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Abstract001

The type of a text profoundly shapes reading002
behavior, yet little is known about how different003
text types interact with word-level features and004
the properties of machine-generated texts to in-005
fluence how readers process language. In this006
study, we investigate how different text types007
affect eye movements during reading, how de-008
coding strategies used to generate texts interact009
with text type, and how text types modulate the010
influence of word-level psycholinguistic fea-011
tures such as surprisal, word length, and lex-012
ical frequency. Leveraging EMTeC (Bolliger013
et al., 2025), the first eye-tracking corpus of014
LLM-generated texts across six text types and015
multiple decoding algorithms, we show that016
text type strongly modulates cognitive effort017
during reading, that psycholinguistic effects018
induced by word-level features vary systemat-019
ically across genres, and that decoding strate-020
gies interact with text types to shape reading021
behavior. These findings offer insights into022
genre-specific cognitive processing and have023
implications for the human-centric design of024
AI-generated texts.025

1 Introduction026

The type or genre of a text influences the cognitive027

effort we expend at different stages of language028

processing (Blohm et al., 2022). A proxy for this029

cognitive load in language processing consists in030

the way we move our eyes during reading: not only031

do eye movements contain information about the032

properties and structure of the text being read, but033

they also provide insights into the cognitive mecha-034

nisms underlying language processing, as different035

words require a different amount of cognitive effort036

to be processed (Rayner, 1998; Rayner and Clifton,037

2009). Given these qualities, eye movements have038

been leveraged to investigate readers’ interactions039

with different text types, observing, for instance,040

that poetry leads to more regressions (Corcoran041

et al., 2023) or that fiction is read faster than non-042

fiction (Brysbaert, 2019). However, most of these 043

studies have examined different genres in isolation 044

and not directly pitted them against each other un- 045

der the same experimental conditions, which would 046

be crucial to make direct comparisons. 047

Moreover, while these studies do look at read- 048

ing behavior in different text types, they do so 049

in a coarse-grained manner by, for instance, con- 050

sidering overall reading time at the text level, 051

thereby not accounting for word-level features 052

which prompt reading patterns. These word-level 053

features constitute psycholinguistic phenomena 054

whose effects have long been established and in- 055

clude the word length effect — longer words take 056

more time to read than shorter ones (Rayner, 2009; 057

Hyönä and Olson, 1995; Just and Carpenter, 1980; 058

Kliegl et al., 2004) —, the lexical frequency ef- 059

fect — frequent words are processed faster than 060

infrequent ones (Forster and Chambers, 1973; In- 061

hoff and Rayner, 1986) —, and the surprisal ef- 062

fect — high-surprisal words take longer to process 063

than low-surprisal ones (Hale, 2001; Levy, 2008; 064

Gruteke Klein et al., 2024; Xu et al., 2023b). That 065

these effects exist in different text genres has been 066

corroborated extensively (Pimentel et al., 2023; 067

Frank and Aumeistere, 2024; Kuperman et al., 068

2024; Torres et al., 2021, i.a.) but mainly in isola- 069

tion. Examining how word-level features play out 070

across text types, however, can reveal interactions 071

between these features and text type properties and 072

contribute insights to cognitive science by show- 073

ing that the influence of certain psycholinguistic 074

effects might be genre-dependent, such as that a 075

reader’s sensitivity to predictability in processing 076

is a function of text type. 077

Recently, a growing body of research has exam- 078

ined the relationship between textual outputs by lan- 079

guage models (LMs) and humans and whether there 080

is similarity in language production or language 081

understanding processes between the two (Venka- 082

traman et al., 2023; Giulianelli et al., 2023). An 083
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integral aspect of these textual outputs by the LMs084

