
Towards Transparent and Explainable Attention Models, ML
Reproducibility Challenge 2020

Anonymous submission

Reproducibility Summary

Scope of Reproducibility

The original paper proposes new LSTM variants that are supposed to improve the transparency and interpretability of
the attention mechanism. They claim that modified LSTMs do not hurt the performance (Claim 1) and the attention
distributions in the modified model variants provide a faithful explanation of the model’s predictions (Claim 2).
Additionally, we provide our extensions. We verify whether the mean conicity of the attention values in the Vanilla
Transformer is similar to the conicity of the Vanilla LSTM (Claim 4), whether the performance of a modified Transformer
does not significantly hurt performance across different datasets (Claim 5) and if the orthogonalization procedure has
homogeneous effects across 4 languages on the sentiment classification task (Claim 6).

Methodology

We have used the original author’s code and the experiments were run on the Lisa cluster with GTX1080Ti GPU. For
experiments that extended the original paper’s results we have re-implemented part of the existing pipeline and added
respective job scripts that were run on the cluster.

Results

All the claims stated by the original paper were confirmed. However, not all our experiments overlap with corresponding
experiments in the original paper. When reproducing the experiment about POS tags for QQP dataset [1] we did not
obtain large cumulative attention to punctuation marks and our results of the rationale experiment are not conclusive.
Additionally, we found the Vanilla Transformer model had 3 times smaller conicity values than the Vanilla LSTMs.
Constraining the conicity in the transformer’s self-attention mechanism did not significantly hurt performance.

What was easy

It was easy to run the code published by the authors and in our opinion, overall the paper is very good from a
reproducibility point of view.

What was difficult

Some of the datasets (MIMIC ICD9 Anemia and MIMIC ICD9 Diabetes [2]) were not easily available due to licensing
issues. There were couple of very large datasets (Yelp [3, 4]) and Amazon [3, 5]) that took too much time and
computational resources to run (more than 24 hours on GTX1080Ti). It’s also important to note that the package runs
either on Linux or MacOS with Python 3.7. For better reproducibility, we would recommend the authors to include a
table with dataset sizes or their training times.

Communication with original authors

We did not have any contact with the original authors.

Preprint. Under review.



1 Introduction

Attention-based mechanisms [6] have recently gained popularity due to the boost in performance and robustness
that they offer across problems in the Natural Language Processing domain. Another convenient feature of those
models is that the attention distribution can be visually analyzed to flag words and phrases that trigger the model’s
decision-making. Although this approach has been widely adopted by the research community [7] as a way to improve
the model’s explainability, some scientists argue that this method provides neither faithful nor plausible insights [8].

Authors of [9] suggest that this might be due to the lack of variability in the hidden state representations. To overcome
this problem, they introduce diversity-driven training and the orthogonalization for LSTMs to increase the variability of
the hidden states.

In this work, we attempt to reproduce the results that were carried out in [9] and extend it with multilingual datasets [10].
Additionally, we apply their idea to Transformer models [11] and ensure a reproducible environment by containerizing
the software 1 with Docker [12]. We have managed to reproduce most of their results, however, some datasets were not
easily available due to the licensing issue, or were too large to process.

2 Scope of reproducibility

The original paper introduces an extension to the LSTM models, which makes the model more transparent. The goal is
to make the hidden layers correspond to the explainability, so the insights into the model are not only plausible but also
faithful. The main claims that we were able to reproduce from the original paper are as follows:

• Claim 1: The performance of modified LSTM variants does not significantly (1-3% accuracy change) hurt
performance across different tasks and datasets.

• Claim 2: The attention distributions in the modified model variants provide a faithful explanation for the
model’s predictions which is exhibited by low-fraction of hidden state deletions leading to a different outcome
(Figure 2) and by large output difference when the attention weights are randomly permuted (Figure 3).

Additionally, we introduce other claims from the extended work on Transformers and multilingual data:

• Claim 3: The mean conicity of the attention values in the Vanilla Transformer is similar to the conicity of the
Vanilla LSTM.

