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ABSTRACT

Interactive human motions and the continuously changing nature of intentions
pose significant challenges for human trajectory prediction. In this paper, we
present a neuralized Markov random field (MRF)-based motion evolution method
for probabilistic interaction-aware human trajectory prediction. We use MRF to
model each agent’s motion and the resulting crowd interactions over time, hence
is robust against noisy observations and enables group reasoning. We approx-
imate the modeled distribution using two conditional variational autoencoders
(CVAEs) for efficient learning and inference. Our proposed method achieves state-
of-the-art performance on ADE/FDE metrics across two dataset categories: over-
head datasets ETH/UCY, SDD, and NBA, and ego-centric JRDB. Furthermore,
our approach allows for real-time stochastic inference in bustling environments,
making it well-suited for a 30FPS video setting. We open-source our codes at:
https://github.com/AdaCompNUS/NMRF TrajectoryPrediction.git.

1 INTRODUCTION

Trajectory prediction aims to estimate the most possible future states of one or multiple interacting
agents conditioned on past observations. It also serves as the underlying foundation for various intel-
ligent systems, including autonomous driving (Jiang et al., 2023; Girase et al., 2021), human-robot
interaction systems such as robot guidance (Aghili, 2012; Rudenko et al., 2020), service robots (Lee
et al., 2018; Sun et al., 2018), etc. One of the key challenges in this task is to capture the inher-
ent multimodal behaviors of agents, which are influenced by environmental obstacles, social rules,
self-intention changes, interactive dynamics, etc. Compared to vehicle trajectories, human motions
exhibit more short-term uncertainties due to fewer lane constraints in open spaces, and smaller mo-
mentum makes the movements more agile and flexible, rendering them difficult to predict.

Current prediction works mainly address such multi-agents entangling problems from two aspects:
i) stochastic algorithms that generate multiple future trajectories simultaneously (Gupta et al., 2018;
Salzmann et al., 2020; Gu et al., 2022) to cover possible intention changes; ii) interaction modeling
through graphs at various scales (Li et al., 2020; Xu et al., 2022a), socially-aware operations (Alahi
et al., 2016; Xu et al., 2018), attention mechanism (Yu et al., 2020; Girgis et al., 2021), et al. Further-
more, these two directions are usually combined for further performance improvements (Mangalam
et al., 2020; Sadeghian et al., 2019; Yuan et al., 2021). Most of these methods assume that the
interaction pattern can be captured and applied to future time, and thus extract human interaction
features only from history sequences. Some other works such as latent self-motion (Choi & Hebert,
2006), intended actions with heuristics (Han et al., 2023), crowds as dissipative systems model-
ing (Bhaskara et al., 2024), etc. apply the Markov property in their framework designs to construct
temporal and spatial dependencies. Our method differs with an explicit structured modeling of each
agent’s motion and crowd interactions throughout the entire sequences, essentially state dynamics,
employing MRF to iteratively infer the stochastic distribution of future joint configurations.

In this work, we introduce an MRF realized by neural networks for interaction-aware human trajec-
tory prediction, as depicted in Figure 1. We first derive the crowd motion evolution as a probabilistic
distribution, which consists of: i) a Bayesian update term to predict the next states based on the
given observations; and ii) a transition term that is further factorized into a self-evolution term to
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Figure 1: Neuralized MRF for motion and interaction aware trajectory prediction. Red boxes rep-
resent computation modules. Our proposed method leverages Markovian motion assumption and
explicitly models future transitions and interactions. Through iterative prediction, it produces a con-
centrated distribution around the ground truth with more accurate best-of-20 predictions.

predict the next states based on their current states, and an interaction term to model the spatial
relations between agents. Figure 2 sketches the proposed MRF-based evolution. It assumes that
short-term human motions are Markovian up to certain frequencies. By dividing the future joint
space configuration (i.e., the collection of individual trajectories) sequences into multiple periods,
the resulting trajectory segments form a Markov chain conditioned on past observations. Within
each segment, trajectory clips are treated as nodes in a dynamically constructed graph, with edges
linked based on a distance threshold to model interactions between nearby agents. Consequently, a
joint configuration state can be represented by either one undirected graph or a set of multiple undi-
rected sub-graphs. The internal motion dynamics of the state are explicitly modeled by the MRF,
which inherently captures the evolving pair-wise and group-wise relationships for the future.

We approximate the distribution using a neural network framework with two CVAEs, employing
variational inference as exact inference is intractable. Our proposed framework is composed of
three sub-networks: i) a CVAE for the Bayesian update term; ii) a recurrent CVAE for the transition
term comprising the self-evolution and interaction terms; and iii) a neural sampler to generate multi-
modal samples from the learned latent distributions. We conduct experiments across four datasets
named ETH/UCY, SDD, NBA SportVU, and JRDB to validate the effectiveness of our approach.
Through quantitative and qualitative results, we show that our proposed neural interaction-aware
MRF can capture dynamic and hierarchical interactions among agents via neuralized potentials for
future behaviors. Our approach achieves state-of-the-art performance under ADE/FDE metrics,
while yielding real-time inference speed across various environments at the same time. Furthermore,
our method is robust across the simulated observation noise, and the learned potentials in MRF can
be utilized for additional human-centered scene understanding tasks such as group inference.