is the decoding strategy used to generate the text085

and its alignment with cognitive processing strate-086

gies. So far, only one study (Bolliger et al., 2024)087

investigated how humans read texts generated by088

large language models (LLMs), focusing on how089

different models and decoding algorithms affect090

cognitive processing during reading and suggesting091

that decoding strategies can affect its readability.092

However, this line of work has not yet considered093

how these effects may interact with the type of094

text being generated. Investigating this interaction095

can highlight whether certain decoding methods096

are better suited, in terms of processing ease, for097

particular genres and can help ensure that AI sys-098

tems generate texts in a way that aligns with our099

genre-specific processing strategies. The interplay100

between decoding method and genre-specific prop-101

erties is thus an important but underexplored area.102

This study investigates the effect of text type on103

reading behavior and its interaction with psycholin-104

guistic phenomena as well as with neural decoding105

algorithms by tackling the following questions:106

RQ1 Do different text types elicit different read-107

ing patterns, reflecting different cognitive108

demands during reading?109

RQ2 Do well-established word-level predictors110

of reading behavior, such as surprisal, word111

length, and lexical frequency, interact with112

text type in shaping how people read?113

RQ3 Do the neural decoding strategies used to114

generate texts of different text types inter-115

act with those text types in shaping reading116

behavior?117

To this end, we leverage the Eye Movements on118

Machine-Generated Texts Corpus (Bolliger et al.,119

2025, EMTeC), the first dataset containing eye-120

tracking data on LLM-generated texts across six121

different text types, generated using a variety of122

decoding algorithms. This dataset does not only123

allow for a direct comparison of reading behavior124

across different text types and how psycholinguis-125

tic effects vary between them, but also how they126

interact with decoding algorithms.127

Our findings suggest that text type exerts a128

strong influence on cognitive effort during reading,129

that the magnitude of the psycholinguistic effects130

elicited by lexical features is modulated by text131

type, and that the decoding strategies used by lan-132

guage models interact with text types to shape the133

ease of processing generated texts.134

2 Related Work 135

Text type or genre has long been recognized as 136

a key factor in shaping reading behavior. Poetry, 137

for example, induces longer fixations and more re- 138

gressions due to its atypical syntax, ambiguity, and 139

foregrounded language (Blohm et al., 2022; Corco- 140

ran et al., 2023), and readers’ eye movements differ 141

even when identical content is presented in poetic 142

versus prosaic layout (Fechino et al., 2020). In con- 143

trast, narrative fiction elicits more linear reading 144

patterns, attributed to its predictability (Graesser 145

et al., 2003). Studies comparing fiction and non- 146

fiction suggest that fiction is read more quickly, a 147

difference largely driven by word length and lexi- 148

cal complexity (Brysbaert, 2019; Corcoran et al., 149

2023). While these studies demonstrate genre- 150

specific reading patterns, they typically examine 151

one genre at a time, under differing experimental 152

conditions, thereby limiting comparability. Our 153

work fills this gap by comparing six genres directly 154

within a controlled, unified dataset. 155

In parallel, a large body of work has investi- 156

gated psycholinguistic predictors of reading diffi- 157

culty, such as surprisal (Hale, 2001; Levy, 2008; 158

Gruteke Klein et al., 2024; Xu et al., 2023b; Shain 159

et al., 2024), word length (Rayner, 1998, 2009; 160

Hyönä and Olson, 1995; Just and Carpenter, 1980; 161

Kliegl et al., 2004; Gerth and Festman, 2021; Ku- 162

perman et al., 2024), and lexical frequency (Forster 163

and Chambers, 1973; Inhoff and Rayner, 1986; 164

Chen and Ko, 2011; Torres et al., 2021). These 165

effects have been consistently observed across a 166

wide range of genres, including narrative (Luke and 167

Christianson, 2016, 2018; Cop et al., 2017; Salicchi 168

et al., 2023; Frank and Aumeistere, 2024), exposi- 169

tory (Kennedy et al., 2003; Xu et al., 2023b; Good- 170

kind and Bicknell, 2018), and scientific texts (Klein 171

et al., 2025; Jakobi et al., 2025). Even stylistic 172

deviations such as foregrounding in literary texts 173

modulate these effects (Van den Hoven et al., 2016). 174

Although these findings highlight the robustness 175

of psycholinguistic predictors, few studies have 176

investigated whether their magnitude or nature dif- 177

fers across text types. Our study addresses this 178

by systematically analyzing interactions between 179

genre and psycholinguistic effects within the same 180

experimental setup. 181

Finally, recent research has begun examining 182

how texts generated by large language models are 183

processed by human readers. Bolliger et al. (2024) 184

showed that decoding strategies, such as top-p sam- 185
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pling or greedy decoding, can influence reading186