• Claim 4: The performance of a modified Transformer (an extension) does not significantly (1-3%) hurt
performance across different datasets.

• Claim 5: The orthogonalization procedure has homogeneous effects across 4 languages on the sentiment
classification task.

3 Methodology

We used the publicly available code provided by the author 2. We could run experiments without major issues by
following instructions in the Readme file 3.

3.1 Model descriptions

In [9], there were two proposed LSTM variants - Orthogonal LSTM and Diversity LSTM which were compared to the
vanilla LSTM as a baseline.

3.1.1 Vanilla LSTM

Depending on task, we use a single or a pair of input, for double version we encode P = {wp1 , ..., wpm}, Q =
{wq1, ..., wqn} by passing their embedding through LSTM encoder.

hpt = LSTMP

(
e (wpt ) ,h

p
t−1
)
∀t ∈ [1,m]

hqt = LSTMQ

(
e (wqt ) ,h

q
t−1
)
∀t ∈ [1, n]

1Our code repository is available at: https://anonymous.4open.science/r/1bbc9de7-18c6-4c39-a67e-a4596874ba6b/
2Authors’ repository is available at https://github.com/akashkm99/Interpretable-Attention
3The only minor step missing from the manual is the need to download NLTK POS taggers in the environment by running

nltk.download(’averaged_perceptron_tagger’) and nltk.download(’universal_tagset’)

2

https://anonymous.4open.science/r/1bbc9de7-18c6-4c39-a67e-a4596874ba6b/
https://github.com/akashkm99/Interpretable-Attention


With e(w) as embedding for the word w. We attend to the intermediate representations of P,Hp = {hp1, ..., hpm} ∈
Rmxd using the last hidden state hqn ∈ Rd as the query, using the attention mechanisms.

α̃t = vT tanh (W1h
p
t +W2h

q
n + b)∀t ∈ [1,m]

αt = softmax (α̃t)
cα =

∑m
t=1 αth

pt

For tasks with a single input sequence, we use a single LSTM to encode the sequence, followed by an attention
mechanism (without query) and a final output projection layer.

3.1.2 Diversity LSTM

A further extension to the vanilla LTSM model with an additional objective to minimize the conicity, together with
maximizing the log-likelihood of the training data, while training the model.

L(θ) = −pmodel(y | P,Q, θ) + λconicity
(
HP
)

Where y is a ground truth class, P and Q are the input sentences, Hp = hp1, ..., h
p
m ∈ Rm×d contains all the hidden

states of the LSTM, θ is a collection of the model parameters and pmodel(.) represents the model output probability. λ
is a hyperparameter that controls the weight given to diversity in hidden states during training.

3.1.3 Orthogonal LSTM

A model similar to vanilla LSTM, except that we replace vanilla LSTM with orthogonal LSTM architecture. To ensure
the low conicity, we orthogonalize the hidden states.

ft = σ (Wfxt +Ufht−1 + bf )
it = σ (Wixt +Uiht−1 + bi)
ot = σ (Woxt +Uoht−1 + bo)
ĉt = tanh (Wcxt +Ucht−1 + bc)
ct = ft � ct−1 + it � ĉt

ĥt = ot � tanh (ct)

ht =
∑t−1
i=1 hi

ht = ĥt − ĥT
t ht

h
T
t ht

ht

where Wf ,Wi,Wo,Wc ∈ Rd2×d1 , Uf , Ui, Uo, Uc ∈ Rd2×d1 , bf , bi, bo, bc ∈ Rd2 , d1 and d2 are the input and hidden
dimentions respectively.

3.1.4 Extension: Transformer

We further investigate the impact of orthogonalization of attended states on another attention-based model architecture:
the transformer [13]. In this paper we focus on classification tasks, containing one input sequence. This section treats
the transformer block used in later experiments.