Our contributions can be summarized as follows: i) A new MRF-based framework for the human
trajectory prediction task. Our MRF explicitly models the agent’s motion dynamics and the resulting
crowd interactions. ii) Tractable learning and inference of the MRF by introducing a novel and
lightweight neural network. iii) The state-of-the-art and time-efficient prediction performance of our
approach, along with its robustness under noise disturbance, is demonstrated through evaluations on
interaction-rich datasets.

2 RELATED WORKS

Interaction Modeling. Previous works have shown various approaches to model the interactions
within crowds, utilizing RNNs (Vemula et al., 2018; Zhang et al., 2019), graph networks (Mohamed
et al., 2020; Salzmann et al., 2020; Xu et al., 2022a), attention mechanisms (Kosaraju et al., 2019;
Mangalam et al., 2020; Kamra et al., 2020), and transformers to capture spatial and temporal depen-
dencies together (Yu et al., 2020; Giuliari et al., 2021; Yuan et al., 2021; Saadatnejad et al., 2023;
Shi et al., 2023). Specifically, graph-based networks usually aggregate edge information from neigh-
boring agents and conduct message passing to obtain the final ego-node representations (Salzmann
et al., 2020; Hu et al., 2020); while attention and transformer structures attribute varying importance
levels for spatially proximal agents and focus on the most relevant ones to assist social-influence
counting. Our approach explicitly models the full dynamics of joint space state transitions and
interactions with an MRF, and attentions are employed to extract features from the past.
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Bayesian Update Self-evolution + Interaction

 
  
 

Figure 2: Overview of our MRF-based human motion evolution. Given the history sequence, O1:t,
the first future segment S1 is estimated via the Bayesian update module, and future segments S2:K

are generated from the self-evolution and interaction module. The Bayesian update, self-evolution
and interaction modules are parameterized by θ = {θu, θm, θj}.

Stochastic Trajectory Prediction. Aside from deterministic methods (Alahi et al., 2016; Vemula
et al., 2018; Zhang et al., 2019), more stochastic trajectory prediction works with deep generative
models have been proposed to manage the multi-modalities of human motions. Generative Adversar-
ial Network (GAN) (Gupta et al., 2018; Sadeghian et al., 2019; Dendorfer et al., 2021), Variational
Auto-Encoder (VAE) (Mangalam et al., 2020; Lee et al., 2022; Xu et al., 2022c), and Conditional
Variational Autoencoder (CVAE) (Lee et al., 2017; Salzmann et al., 2020; Cheng et al., 2021; Xu
et al., 2022a; Yue et al., 2022; Mohamed et al., 2020) are several lines, with some variants inte-
grating normalizing flow to implement non-Gaussian priors (Bhattacharyya et al., 2019) or heatmap
to utilize rasterized images (Mangalam et al., 2021). Recently, denoising diffusion probabilistic
models have also been applied into time series forecasting (Rasul et al., 2021), thereby expanding
to trajectory prediction. MID (Gu et al., 2022) formulates the trajectories generation process as a
reverse diffusion process by Markov chain with Gaussian transitions. To tackle the sample gener-
ation efficiency, LED (Mao et al., 2023) utilizes a learned initializer to produce correlated samples
in the reverse process, replacing the Gaussian prior and skipping numerous denoising steps. Singu-
larTrajectory (Bae et al., 2024b) embeds all types of motion patterns into a Singular space for the
generality across benchmarks and uses cascaded denoising in its diffusion-based predictor, signifi-
cantly surpassing MID.

Markov Random Field Applications. As a popular tool for modeling dependent distributions
with an undirected graph, the Markov random field (MRF) has been widely applied in tasks such
as multi-target tracking (Khan et al., 2004) and location inferring (Mattyus et al., 2015), among
others. Recently, NMRF (Guan et al., 2024) has also utilized MRFs to capture complicated pixel
relationships for stereo matching. In trajectory prediction tasks, the Markov property-i.e., a pedes-
trian’s future state primarily depends only on its current state-has been implemented for agent-wise
self-motion modeling, from early piecewise segment approach (Choi & Hebert, 2006) to more re-
cent FlowMNO (Bhaskara et al., 2024). By using a heuristic that relates coordinates and actions,
such as turning right or left, S-T CRF (Han et al., 2023) employs a CRF to model intended actions
for future timesteps. Rather than applying the Markov property only to sub-components, we use
the MRF to model the full dynamics of state transitions and crowd interactions, providing a neural
network-based method for learning and inference.

3 CROWDS MOTION EVOLUTION WITH MARKOV RANDOM FIELD

3.1 PROBLEM FORMULATION

Given t frames of observations O1:t ≜ {O1, O2, ..., Ot} up to the current time t, the goal of human
trajectory prediction is to determine the future joint configuration space of the humans Xt+1:t+T ≜
{Xt+1, Xt+2, ..., Xt+T } in the next T time steps. We further define the joint space configuration
Xt ≜ {Xi,t}Mi=1 to consist of M individual states.

