Published in Transactions on Machine Learning Research (09/2025)

Global Optimization Algorithm through
High-Resolution Sampling

Daniel Cortild d.cortild@rug.nl
University of Groningen, Netherlands
Laboratoire de Finance des Marchés de I’Energie, Dauphine, CREST, EDF R&D, France

Claire Delplancke claire.delplancke@edf. fr
EDF R&D Palaiseau, France

Nadia Oudjane nadia.oudjane@edf.fr
Laboratoire de Finance des Marchés de I’Energie, Dauphine, CREST, EDF R&D, France

Juan Peypouquet j.g.peypouquet@rug.nl
University of Groningen, Netherlands

Reviewed on OpenReview: htips: //openreview. net/ forum? id=r3VEAIAWNY5

Abstract

We present an optimization algorithm that can identify a global minimum of a potentially
nonconvex smooth function with high probability, assuming the Gibbs measure of the
potential satisfies a logarithmic Sobolev inequality. Our contribution is twofold: on the one
hand we propose said global optimization method, which is built on an oracle sampling
algorithm producing arbitrarily accurate samples from a given Gibbs measure. On the other
hand, we propose a new sampling algorithm, drawing inspiration from both overdamped and
underdamped Langevin dynamics, as well as from the high-resolution differential equation
known for its acceleration in deterministic settings. While the focus of the paper is primarily
theoretical, we demonstrate the effectiveness of our algorithms on the Rastrigin function,
where it outperforms recent approaches.

1 Introduction

Smooth nonconvex optimization remains a challenge with broad applications in machine learning and
statistical inference. Despite significant advances, convex optimization techniques often lead to suboptimal or
computationally infeasible solutions in many inherently nonconvex real-world problems.

In this paper, we focus on the unconstrained global minimization problem: given a smooth nonconvex
potential U: R — R, we search for a point z* such that

x* € argming cpa U(2),

assuming such a point exists.

A recent trend in optimization consists of studying continuous-time versions of algorithms to obtain better
estimates for their discrete-time counterparts. Notable progress has been made in accelerating convergence
of first-order optimization methods by analyzing second-order dynamical systems in their continuous-time
formulation. In specific, we shall interest ourselves in the high-resolution differential equation, given by

i(t) + ax(t) + VAU (z(t)(t) + VU (z(t)) = 0, (1)

where «, 3,7 > 0 could in principle depend on time, but are supposed constants as indicated by the notation.
The equation was originally introduced in ( ) and has since been further explored in
( ), to mitigate the oscillations. The algorithmic consequences of this, including the
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connection with Nesterov’s method, were investigated independently in ( ) and

( ). The theoretical convergence rates obtained for the resulting algorithmic framework were comparable
to those established for Nesterov’s method in the convex case. However, in the strongly convex case, the
theoretical guarantees were more conservative. Nevertheless, this motivated intense research within the
convex optimization community, and the high-resolution differential equation seems to be displacing the
classical differential equation studied in ( ) and ( ), which corresponds to the
overdamped Langevin system, as the preferred continuous-time model for Nesterov’s acceleration. Amongst
other reasons, the high-resolution model extends better to the nonsmooth setting, and it captures the linear
convergence rates of FISTA and the Optimized Gradient Method in the strongly convex case, while the
overdamped one does not. These characteristics, coupled with the more stable trajectories it enables and
the potential for integrating other techniques, such as restart schemes ( , ), underscore the
high-resolution differential equation’s significance as a promising area of interest in convex optimization.
To the best of our knowledge, only the convergence to critical points has been shown for Equation (1) in
nonconvex landscapes ( , ).

By setting y(t) = (t)+8VU (z(t)) and renaming the parameter 7, we can rewrite Equation (1) as a first-order
system

{a'c(t) = —BVU(z(t)) + y(t) (2)

§(t) = VU (x(t) — ay(?).

This reformulation has the benefit of not requiring the Hessian of U, making it more user-friendly, whilst still
preserving the favourable convergence results.

However, deterministic models like System (2) may struggle when the potential U is nonconvex, as they can
become trapped in local minima and fail to identify the global minimizer. To overcome this limitation, it has
been proposed to add stochasticity to the dynamics to enable them to escape local minima. This stochasticity
can come in the form of random perturbations, encouraging the dynamics to navigate through more complex,
potentially nonconvex, landscapes. This perspective naturally leads us to consider stochastic differential
equations, specifically the Langevin dynamics ( , ), which combine the advantages of gradient
flows with stochastic elements. Rather than the iterates of these dynamics, we study their law, and hope for
it to concentrate around the global minimizers of the potential. This pushes us towards sampling problems,
where we aim to produce samples from a given distribution p o exp(=U).

Many problems in statistics require sampling from probability distributions. Sampling through the Langevin
dynamics is a well-studied approach when the target distribution is strongly log-concave (or equivalently,
when the potential is strongly convex) (see ( ); ( );

( ); ( ) and the references therein), and has recently
also been studied in the non log-concave setting, when it, for instance, verifies a log-Sobolev inequality
( , : , ), a Poincaré inequality ( , ), a weak Poincaré
inequality ( , ), or even in the fully nonconvex setting ( ,

).

The simplest variant of the Langevin dynamics is the overdamped Langevin dynamics, governed by
dXt = *"}/VU(Xt)dt + 4/ 2’)/dBt,

where (By) is standard Brownian motion, v > 0 is a free parameter and U is the negative logarithm of the
distribution we wish to sample from. Under weak assumptions, the invariant distribution of the dynamics
is exactly pu o< exp(—U). Convergence of the Euler discretization of the overdamped Langevin dynamics
in Wasserstein-2 distance under strong convexity of U was shown in ( ), and
convergence in Kullback-Leibler divergence under a log-Sobolev assumption on p in
( ). Accelerated rates may be obtained under different discretizations. For instance, see

( ) for strongly log-concave targets.
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A different approach to faster convergence involves the underdamped Langevin dynamics, governed by the
stochastic differential equation

dX; =Vt
dVy = (—yVU(Xy) = Vi)dt + /2vdB,

where V; represents the velocity. Under weak assumptions, the invariant measure is p(z,v) o exp(—U(z) —
|lv]|2/(27)). Accelerated convergence with respect to the overdamped dynamics was shown in Wasserstein-2

distance in the strongly log-concave case by ( ) and in Kullback-Leibler divergence
under a log-Sobolev inequality by ( ). We again note that different discretizations are possible,
we cite for instance ( ) and ( ).
Sampling algorithms for optimization were first introduced for strongly convex potentials in ( ),
and further studied in ( ); ( ); ( ); ( ), in
the nonconvex setting. All of these focused on discretizations of the overdamped Langevin dynamics. The
underdamped Langevin dynamics have also been studied, we refer to ( ) and

( ) for more details. Discretizations of other underlying processes were investigated in
( ) ( ). Langevin dynamics have also been studied for global optimization outside the context
of sampling. We refer interested readers to ( ) and the references therein.