behavior, although no single strategy consistently187

outperformed others across measures or models in188

terms of processing ease. Other studies have ex-189

plored the structure and information distribution of190

LLM outputs from the perspective of predictabil-191

ity or information density (Giulianelli et al., 2023;192

Venkatraman et al., 2023), but these analyses were193

conducted at the sentence level and did not incorpo-194

rate eye-tracking data or account for text type. To195

date, no study has examined whether and how the196

impact of decoding strategies interacts with word-197

level features. Our study fills this gap by leveraging198

EMTeC (Bolliger et al., 2025), which combines199

multiple genres, multiple decoding strategies, and200

human eye-tracking data.201

3 Experiments1202

3.1 Data203

EMTeC We employ reading data from the Eye204

Movements on Machine-Generated Texts Corpus205

(Bolliger et al., 2025, EMTeC), an English eye-206

tracking-while reading corpus whose stimuli were207

created with three different large language models208

(LLMs) — Phi-2 (Javaheripi et al., 2023), Mistral209

7B Instruct (Jiang et al., 2023), and WizardLM (Xu210

et al., 2023a) — using five decoding algorithms211

— greedy search, beam search, ancestral sampling,212

top-k sampling (Fan et al., 2018), and top-p sam-213

pling (Holtzman et al., 2020). The generated stim-214

uli belong to six different types of text categories:215

Non-fiction, where the models were prompted to216

either write a description or an argumentation; Fic-217

tion, where the LLMs were instructed to write a218

short story or a dialogue between two characters;219

Poetry, where the LLMs were prompted to write a220

poem; Summarization, where they were asked to221

summarize an input text; Article, where they ought222

to craft a news article out of an article synopsis;223

and Key-word text, where the LLMs had to create224

texts based on a range of input key words.225

Reading Measures We consider the binary read-226

ing measures (RMs) fixated (Fix; whether or not a227

word was fixated) and first-pass regression (FPReg;228

whether or not a regression was initiated in the first-229

pass reading of the word) and the continuous RMs230

total fixation time (TFT; the sum of all fixations on231

a word), first-pass reading time (FPRT; the sum of232

the durations of all first-pass fixations on a word),233

1The code is available via this anonymous OSF repository.