Although it is possible to solve the human trajectory prediction problem with a deterministic func-
tion map f : O1:t 7→ Xt+1:t+T , we model a probabilistic distribution p(Xt+1:t+T | O1:t) to en-
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hance the learning of human interactions under noisy observations for future trajectory prediction.
Formally, we define the evolution of joint configuration segments as S = {S1, · · · , SK | Sk ≜
Xt+(k−1)τ+1:t+kτ}. S is a Markov chain parameterized by θ to indicate that the future prediction
segments with an assumed period τ are conditionally independent of the history segments given the
current state and transition dynamics hyper-parameter. As a result, we get:

p(Xt+1:t+T | O1:t, θ) = p(Xt+1, Xt+2, ..., Xt+T | O1:t, θ)

= p(S1, S2, ..., SK | O1:t, θ)

= p(SK | S1:K−1, O1:t, θ)p(S1:K−1 | O1:t, θ)

= p(SK | S1:K−1, O1:t, θ) . . . p(S2 | S1, O1:t, θ)p(S1 | O1:t, θ)

= p(SK | SK−1, O1:t, θ) . . . p(S2 | S1, O1:t, θ)p(S1 | O1:t, θ)

= p(S1 | O1:t, θ)︸ ︷︷ ︸
Bayesian update

K−1∏
k=1

p(Sk+1 | Sk, θ),︸ ︷︷ ︸
self-evolution + interaction

(1)

where K = |S| = T//τ is the set size of configuration segments determined by period τ (also
referred to as stride in network implementation). θ is typically estimated from observations which
encodes Bayesian update θu based on past measurements, and system dynamics that include indi-
vidual predictive motion models θm and pairwise interactions θj , with visualizations in Figure 2.

3.2 REALIZATION WITH CONDITIONAL VARIATIONAL AUTOENCODER

We propose to realize the posterior distribution p(Xt+1:t+T | O1:t, θ) with conditional variational
autoencoders (CVAEs) since exact inference is computationally intractable. Let Z represent the
latent embedding of the CVAE. We define the log posterior as: log p(S1, · · · , SK | O1:t, θ) ≜
log pθ(S | O) and maximize the log-posterior with the evidential lower bound:

log pθ(S | O) ≥ LELBO
= Eqψ(Z|O,S)

[
log pϕ(S | Z,O)

]
−DKL(qψ(Z | O,S) ∥ p(Z)),

(2)

where pϕ(·) is the decoder and qψ(·) is the encoder parameterized by ϕ and ψ, respectively. The
first term is the reconstruction loss and the second term enforces the latent space to be close to
the normal distribution. S is the reconstructed output of the decoder and O is the condition of the
CVAE. We further assume that the latent embedding Z is conditionally independent of O given S,
i.e., qψ(Z | O,S) = qψ(Z | S). The CVAE can be trained by minimizing the evidential lower
bound on an n-item dataset {O,X}, where |O| = |X| = n, O = {O1:t} is the set of observations
and X = {Xt+1:t+T } is the set of ground truth predictions (cf. Section 3.4 more the training details).

3.3 NETWORK ARCHITECTURE

Figure 3 shows an illustration of our network architecture that consists of two CVAEs: 1) Bayesian
Update and 2) MRF-based Evolution to approximate the two factors of the posterior distribution
derived in Equation 1.

Bayesian Update CVAE. We design the Bayesian Update CVAE to approximate the Bayesian up-
date factor p(S1 | O1:t, θ) = p(S1 | O1:t, θu) in the posterior distribution pθ(S | O). The given
observations O1:t are first encoded into time-dependent features using the History Encoder con-
structed from convolutional layers and the gated recurrent units (GRU), and then fed into a single
self-attention layer to output socially-dependent features. We use the socially-dependent features
as the condition for our Bayesian Update CVAE. We introduce a Future Encoder which acts as
the CVAE encoder to encode the given predicted trajectory Xt+1:t+T into the latent embedding
Z ∼ N (µ, σ2) during CVAE training. Finally, we concatenate the socially-dependent features with
the latent embedding as the input to a multilayer perceptron-based Update Decoder that reconstructs
the first segment Ŝ1. Note that the Future Encoder and the Update Decoder play the role of the
CVAE encoder qψ(Z | S) and decoder pϕ(S | Z,O) in Equation 2, respectively.
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Figure 3: Our network architecture. The Bayesian Update module generates predictions Ŝ1 for the
first defined sequence segment, which then functions as the input into the MRF-based Evolution
module to produce succeeding samples Ŝ2 : ŜK iteratively.

MRF-based Evolution CVAE. We propose the MRF-based Evolution CVAE to approximate the
self-evolution and interaction factor

∏K−1
k=1 p(Sk+1 | Sk, θ) in the posterior distribution pθ(S | O).

We further factorize p(Sk+1 | Sk, θ) into two parts:

i) The space-level distribution p(Sk | θj) which models the k-th joint space configuration. We are
inspired by (Khan et al., 2004; 2005) to construct a Markov random field (MRF) with an undirected
graph G = (V,E), where the segments S are the nodes V and the edges E represent the interaction
between the segments, i.e.:

p(Sk | θ) = p(Sk | θj) ∝
∏
ij∈E

γ(Si,k, Sj,k | θj). (3)

γ(·) is the pairwise potential of the MRF. We link the edges E dynamically according to pairwise
distance in each computation step.

ii) The agent-level distribution p(Si,k+1 | Si,k, θm) which models the agent-wise self-transition.
Putting the space-level and agent-level distributions together, the self-evolution and interaction fac-
tor in Equation 1 becomes:

p(Sk+1 | Sk, θ) ∝
∏
i

p(Si,k+1 | Si,k, θm)
∏
ij∈E

γ(Si,k, Sj,k | θj), (4)

which we approximate with the MRF-based Evolution CVAE. To this end, we propose a Configu-
ration Encoder which predicts Si,k+1 from Si,k to approximate p(Si,k+1 | Si,k, θm). We further
introduce a Potential Update module which calculates pairwise spatial distances by using the last
frame of the configuration segment, links edges according to a defined distance threshold d, and ac-
cumulates edge features into the connected nodes to approximate the MRF

∏
ij∈E γ(Si,k, Sj,k | θj).