1.1 Contribution

The contributions of the paper are the following:

1. We design a global optimization algorithm capable of minimizing nonconvex functions and obtaining
arbitrarily accurate solutions with high probability. This optimization algorithm relies on an oracle
sampling algorithm.

2. We propose a new variant of the classical Langevin dynamics, both for continuous-time and discrete-
time. The dynamics is inspired by the first-order high-resolution System (2), which is known to exhibit
accelerated convergence rates in the deterministic convex setting. We anticipate that this study will
encourage further exploration of this system, with the potential to deliver a comparable breakthrough in
the field of nonconvex sampling as it has achieved in convex optimization. This sampling algorithm will
then serve as oracle algorithm in our global optimization algorithm.

1.2 Structure

Section 2 introduces notation and preliminaries. Section 3 is dedicated to the design of our global optimization
algorithm. In Section 4 we study a novel continuous- and discrete-time dynamics, and formulate the sampling
results. Finally, in Section 5, we illustrate our results numerically on the Rastrigin function, where we improve
on current methods. Technical results and proofs are provided in the appendix.

2 Notation and Assumptions

The following standing assumptions on the potential U: R? — R will be valid throughout the paper:
e U is twice differentiable, L-smooth and has Lipschitz continuous and bounded Hessian.

o There exists an ag > 0 such that exp(—aoU) is integrable.

e U has a nonzero finite number of global minimizers, and admits no global minimizers at infinity. We define
its minimal value to be U*.

Let || - || denote the Euclidean norm on R? and P(R¢) denote the space of probability measures on R?. With
abuse of notation, we shall denote interchangeably by u € P(R?) the probability distribution and its density
function with respect to the Lebesgue measure, in the case where it exists. For a given potential U: R — R
and reals a > ag and b > 0, we define pu® € P(RY) and pu*® € P(R2?) to be the probability distributions
whose densities satisfy

2
p(x) o exp(—al(z)) and p®°(x,y) o exp (—aU(m) _ b”y2||> ’
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which are well-defined by assumption.

Given a distribution u € P(R?), we denote by

Exonlf(X)] = o f(@)p(dr)

the expected value of f(X) where X ~ p. Whenever the random variable or its distribution is clear from
context, we shall abbreviate this to E,[f(X)] or E[f(X)].

Let p, v € P(RY) both have a density with respect to the Lebesgue measure and have full support. We define
the total variation distance between p and v as

I = vy = sup {[Ep[f] = Eu[f]] : |/l <1}

We define the Kullback-Leibler divergence of p with respect to v as

u).

Finally, we define the Wasserstein-2 distance between p and v as

KL(pllv) = Ex., [log
Moreover, we define their relative Fisher information as

Fi(uv) = Exp Mvmg p(X)

v(X)

1/2
. 2
st (g o5 v8])

where I'(u, v) is the set of couplings of p and v, namely the set of distributions ¢ € P(R??) such that
C(A x R?) = p(A) and ¢(R? x A) = v(A) for all A € B(R?). The infimum is always attained, and we call

the minimizers optimal couplings ( ,

A standard assumption in the literature when dealing with nonconvex sampling is a logarithmic Sobolev
inequality ( ; , ; ), which may be viewed as a Polyak-F.ojasiewicz
inequality on the space of probablhty measures ( ; , ). To the best of
our knowledge, this assumption is not standard in the ﬁeld of global optimization. A log-Sobolev inequality
on p with coefficient p states that, for all v € P(R?),

KL(v|j0) < 5 Filvu). (3)

Remark 2.1. The notion of a logarithmic Sobolev inequality as presented in Inequality (3) was originally

introduced in ( ) for Gaussian measures, and extended in ( ) for general measures.
All strongly log-concave probability distributions satisfy the inequality ( , ), which
is stable under bounded perturbations ( , ), tensorization, convolution and mixture
( , ; , ), and Lipschitz perturbations ( , ), although this

might come at the expense of the constant. In the case of mixtures of Gaussians of equal variance, the
log-Sobolev constant has an exponential dependency in the problem dimension (

, ). Moreover, measures with potentials which are strongly convex outside a ball satlsfy a
log-Sobolev inequality ( , ), although the constant may again have an exponential dependency in
the dimension.

Assumption 2.2. The Gibbs measures pu® of U: RY — R satisfy a logarithmic Sobolev inequality with
coefficients p, > 0, for all a > agp.
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Remark 2.3. Under Assumption 2.2, the measures pu®® also satisfy a log-Sobolev inequality with constant
Pab = min(pg, pp) by tensorization, where we know that p, = 1/b since the marginal in y of u®® is strongly
log-concave with parameter b. Verifying the logarithmic Sobolev inequality for each a > a¢ may be challenging
in general, however it is readily verified under some structural assumptions on the potential. For instance, it
is satisfied if U = V + F, where V is strongly convex and F' is bounded, as strongly convex potentials induce
a Gibbs measure satisfying the log-Sobolev property, which is stable under bounded perturbations. To the
best of our knowledge, the tightest known lower bound for p, is given by exp(—a Osc(F)) - (ap) ™!, where u
is the strong convexity constant of V. As Osc(F) typically scales with the dimension d, this highlights the
possible exponential dependency in the dimension and in the parameter a of p,, and hence also of p, .

We now recall Pinsker’s Inequality ( , ), which relates the KL divergence and the total variation
distance.

Theorem 2.4 (Pinsker’s Inequality). For any two u,v € P(R?), it holds that

KL(v[|p)

_ < 4 ) AN
lp—vlrv < 5

We finish this section by recalling McDiarmid’s Inequality ( , ) in the single-variable case.