re-reading time (RRT; the sum of the durations 234

of all fixations on a word that do not belong to 235

the first pass), and regression path duration (RPD; 236

the sum of all fixation durations starting from the 237

first first-pass fixation on a word until fixating a 238

word to the right of this word). While TFT and 239

Fix indicate global language processing, FPRT and 240

FPReg indicate early and RRT and RPD late stages 241

of processing. 242

3.2 Predictors 243

Word-level features. We include word-level pre- 244

dictors, namely surprisal, lexical frequency, and 245

word length, whose impact on eye movement be- 246

havior in reading is well-established and key to psy- 247

cholinguistic theories of reading and, more broadly, 248

language comprehension (Reichle et al., 2003; En- 249

gbert et al., 2005; Veldre et al., 2020; Rabe et al., 250

2024). Surprisal quantifies the predictability of 251

a word. It is based on surprisal theory (Hale, 252

2001; Levy, 2008), which operationalizes the rela- 253

tionship between cognitive processing effort and 254

word predictability and posits that the cognitive 255

effort needed to process a word is a function of 256

that word’s predictability. More specifically, sur- 257

prisal is the negative log-probability of a word 258

conditioned on its preceding (linguistic and extra- 259

linguistic) context. This quantity is approximated 260

by neural language models which only take the 261

preceding linguistic context into account. As such, 262

given a vocabulary Σ and an augmented vocabu- 263

lary Σ̄ = Σ ∪ {EOS} that contains a special EOS 264

(end-of-sentence) token, the surprisal s of a word 265

w ∈ Σ̄ at position t is defined as 266

s(wt) := − log2 pϕ(wt | w<t), (1) 267

where pϕ(· | w<t) is the language model’s approxi- 268

mate distribution of the true distribution p(· | w<t) 269

over words w ∈ Σ̄ in context w<t.2 In the follow- 270

ing, surprisal is estimated with GPT-2 base (Rad- 271

ford et al., 2019), which has been shown to have the 272

highest predictive power on reading times among 273

LMs (Shain et al., 2024). As the reading measures 274

are computed on the level of white-space separated 275

words but LMs use tokenizers that separate words 276

into sub-word tokens (Sennrich et al., 2016; Song 277

et al., 2021), we aggregate surprisal to the word 278

level by summing up the surprisal values of the 279

individual sub-word tokens.3 The lexical frequency 280

2I.e., surprisal is computed across sentence boundaries.
3For elaborations on the pooling of sub-word token sur-

prisal values, refer to Appendix A.
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of a word is the Zipf frequency obtained from the281

wordfreq library,4 which presents the frequency282

of a word on a logarithmic scale5 and is the word’s283

base-10 logarithm of the number of times it ap-284

pears in a billion words. Word length refers to the285

number of characters of a word, including adjacent286

punctuation.287

Contrast Coding of Text Type and Decoding288

Strategy Both the factor text type, consisting289

of the levels non-fiction, fiction, poetry, summariza-290

tion, article, and key-word text, as well as the factor291

decoding strategy, consisting of the levels beam292

search, ancestral sampling, top-k sampling, top-293

p sampling, and greedy search, are sum-contrast294

coded. Sum-contrast coding compares the grand295

mean of the dependent variable — the reading mea-296

sure — for each but one level of the factor to the297

grand mean across all levels. I.e., for a factor with298

k levels, it generates k − 1 contrast variables. The299

levels key-word text and greedy search serve as the300

reference level and are only implicitly represented301

in the grand mean intercept. The comparisons are302

factor level minus grand mean. The factor levels303

are coded as 1, the grand mean as -1. The contrast304

matrices are depicted in Appendix B.305

3.3 Methods306

For the analyses, we utilize linear mixed-effects307

models: linear regressions for continuous variables,308

and logistic regressions with a logistic linking func-309

tion for binary variables. Let fθ : vi 7→ yij be a lin-310

ear mixed model parametrized by θ, mapping from311

the predictors vi of word i to the log-transformed312

reading measure yij of word i read by subject j,313

following a log-normal distribution. The predictors314

vi include surprisal si, the z-score standardized315

lexical Zipf frequency fi and word length li, and316

the sum-contrast coded factors text type tti and317

decoding strategy deci. All models include a318

by-subject random intercept θ0j .6 We fit all models319

using the R library lme4 (Bates et al., 2015).320

3.4 RQ1: The Effect of Text Types321

To examine whether the text type influences read-322

ing behavior overall, i.e., across all decoding strate-323

gies, we fit a regression model fθ defined as324

fθ : yij ∼ θ0+θ0j+θ1li+θ2fi+θ3si+θ4tti. (2)325
4https://pypi.org/project/wordfreq/
5There exists a linear relationship between log-frequency

and reading times.
6We do not include random effects for items, as the number

of unique items is too low.