The two features from the Configuration Encoder and Potential Update module are the condition
of the CVAE, which are then concatenated with the latent embedding Z and fed into the Dynamics
Decoder to output the joint space configuration Ŝk+1 for the next timestep. These procedures are
looped until the final segment prediction is obtained. All sub-modules are implemented using mul-
tilayer perceptions. Note that the Future Encoder and the Dynamics Decoder play the role of the
CVAE encoder qψ(Z | S) and decoder pϕ(S | Z,O) in Equation 2, respectively.

3.4 NETWORK TRAINING

We train our network in two stages as illustrated in Figure 3. In Stage 1, we train the CVAEs using
the evidential lower bound loss derived in Equation 2. The reconstruction loss is defined as the
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minimum error across N samples and the KL-divergence is summed over all segments as follows:

Lstage1 = α ·min
N

||X̂t+1:t+T −Xt+1:t+T ||2 + β ·
∑
τ

DKL(qϕ ∥ N (0, I)). (5)

Instead of directly sampling from the standard normal distribution N (0, I), we further train two
samplers: a History Sampler and a State Sampler with other modules frozen in Stage 2 for purpo-
sive sampling as illustrated in the right-half of Figure 3, where we replace the KL-divergence with
discrepancy loss (Bae et al., 2022b) of samples over the encoded joint configuration state:

Lstage2 = α ·min
N

||X̂t+1:t+T −Xt+1:t+T ||2 + λ · 1

N

∑
i

− log min
j∈[1,...,N ]

j ̸=i

||Ŷi − Ŷj ||, (6)

where Ŷi is the i-th sampler output among N samples before feature fusion in Stage 2. α, β and
λ are hyperparameters to balance the loss terms during training. After training, we only apply the
components in Stage 2 for inference.

4 EXPERIMENTS

Datasets. We evaluate our methods on four trajectory prediction datasets: ETH/UCY (Pelle-
grini et al., 2009; Lerner et al., 2007), Stanford Drone Dataset (SDD) (Robicquet et al., 2016),
NBA SportVU Dataset (NBA), and the JackRabbot Dataset and Benchmark (JRDB) (Martin-Martin
et al., 2021), covering interaction-rich indoor and outdoor scenarios. ETH/UCY dataset contains
five subsets: ETH, HOTEL, UNIV, ZARA1, and ZARA2. We follow the leave-one-out approach
from (Gupta et al., 2018) with four subsets for training-validation and the remaining subset for test-
ing, predicting the future 12 frames (4.8s) using 8 frames observations (3.2s). SDD is a bird’s eye
view pedestrian dataset collected on a university campus. It is originally annotated in pixels without
providing precise projection matrices. We predict the future 12 frames (4.8s) on 8 frames (3.2s) his-
tory and report the metrics on both pixel and meter units. NBA contains the trajectories of 10 players
and the ball in real basketball games collected by the SportVU tracking system. We predict the fu-
ture 20 frames (4.0s) based on 10 frames (2.0s) history, similar to most other works. The agent’s
intention changes suddenly and frequently in this dataset, resulting in zigzags, sharp turnarounds, etc
which increases difficulties compared to the pedestrian datasets. JRDB is a large-scale egocentric
dataset recorded by a social robot in indoor and outdoor environments with stationary and mov-
ing behaviors. We follow the train-validation-test split applied in Social-Transmotion (Saadatnejad
et al., 2023) for deterministic prediction. For stochastic situations, splits are in accordance with the
official JRDB detection and tracking challenge. Since all labels contained are in camera view and
the robot is moving for several scenarios, we utilize the provided odometry information in rosbags
to transform all trajectories into global world coordinates. As officially suggested, the trajectory of
future 12 frames is predicted over the past 9 frames with 2.5 frames per second frequency.

Implementation details. We calculate displacement for each configuration segment instead of ab-
solute quantities for robustness: Ŝk+1 = Ŝk + ∆Ŝk, where ∆Ŝk is network output. As mentioned
in Section 3.3, the History Encoder comprises a 1D convolution layer with a kernel size of three and
an output channel of 32, alongside a GRU layer with a hidden embedding dimension of 256, similar
to LED (Mao et al., 2023). All the other modules are built using multi-layer perceptions, and the
distance threshold d for the potential update module is set to 3m. We set sample number N to 20
in both training and testing stages for stochastic prediction, and train the entire model with AdamW
optimizer and StepLR scheduler on one Quadro RTX 8000 GPU. The latent vectors Z1 and Z2 have
16 dimensions and the embedding dimension of the configuration encoder is 32. Other network
details and dataset-specific hyperparameters are attached in the appendix.