Lemma 2.5. Let f: RY — R satisfy Osc(f) = sup(f) — inf(f) < +oo. For any random variable X, it holds

that
2¢2

P(ELF(X)] — £(X) > 2) < exp (—O(f)) .

3 Optimization

The idea behind the global optimization algorithm is to sample from a distribution that produces samples
close to global minimizers. Specifically, we define u* € P(R?) to be a mixture of Dirac measures concentrated
around the global minimizers of U with weights as defined in ( , , Equation 18). As such,
by ( ), under the technical Assumption B.1, there exists a constant C' > 0, depending
on U only, satisfying

Wo(pu®,p*) < C-a™ /% (4)

As such, an approximate sample from p® will yield samples close to global minimizers. Concretely, we suppose
we have access to a distribution fi satisfying

KL(a[p®) < €%/18, (5)
for some € > 0, and that we can draw samples from f.

We are now ready to introduce our global optimization algorithm, dependent on a yet unspecified oracle
sub-algorithm, corresponding to a sample from f.

Algorithm 1 Global Optimization Algorithm
Require: Oracle algorithm.

1: Generate IV random i.i.d. samples X according to oracle algorithm where ¢ =1,..., N.
2: Set X = XU for [ = argmin,_; U(X@).

With these results at hand, we may prove convergence in probability of Algorithm 1.
Theorem 3.1. Let U: R? — R satisfy Assumptions 2.2 and B.1. Fiz ¢ € (0,1/2), 6 € (0,1), and suppose

9C4L? 181n(1/6)

a > max | ag, —5—
( Tog? g2

> and N > . (6)

Suppose we have access to an oracle algorithm that can produce a sample from fu, where fi satisfies (5). Then,
if X is simulated according to Algorithm 1 with the same oracle algorithm, it holds that

PUX)—-U*>¢) <6.
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Remark 3.2. A natural choice for the oracle algorithm producing samples X () satisfying (5) is an iterative
sampling algorithm, producing the sample in K iterations. The total complexity to produce the sample X is
then of K - N, with the possibility of parallelization when N > 1. For a fixed computational budget, there is
a trade-off between the number of iterations K and the number N of samples, as indicated by Equation (8)
below, where the number of iterations K will control how small the probability P(U/(X () > ¢) is. Therefore,
the number of iterations K should be big enough if one wants to ensure that increasing the number of samples
N leads to improved accuracy.

Proof. Without loss of generality, set U* = 0.

Let X® fori=1,...,N be N ii.d. copies generated according to the oracle algorithm, such that X=xO
where [ = argmin,_;  y U(X@).

Note that, for any ¢ = 1,..., N,

1_ e UXD) g ~EUX)] (7a)
+ e BV _R[e-V(XY) (7b)
+E[e VX)) —E[e-VE™) (7¢)
+E[eVED)] _ o UED), (7d)

Term (7a) is bounded by L-smoothness as
E[U(X*)] = E[U(X") = U(X")]

L
<E |VUX)(X - X7) + X0 - X7

where X* ~ p* such that VU(X*) = 0 almost surely, and (X X*) ~ ¢* for ¢* an optimal coupling
between p® and p*. As such, using that 1 — e™® < z, we obtain that (7a) is bounded by /6. Moreover, as
x — exp(—2x) is convex, (7b) is nonpositive, by Jensen’s inequality. Since z — exp(—U(z)) is bounded by 1,
(7c) is bounded as

a ~ 11 a
E {e‘U(X )} -E [e_U(X(D))} <l|a—-prv < % < %7
where the second step uses Pinsker’s Inequality 2.4. Finally, by considering all the bounds on (7), we have

P (1 e UED) > 5/2) <P (E[G*U@“‘))] — e UED) > 5/6) < exp(—e2/18) < 6V,

where the third inequality follows by Lemma 2.5, as x +— e~Y(®) takes values in [0, 1]. For = € [0,1/2], it
holds that 1 — e™* > x/2, and hence

PUXD) 2 6) <P (1-eV0) > o2) < 8N,

As X = XU where I = argmin,_, 5 U(X®), and (X®),_; _y are ii.d., it holds that

PU(X) >e) =PUXY) > )V <0 (8)

O
Remark 3.3. In Theorem 3.1, the bound of € < 1/2 is artificial to the proof. By scaling U one can obtain
similar results, up to a constant factor, for any value of € > 0.

Algorithm 1 depends on a yet unspecified oracle algorithm. A new such oracle algorithm is discussed in
Section 4. However, the modular form of Algorithm 1 provides a simple framework to employ other sampling
algorithms, which potentially may lead to faster provable convergence, or be applicable in different contexts.
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4 High-Resolution Langevin

4.1 Continuous-Time Study

As previously highlighted, the high-resolution differential equation introduced in System (2) has played
a pivotal role in advancing the study of accelerated convex optimization algorithms. Aiming to build an
algorithm with accelerated convergence rate for nonconvex sampling, we introduce the High-Resolution
Langevin Dynamics, inspired by these dynamics. Let (2, F,P) be a filtered probability space and consider
the following stochastic differential equation:

dX, = (—BVU(X;) + Yy)dt + \/202dB?

(9)
dY; = (—yVU(X;) — aYy)dt 4 /202dBY,
where (B*, BY) is a standard 2d-dimensional Brownian motion, (Xo,Yy) ~ g for some initial distribution
Lo, and «, 3,7,02, 012/ > 0. As the drift coefficient is Lipschitz continuous, System (9) has a unique solution
( , ). We denote the joint law of (X, Y:) by pu,, which has a twice continuously differentiable
density with respect to the Lebesgue measure, as the drift coefficient has Lipschitz continuous and bounded
gradient ( , ).

A slight variation of System (9) has been studied previously in ( ), with similar motivations.
The authors obtain convergence rates in the W5 metric, in the strongly log-concave setting. As our study
addresses the nonconvex setting, a comparative analysis falls outside the scope of this work.

Remark 4.1. System (9) is equivalent to

dz, = — (5/" _l/b) VH(Z)dt + 2 (”g 0 ) dB;,

v/a a/b 0 o

where Z; = (X, Y;) and H((z,y)) = aU(x) + b%. As such, System (9) may be viewed as a preconditioned
Langevin dynamics in a larger space on the function H.