Results Figure 1 depicts the effect estimates of 326

the sum-contrast coded text types on the predic- 327

tion of the different reading measures. The read- 328

ing pattern elicited by the different text types is 329

mostly consistent across the different RMs and the 330

effects are mostly significant, even when control- 331

ling for the psycholinguistic covariates surprisal, 332

word length, and lexical frequency. Poetry exhibits 333

the strongest positive effects: readers spend more 334

time overall reading words in poems; they have 335

higher FPRTs and RRTs, and poetry induces more 336

FPRegs as well as number of fixations on words. 337

Fiction and non-fiction, on the other hand, show 338

the strongest negative effects: they cause signifi- 339

cantly fewer fixations and FPRegs and lower read- 340

ing times at any stage of processing (TFT, FPRT, 341

RRT). Summarization and articles are both close 342

to average, although summarizations cause slightly 343

more-than-average fixations and FPRegs, while ar- 344

ticles cause slightly less. 345

3.5 RQ2: The Interaction between 346

Word-Level Features and Text Types 347

In order to investigate how the psycholinguistic 348

predictors surprisal, word length, and lexical fre- 349

quency interact with text type to influence reading 350

behavior as measured in a variety of reading mea- 351

sures and to assess whether the strength of these 352

linguistic effects changes depending on the text 353

type, we fit a regression model fθ defined as 354

fθ : yij ∼ θ0 + θ0j + θ1li + θ2fi + θ3si + θ4tti+

θ5(li × tti) + β6(fi × tti) + β7(si × tti),
(3) 355

where (li × tti), (fi × tti), and(si × tti) are the 356

interactions between the three psycholinguistic pre- 357

dictors and the text types. 358

Results The fixed effects of the psycholinguis- 359

tic predictors serve as a sanity check: they are as 360

expected and are plotted in Appendix C. 361

Figure 2 depicts the interaction effects between 362

sum-contrast coded text types and the psycholin- 363

guistic predictors and reveals nuanced patterns. In 364

summarization texts, surprisal effects are stronger 365

than average for early binary measures (Fix and 366

FPReg) but weaker for early and late reading times 367

(FPRT and RPD), while lexical frequency effects 368

were generally smaller. In poetry, surprisal ex- 369

erted a smaller-than-average effect on FPRTs and 370

TFTs but a greater-than-average effect on RPDs. 371

Lexical frequency effects were amplified during 372

FPRTs and RRTs in poetry, and word length ex- 373

erted stronger effects on both fixation probability 374
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Figure 1: Effect estimates (mean and 95% CI) of sum-contrast coded text types on the prediction of different
reading measures. Filled dots indicate that the effect is significantly different from the grand mean.

and reading durations. For non-fiction, surprisal375

had a stronger effect on fixation probability and376

FPRT, while lexical frequency and word length ef-377

fects were weaker. Fiction texts amplified lexical378

frequency effects across almost all reading mea-379

sures, with high-frequency words particularly facil-380

itating faster reading, and exhibited reduced word381

length effects except for FPRegs. Finally, article382

texts showed stronger surprisal effects on TFTs383

and RRTs, stronger word length effects, and mixed384

frequency effects.385

3.6 RQ3: The Interaction Between Decoding386

Strategies and Text Types387

In order to assess how the different decoding strate-388

gies used to generate the texts and the text types389

that the LLMs were prompted to generate interact390

in influencing human reading behavior, we fit a391

regression model fθ defined as392

fθ : yij ∼ θ0 + θ0j + θ1li + θ2fi + θ3si+

θ4tti + θ5deci + θ6(tti × deci),
(4)393

where (tti × deci) is the interaction between be-394

tween the sum-contrast coded factors text type and395

decoding strategy.396

Results The fixed effects of the psycholinguistic397

predictors are plotted in Appendix D as a sanity398

check and are as expected for the psycholinguistic 399

predictors and the text types. The main effects of 400

the decoding strategies are mostly not significantly 401

different from the grand mean. 402

Figure 3 shows the interaction effects between 403

text type and decoding strategy. For poetry, texts 404

generated with ancestral sampling and top-k sam- 405

pling exhibited shorter FPRTs, shorter RPDs, and 406

lower TFTs compared to the grand mean, while 407

texts generated with top-p decoding exhibited 408

longer RPDs and higher TFTs. For fiction, beam 409

search was associated with fewer fixations and re- 410

duced RRTs, whereas top-p decoding increased 411

fixation probability and sampling increased RRTs. 412

In non-fiction texts, top-p decoding was associated 413

with fewer FPRegs, fewer fixations, and shorter 414

TFTs, while top-k decoding was associated with 415

longer TFTs. In summarization texts, top-k de- 416

coding was associated with fewer FPRegs, shorter 417

RPDs, lower RRTs, and reduced TFTs, whereas 418

beam search and sampling were associated with 419

increased RRTs and TFTs. For articles, top-k de- 420

coding was associated with increased fixation prob- 421

ability, longer RRTs, and higher TFTs, while top-p 422

decoding was associated with shorter TFTs. 423
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Figure 2: Interaction effects (mean and 95% CI) between text types and psycholinguistic predictors. A filled dot
indicates that the interaction is significant.