We first describe the self-attention layer. The main ingredient thereof, the dot product attention, takes as input a set
of queries Q ∈ RT×k, keys K ∈ RT×k and values V ∈ RT×k where T is the sequence length, and k is the hidden
dimension of the queries, keys, and values. Given a k dimensional representation of the input tokens and positions
X = {x1, ...xT } ∈ RT×k, we define the queries, keys and values as linear transformations of the i-th input vector
where the transformation matrices are learnable, k × k parameters. To enable attending to different aspects of the
sequence we use a multi-head attention mechanism, where the number of heads is denoted by h. Multi-head attention
creates h separate attention mechanisms, concatenates them, and learns the interaction between them through a linear
layer, parametrized by Wo ∈ Rh·k×t that brings the dimension from T × h · k back to T × k. This can be summarized
by the following equations:

Multihead(Q,K, V ) = Concat(head1, ..., headh)WO, headi = Attention(Qi,Ki, V i)

Attention(Q,K, V ) = softmax

(
QKT

√
k

)
V,Q = XWq, k = XWk, V = XWv

3



Figure 1: Visualization of a transformer block [11].

Now we relate back to the orthognalization procedure of the paper by Mohankumar et al. [9]. In the self-attention layer
described above, for each attention-head, each xi will have a corresponding attention output, yi which is a weighted
average over the attention values, vi. This can be described by the equation yi =

∑T
j (softmax

(
QKT

√
k

)
)ijvj , where

V = {v1, ...vT } ∈ RT×k. Following the main conjecture of [9], we aim to minimize conicity of representations being
attended to, in this case the attention values. In particular, we minimize the average conicity of the values coming from
different attention-heads.

Finally, we describe the transformer block, visualized in Figure 1. It consists of (1) self-attention layer, (2) layer
normalization over the embedding dimension, (3) a feed-forward layer applied independently to each vector, and (4)
another layer normalization. Residual connections are added between the input and (1) as well as between (2) and (3).
Finally, the max-pooling operation is applied to the output of the transformer block along the time dimension followed
by a linear layer that brings down the dimension to the number of classes.

We investigate two variants of the transformer: a baseline, Vanilla Transformer to minimize the negative log-likelihood
of the training data. A second variant referred to as Diversity Transformer additionally minimizes the mean conicity
of the attention values across attention heads.

L(θ) = −pmodel(y|X, θ) +
λ

h

h∑
i

conicity(V i),

where y is the ground truth class, X is the input sequence, V i = {vi1, ..., viT } ∈ RT×k contains the attention values of
the i-th head, θ is a collection of the model parameters and pmodel(.) represents the model output probability. λ is a
hyperparameter that controls the weight given to diversity in attention values during training.

3.2 Datasets

3.2.1 Original datasets

The original paper used 12 datasets which are well described by [9] and [14]. Therefore we refrain from repeating their
description in this work, but at the same time strongly advise the reader to familiarize himself with the relevant sections
before going further.

We managed to reproduce 7 out of these 12 datasets. Two datasets (Anemia and Diabetes) are part of a larger medical
database which is only available after going through an online course and sending an application - due to time constraints
we didn’t try to obtain them. Another dataset that we didn’t use is the CNN dataset because the download link expired
and as confirmed by the author is no longer available. Finally, we didn’t obtain results for the Yelp [3, 4] and Amazon
[3, 5] datasets because they were too computationally too expensive to train. Regarding the datasets that we were able
to reproduce, all of them were automatically downloaded using a script as described in the repository apart from Twitter
ADR dataset which we obtained from authors of [14] via email.

All reproduced text classification datasets fall in the category of binary classification and all of them are almost balanced
(less than 1% difference in class distribution). In Table 1 we include a number of examples for training, development,
and testing sets of all reproduced datasets.

4



split/dataset 20News IMDB Tweets SST Babi 1 Babi 2 Babi 3 SNLI QQP
train 1236 17212 17003 6920 8500 8500 8500 549,367 327,462
dev 310 4304 - 872 1500 1500 1500 9842 36384
test 387 4363 4251 1821 1000 1000 1000 9824 40430

Table 1: Number of examples per split for all reproduced datasets.

