performance of OTTER under differ-
ent hard negative sampling settings. MMHN denotes
mixed-modality hard negatives.

Effect of Mixed-modality Synthetic Pre-training411

We investigate the effectiveness of mixed-modality412

synthetic pre-training. We first pre-train the re-413

triever and then fine-tune the retriever with OTT-414

QA training set. The pre-training corpus consisting415

of 3 millions of (question, evidence) pairs, with416

questions synthesized in the following ways: (1)417

BartQ: the questions are generated by BART as de-418

scribed in § 3.4; (2) TitleQ: the questions are con-419

structed from passage titles and table titles. (3) DA420

w/o PT: data augmentation without pre-training,421

where we integrate the BART synthetic corpus with422

the oracle data together for fine-tuning. (4)w/o PT423

direct fine-tuning without pre-training.424

The retrieval results on the dev. set of OTT-QA425

are exhibited in Table 5. We can find that: (1)426

Pre-training brings substantial performance gain to427

dense retrieval, showing the benefits of automati-428

cally synthesizing large-scale pre-training corpus429

to improve retrievers. (2) synthesizing questions430

using BART-based generator performs better than431

using template-based method (TitleQ). We attribute432

Table Recall Block Recall
Models R@1 R@10 R@100 R@1 R@10 R@100
OTTER

PT=BartQ 58.5 82.0 92.8 30.9 66.4 87.0
PT=TitleQ 56.6 79.3 91.8 23.1 60.0 83.1
DA w/o PT 39.3 68.9 73.0 14.8 45.9 74.5
w/o PT 53.1 77.8 91.2 20.5 57.2 81.3

Table 5: Retrieval performance of OTTER under differ-
ent settings. PT denotes pre-training.

it to more fluent and diverse questions synthesized 433

by generation-based method. (3) Using the syn- 434

thesized corpus for data augmentation performs 435

much poorer than using it for pre-training, and even 436

worse than directly fine-tuning without pre-training. 437

One explanation is that pre-training targets to help 438

the model in learning a more general retrieving abil- 439

ity beforehand, while fine-tuning aims to learns a 440

more specific and accurate retriever. As the synthe- 441

sized corpus is more noisy, using it as augmented 442

fine-tuning data may make the training unstable 443

and lead to a performance drop. This observation 444

again verifies the effectiveness of pre-training with 445

mixed-modality synthetic corpus. 446

5.5 Case Study 447

Here, we give an example of retrieved evidences to 448

show that OTTER correctly represents questions 449

and blocks with the proposed three strategies. 450

As shown in Figure 4, to answer the question, 451

the model should find relevant table-text blocks 452

with two pieces of evidences distributed in tables 453

and passages, including the “skier who won 6 gold 454

medals at the FIS Nordic Junior World Ski Cham- 455

pionships" and the “year when the skier started 456

competing". As we can see, OTTER successfully 457

returns a correct table-text block at rank 1, which 458

includes all necessary information. The top-2 re- 459

trieved block by OTTER is also reasonable, since 460

partial evidences like 6 gold medals and Ski Cham- 461

pionships are matched. However, OTTER-baseline 462

(w/o three mechanisms) returns an unsatisfactory 463

block. Though the retriever finds the Ski Champi- 464

onships , which is a strong signal to locate the table, 465

it fails to capture fine-grained information like 6 466

gold medals and starting year. 467

This case demonstrates that OTTER can cap- 468

ture the more accurate meanings of fused table-text 469

block, especially when the supported information 470

resides separately. It shows that enhancing cross- 471

modal representations with proposed mechanisms 472

is beneficial to modeling heterogeneous data. 473
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Q: The skier with 6 gold medals at FIS Nordic Junior World Ski Championships, started competing in what year ?

Rank Athlete Country From To Gold Silver Bronze Total

1 Björn Kircheisen [1] Germany[2] 2001 2003 6 - - 6

FIS Nordic Junior World Ski Championships -- Nordic combined

FIS Nordic Junior World Ski Championships -- Ski jumping

Rank Athlete Country From To Gold Silver Bronze Total

2 Michael Hayböck [1] Austria[2] 2009 2011 4 – – 4

Björn Kircheisen … is a German 

nordic combined skier who has c

ompeted since 2000 . He won …

[1] Björn Kircheisen

Michael Hayböck (born 5 March 

1991) is an Austrian ski jumper.