4 Discussion424

The experimental results presented in this study425

contribute to the understanding of how text types426

influence reading behavior and how they inter-427

act with an LLM’s decoding strategy and well-428

established psycholinguistic phenomena such as a429

word’s predicability. The findings for RQ1 clearly430

demonstrate genre-driven divergences in reading431

behavior. Poetry emerged as the genre associated432

with the highest cognitive load across all stages of433

reading, which aligns with psycholinguistic theo-434

ries that poetry’s unconventional syntax and dense435

metaphoric context demand deeper interpretative436

processing and frequent re-analysis (Blohm et al.,437

2022; Corcoran et al., 2023; Fechino et al., 2020). 438

Conversely, fiction and non-fiction texts were as- 439

sociated with significantly reduced cognitive de- 440

mands, which suggests that narrative and exposi- 441

tory prose align with readers’ genre expectations 442

and facilitate fluent reading (Graesser et al., 2003). 443

These findings confirm that the properties of dif- 444

ferent genres profoundly shape real-time cognitive 445

processing during reading. They also underscore 446

that poetry remains cognitively unique among gen- 447

res — a pattern that persisted even though the stim- 448

uli were machine-generated, highlighting the ro- 449

bustness of genre-specific processing strategies. 450

The genre-specificity in reading behavior is fur- 451
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Figure 3: Interaction effects (mean and 95% CI) between sum-contrast coded decoding strategy and text type. A
filled dot indicates that the interaction is statistically significant, meaning that the effect of a combination of text
type and decoding strategy significantly differs from the effect predicted by the additive fixed effects alone.

ther corroborated and expanded upon in the re-452

sults of the experiment answering RQ2. In po-453

etry, surprisal had a weaker-than-average effect on454

early reading measures (FPRT), but a stronger-than-455

average effect on regression paths. This implies456

that readers tolerate local unpredictability in po-457

etry during initial reading, but experience delayed458

integration difficulties requiring re-reading and re-459

evaluation. Fictional texts amplified the influence460

of lexical frequency across nearly all reading mea-461

sures: high-frequency words in fiction were read462

especially quickly. This suggests that in familiar463

narrative structures, readers rely more heavily on464

lexical familiarity to facilitate fluent reading. Word 465

length effects were diminished, except for first-pass 466

regressions, indicating that in fiction, processing 467

difficulties are less driven by orthographic length 468

and more by broader discourse-level factors. In 469

non-fiction, surprisal effects on fixation probabil- 470

ity and FPRTs were heightened, while lexical fre- 471

quency and word length effects were weaker: read- 472

ers seem to engage more heavily with predictive 473

mechanisms during informational text reading, pos- 474

sibly due to the structured, factual nature of the 475

content. These findings underline that while classic 476

psycholinguistic predictors like surprisal, lexical 477
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frequency, and word length remain robust across478