3.2.2 Cross-language sentiment classification

In this work, we have extended the experiments by including the sentiment classification task on the cross-lingual
dataset CLS 4. This dataset is the most similar to the Amazon dataset that was used in the original paper [9]. The
dataset has been already preprocessed to balance the labels by original authors [10]. The dataset consists of 12.000
data samples for each of the 4 languages: English, German, French, and Japanese. The dataset is split into train, test,
and dev datasets that consist of 6000, 3000, and 3000 samples respectively. Originally, the dataset was divided into
subcategories of reviews (book, movies, and DVD), however, for the sentiment classification we use all categories
together. We provide a script available at our code repository that automatically downloads, preprocesses, and tokenizes
the data. The preprocessing is carried out as in the original paper’s implementation [10]. Firstly, we split words on
delimiters, map digits into <num> token, remove punctuation, and convert to lower case letters. Additionally, for
English data we normalize contraction (e.g. "don’t" to "do not"). Finally, we convert corresponding sentiment labels
(i.e. "positive", and "negative") to integer representations.

4 Results and Discussion

In the following section, we compare our reproduced results to the results shown in the original paper. We briefly
discuss whether claims of the original paper are supported by our experiments.

4.1 Results reproducing original paper

Table 2 shows that Claim 1 does hold in our results. Our results are similar to the original paper, apart from BAbI 2
and 3 for which the accuracy differs significantly. However, in general, the performance is comparable for all model
variants and the conicity is significantly lower for Diversity and Orthogonal LSTM.

Dataset LSTM Diversity LSTM Orthogonal LSTM
Accuracy Conicity Accuracy Conicity Accuracy Conicity

Our results
SST 79.83 0.77 78.14 0.19 80.0 0.29
IMDB 89.6 0.55 88.29 0.08 87.21 0.15
20News 93.28 0.77 92.44 0.13 92.44 0.22
Tweets 82.61 0.78 84.99 0.26 83.99 0.24
SNLI 78.14 0.59 73.66 0.04 76.86 0.29
QQP 78.49 0.57 78.16 0.03 78.56 0.32
bAbI 1 100.0 0.72 99.8 0.06 100.0 0.22
bAbi 2 57.9 0.52 48.9 0.12 61.1 0.19
bAbi 3 17.4 0.99 41.3 0.06 57.9 0.16

Original results
SST 81.79 0.68 79.57 0.20 79.54 0.28
IMDB 89.49 0.69 88.54 0.08 88.71 0.18
20News 93.55 0.77 91.03 0.15 92.15 0.23
Tweets 87.02 0.77 87.04 0.24 83.20 0.27
SNLI 78.23 0.56 74.16 0.04 76.46 0.27
QQP 78.74 0.59 78.40 0.04 78.61 0.33
bAbI 1 99.10 0.56 100.00 0.07 99.90 0.22
bAbI 2 40.10 0.48 40.20 0.05 56.10 0.21
bAbI 3 47.70 0.43 50.90 0.10 51.20 0.12

Table 2: Accuracy and conicity of Vanilla, Diversity and Orthogonal LSTM across different datasets.

In Figure 2 we check what is the fraction of removed attention weights required to change the prediction. In theory, a
low fraction removed before decision flip confirms the faithfulness of the model. We observe that our and the original
results are almost identical which confirms Claim 2. Interestingly, the Tweets dataset requires a larger fraction of hidden

4Dataset is available at https://zenodo.org/record/3251672#.YAll0-hKibg

5

https://zenodo.org/record/3251672##.YAll0-hKibg


states to be deleted than sentiment classification datasets. That is perfectly reasonable as classifying whether a tweet
contains adverse drug reaction is more nuanced than sentiment analysis and requires attention to a larger fraction of the
input sentence. SNLI presents similar behavior to QQP as both tasks concern relationships between a pair of input
sentences.