Moreover, we see the difference between System (9) and the underdamped Langevin dynamics, through the
presence of additional noise.

2

Finally, as o2

,05 — 0, we recover the deterministic System (2), which exhibits accelerated convergence.

We now study the convergence in KL divergence of System (9), similarly to what was done in ( ).
A byproduct of the proof (see Appendix C.1) is the uniqueness of the invariant measure.

Theorem 4.2. Let U: R? = R, and let a > ag and b, a, B,7, 0, oy > 0 satisfy

a—ﬁ b:% and %:'y. (10)

==,
lop logy

1. System (9) admits a weak solution (X;,Y;) which has as invariant law p®®.

2. If p»° satisfies a log-Sobolev inequality with p > 0,

2, min(o2.02
KL (g |*") < KL(po|p®?) - 7207 o)t

In specific, provided 02,05 > 0, we obtain KL(p,|u®®) — 0 at exponential rate as t — oo, and the

invariant law p®® is unique.
4.2 Discrete-Time Study
Consider the following discretization of System (9):
dX, = (—BVU(Xkn) + Y)dt + \/202d B}
dY; = (—yVU(Xpp) — aYy)dt + |/202dBY,
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for t € [kh, (k + 1)h], where h > 0 is the step-size and fi, is the initial distribution, such that (X0, Yo) ~ fig-
We define i, = L((X+, Y3)).

Conditionally on (X5, Yin), System (11) describes an Ornstein-Uhlenbeck process for ¢ € [kh, (k + 1)h]. We
may thus simulate f1(, 1y, by sampling an appropriate Gaussian random variable. The explicit computations
leading to Algorithm 2 are presented in Appendix C.2.

Algorithm 2 High-Resolution Sampling Algorithm
Require: An initial distribution fi, € P(R>?).
1: Simulate (Xo, Yo) ~ /NJ,O.
2: for k=0,..., K —1do L
3. Generate (X(x11)n, Y(k+1)n) ~ N (m,X) conditionally on (X, Yis), where

e—ah

~ B 1— ch v 1— e—ah N
myx = Xgp — BhVU(th) + TYkh —— | h—= T VU(th)

(07
my = e—ahYkh — %(1 — e_ah)VU(th)

2
g
Yxx = 2 [2ah —e 2" +4e7 " —3] - Iy + 202h - 14

o3
0.2 1— e—2ozh
Svy = M -1y
o
0.2(1 _ efozh)Z
Yxy =Yyx = yig y.
o
4: end for B
5. return (XKh7 YKh)-
Our result, as well as our analysis, is comparable to ( ), who studied the highly

overdamped Langevin Dynamics. The more precise result and its derivation are given in Appendix C.3.

Theorem 4.3. Let ¢ > 0, a > ag, b > 0 and assume (10) holds. If a log-Sobolev inequality on pu®® with
parameter p > 0 holds, and h < O(p), then there exist

A=0(p), B=0(ad/p) and B = 0(d*d),

such that
KL(fay[|*") < e 4 KL(jao || 0**) + BR?,

and, for all K > 1,
KL (g | ") < e~ 45" KL (fio |u®") + Bh. (12)

As an immediate corollary we obtain sufficient conditions to obtain an e-accurate sample.

Corollary 4.4. Let e > 0, a > ag, b > 0 and assume (10) holds. If a log-Sobolev inequality on pu®° with
parameter p > 0 holds, then KL(fiy,|pn®®) < e for

~ pe ~ da2

Proof. Bound each term in Equation (12) by /2. O

We are now ready to complement Theorem 3.1, by replacing the oracle algorithm by Algorithm 2.
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Corollary 4.5. Let U: R? — R satisfy Assumptions 2.2 and B.1, and fiz ¢ € (0,1/2) and 6 € (0,1). Suppose
(6) holds, and that X is simulated according to Algorithm 1 with K iterations of Algorithm 2 being used for
the oracle sub-procedure. It holds that

P(UX)-U*>e) <8, for h<O L R T i
=/=0 00 ~ a2d ¢ ~ e2pl, )’

Remark 4.6. As in Remark 3.3, the results in Corollary 4.5 immediately extend to any ¢ > 0.

Remark 4.7. Tt may be observed that the rates presented in Corollary 4.5 do not improve upon the best-known
rates for the overdamped Langevin dynamics ( , ) or the underdamped Langevin
dynamics ( , ). However, this does not imply the absence of acceleration; rather, it reflects that
our current analytical framework is not sufficiently tight to capture it. This is comparable to the initial
studies on high-resolution differential equations which similarly did not demonstrate provable acceleration, yet
laid the groundwork for the remarkable advancements in acceleration techniques that we benefit from today.

5 Numerical Results

All experiments have been performed in Python 3.8. The code is available on the author’s GitHub page.'
Our theoretical study does not answer the question of the optimality of the parameter choice, which we leave
for future work. Given a >0, we fix a =1, 3 =1, b= 10, v = a/10, 02 = 1/a and 03 = 0.1. The remaining
parameters, namely the number of samples N, the number of iterations K and the step-size h, will vary with
the experiments. The number of runs over which we compute empirical probabilities is denoted by M.

We illustrate the convergence of our algorithm on the Rastrigin function, a classical example of a highly
multimodal function with regularly distributed local minima. Let U: R¢ — R be given by

d
Ux) =d+ ||z]|* - Zcos(2wxi),

=1

which is minimized in #* = (0,...,0) € R?, with objective value U* = U(x*) = 0. The Rastrigin function
for d =1 and d = 2 is plotted in Figure 6 of Appendix A for illustrative purposes. The Gibbs measure of
the Rastrigin function satisfies a log-Sobolev inequality by Remark 2.3, and it is easy to see it also satisfies
Assumption B.1. We select d = 10 for all the experiments, unless otherwise specified.