genres, the magnitude and timing of their effects479

vary systematically with text type. Readers dynam-480

ically adapt their cognitive strategies depending on481

genre-specific expectations and structures.482

We further found that while the main effects483

of the decoding strategies utilized to generate the484

texts were minimal, their interactions with genre485

revealed meaningful patterns. In poetry, texts gen-486

erated with sampling-based strategies were eas-487

ier to process — yielding shorter FPRTs, shorter488

RPDs, and lower TFTs — compared to those gen-489

erated with top-p sampling, which paradoxically490

increased cognitive effort. This suggests that mod-491

erate stochasticity benefits poetry by fostering the492

unpredictability and variability that readers expect,493

whereas the specific distribution of probabilities494

under top-p sampling may have introduced irreg-495

ularities detrimental to coherent interpretation. In496

fiction, deterministic decoding via beam search fa-497

cilitated the reading experience, reducing fixation498

probability and re-reading times, whereas stochas-499

tic decoding strategies (sampling, top-p) introduced500

mild disruptions. This aligns with the expectation501

that narratives benefit from high predictability and502

coherence. In non-fiction, moderate randomness503

introduced by top-p decoding surprisingly facili-504

tated reading — reducing regressions, fixations,505

and TFTs — while top-k decoding complicated506

it. This finding suggests that informational texts507

may benefit from slight variability, which might508

enhance engagement without compromising clarity.509

In summarization texts, top-k decoding led to the510

easiest reading (fewer regressions, shorter reading511

times), while both beam search and sampling com-512

plicated processing. This is intriguing because one513

might expect beam search to yield clear, coherent514

summaries — highlighting that stochastic decoding515

may sometimes better balance informativeness and516

readability. For articles, top-k decoding increased517

cognitive load, while top-p decoding decreased it,518

again emphasizing that subtle differences in de-519

coding randomness can have substantial cognitive520

effects depending on genre.521

In sum, these results demonstrate that no sin-522

gle decoding strategy universally optimizes read-523

ability. Rather, the ideal decoding method is cru-524

cially dependent on the genre and its associated525

cognitive demands as well as genre-specific expec-526

tations. This has direct implications for the design527

of human-centric LLM applications: depending528

on the desired use case or target population, gen-529

eration systems may adapt decoding strategies to 530

optimize user comprehension by facilitating read- 531

ing ease, thereby matching the desired properties 532

of different text types. 533

Overall, our findings have important implica- 534

tions for both cognitive science and AI research. 535

From a cognitive perspective, the study reinforces 536

the view that genre deeply shapes cognitive pro- 537

cessing strategies during reading. Not only does 538

it affect the baseline ease or difficulty of reading, 539

but it also modulates the impact of core psycholin- 540

guistic variables like surprisal, lexical frequency, 541

and word length. These results imply that cogni- 542

tive models of reading must account for genre as 543

a systematic source of variance, not merely as a 544

surface-level property. From an AI and NLP per- 545

spective, our results highlight that how a text is 546

generated matters just as much as what genre it is 547

intended to emulate. Different decoding strategies 548

differentially align with text types in terms of ease 549

of processing, affecting the cognitive accessibility 550

of LLM-generated texts. As LLMs increasingly 551

generate content for educational, journalistic, and 552

entertainment purposes, understanding and opti- 553

mizing for genre-appropriate readability will be 554

crucial. Finally, studying AI-generated texts pro- 555

vides a new lens through which to test cognitive 556

theories: by controlling genre and text structure 557

via generation parameters, we can probe the flexi- 558

bility and robustness of human reading strategies 559

in a way that complements traditional studies on 560

human-written texts. 561

5 Conclusion 562

This study shows that text type significantly shapes 563

reading behavior, modulating not only overall cog- 564

nitive demands but also the strength and manifes- 565

tation of core psycholinguistic effects. Genres like 566

poetry induce higher effort, while fiction and non- 567

fiction support easier processing. We further find 568

that decoding strategies interact with genre in non- 569

trivial ways, indicating that optimizing readability 570

in machine-generated texts requires genre-sensitive 571

approaches. These results highlight the need for 572

adaptive generation systems that align with genre- 573

specific cognitive norms. 574
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Limitations575

Several limitations must be acknowledged. First,576

while EMTeC provides a unique opportunity to577

study eye movements across machine-generated578

texts of different types, it does not include human-579

written baselines, which limits direct comparisons580

between human and machine text processing. Sec-581

ond, the texts were generated using only three582

LLMs and five decoding strategies, which may not583

capture the full diversity of possible outputs or de-584

coding configurations. Third, the study focuses on585

adult readers and English texts; results may not586

generalize to different age groups, languages, or lit-587

eracy backgrounds. Finally, while we account for588

core psycholinguistic predictors, other linguistic589

variables such as syntactic complexity or discourse590

coherence were not directly controlled and could591

influence reading behavior.592
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Appendix for Genre Matters: How Text Types832