(a) Original results (b) Our results

Figure 2: Box plots of fraction of hidden representations removed for a decision flip. Dataset and models are mentioned
at the top and bottom of figures. Blue and Yellow indicate the attention and random ranking

The next experiment checks how random permuting attention weights affects predicted outputs. Supposing a model is
faithful, permutation should lead to a large output difference. Figure 3 is the second argument supporting Claim 2 for
binary classification. Nevertheless, once again we see that QQP and SNLI behave differently and for those datasets,
attention permutation isn’t that detrimental for Diversity and Orthogonal LSTM. This can be explained by the fact that
for sentence pair tasks the attention weights are more homogenous therefore the permutation has a smaller effect.

(a) Original results
(b) Our results

Figure 3: Comparison of Median output difference on randomly permuting the attention weights in the vanilla, Diversity
and Orthogonal LSTM models. The Dataset names are mentioned at the top of each figure.Colors indicate the different
models as shown legend.

Figure 4 verifies the plausibility assumption i.e. whether words with high attention intuitively seem important for the
correct prediction. Here the authors focus on Part of Speech tags and the cumulative attention each tag receives. They
claim that for Yelp, Amazon, and QQP datasets vanilla LSTM assigns disproportionally high attention to punctuation
tags which are meaningless in tasks such as sentiment classification. While we weren’t able to reproduce Yelp and
Amazon datasets due to their size, our results for QQP do not show large attention attribution to punctuation. Therefore,

6



Dataset Vanilla LSTM Diversity LSTM Orthogonal LSTM
Rationale
Attention

Rationale
Length

Rationale
Attention

Rationale
Length

Rationale
Attention

Rationale
Length

Our results
SST 0.827 0.796 0.652 0.148 0.518 0.183
IMDB 0.885 0.812 0.903 0.208 0.939 0.356
20News 0.936 0.733 0.919 0.153 0.859 0.201
Tweets 0.861 0.833 0.502 0.244 0.466 0.326

Original results
SST 0.348 0.240 0.624 0.175
IMDB 0.472 0.217 0.761 0.169
20News 0.627 0.215 0.884 0.173
Tweets 0.284 0.225 0.764 0.306

Table 3: Mean Attention given to the generated rationales with their mean lengths (in fraction)

it seems that this observation which occurred in 2 out of 12 datasets is more of an artifact of these two datasets, rather
than a general problem. That is not to say that the vanilla model has plausible explanations, but rather that this particular
experiment cannot properly verify this claim.

(a) Original results (b) Our results

Figure 4: Distribution of cumulative attention given to different part-of-speech tags in the test dataset. Blue and Orange
indicate the vanilla and Diversity LSTMs.

Finally, we consider rationale which is a minimal set of tokens required to make the correct prediction. The rationale
length is the fraction of tokens included in a rationale out of all sentence tokens and rationale attention is cumulative
attention of the words that are included in the rationale out of all words in the input sentence. High rationale attention
and low rationale length mean that the model focuses on a couple of important words. Therefore rationale attention
is positively correlated with rationale length - the more words are in the rationale, the more cumulative attention
is attributed. We see in Table 3 that the cumulative rationale attention of vanilla LSTM in our results is similar or
sometimes higher than Diversity LSTM and much higher than vanilla LSTM in the original results. This speaks in
favor of denying Claim 2. However, the length is also much higher so it might be just a matter of the hyperparameter
determining rationale length which was used for generating the rationale. That’s why this experiment neither confirms
nor denies this claim and would require further research to draw a definitive conclusion.