Evaluation metrics. We evaluate our proposed method with ADE and FDE for a single sample
in the deterministic case, and with minADE20 and minFDE20 in the stochastic cases following the
previous works (Mangalam et al., 2020; Mao et al., 2023). ADE quantifies the average displacement
error between predictions and ground truth across all time steps, while FDE measures the displace-
ment error from the final timestep to the current time. The minADE20 and minFDE20 metrics cal-
culate the minimum error among 20 predictions, and it is commonly used in evaluating generative
models’ ability to generate high-quality samples.
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Table 1: minADE20/minFDE20 in meters on ETH/UCY datasets. Bold/underline indicate the
best/second-best results. ∗ denotes results reproduced from official codes. † marks results where
the best model was chosen directly based on the test set. We address this issue by following the
standard train-val-test split in Social-GAN (Gupta et al., 2018), selecting the best model via the
validation set. ‡ is for the future information leakage issue fixed. Inference speed is measured for
generating 20 samples under a scene with 57 pedestrians.

Subset Social-GAN∗ Social-STGCNN PECNet∗† STAR Trajectron++∗‡ SGCN AgentFormer∗ NPSN∗(best) GP-Graph MID∗†(DDIM) TUTR∗† SingularTrajectory∗ SocialCircle∗† Ours
(Gupta et al., 2018) (Mohamed et al., 2020) (Mangalam et al., 2020) (Yu et al., 2020) (Salzmann et al., 2020) (Shi et al., 2021) (Yuan et al., 2021) (Bae et al., 2022b) (Bae et al., 2022a) (Gu et al., 2022) (Shi et al., 2023) (Bae et al., 2024b) (Wong et al., 2024)

ETH 0.77/1.40 0.65/1.10 0.64/1.13 0.36/0.65 0.61/1.03 0.63/1.03 0.46/0.73 0.37/0.60 0.43/0.63 0.46/0.74 0.45/0.67 0.35/0.46 0.27/0.42 0.26/0.37
HOTEL 0.43/0.88 0.50/0.86 0.22/0.38 0.17/0.36 0.20/0.28 0.32/0.55 0.14/0.23 0.16/0.25 0.18/0.30 0.18/0.30 0.14/0.20 0.13/0.20 0.13/0.16 0.11/0.17
UNIV 0.74/1.50 0.44/0.80 0.35/0.57 0.31/0.62 0.30/0.54 0.37/0.70 0.25/0.44 0.23/0.39 0.24/0.42 0.25/0.48 0.24/0.44 0.27/0.47 0.29/0.51 0.28/0.49
ZARA1 0.35/0.70 0.34/0.53 0.25/0.45 0.26/0.55 0.24/0.41 0.29/0.53 0.18/0.30 0.18/0.32 0.17/0.31 0.23/0.45 0.19/0.36 0.19/0.33 0.19/0.33 0.17/0.30
ZARA2 0.36/0.72 0.31/0.48 0.18/0.31 0.22/0.46 0.17/0.32 0.25/0.45 0.14/0.24 0.14/0.25 0.15/0.29 0.18/0.35 0.15/0.28 0.15/0.27 0.14/0.25 0.14/0.25

AVG (meters) 0.53/1.04 0.45/0.75 0.33/0.60 0.26/0.53 0.30/0.52 0.37/0.65 0.23/0.39 0.22/0.36 0.23/0.39 0.26/0.46 0.23/0.39 0.22/0.34 0.20/0.33 0.19/0.32
Speed (57 per.) ∼ 63.2ms ∼ 1.8ms ∼ 47.6ms ∼ 2376ms ∼ 254ms ∼ 6.5ms ∼ 108ms ∼ 8.6ms ∼ 30ms ∼ 400ms ∼ 591ms ∼ 15.3ms ∼ 17.4ms ∼ 9.8ms

Table 2: minADE20/minFDE20 in pixels and meters (if available) on SDD dataset. Bold/underline
indicate the best/second-best results. ∗ denotes results reproduced from official codes. Train-test
splits are the same as the baseline Social-VAE (Xu et al., 2022c).

Social-GAN Social-STGCNN PECNet Trajectron++ BiTraP MID∗ MemoNet SGNet-ED GP-Graph Social-VAE Social-VAE+FPC TUTR∗ SocialCircle∗ Ours
(Gupta et al., 2018) (Mohamed et al., 2020) (Mangalam et al., 2020) (Salzmann et al., 2020) (Yao et al., 2021) (Gu et al., 2022) (Xu et al., 2022b) (Wang et al., 2022) (Bae et al., 2022a) (Xu et al., 2022c) (Xu et al., 2022c) (Shi et al., 2023) (Wong et al., 2024)

pixels 27.23/41.44 20.8/33.2 9.29/15.93 10.00/17.15 9.09/16.31 9.08/17.04 8.56/12.66 9.69/17.01 9.1/13.8 8.88/14.81 8.10/11.72 7.90/12.96 10.11/16.53 7.20/11.29
(meters if avl.) (0.34/0.58) (0.32/0.57) (0.33/0.58) (0.30/0.50) (0.27/0.39) (0.25/0.39)