Interact with Decoding Strategies and Lexical833

Predictors in Shaping Reading Behavior834

A Pooling of Surprisal835

The word-level surprisal values utilized in this study are already contained within EMTeC (Bolliger836

et al., 2025), where surprisal has been estimated with a range of language models, including GPT-2837

base (Radford et al., 2019). Since language models employ tokenizers that separate words into sub-word838

tokens (Sennrich et al., 2016; Song et al., 2021) but the reading measure data is on word-level, the surprisal839

values must be pooled to word level.840

Since the sum of two logarithms is equal to the logarithm of the product of their arguments, i.e.,841

log a + log b = log [a · b], surprisal is pooled to word-level as follows: given k sub-word tokens842

wn, wn+1, . . . , wn+k that belong to the same word token w, the word-level surprisal of w is computed as843

s(wn, wn+1, . . . , wn+k) = − log p(wn, wn+1, . . . , wn+k | w<n)844

= − log
[
p(wn | w<n) · p(wn+1 | w<n+1) · . . . · p(wn+k | v<n+k)

]
845

= − log p(wn | w<n)− log p(wn+1 | w<n+1)846

− . . .− log p(wn+k | v<n+k).847

This shows that summing up sub-word level surprisal values is equivalent to computing the surprisal of848

the joint probability distribution of the sub-word tokens.849

B Contrast Matrices850

Below the contrast matrices used in the experiments are depicted. Table 1 shows the sum-contrast coded851

factor text type, and Table 2 shows the sum-contrast coded factor decoding strategy.852

Table 1: Sum contrast matrix for the factor text type.

Factor Level A
rt
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le

sy
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ps
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vs
gr
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n

N
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-fi
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n

Fi
ct

io
n

vs
gr

an
d-

m
ea

n

Po
et

ry
vs

gr
an

d-
m

ea
n

Article synopsis 1 0 0 0 0
Summarization 0 1 0 0 0
Non-fiction 0 0 1 0 0
Fiction 0 0 0 1 0
Poetry 0 0 0 0 1
Key-word text -1 -1 -1 -1 -1

C RQ2853

The fixed effects of the psycholinguistic predictors are plotted in Figure 4 as a sanity check. Across all854

predictors and reading measures, the direction of the effect is as expected: the effects of lexical frequency855

are significantly negative (high-frequency words cause lower reading times), the effects of surprisal are856

significantly positive (high-surprisal words cause longer reading times), as are the effects of word length857

(longer words cause longer reading times). The only exception is surprisal as a predictor for the binary858

variable first-pass regression.859
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Table 2: Sum contrast matrix for the factor decoding strategy.

Factor Level B
ea

m
se

ar
ch

vs
gr
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d

m
ea

n

Sa
m
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g
vs

gr
an

d
m

ea
n

To
p-
k

vs
gr

an
d

m
ea

n

To
p-
p

vs
gr

an
d

m
ea

n

Beam search 1 0 0 0
Sampling 0 1 0 0
Top-k 0 0 1 0
Top-p 0 0 0 1
Greedy search -1 -1 -1 -1

D RQ3 860

Figure 5 depicts the estimates of the fixed effects of the psycholinguistic predictors and the sum-contrast 861

coded predictors text type and decoding strategy. This serves as a sanity check to corroborate that the 862

effects of the psycholinguistic predictors are as would be expected: the effects of lexical frequency are 863

negative (frequent words cause lower reading times), the effects of word length are positive (longer 864

words cause longer reading times), as are the effects of surprisal (high-surprisal words cause longer 865

reading times). Moreover, the main effects of the text types exhibit the same pattern as in the results 866

for RQ1 (see § 3.4). The main effects of the different decoding strategies, on the other hand, are mostly 867

not significantly different from the grand mean with the exception of beam search, indicating that texts 868

generated with this decoding strategy elicit longer-than-average re-reading time. 869
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Figure 4: Estimates (mean and 95% CI) of the fixed effects of the psycholinguistic predictors lexical frequency,
word length, and surprisal. All effects are significantly different from zero.
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Figure 5: Estimates (mean and 95% CI) of the fixed effects of the psycholinguistic predictors lexical frequency,
word length, and surprisal, and of the sum-contrast coded factors text type and decoding strategies. A filled
dot indicates that the effect is significantly different from zero for the continuous psycholinguistic predictors, or
significantly different from the grand mean for the sum-contrast coded text type and decoding strategy.
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