4.2 Multilingual Dataset

Table 5 shows the results for 4 different languages and 3 LSTM models averaged over 5 runs. The results show a similar
trend as in the original paper [9]. The best performance is achieved for vanilla LSTM models, however, the conicity
values are a few times bigger than for the Diversity and Orthogonal variants. There is a 3-5% decrease in accuracy for
Diversity models and 1-3% for Orthogonal models when compared to the vanilla LSTM. The conicity values are very
similar between Diversity and Orthogonal LSTMs which might suggest that the latter one achieves a better performance
while maintaining a good level of explainability. Also, it is worth noting that original authors achieved much higher

7



Dataset Vanilla Transformer Diversity Transformer
Accuracy Conicity Accuracy Conicity

Binary Classification
CLS English 78.09± 1.14 0.21± 0.01 77.69± 1.11 0.11± 0.00
CLS German 77.49± 2.00 0.21± 0.01 76.92± 0.77 0.11± 0.00
CLS French 80.20± 1.01 0.21± 0.00 80.11± 1.40 0.11± 0.00
CLS Japanese 71.54± 5.47 0.22± 0.01 75.53± 1.78 0.11± 0.00
SST 71.25± 1.38 0.24± 0.00 70.84± 2.18 0.13± 0.00
IMDB 80.90± 1.26 0.24± 0.01 81.48± 0.46 0.08± 0.00
20News_sports 76.02± 1.69 0.18± 0.01 78.71± 2.52 0.12± 0.00
Tweets 89.89± 1.20 0.25± 0.01 89.46± 0.53 0.11± 0.00

Table 4: Accuracy and conicity of Vanilla and Diversity Transformer across different datasets. Each score represents a
mean value over 5 runs with a respective standard deviation.

Dataset LSTM Diversity LSTM Orthogonal LSTM
Accuracy Conicity Accuracy Conicity Accuracy Conicity

Binary Classification
CLS English 79.25 ±0.79 0.43 ±0.03 75.45 ±0.66 0.15 ±0.004 76.81 ±0.92 0.18 ±0.004
CLS German 78.97 ±2.09 0.43 ±0.03 74.64 ±1.34 0.14 ±0.003 77.09 ±1.07 0.17 ±0.004
CLS French 81.60 ±0.60 0.46 ±0.02 77.61 ±1.23 0.14 ±0.003 78.93 ±0.88 0.17 ±0.006
CLS Japanese 78.87 ±0.80 0.44 ±0.03 75.78 ±1.35 0.15 ±0.004 77.05 ±0.70 0.18 ±0.010

Table 5: Results for cross-lingual sentiment classification task run on Amazon reviews for 4 languages. Each score
represents a mean value over 5 runs with a respective standard deviation.

accuracy scores on the Amazon dataset (the best accuracy is 93.73%). This is because we don’t use any pre-trained
word embeddings during the preprocessing steps due to inconsistency between languages.

4.3 Transformers

Table 4 portrays the accuracies and mean conicity of the attention values for various datasets. The purpose of this
experiment is to verify if the transformer’s self-attention mechanism also tends to attending to highly similar token
representations which in the original paper [9] caused the attention weights to carry little meaning. We find that, at least
for classification tasks, the conicity of the attention values in the Vanilla Transformer is significantly smaller (mean
0.24) compared to the conicity of the hidden states (mean 0.58) in the Vanilla LSTM’s. This leads to the rejection of
Claim 3, as these values differ significantly. This result suggests that the problem of the attention weights failing to
offer a plausible explanation of the prediction might be less severe in the Vanilla Transformers as compared to the
Vanilla LSTMs. However, subsequent experiments would have to be conducted to confirm this statement.

Similarly to the findings from Section 4.1, we find that the performance of diversity-driven training does not significantly
differ from the performance of vanilla transformer (mean difference 1.15), which confirms Claim 4.

5 Conclusions

The majority of the experiments from the paper were reproducible. In the reproduced results, we have also noticed that
modified LSTM variants do not significantly degrade the performance. Additionally, our results seem to support the
claim that the LSTM variants provide more faithful explanations for the model’s predictions.

Going a step further, the experiments were extended by adding multilingual datasets and repeating part of the experiments
on the Transformer model. Interestingly, a similar performance drop across LSTM variants could be observed for
multilingual datasets. The vanilla Transformer model had much smaller conicity values than the vanilla LSTMs.
However, the diversity-driven training does not impact the performance of Transformer variants.

Overall, we are quite pleased with obtained results and the quality of original paper’s implementation.