[1] Michael Hayböck [2] Austria

Austria, officially the Republic of 

Austria, is a landlocked East Alpi

ne country in the southern part o

f Central Europe. …

[2] Germany

Germany, constitutionally the Fe

deral Republic of Germany, is a 

country in Central and Western 

Europe . It … 

Top-1 and Top-2 retrieved block by OTTER:

Top-1 retrieved block by OTTER-baseline:

Rank Athlete Country From To Gold Silver Bronze Total

1 Petter Northug[1] Norway[2] 2005 2006 6 2 - 8

FIS Nordic Junior World Ski Championships -- Cross-country skiing

Petter Northug Jr. (born 6 Janua

ry 1986) is a Norwegian former c

ross-country skier and double Ol

ympic champion. He won …

[1] Petter Northug [2] Norway

Norway, officially the…, whose 

mainland territory comprises the 

western and northernmost portio

n of the Scandinavian Peninsula. 

A: 2000

Figure 4: Examples of table-text blocks returned by full OTTER and OTTER without modality-enhanced represen-
tations. Words in the retrieved blocks of the same color denote the evidences corresponding to questions.

6 Experiments: Question Answering474

In this section, we experiment to show how OT-475

TER affects the downstream QA performance.476

6.1 Reader477

We implement a two-stage open-domain question478

answering system, which is equipped with our OT-479

TER as the retriever and a reader model for ex-480

tracting the answer from the retrieved evidence. As481

we mainly focus on improving the retriever in this482

paper, we use the state-of-the-art reader model to483

evaluate the downstream QA performance.484

Following Chen et al. (2020a), we use the Cross485

Block Reader (CBR) to extract the answer. The486

CBR jointly reads the concatenated top-k retrieved487

table-text blocks and outputs a best answer span488

from these blocks. In contrast to Single Block Read-489

ers (SBR) that read only one block at a time, CBR490

is more powerful in utilizing the cross-attention491

mechanism to model the cross-block dependen-492

cies. Here we take the pre-trained Long-Document493

Transformer (Longformer) (Beltagy et al., 2020) as494

the backbone of CBR, which applies sparse atten-495

tion mechanism and accepts longer input sequence496

of up to 4,096 tokens. For fair comparison with497

Chen et al. (2020a), we feed top-15 retrieved blocks498

into the reader model for inference. To balance the499

distribution of training data and inference data, we500

also takes k table-text blocks for training, which501

contains several ground-truth blocks and the rest of502

retrieved blocks. The training objective is to maxi-503

mize the marginal log-likelihood of all the correct504

answer spans in the positive block. The reader is505

trained with 8 Nvidia V100 GPUs for 5 epochs,506

using the batch size of 16 and learning rate of 1e-5.507

Dev Test
Retriever Reader EM F1 EM F1
BM25 HYBRIDER (Chen et al., 2020b) 10.3 13.0 9.7 12.8
BM25 DUREPA (Li et al., 2021) 15.8 - - -
Iterative Retriever SBR (Chen et al., 2020a) 7.9 11.1 9.6 13.1
Fusion Retriever SBR (Chen et al., 2020a) 13.8 17.2 13.4 16.9
Iterative Retriever CBR (Chen et al., 2020a) 14.4 18.5 16.9 20.9
Fusion Retriever CBR (Chen et al., 2020a) 28.1 32.5 27.2 31.5
OTTER (ours) CBR 37.1 42.8 37.3 43.1

Table 6: QA Results on the dev. set and blind test set.

6.2 Results 508

The results are shown in Table 6. We find that 509

OTTER+CBR significantly outperforms existing 510

OpenQA systems, with 10.1% performance gain 511

in terms of EM over the prior state-of-the-art sys- 512

tem. The results demonstrate that our approach 513

can retrieve better supported evidences to the ques- 514

tion, which leads to further improvement on the 515

downstream QA performance. 516

To further analyze the effect of different com- 517

ponents of OTTER on QA performance, we con- 518

duct an ablation study on OTT-QA after eliminat- 519

ing different components. As shown in Figure 5, 520

the OpenQA system with full OTTER achieves 521

the best performance, and removing each compo- 522

nent leads to a substantial performance drop. This 523

observation verifies the effectiveness of our pro- 524

posed three mechanisms, i.e., modality-enhanced 525

representations (MER), mixed-modality hard nega- 526

tives (MMHN) and mixed-modality synthetic pre- 527

training. We also evaluate the impact of taking dif- 528

ferent numbers of retrieved blocks as the inputs for 529

inference. As shown in Figure 5, the EM score in- 530

creases rapidly with k when k < 20 but the growth 531

slows down when k > 20, which can help to find a 532

better tradeoff between efficiency and performance. 533

534
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Figure 5: QA Performance on the OTT-QA dev. set
with different number of table-text blocks as input.