In Figure 1, we show the empirical probabilities computed over M = 100 runs that U (X' ) —U* > ¢, for
various thresholds €. In each run, a step-size h = 0.01, a sample number N = 10 and a maximal number of
iterations K = 14000 have been chosen. The initial distribution is set to fig = N (3-14,10- I4xq). We observe
that for smaller values of a, u® is not representative enough of p* to guarantee the wanted threshold, even
after numerous iterations. For larger a, the probability converges, with a rate that decreases as a increases.
This is expected, as pu* approaches p* as a increases, but the number of iterations to reach a good estimate
of pu® also increases as a increases. These observations qualitatively confirm Corollary 4.5, as well as the
dependency in a of p,p as outlined in Remark 2.3.

Table 1 shows similar results in a tabular form, for various values of the step-size h. We report the average,
median and standard deviation of M = 100 runs after K = 14000 iterations. The small standard deviation
showcases the robustness of our method. These results motivate our selection of step-size for the subsequent
experiments.

As previously noted, Algorithm 1 achieves convergence for any sampling algorithm that satisfies the conditions
outlined in Theorem 3.1. In particular, discretizations of both overdamped and underdamped Langevin
dynamics are anticipated to be viable candidates. In Figure 2, we compare the high-resolution Langevin
algorithm (HRLA) proposed in Algorithm 2 with the overdamped Langevin algorithm (OLA) from

( ) and the underdamped Langevin algorithm (ULA) from ( ), using comparable
parameter settings. The values of a are selected empirically to optimize the convergence rate for a given value

Ihttps://github.com/DanielCortild/GlobalOptimization
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Figure 1: Empirical Probabilities of Hitting Tolerance e for 14000 Iterations.

Table 1: Average, Median and Standard Deviation of Objective Function Value for Various Step-Sizes.

h a=1 a=2 a=3 a=4
0.001 | Avg | 2.974 0.920 1.363 4.216
0.001 | Med | 3.034 0.895 1.427 4.291
0.001 SD 0.595 0.334 0.617 0.906
0.01 Avg | 3.422 0949 0425 0.318
0.01 | Med | 3.488 0.960 0.422 0.329
0.01 SD 0.599 0.257 0.101 0.076

0.1 Avg | 7.840 6.970 6.780 6.570
0.1 Med | 7977 7.168 6.894 6.712
0.1 SD 1.031 0.959 0.842 0.766

of €, with convergence assessed by the speed at which the empirical probability reaches 1, which reflects the
accuracy of the invariant measure and does not depend on the sampling algorithm. Hence the chosen pairs
(a,€) are common to all three algorithms.

0.5

P(UXk) - U™ <¢)

0.0

1.0

a=3,£=4|

0

5000

10000

Iteration count (k)

— ULA

0

— OLA

5000

10000

Iteration count (k)

—— HRLA

Figure 2: Comparison of Different Sampling Methods.

Extending the results of Figure 1 to a larger number of iterations (K = 100000) with larger values of a allows
us to reach better accuracies. This is shown in Figure 3, in which we observe the same trends as in Figure 1.
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Figure 3: Empirical Probabilities of Hitting Tolerance ¢ for 100000 Iterations.

The impact of the problem’s dimensionality can also be analyzed. In Figure 4, we compare the cases of d = 10
with € = 2 and d = 20 with € = 4. The observed trends are remarkably similar, which aligns with theoretical
expectations: doubling the dimension proportionally the expected initial objective value, and consequently,
doubling the tolerance maintains the relative error at a consistent level.

—~ 1.0
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Vi

>

’I\ 0.5

X

2

90 s B
0 5000 10000 0 5000 10000

Iteration count (k) Iteration count (k)
— a=1 — a=2 — a=3 —_— a=4

Figure 4: Empirical Probabilities of Hitting Tolerance € for d = 10 and d = 20.

In all preceding figures, we observe a faster convergence to the target u® for smaller a, however the target
p is further from the true target p*, such that the probability converges to a value far from 1. In order to
leverage this, one can update the value of a over the iterations, in the same spirit as simulated annealing
(Gidas, 1985). For a given a and @, we let a be the value of a at iteration k, where we assume (a) evolves
linearly between a and @ in k. Specifically, we set

(K—k)-a—Fk-a
K 9

ap — (13)
where K is the total number of iterations. We select ¢ = 0.1, and vary the final value @. Figure 5 plots the
empirical probabilities for various values of @, now for smaller tolerances. We observe a faster convergence
to a higher accuracy, as expected. For large values of @, the increase from a to @ is abrupt, causing the
algorithm to become trapped in local minima. This behavior may originate from the suboptimality of the
cooling scheme described in Equation (13). Further acceleration may be obtained either by optimizing the
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Table 2: Average Objective Function Value for Fixed Effort N - K = 140000, with as given by Equation (13).
N a=4 a=12 a=20 a=40
1 0.140 0.062 0.078 0.141
10 0.143 0.048 0.054 0.176
100 0.197 0.229 1.311 4.432
1000 3.653 8.781 11.167  12.558
10000 | 16.206 16.014 16.023 16.160

Table 3: Comparison to Results in Guilmeau et al. (2021), with aj, given by Equation (13).
K SA FSA  SMC-SA CSA |a=1 @=2 a=3 a=4 a=5 a=6
50 | Avg 3.29 3.36 3.26 3.23 | 15.76 15.30 14.04 13.61 13.40 13.40
50 SD | 0.425 0.453 0.521 0.484 | 2.539 2262 2563 2.068 2.306 2.065
500 | Avg 2.52 2.64 2.62 2.47 2.56 0.74 0.38 0.32 0.31 0.61

500 | SD 0.320 0.304 0.413 0.502 | 0.549 0.244 0.101 0.095 0.223 0.433

cooling scheme, or by employing alternatives to simulated annealing. Although we do not delve further into

this, we refer the interested reader to Marinari and Parisi (1992).
100 c— 05K | e=1H | £=2
w
W 0.75 4 . .
>
’I\ 0.50 4 b b
~
>
< 0.25 . :
&
000 B s — T L e T L T T a T — T T T T
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Iteration count (k) Iteration count (k) Iteration count (k)
— =4 —— 3=12 —— 3=20 —— 3=40

Figure 5: Empirical Probabilities of Hitting Tolerance ¢ with aj given by Equation (13), for 14000 Iterations.

For a fixed computational effort N - K, one can choose to put a heavier emphasis on the number of samples
N or the number of iterations K. Table 2 shows a comparison between multiple pairs of (N, K) having
a constant product and the average running best value over all iterates obtained. We observe that it is
beneficial to select N small, although N = 1 is not always optimal. Moreover, N = 1 does not allow for
parallelization, contrary to IV > 1. This does align with the observations in Remark 3.2.