4.1 TRAJECTORY PREDICTION RESULTS

ETH/UCY. Table 1 shows the comparison between our model and recent state-of-the-art bench-
marks on the ETH/UCY dataset. Since several baselines report their models’ test performances by
confounding the validation set with the test split, we correct these numbers by re-training with offi-
cial codes and selecting the best model based on the validation set to ensure fairness. Additionally,
recent work such as LMTraj (Bae et al., 2024a) utilizes large language models (LLMs) to capture
the multi-modality of human trajectories. However, we omit LMTraj from the baseline since its
inference speed is heavily constrained by the response times of models such as GPT-3.5 and GPT-4,
and its prediction performance does not surpass SingularTrajectory (Bae et al., 2024b). As shown
in the table, our method balances the prediction accuracy and computational efficiency with the best
average minADE20/minFDE20 and an inference speed faster than 100Hz under a 57-pedestrian sce-
nario in the ETH/UCY dataset. It outperforms diffusion-based methods like MID (Gu et al., 2022)
and SingularTrajectory (Bae et al., 2024b), and the previous SOTA SocialCircle (Wong et al., 2024).

SDD. Table 2 shows the comparisons on the SDD dataset with our proposed model maintaining
the best performance. We transform the pixel-unit annotations into meter-unit following the base-
line SocialVAE (Xu et al., 2022c) since our method uses a meter-based distance threshold d. It is
important to note that due to the lack of precise projection matrices in the SDD dataset, the pixel-to-
meter scale is estimated with large variation and unreliability with some values derived from Google
Maps and others based on rough guesses (Amirian et al., 2020). We include comparisons on this
dataset because it is widely used in the community. However, we must emphasize that pixel errors
would only be meaningful if a pixel corresponds to a fixed physical distance across all scenes, which
unfortunately is not guaranteed by SDD.

NBA. As presented in Table 3, the proposed method is then evaluated against 10 baselines on the
NBA dataset. Our method maintains state-of-the-art accuracy to the best-of-20 samples. We com-
pare the inference time with several baselines where official implementations for this dataset are
provided, showing that our model infers trajectories less than one-third of the time while preserving
the best prediction performance. Figure 4 visualizes the estimation results from the current best

Table 3: minADE20/minFDE20 in meters on NBA dataset. Bold/underline indicate the best/second-
best results. ∗ denotes results reproduced from official codes.

Time Social-GAN Social-STGCNN PECNet STAR Trajectron++ MemoNet NPSN GroupNet MID LED* Ours
(Gupta et al., 2018) (Mohamed et al., 2020) (Mangalam et al., 2020) (Yu et al., 2020) (Salzmann et al., 2020) (Xu et al., 2022b) (Bae et al., 2022b) (Xu et al., 2022a) (Gu et al., 2022) (Mao et al., 2023)

1.0s 0.41/0.62 0.34/0.48 0.40/0.71 0.43/0.66 0.30/0.38 0.38/0.56 0.35/0.58 0.26/0.34 0.28/0.37 0.18/0.27 0.16/0.24
2.0s 0.81/1.32 0.71/0.94 0.83/1.61 0.75/1.24 0.59/0.82 0.71/1.14 0.68/1.23 0.49/0.70 0.51/0.72 0.37/0.56 0.34/0.50
3.0s 1.19/1.94 1.09/1.77 1.27/2.44 1.03/1.51 0.85/1.24 1.00/1.57 1.01/1.76 0.73/1.02 0.71/0.98 0.58/0.85 0.53/0.75
Total(4.0s) 1.59/2.41 1.53/2.26 1.69/2.95 1.13/2.01 1.15/1.57 1.25/1.47 1.31/1.79 0.96/1.30 0.96/1.27 0.82/1.15 0.75/0.97
Speed (11 per.) NA NA NA NA NA NA NA ∼ 21.4ms >900ms ∼ 65.7ms ∼ 19.3ms
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Samples generated with LED (Mao et al., 2023)

Samples generated with our method

Figure 4: Generated prediction samples with N = 20 on NBA dataset. The light blue and dark blue
represent the history and future ground truth respectively, and white curves are samples. Mean
estimation is highlighted by violet.

approach and our model. The prediction samples from LED (Mao et al., 2023) are noisy with sev-
eral sampled positions deviating significantly from the real potential distribution of human motions.
This noise can negatively impact downstream tasks requiring estimated distributions with confidence
since it is impractical to measure the ground truth future and report the minimum error in such cases.

Table 4: Comparisons for ADE and FDE on JRDB dataset with deterministic trajectory prediction,
in meter unit. In input modality, ‘T’ represents trajectory only, and ‘2d BB’ means the bounding
box of the person in 2D images. ⋆ highlights previously reported best performance.

Time Social-LSTM Social-GAN Directional-LSTM Trajectron++ Autobots EqMotion Social-Transmotion⋆ Social-Transmotion⋆ LED (N=1) Ours (N=1)
(Alahi et al., 2016) (Gupta et al., 2018) (Kothari et al., 2021) (Salzmann et al., 2020) (Girgis et al., 2021) (Xu et al., 2023) (Saadatnejad et al., 2023) (Saadatnejad et al., 2023) (Mao et al., 2023) Stage 1 Only

Input Modality T T T T T T T T + 2d BB T T

ADE/FDE 0.47/0.95 0.50/0.99 0.45/0.87 0.40/0.78 0.39/0.80 0.42/0.78 0.40/0.77 0.37/0.73 0.32/0.54 0.26/0.48

Table 5: Stochastic trajectory prediction comparisons on JRDB dataset. minADE20 and minFDE20

in meters are reported. Numbers are related to a constant reference frame.