7 Related Works535

In OpenQA (Chen et al., 2017; Joshi et al., 2017;536

Dunn et al., 2017; Lee et al., 2019), the retriever537

is an essential component to identify relevant evi-538

dences for answer extraction. In contrast to sparse539

information retrieval methods (Wang et al., 2018;540

Nogueira and Cho, 2019; Yang et al., 2019), recent541

OpenQA systems tend to adopt dense retrieval ap-542

proaches utilizing dense representations learned by543

pre-trained language models (Lee et al., 2019; Guu544

et al., 2020; Karpukhin et al., 2020). These meth-545

ods are powerful in capturing contextual semantics.546

The prevailing OpenQA datasets mainly take the547

unstructured passage as evidence, including Natu-548

ral Questions (Kwiatkowski et al., 2019), TriviaQA549

(Joshi et al., 2017), WebQuestions (Berant et al.,550

2013), CuratedTREC (Baudis and Sedivý, 2015)551

and SQuAD (Rajpurkar et al., 2016). Recently,552

Herzig et al. (2021) study OpenQA in the tabular553

domain. Chen et al. (2020a) consider a more chal-554

lenging setting that takes both tabular corpus and555

textual corpus as the knowledge sources, which is556

also the setting in this paper.557

Our approach differs from existing methods558

mainly in two aspects: targeted evidence source559

and mixed-modality learning mechanisms. First of560

all, we retrieve mixed-modality evidence from both561

tabular and textual corpus, which is different from562

text-based retrievers (Karpukhin et al., 2020; Asai563

et al., 2020; Xiong et al., 2021b) and table-based564

retrievers (Chen et al., 2020c; Shraga et al., 2020;565

Pan et al., 2021a). Secondly, our proposed three566

mixed-modality learning mechanisms also differ567

from existing methods. As for mixed-modality rep-568

resentation, previous work (Karpukhin et al., 2020)569

mainly uses the single representation of the special570

token for ranking. Our method incorporates single571

modal representation to enrich the mixed modal 572

representation. As for mixed-modality negative 573

sampling, instead of finding an entire negative evi- 574

dence with either sparse or dense methods (Yang 575

et al., 2021; Luan et al., 2021; Lu et al., 2020; 576

Xiong et al., 2021a; Lu et al., 2021; Zhan et al., 577

2021), we construct more challenging hard nega- 578

tive by only replacing partial single-modality infor- 579

mation at once. As for mixed-modality synthetic 580

pre-training, our pre-training strategy is different 581

in the pre-training task, knowledge source and the 582

method of synthesizing pseudo question. There are 583

also works investigating joint pre-training over ta- 584

bles and text (Herzig et al., 2020; Eisenschlos et al., 585

2020; Yin et al., 2020; Oğuz et al., 2020). However, 586

these methods mainly take the table metadata as the 587

source of text and do not consider the retrieval task. 588

Instead, we use linked passages as a more reliable 589

knowledge source, and target on retrieval-based 590

pre-training. There are some attempts on incor- 591

porating pre-training task to improve retrieval per- 592

formance (Chang et al., 2020; Sachan et al., 2021; 593

Ouguz et al., 2021), which target on textual-domain 594

retrieval or using template-based method for query 595

construction. Differently, our approach focuses 596

on a more challenging setting that retrieves evi- 597

dence from tabular and textual corpus and adopts a 598

generation-based query synthetic method. Besides, 599

Pan et al. (2021b) explore to generate multi-hop 600

questions for tables and text, but they focus on an 601

unsupervised manner. 602

8 Conclusion 603

In this paper, we propose an optimized dense re- 604

triever called OTTER, to retrieve joint table-text ev- 605

idences for OpenQA. OTTER involves three novel 606

mechanisms to address table-text discrepancy and 607

data sparsity challenges, i.e., modality-enhanced 608

representations, mixed-modality hard negative sam- 609

pling, and mixed-modality synthetic pre-training. 610

We experiment on OTT-QA dataset and evaluate on 611

two subtasks, including retrieval and QA. Results 612

show that OTTER significantly outperforms other 613

retrieval methods by a large margin, which further 614

leads to a substantial absolute performance gain 615

of 10.1% EM on the downstream QA. Extensive 616

experiments illustrate the effectiveness of all three 617

mechanisms in improving retrieval and QA perfor- 618

mance. Further analyses also show the ability of 619

OTTER in retrieving more relevant evidences from 620

heterogeneous knowledge resources. 621
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A Method Details813

