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Abstract

Aspect-based sentiment analysis (ABSA) is a
vital natural language processing task that ex-
tracts fine-grained sentiments for specific text
aspects, yielding nuanced insights from cus-
tomer reviews, social media and beyond. Na-
tive Sparse Attention (NSA), an efficient alter-
native to dense attention-based methods, excels
at modeling long-context dependencies, local
precision and fine-grained features. However,
NSA faces three ABSA challenges: (1) Aspect
overlap, where proximate aspects trigger se-
lection conflicts; (2) Sparse misses, omitting
critical sentiment cues in sparse selections; and
(3) Global noise, where token compression di-
lutes aspect-specific signals. To address these
challenges, we introduce a simple yet effective
method, Amplifying Aspect-Sentence Aware-
ness (A3SN), a novel method that enhances
aspect-sentence interactions by doubling atten-
tion weights between aspects and contextual
sentences, capturing subtle dependencies pre-
cisely. Experimental results on three bench-
mark datasets demonstrate A3SN’s effective-
ness, outperforming state-of-the-art (SOTA)
baseline models while maintaining simplicity.

1 Introduction

Aspect-based Sentiment Analysis (ABSA), an ad-
vanced form of sentiment analysis in Natural Lan-
guage Processing (NLP), addresses the limitations
of traditional sentiment analysis by extracting fine-
grained sentiments toward specific aspects or fea-
tures in text, rather than providing a broad senti-
ment overview. With the rise of user-generated con-
tent on online platforms, ABSA’s ability to analyze
detailed sentiments in applications like customer
feedback and product recommendations offers valu-
able insights for decision-making and enhanced
user experiences.

In the field of ABSA, attention-based (seman-
tic) approaches (Xu et al., 2020; Wang et al., 2016;
Peng et al., 2017; He et al., 2018; Cai et al., 2021;

Ma et al., 2017; Tang et al., 2016; Zhang et al.,
2019; Fan et al., 2018; Wu and Li, 2022; She
et al., 2023; Vaswani et al., 2017) have emerged
as powerful tools for unraveling the complex sen-
timents expressed within texts. Work by (Tang
et al., 2016) pioneered deep memory networks,
highlighting the significance of individual con-
text words in aspect-level sentiment classification.
Building upon this, (Wang et al., 2016) introduced
attention-based extended short-term memory net-
works, emphasizing the relationship between sen-
timent polarity and specific sentence aspects. Fur-
ther refinement came with interactive attention
networks by (Ma et al., 2017), which recognized
the importance of modeling targets and contexts
separately. Meanwhile, (Peng et al., 2017) pro-
posed a neural framework leveraging multiple at-
tention mechanisms, integrating recurrent neural
networks and weighted-memory mechanisms to
enhance model capacity. To address information
loss with multi-word aspects, (Fan et al., 2018)
introduced a multi-grained attention network com-
bining fine- and coarse-grained mechanisms. Ad-
vances continued as (He et al., 2018) incorporated
syntactic information to refine target representa-
tions within attention. Additionally, (Song et al.,
2019) presented attentional encoder networks as ef-
ficient alternatives to recurrent networks, while (Xu
et al., 2020) combined multi-attention networks
with global and local attention modules to capture
differentially grained interactions between aspects
and context. Finally, (Zhao et al., 2024) empha-
sized robust interactions using multi-head attention
networks (MHA).

In parallel, advancements in graph-based (syn-
tactic) approaches (Sun et al., 2019; Wang et al.,
2020; Xiao et al., 2021; Lu et al., 2022; Song
et al., 2024; Ouyang et al., 2024; Shang et al.,
2024) have reshaped the ABSA landscape. For
instance, (Sun et al., 2019) proposed combining
convolution over a dependency tree (CDT) with



bidirectional LSTM (Bi-LSTM) to model sentence
structure, enhancing it further with graph convo-
lutional networks (GCNs). (Wang et al., 2020)
tackled the problem of linking aspect and opinion
terms using relational graph attention networks for
more accurate sentiment prediction. Recent inno-
vations like type-aware GCNs (T-GCN) by (Tian
et al., 2021) explicitly consider dependency types,
improving performance. To represent multiple
aspects effectively, (Lu et al., 2022) proposed a
heterogeneous graph neural network framework
that integrates syntax, word relations, and exter-
nal knowledge. Similarly, (Song et al., 2024) in-
troduced Knowledge-guided Heterogeneous GCN
(KHGCN), which leverages Bidirectional Encoder
Representations from Transformers (BERT) and
merges sub-word vectors dynamically. (Shang
et al., 2024) proposed Aspect Sentence GCN (AS-
GCN), capturing both grammatical and seman-
tic dependencies for comprehensive ABSA. To
overcome limitations of traditional neural mod-
els, (Yuan et al., 2024) introduced (SGAN), a
syntactic graph attention network incorporating
dependency-type knowledge. Lastly, (Ouyang
et al., 2024) developed Aspect-based sentiment
classification with aspect-specific hypergraph at-
tention networks (ASHGAT), using a word-level
relational hypergraph to enhance syntactic relation
modeling for sentiment classification.