Method 1.2s 2.4s 3.6s Total(4.8s) Speed (80 per.)

LED (Mao et al., 2023) 0.05/0.07 0.09/0.14 0.14/0.21 0.18/0.28 ∼ 118ms
Ours (Stage 1 Only) 0.05/0.06 0.09/0.13 0.13/0.20 0.17/0.27 ∼ 6.7ms
Ours 0.04/0.05 0.08/0.11 0.11/0.17 0.15/0.23 ∼ 6.8ms

JRDB. We finally explore the performance of our method on JRDB, which contains diverse captured
indoor and outdoor environments close to humans by a robot. To ensure a fair comparison with other
state-of-the-art methods, many of which provide deterministic results, we degenerate our method to
output only one sample at a time. Throughout training, validation, and testing, we set N to 1 for the
sampler, and the resulting ADE/FDE metrics (in the world frame) are detailed in Table 4. Leveraging
trajectory-only inputs, our approach outperforms the previous best model Social-Transmotion (Saa-
datnejad et al., 2023) that combines 2D bounding boxes extracted from images by approximately
29% and 34% in terms of ADE and FDE, respectively. Note that trajectory prediction is usually
conducted in a consistent reference frame, i.e., the world frame. However, since JRDB is captured
by a moving robot, baseline methods may directly use its instantaneous coordinate frame, causing
human motion to be coupled with robot movement. Nonetheless, the numbers related to the moving
camera frame are attached for reference: ADE/FDE on LED is 0.36/0.69, and ours is 0.33/0.63.

We also conduct experiments under stochastic conditions to further investigate the effectiveness of
our proposed approach with results presented in Table 5. Our model significantly outperforms the
second-best model LED in deterministic cases in terms of minADE20 and minFDE20 metrics. More-
over, the inference time of our method is over 17 times faster in a bustling environment involving
80 persons, which indicates it can applied for the standard video setting, and enables real-time ca-
pabilities on physical robotic systems or desktop GPUs. Figure 5 illustrates eight examples of our
prediction results, demonstrating the ability of our learned distribution to capture human intention
changes like sharp turns, sudden stops, etc.
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Table 6: Robustness test for imperfect past trajectories on JRDB dataset. History trajectory includes
9 frames with a scale equal to one, and the percentage stands for the ratio of test data with noise.

Noise Type ADE FDE

Gaussian Noise (100%, scale = 0.1) 0.27 (4 frames) / 0.28 (9 frames) 0.49 (4 frames) / 0.50 (9 frames)
Gaussian Noise (100%, scale = 0.2) 0.32 (4 frames) / 0.34 (9 frames) 0.55 (4 frames) / 0.57 (9 frames)
Gaussian Noise (100%, scale = 0.5) 0.71 (4 frames) / 0.88 (9 frames) 1.18 (4 frames) / 1.44 (9 frames)

Dropped History (20%, 5 frames) 0.26 0.48
Dropped History (50%, 5 frames) 0.26 0.49
Dropped History (50%, 7 frames) 0.29 0.52
Dropped History (80%, 7 frames) 0.30 0.54
Ours (full performance) 0.26 0.48

Table 7: Ablations on sampler types (Left) and different strides (Right). minADE20 and minFDE20

for the entire trajectory are reported. Influences from stride τ are shown with ZARA1 subset, and
they differ across datasets. ‘AVG.’ is for the average of distance errors on 20 samples and ‘SD.’
represents the standard deviation. Speed is measured for an 11-person scenario.

Dataset Stage 1 Only Stage 2 Only Two Stages

ETH 0.28/0.46 0.24/0.40 0.26/0.37
HOTEL 0.13/0.21 0.11/0.18 0.11/0.17
UNIV 0.32/0.58 0.28/0.48 0.28/0.49
ZARA1 0.20/0.36 0.20/0.33 0.17/0.30
ZARA2 0.16/0.30 0.15/0.26 0.14/0.25
SDD (pixels) 8.16/13.37 7.83/12.59 7.20/11.29
NBA 0.83/1.16 0.77/0.98 0.75/0.97

Stride
τ

minADE/
FDE20

AVG. SD. Speed
(∼)

1 0.28/0.35 0.84/1.66 0.44/0.92 15.18ms
2 0.18/0.31 0.74/1.52 0.40/0.83 8.23ms
3 0.17/0.30 0.73/1.50 0.38/0.80 5.93ms
4 0.18/0.30 0.71/1.46 0.39/0.81 4.73ms
6 0.18/0.30 0.73/1.50 0.39/0.81 3.56ms

4.2 ROBUSTNESS AGAINST OBSERVATION NOISE

In real-world scenarios, historical trajectories are often imperfect due to tracking errors and incom-
plete detection. It may contain truncated and broken trajectories, mismatched detection candidates,
etc. To validate the robustness, we introduce two types of noise to simulate detection and tracking
errors, as shown in Table 6, and noisy frames are randomly selected. The test is conducted on the
JRDB dataset as it is egocentric and naturally prone to issues when obtaining history sequences from
noisy tracklets. To deal with noise type Dropped History, we left pad by repeating the first available
frames to buffer the dropped observations, which is akin to a stationary person. Since there is no
design bottleneck in our framework that precludes stationary states, we consistently produce high-
quality predictions across different noise levels. Empirically, we note that a minimum of 2 moving
history frames are needed for our method to capture the motion effectively.