A.1 Table-Text Block Representation814

The table-text block representation is illustrated in815

Figure 6. Following Chen et al. (2020a), we in-816

volve the title and section title of a table and prefix817

them to the table cell. We also flatten the column818

name and column value with an “is " token to ob-819

tain more natural and fluent utterance. In addition,820

we add different special tokens to separate differ-821

ent segments, including [TAB] for table segment,822

[PSG] for passage segment, [TITLE] for table823

title, [SECTITLE] for section title, [DATA] for824

table content, and [SEP] to separate different pas-825

sages. Such a flattened block will be used through-826

out this paper as the input string to the retriever and827

the reader.828

In OTT-QA dataset, long rows frequently appear829

in tables, which leads to more entities and passages830

in a single table-text block. To maintain more rele-831

vant information in a block, we rank the passages832

with the TF-IDF score to table schema and table833

content. Then we remove the tokens when a flat-834

tened block is out of the input length limit of the835

RoBERTa tokenizer.836

Venue Sports Capacity

Antwerp Zoo Boxing, Wrestling Not listed

Antwerp Zoo is a z

oo in the centre of 

Antwerp, Belgium. I

t is … established o

n 21 July 1843.

Antwerp Zoo

These are the resul

ts of the boxing co

mpetition at the 19

20 Summer Olympi

cs in Antwerp

Wrestling

At the 1920 Summ

er Olympics, ten wr

estling events were 

contested, for all m

en. …

Boxing

1920 Summer Olympics --- Venues

[CLS] [TAB] [TITLE] 1920 Summer Olympics [SECTITLE] 
Venues [DATA] Venue is Antwerp Zoo. Sports is Boxing, 
Wrestling. Capacity is Not listed. [PSG] Antwerp Zoo is a 
zoo in the centre of Antwerp …. [SEP] These are the results 
of the boxing competition at the 1920 …. [SEP] At the 1920 
Summer Olympics, ten wrestling events were contested….

A fused table-text block:

Flattened fused block:

Figure 6: The flattened fused block representation of
the each table-text block.

A.2 Examples of Synthesized Corpus837

To provide a better understanding of mixed-838

modality synthetics pre-training, we give some839

examples of pseudo training data with (question,840

table-text block) pairs in Table 7. As we can see, 841

the generated questions not only are fluent and nat- 842

ural, but also consider mixed-modality information 843

from tables and passages. 844

B Performance Analysis 845

B.1 Top-k Retrieval Results 846

Here, we show the detailed retrieval results of OT- 847

TER with different components in Figure 7. The 848

table recall at top-k ranks and block recall at top-k 849

ranks are reported. We can find that full OTTER 850

substantially surpasses the models of other settings 851

in block recall, and in table recall when k ≤ 50. 852
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Figure 7: Top-k retrieval performance of retrievers on
the dev set of OTT-QA. Full OTTER substantially sur-
passes the other models in block recall, and in table
recall when k ≤ 50.

B.2 Entity Linking 853

To understand the effects of entity linking, we eval- 854

uate the standalone entity linking accuracy and 855

the retrieval performance. We consider the fol- 856

lowing linking models: (1) GPT-2 used in Chen 857

et al. (2020a), which first augments the cell value 858

by the context with a GPT-2 (Radford et al., 2019) 859

and then uses BM25 to rank the blocks to the aug- 860

mented form, (2) BLINK (Ledell et al., 2020) used 861

in OTTER, which applys a bi-encoder ranker and 862

cross-encoder re-ranker to link Wikipedia passages 863

to the entities in flattened tables, (3) Oracle linker, 864

which uses the original linking passages in the ta- 865

ble. 866

We evaluate the entity linking of on the OTTQA 867

dev. set following the settings in Chen et al. (2020a) 868

and report the table-segment-wise F1 score. Table 869

8 shows the performance. We find that the F1 score 870

of BLINK is higher than GPT-2, which leads to 871

more relevant passages for tables. 872
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Flattened Table Segment Generated Question
[TAB] [TITLE] J1 League [SECTITLE] History – Timeline [DATA] Year is
2003. Important events is Extra time. # J clubs is 16. Rele . slots is 2. [PSG]
The 2003 season was the 11th season since the establishment of the J.League . The
league began on March 15 and ended on November 29 .