In Table 3 we compare our results to well-studied variants of simulated annealing. Our algorithm is compared
to Simulated Annealing (SA) as presented in Haario and Saksman (1991), Fast Simulated Annealing (FSA) as
presented in Rubenthaler et al. (2009), Sequential Monte Carlo Simulated Annealing (SMC-SA) as presented
in Zhou and Chen (2013), and Curious Simulated Annealing as presented in Guilmeau et al. (2021). The
numerical values for the four aforementioned methods are extracted from Guilmeau et al. (2021). For a
fair comparison we use the same parameters, namely we perform M = 50 runs with N = 250 samples and
K = 500 number of iterations, and an initial distribution fiy = 04,3}, where 2o = (1,...,1)" € R'". Table 3
transcribes the average running best function value and its corresponding standard deviation over the runs.
Although at 50 iterations the accuracy of our algorithm is worse than for the other presented algorithms,
the comparison reverses at 500 iterations, where our method outperforms the state-of-the-art methods by
an order of magnitude of 10. In the state-of-the-art simulated annealing methods, we observe very little
improvement between 50 and 500 iterations compared to our algorithm. This reflects the well-known fact
that simulated annealing methods tend to get stuck in local minimizers if the cooling scheme is not tailored
to the problem, issue which our method does not seem to encounter.
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6 Conclusions

The main focus of the paper is on a global optimization algorithm, which produces arbitrarily accurate
solution with high probability. The main assumptions on the potential to be minimized were some regularity
assumptions, and a log-Sobolev inequality on the Gibbs measure. This global optimization algorithm relies
on an oracle sub-algorithm, which produces samples from a given Gibbs distribution.

For this oracle algorithm, we introduced a new variant of Langevin dynamics, given in System (9). These
dynamics are inspired by the deterministic high-resolution differential equation presented in System (2) to
tackle global optimization in nonconvex settings. Our continuous-time and discrete-time dynamics complement
the classical overdamped and underdamped Langevin methods by adding another noise term. We established
convergence properties of the continuous-time dynamics, showing that their invariant measure concentrates
around the global minimizers of the potential U, and developed a practical sampling algorithm through
discretization, which provably converges.

Our theoretical analysis and numerical experiments on the Rastrigin function demonstrate that the proposed
method effectively navigates nonconvex landscapes and can obtain accurate solutions with high probability.

6.1 Open Questions

Several open questions remain for future work:

1. The parameters of the algorithm were presented in a general form, and the optimal selection of these
parameters is unclear. This is also the case for the ideal combination of (N, K), as suggested by Table 2.

2. The constant C' in Inequality (4) is not explicitly defined in ( ). An explicit value
would enable an explicit bound in Theorem 3.1.

3. The technical Assumption B.1 might be restrictive in certain contexts. Under more general smoothness
assumptions, Algorithm 1 can make use of sampling algorlthms from non-smooth potentials, such as the
proximal algorithm ( , ; , ). Whence the interest in
establishing a bound similar to Inequality (5), under lebs restrictive assumptions.

4. The cooling scheme outlined in Equation (13) is suboptimal, as evidenced by Figure 5. Further research is
needed to provide a theoretical analysis of the simulated annealing variant of our algorithm. Additionally,
the exploration of an adaptive scheme could be considered.
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A Deferred Figures

Figure 6 depicts the Rastrigin function in dimensions d = 1 and d = 2, illustrating its nonconvex nature.

Ulx,y)

Figure 6: Rastrigin Function for d =1 and d = 2.

B Technical Assumptions
Equation (4) holds under the following technical assumptions:
Assumption B.1. We assume

1. There exists a global minimizer & of U satisfying

/ |z — 2| exp(~U(x))dz < +o0.
R4

2. U is 6-times continuously differentiable on a set F' C R¢ such that all global minimizers are contained
in the interior of F.

3. The Hessian of U is positive definite at each global minimizer.

C Deferred Proofs

For a probability measure u € P(R?), we use the notation u(f) == E[f(Z)] where Z ~ p and f is an
integrable test function defined on R?. Given a process Z; ~ p,, the notation Hop(f) denotes the function

defined on R? such that Hop(f)(2) = E[f(Z0)|Z: = 2] for any z € R
We start by introducing a lemma that will be used throughout the proofs.

Lemma C.1. Let p;: R>o — P(R?) be a curve. Suppose that v;: R>g x R¢ — RY is a sequence of vector
fields satisfying %ut + V- (- vg) = 0. Then it holds that, for all p* € P(R?),

d " Iz

&KL ") = By, [<v1ogugi,vt>} .
Proof. See ( , , Equation 10.1.16). O
C.1 Proof of Theorem 4.2

1. Observe that
Veu®’ = —aVU(z)p™?,  Vyp* = —byu®?’,

Vaaopt®’ = —aV2U (2)p™" + a®||VU ()P’ Vyyu®’ = (=0 +0°[ly[*) .
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As such, under the given parameters, one easily checks that
= (af + 2@ VU@)IP + (0 = W)VU() -y + (~ab+ o2P)lyl> + (5 — o) x(TU(2) + (o = o2b)
= Btr(V2)U(z) + a(—=BVU(z) +y) - VU(z) + o + b(—yVU (2) — ay)y
+ 05 (—ate(V2U(2)) + a® VU (2)|%) + o5 (=0 + b*|ly||*)

= (= Ve (VU@ + )" @9) = V- (V@) = )™ (2.9) + 02 tr(0sca™) + o3 (018" ).

It thus holds that pu®? satisfies the Fokker-Planck Equation, and must hence be an invariant distribution.

2. The Fokker-Planck Equation associated with System (9) reads

Oy = =Va - (=6VU () + ( Y)) = Vy  (—9VU(2) = ay)py(,y)) + 07 Dgapty + 05 Ay ity

e[ 2) (a2

(o2 —1/b
=V. <1/b ny> —V log pu® +Vlogut]ut]

(7 ol

As such, by Lemma C.1, we know that

%KL(MHNG’b) - [<Vlog( - ) (f/gb Uly/b> Vi (:t >>]
< (v () (5 8) v ()]
HVlog (:t > 21 . (14)

In specific, if we assume a log-Sobolev inequality with coefficient p, we get

< —min(o?, 05)

d a : a,
- KLl ) < —2pmin(o2, 07) KL(p, || ™),

which, by Gronwall’s Inequality, implies
KL (g || ") < exp(—2pmin(o3, o3)t) KL (ko)
which means we get convergence as long as 02, O'y > 0.