8



References
[1] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “Glue: A multi-task benchmark and analysis

platform for natural language understanding,” 2019.

[2] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. A. Celi,
and R. G. Mark, “Mimic-iii, a freely accessible critical care database,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[3] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text classification,” Advances in
neural information processing systems, vol. 28, pp. 649–657, 2015.

[4] Yelp Dataset. https://www.yelp.com/dataset/ Accessed: 2021-01-21.

[5] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: understanding rating dimensions with review
text,” in Proceedings of the 7th ACM conference on Recommender systems, pp. 165–172, 2013.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[7] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” arXiv preprint arXiv:1908.04626, 2019.

[8] S. Serrano and N. A. Smith, “Is attention interpretable?,” arXiv preprint arXiv:1906.03731, 2019.

[9] A. K. Mohankumar, P. Nema, S. Narasimhan, M. M. Khapra, B. V. Srinivasan, and B. Ravindran, “Towards
transparent and explainable attention models,” in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, (Online), pp. 4206–4216, Association for Computational Linguistics, July 2020.

[10] P. Prettenhofer and B. Stein, “Cross-language text classification using structural correspondence learning,” in
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL ’10, (USA),
p. 1118–1127, Association for Computational Linguistics, 2010.

[11] P. Bloem, “Transformers from scratch.” http://peterbloem.nl/blog/transformers, 2019.

[12] D. Merkel, “Docker: lightweight linux containers for consistent development and deployment,” Linux journal,
vol. 2014, no. 239, p. 2, 2014.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention
is all you need,” 2017.

[14] S. Jain and B. C. Wallace, “Attention is not explanation,” arXiv preprint arXiv:1902.10186, 2019.

9

http://peterbloem.nl/blog/transformers


Appendix

1 Hyperparameters

1.1 Experiments with LSTM-based model

We used the default hyperparameters provided by the authors as we assumed that those were used for the presented
results. For all experiments, we used a single-layer LSTM and the Adam [1] optimizer with a learning rate of 0.001 and
weight decay 0.00001. Hyperparameters that are variable between datasets are shown in Table 1. For a given dataset, the
same hyperparameters were used for all three model variants, except that Diversity LSTM had one additional parameter
- diversity weight - which was set to 0.5.

Dataset Batch size Embedding size Hidden size # epochs Vocabulary size
SST 32 300 128 8 13826

IMDB 32 300 128 8 12487
20News 32 300 128 8 6515
bAbI 1 50 50 32 100 24
bAbi 2 50 50 64 200 38

Table 1: Dataset specific hyperparameters

1.2 Experiments with multilingual datasets

Dataset Batch size # epochs Vocabulary size
CLS English 32 4 2128
CLS German 32 4 1830
CLS French 32 4 1457

CLS Japanese 32 4 1767
Table 2: Dataset specific hyperparameters for multilingual datasets

1.3 Experiments with Transformer based models

For all experiments, we used a single transformer block. We used the same pre-trained word embeddings as done in the
original paper. For the multilingual dataset, we learnt the embedding size of 300. Additionally, we learnt the positional
embeddings with the dimensionality of 125% of the longest input in the training set or of the size specified by the
authors. The size of the hidden layers of the feed-forward component of the transformer block was 4 times as big as the
input and output. We used an Adam optimizer with a learning rate of 0.0001 and a weight decay of 0.00001. Each
model was trained for 15 epoch with batch size 16. The model with the best validation accuracy was then evaluated on
the test set. Train, validation and test split are copied from the original paper. The diversity weight for the Diversity
Transformer was set to 0.5 for all experiments.

References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

Preprint. Under review.


	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Vanilla LSTM
	Diversity LSTM
	Orthogonal LSTM
	Extension: Transformer

	Datasets
	Original datasets
	Cross-language sentiment classification


	Results and Discussion
	Results reproducing original paper
	Multilingual Dataset
	Transformers

	Conclusions
	Hyperparameters 
	Experiments with LSTM-based model
	Experiments with multilingual datasets
	Experiments with Transformer based models