4.3 ABLATIONS

We further explore the effects of sampler types and different strides with results reported in Table 7.
When replacing the sampling from a standard normal distribution with purposive sampling, the
performances improve from around 7% to 20% on different datasets. Even with Stage 1 solely,
we can achieve comparable prediction performances with other baselines. Experiment results also
validate that the Markovian assumption of human motion usually holds up to defined observation
frequency intervals with a stride τ to reach the best performance.

4.4 GROUP REASONING VIA POTENTIALS

Potentials learned in the trajectory prediction network can also be utilized in group inference. Lever-
aging group labels from the JRDB-Act (Ehsanpour et al., 2022) dataset, we perform group clustering
without prior assumptions or maximum group number constraints. Concatenated with history im-
age features extracted via CLIP (Radford et al., 2021), we build a binary edge classifier supervised
by ground truth groups. The resulting group inference, portrayed in Figure 6, counts individuals
as part of a group if there is an edge between them and at least one other agent within the current
group. Despite some errors, our method effectively captures scenario relationships, beneficial for
pedestrian-friendly navigation tasks adhering to social norms.
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Figure 5: Generated prediction samples with N = 20 on JRDB dataset. Best-of-20 samples are
highlighted with orange curves.

Figure 6: Group inference with learned potentials for JRDB dataset. Matching capital letters rep-
resent identical group labels, while ellipses of the same color denote estimated groups. Errors may
arise due to low-quality visual cues (cf. Person I is misassigned to group B in the green ellipse).

5 CONCLUSION

In this paper, we propose a neuralized Markov random field (MRF)-based method for human tra-
jectory prediction. Specifically, we introduce an interaction-aware MRF that models agent motion
and crowd interactions over time. We then design a neural network framework consisting of two
CVAEs to approximate the posterior distribution for efficient learning and inference. Our method
achieves state-of-the-art performance across four benchmark datasets and also enables group rea-
soning. Furthermore, it is robust against noisy observations and allows for real-time stochastic
inference, demonstrating its feasibility on real-world downstream systems.

Limitations. We learn the potential function applied to the MRF graph from data; if the training
data only exhibits low graph complexity, the model’s ability to capture complex interactions will
be limited. This complexity generalization issue can be further explored in the future. Moreover,
the current prediction pipeline uses only coordinates as input; incorporating environmental contexts,
such as obstacles and traversable paths, could also be considered.
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A APPENDIX

We attach network design details for each sub-component in CVAEs, and data-specific hyperparam-
eters for training and inference in Table 8 and Table 9, respectively. In the training phase, we set
hyperparameters α, β and λ in loss terms as 1, 1× 10−3 and 1× 10−4.

Table 8: Network design details.

Module Name Components

History Encoder Conv-1d (6 → 32) + GRU (32 → 256)
Update Decoder MLP (256+16 → 512 → 512 → 256 → 2×stride)
Configuration Encoder MLP (2×stride → 32 → 32 → 32)
Dynamics Decoder MLP (32+16 → 128 → 128 → 64 → 2×stride)

Potentials Update MLP (3 → 16 → 32 → 32)
History Sampler MLP (256 → 128 → 512 → 16×N)
State Sampler MLP (32 → 32 → 64 → 16)

Future Encoder MLP (2×stride → 64 → 256 → 256 → 2×16)

Table 9: Hyperparameters for different datasets.

Dataset Stride Batch Size Learning Rate Step Size Gamma Epoch (CVAE) Epoch (sampler)

ETH 3 64 2 × 10−4 16 0.5 200 60
HOTEL 3 50 2 × 10−4 16 0.5 200 60
UNIV 3 32 2 × 10−4 32 0.9 200 60
ZARA1 3 32 2 × 10−4 32 0.9 200 60
ZARA2 3 32 2 × 10−4 32 0.9 200 60
SDD 3 16 8 × 10−4 32 0.9 500 200
NBA 10 32 1 × 10−4 32 0.6 150 50
JRDB 3 16 1 × 10−4 32 0.6 200 50

In Figure 7, we also compare the initialization and final prediction results for our proposed model
and the previous state-of-the-art model LED (Mao et al., 2023) on the NBA dataset. LED starts from
a noisy initialization, and it can ignore other candidates when optimizing via the best sample, which
results in a distribution with multiple outliers as shown in Figure 7 (c). Conversely, our method
produces trajectory-like samples initially due to the modeling of crowd motion and interaction, and
converges to a more plausible distribution around the ground truth after optimization.

Furthermore, more visualization results on ETH/UCY datasets for baseline methods NPSN (Bae
et al., 2022b), SingularTrajectory (Bae et al., 2024b), and our proposed model, are provided in Fig-
ure 8.
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Figure 7: Initialization and prediction results of LED and our method. Trajectories are normalized
so that the coordinates of the last frames are located at the origin.

Figure 8: Visualization of the best predictions among generated samples (N = 20) with NPSN,
SingularTrajectory, and our method.
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