C.2 Explicit Computations for Algorithm 2
We first note that we can rewrite System (11) in integral form as, for ¢t € [kh, (k + 1)h),

X; = Xpn — B(t — kR)VU (Xgp) + Yds + \/20—2/ dB®
kh

Y, = e ctknyy T () mal=k)) (X)) + 1 /202 e*a“*S)dBy.
« Y kh ®

Conditionally on the initial condition (X, Ykh), the process (f(t, Y/t)khgtg(k—i-l)h is an Ornstein-Uhlenbeck
process on [kh, (k + 1)h].

(15)

From now on, in this subsection, we always work implicitly conditionally to (th, f’kh).

In particular, E((Xt, Yt)) is Gaussian and it remains to compute the associated expectation and covariance
matrix to fully characterize it.
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We thus compute

E[Y,] = e—a(t—kh)}}kh 7 (1 _ e—a(t—kh)) VU(th),
@
from which we get that

~ ~ - 1— e—a(t—kh) - 1— e—a(t—kh)
E[X] = Xy, — Bt — kR)VU (X)) + — Vi — L (t _lemet

ERi

Now note that the Brownian motion term for Y/} is ,/205 fkth e~*(t=5)dBY whereas the Brownian motion

term for X is

t t r t t t
\/203/ dB§+,/203/ / e =) dBYdr = \/20—3/ dB§+,/2a§/ / e (=9 drdBY
kh “ Jkh JEh kh kh Js

t

t _ ,—a(t—s)
1
= \/203/ dB§+1/2o§/ eing.
kh kh @

As such,
-5 ~ ~ ~ ~ T
Cov (i, Vi) = E [(¥; — E[¥i]) (V: — E[¥7))"]
t t T
e ([ ) ([ o-om)
kh kh
t
= 205 . </ eQa(tS)ds> -1y
kh
1— 672a(t7kh)
= 0—3 e .
Moreover,

Cov (X, V1) =B (%, — E[%,]) (¥,  E[¥7]) ]

t t ] _ e—alt—s) t T
=E (\/205/ dB§+./2a;/ ng) (1/205/ ea@S)ng)
kh kh @ kh
t t T

= 2, /o202E < / dB:) < / ea@S)ng)
kh kh
2 t t T
+2ﬂ1E (/ 1—e—a<f—5>ng> (/ e—O‘(t—S)ng)
a kh kh

2 2 t
_ 29y </ (1- e—a(t—s>)e—a<t—s)d8> I,
« kh

B 0.5(1 _ e—a(t—kh))2
- - L
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And, finally,

Cov (%, %) =E |(% - BIX,]) (X, - EI%)"|

t N t 1— efa(tfs)
e (v [ e ot [ ).
1—e™ a(t—s)
\/202/ dB””+\/202/ ng)
( kh kh «
t t T t —at— t —alt—
1— a(t—s) 1— a(t—s)
(f ) o e [ 25 25
kh kh kh « 0 «
t 2 2 t
= 205 (/ d5> I+ 72 (/ (1- ea(ts))2ds) 21y
kh & kh

2
(20 + -2 [2a(t —kh) 4+ 1 — e 20=kh) 41 — e—a“—’“h))}) I

T

T
= 25°FE

xT

Selecting ¢ = (k + 1)h yields the wanted result.
C.3 Proof of Theorem 4.3

For completion, we introduce the following technical lemma;:

Lemma C.2. Consider the R%-valued random process (Z;) defined through
dZ; = b(Zy)dt + odWs,
with initial condition Zy ~ vq for some vy € P(R?). Then vy = L(Z;) is a weak solution of
Oy = Livy,

where
d

d
Lin= 3 0iwou®)m) + 5 3 0i5((00 )i m).
i=1

i,j=1

Proof. Let us consider a smooth real-valued function f. Then Ito’s lemma together with the tower property
of conditional expectation yields

d

1
B2 = Bl (o) + [ B ZE GRS (Z) + 5 3 (00T )is00 20 .
i,j=
which reads
d
1
(e —vo)(f :/ v, ZVO\ D0 f + = Z (00T)i;0;;f | ds.
,j=1
Let L be the differential operator such that
1 &
Lif = ZVou )0 f + 5 Z (00™)i ;05 f
1,j=1
Then
t t
i =vo)(h) = [ viLuyis= [ Liv.(fds,
0 0
and differentiating yields the wanted result. O
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Given the parameters «, 3,7, 02, 05, a,b, p, L, we define

0 ::pmin(ag,ai),
a?L?(c% +b72)
T =
2min(o2,02) ’
A =124 4B8%L2 + 44212, (16)
12 4B82%L 4921
B =20+ "+ P 43024 L2
b a 4 a
B =2rB-d.

We now introduce the more precise statement of Theorem 4.3.

Theorem C.3. Assume pu®® satisfies a log-Sobolev inequality with constant p. Assume (X.,Y;) follows
System (11), with initial distribution (Xo,Yo) ~ fig. Moreover, assume that

. 1 [/ 6p
h < min <1, 5, 87'/1> . (17)

Then it holds that

KL(f, || n*") < e /2 KL(fao||u") + Bh?, (18)
and for all K > 1,
~ a,b ~ a,b 3Eh‘
KL(fgp ||p”) < exp(—0Kh/2) KL(fro| ") + 0 (19)
Proof. Choose h according to Equation (17), and fix some ¢ < h, such that System (11) reduces to
B B B t t
X; = Xy — BtVU(Xy) —|—/ Y.ds + \/203./ aB?

t
Vo —aty) i —at " —a(t—s
Vi=e -~ (1 )VU(X0)+,/20—§/O e~ =9)qBY.

Denote by fi, the joint law of (X;,Y;). Note that in the above p1r0(:~es.s,~()~(07 Yp) is itself a random variable,
with joint law fi,. Denote by fi,, the joint law of (Xo,Yp) and (X¢,Y;), and by fig), the conditional law
£((Ko, To)l(X0, T2).