What is the number of slots in the J1
League for the season that began on
March 15 and ended on November
29 ?

[TAB] [TITLE] 2010 President’s Cup (tennis) [SECTITLE] ATP entrants –
Seeds [DATA] Nationality is KAZ. Player is Mikhail Kukushkin. Ranking is 88.
Seeding is 1. [PSG] Mikhail Aleksandrovich Kukushkin (; born 26 December 1987
) is a Kazakh professional tennis player of Russian descent .

What is the nationality of the player
in the 2010 President ’s Cup who
was born on 26 December 1987 ?

[TAB] [TITLE] Washington House of Representatives [SECTITLE] Compo-
sition – Members ( 2019-2021 , 66th Legislature ) [DATA] District is 7. Position
is 1. Representative is Jacquelin Maycumber. Party is Republican. Residence is
Republic. Counties Represented is Ferry Okanogan Pend Oreille Spokane Stevens.
First elected is 2017. [PSG]

What is the residence of the Wash-
ington House of Representatives
representative who was first elected
in 2017.

[TAB] [TITLE] 1961 NFL expansion draft [SECTITLE] Player selections
[DATA] Player is Don Joyce. Position is Defensive end. College Team is Tulane.
Original NFL Team is Baltimore Colts. [PSG] Don Joyce ( October 8 , 1929 -
February 26 , 2012 ) was an American football defensive end and professional
wrestler.

What was the original NFL team
of the 1961 NFL expansion draft
player who died on February 26 ,
2012 ?

[TAB] [TITLE] 2009 Formula One World Championship [SECTITLE] Results
and standings – Grands Prix [DATA] Round is 2. Grand Prix is Malaysian Grand
Prix. Pole position is Jenson Button. Fastest lap is Jenson Button. Winning driver is
Jenson Button. Winning constructor is Brawn Mercedes. Report is Report. [PSG]
The Malaysian Grand Prix was an annual auto race held in Malaysia . It was part of
the Formula One World Championship from 1999 to 2017 and it was held during
these years at the Sepang International Circuit . The first Malaysian Grand Prix was
held in 1962 in what is now Singapore .

What is the name of the construc-
tor that won the 2009 Formula One
World Championship round that
was held at the Sepang International
Circuit ?

Table 7: Examples of synthesized corpus for pre-training. The queries are generated by a fine-tuned BART generotor
given the input of flattened table segment. The generated questions not only are fluent and natural, but also consider
mixed-modality information from tables and passages.

Linking Table Recall Block Recall
Linker F1 R@1 R@10 R@100 R@1 R@10 R@100
GPT2 50.4 58.2 81.5 92.5 28.6 64.0 83.7
BLINK 55.9 58.5 82.0 92.8 30.9 66.4 87.0
Oracle 100 60.5 83.5 93.9 35.3 71.5 88.5

Table 8: Entity linking and retrieval results of different
linkers.

We further evaluate the retrieval performance873

with table-text corpus constructed by different en-874

tity linkers. Comparing GPT-2 and BLINK, we can875

find that the retrieval performance improves with876

the increased linking F1, especially when evaluated877

in block recall. The result indicates the importance878

of sufficient context information.879

B.3 Embedding Dimension880

To maximumly eliminate the impact of embed-881

ding dimension in modality-enhanced representa-882

tion (MER), we add a new ablation by concate-883

nating three [CLS] vectors as block representa-884

tions, (i.e., b = [h[CLS];h[CLS];h[CLS]]),885

and training in the same way as MER=First (i.e.,886

b = [h[CLS];h[TAB];h[PSG]]). The results887

in Table 9 show that using specific representations888

of each modality still brings more sufficient infor-889

mation than [CLS] after maximumly eliminating890

the dimension bias. 891

Table Recall Block Recall
Model R@1 R@10 R@100 R@1 R@10 R@100
MER=First 58.5 82.0 92.8 30.9 66.4 87.0
CLS 57.5 80.4 92.5 29.6 64.0 86.5

Table 9: Ablation results on retrieval of MER dimen-
sion.
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