Applying Lemma C.2 to the process Z = (X,Y) implies that fi, satisfies

2wm=v-((7h —(gz») :(aﬂou(vbg) “) g+ va))
(55 ) ()t ()
o () [t () ).

As such, the vector field given by

o= (f/?”b _;f,/b) (wog % N <aﬁo|t(VU)<agy> —W(m)))
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is tangent to (ft,), and hence, by Lemma C.1, it holds that

& K a) = 55, [(T108 20 (77 glg,/b) e G S ) )]
A R
i (Y
=5 |( ;

(3 2t
o GRS ICER)

V log

< %Fi(ﬂtnmb)
st G )T ]

where the final inequality follows by Young’s Inequality with coefficient min(o Now note that

H(f;b —;2/b> <a[VU()~(0)0—VU(Xt)]> ?

Y

5oy
y

1 = a’(0 +b")Eg, [IIVU(Xo) — VU (X))

< a’L? (o +b7)Eg, [ Xo — X?]-
As such, Equation (22) reads

min (o2, 02)

KL(f | p*") < ———"=Fi(a[lu*) + Bz, , [| Xo — X:[]- (23)

4
dt 2

Now notice that, by the integral Equations (20) and Jensen’s Inequality,

t t 2
HﬂtVU(Xo)+/ Y/sderx/QJ%/ dB,
0 0

Eg,, [1Xo0 — X¢)%] =

t
< 28°°Ep,, [IVU(Xo) %] + 2t/ Ep,, [1Ys]?] ds +202d - t. (24)
0

Now observe that, for ¢ an optimal coupling between fi, and pu%® and for (X%° Y*?) ~ pab

Ep, [ VU (X0)|1?] < 2E¢[[[VU (Xo) = VU (X)|?] + 2E [ VU (X))
< 2L%E[| Xo — XOV°] + 2E 0 [ VU (X))

= 2L*Wo + 2E 0 [| VU (X )12, (25)
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where Wy = W2 (i, u®). Moreover, by denoting Zg,p the normalization constant of pb

B IVU@IP) = [ VU@ VU@ @)
X
= —/ e~ tllvl*/2 VU(z) - VU (z)e Y@ dzdy
Za b Rd

_ - / 2 [ U(z) - Ve U@ dpdy
Zayba Rd R4
1 —bllyl2/2 —aU
=_— A V(@) dad
Z,Lba/ e . U(z)e xdy

1
— gEua,b[AU(X“’b)]

dL
< — 2
< (26)

where the third-to-last equality follows from integration by parts, and the final inequality follows from
L-smoothness. Plugging this into (25) then yields

2dL

Ep, [IVU(Xo) ] < 2L*Wo + — (27)
which, replacing in Equation (24), gives
t
Eg,, [[|%0 - %|°] < 282 (2L2WO + QdaL) + 2t/ Eg,, [[|V:]°] ds+202d 1. (28)
0

By Equations (20)

2 2

B [[Vl°] < 3Bz, [[Y0l"] + 39, H/O VU (Xo)dr /O e~ dBY

< 6Wo + 6Ben | [V 20| + 8925%Eg, [[|VU(K0)|*] + 602 - s

< 6Wo + 6By |[V20]] + 347 (2L2W0 + dL) +602d - s. (29)

+ GdgEﬁ(o,s) U

Now we realize that analogous computations to (26) give that

d

Ya b :| hd
s [J7o07) < 4,
which, plugged into (29), yields, after rearranging the terms,
~ 9719,9 d ~2Lt
Eg, [[IVel?] < 6Wo (1 +~7L% )+6b +6d-t —+
Returning to Equation (28), we obtain

Ea,, MXO - )N(t’ﬂ < 283%t? (2L2W0 + 2daL> +202d -t

t 2
d 292L
- 2t/ <6Wo (1+7°L7s") + 65 + Gds ( T2 aj» ds
0 a
2dL
= 26%2 (2L2Wo + > +202d -t
a

2123 d-t 2~2[,
+2t<6Wo<t+73 )+6b 124352 4 34 120 2)
a

12¢2  4B°L
=Wo - [12¢% + 45° L + 4° L] + d - [ oot + - L

49°L
213025+ =4t

a a
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Using that ¢ < h < 1 and recalling the notation defined in Equation (16), we obtain
E[‘O,t [HXO - XtHQ} <Wy-A- t24+d-B-t.

Combining the above with (23), we obtain

min(o?,0;)

4 L e
KLy ) < -

p Fi(fu,|u®®) +7-Wo-A-t* +7-d-B-t.

Applying a log-Sobolev inequality, we obtain

d
o KL(f1, || ") < —0KL(fa,||p™") +7A- Wy - 12 + 7B -d - L.

Rearranging the terms yields

d

%eet KL(j, || %) < e%'7A- Wy -2 + 1B -d - t.
Ast <h,

d
%eet KL(ja, || p2?) < e%'7A- Wy - h% 4+ €% 7B -d - h,

which we integrate from 0 to & in ¢, yielding

efh — 1 efh — 1
/P KL(a™MW || b)Y — KL( || n®?) < g TA W h? + g TBd-h
<27A-Wy-h*+27B-d-h,
where we used e < 1+ 2¢ for 0 < ¢ < 1 for ¢ = 6h. Using Talagrand’s Inequality ( , ) and

denoting KLg = KL(f1,||z*?) gives us that
4
" KL(aM ||p®?) — KLy < —7A-KLo-h3 + 27B - d - h2,
p

This implies that

4
KL(aM||p®?) < e " KL - <1 + —TA- h3> +2¢7 "B -d-h?,
P

which implies (18), using (17) and the fact that In(z) < 2z —1 for z > 0.

Iteratively applying the result of (18), we obtain, where KLy, := KL(f1,), ||2®?) for all k,

KLx < e ""2KLj_, +Bh?
S e—29h/2 KLK_2 +(e—9h/2 4 l)éhQ

IN

K-1
< e KOR/2KL, 4 (Z 6k6h/2> Bh?,
k=0

which, by bounding the finite sum by an infinite sum and using e™¢ <1 — %c for 0 < ¢ < 1, yields (19). O
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