Recent advances leverage attention mechanisms
to model complex linguistic relationships, with
Native Sparse Attention (NSA) emerging as an
efficient alternative to traditional attention-based
methods. NSA excels at capturing long-context
dependencies and fine-grained features with re-
duced computational complexity, making it well-
suited for processing extended sequences in ABSA
datasets. However, NSA faces three critical chal-
lenges, illustrated by the example sentence "The
service was exceptional, but the staff was unhelpful
in the restaurant” from a restaurant review: (1) As-
pect Overlap: Proximate or semantically related
aspects (e.g., “service” and “staff” in the above
example) trigger selection conflicts, leading to am-
biguous attention allocations. (2) Sparse Misses:
The sparse selection mechanism may omit critical
sentiment cues (e.g., sentiment-bearing adjectives
like “excellent”) that fall outside the selected to-
ken subset, thereby reducing accuracy. (3) Global
Noise: Token compression can aggregate irrele-
vant context, diluting aspect-specific signals and
introducing noise particularly in noisy social media

data. These limitations, including aspect overlap,
sparse misses, and global noise, hinder NSA’s abil-
ity to accurately model aspect-specific sentiment
interactions, leading to reduced sentiment polarity
prediction accuracy in ABSA datasets. This under-
scores the urgent need for a method that enhances
NSA’s focus on sentiment-critical aspect-sentence
relationships.

To address these challenges, we propose A3SN,
a simple yet effective novel method designed to
enhance ABSA by strengthening aspect-sentence
interactions. A3SN doubles attention weights be-
tween aspect and contextual sentence tokens using
an amplify matrix, enabling the model to capture
subtle dependencies with high precision while mit-
igating issues like aspect overlap, sparse misses,
and global noise. The main contributions of this
paper are as follows:

* We introduce amplify aspect-sentence aware-
ness attention, which enhances the MHA
mechanism by doubling the attention on
aspect-sentence relationships. This enhance-
ment helps the model capture subtle relation-
ships and dependencies more accurately, mit-
igating aspect overlap, sparse misses, and
global noise.

* We present A3SN, a novel framework integrat-
ing three NSA branches (token compression,
selection, sliding window) and an amplify
aspect-sentence awareness attention branch.

* The experimental results on three benchmark
datasets (Restaurantl4, Laptop, and Twit-
ter) showcase the effectiveness of the A3SN
model, surpassing SOTA baseline models that
incorporate semantic, syntactic, and common
knowledge.

2 Related Work

In ABSA, relevant methods are broadly categorized
into attention-based models focusing on seman-
tic relationships and hybrid models that combine
attention mechanisms with graph-based syntactic
structures.

Attention-based neural networks dominate
ABSA by effectively capturing semantic relation-
ships between aspects and context. Deep mem-
ory networks (Tang et al., 2016) employ external
memory and attention to model the importance of
context words. (Wang et al., 2016) utilize atten-
tion mechanisms to highlight aspect-specific parts



of the sentence. Interactive Attention Networks
(IAN) (Ma et al., 2017) separately model targets
and contexts, thereby enhancing sentiment classi-
fication precision. Multi-Grained Attention Net-
works (MGAN) (Fan et al., 2018) capture fine-
grained word-level interactions between aspects
and contexts. Semantic Distance Attention (SDA-
BERT) (Cai et al., 2021) leverages BERT to extract
high-quality semantic features. Multi-Attention
Networks (MAN) (Xu et al., 2020) and models
based on MHA (Zhang et al., 2019; Wu and Li,
2022; She et al., 2023) integrate intra- and inter-
level attention mechanisms often alongside BERT
embeddings to improve aspect-context interactions.
Conditional BERT augmentation (Wu et al., 2018)
further enriches data diversity and reduces overfit-
ting.

Hybrid approaches combine attention with
graph-based syntactic models to better encode sen-
tence structure (Tian et al., 2021; Yuan et al., 2024;
Xiao et al., 2022; Feng et al., 2022). Relational
Graph Attention Networks (R-GAT) (Wang et al.,
2020) and BERT4GCN (Xiao et al., 2021) inte-
grate dependency trees and BERT features to en-
hance sentiment prediction. Type-aware GCNs
(T-GCN) (Tian et al., 2021) and gated GCNs (Xiao
et al., 2022) leverage syntactic dependency types to
improve graph representation learning. Heteroge-
neous Granph Neural Networks (GNNs) (Lu et al.,
2022) incorporate word relations and opinion lex-
icons into the modeling process. More advanced
models such as KHGCN (Song et al., 2024), AS-
GCN (Shang et al., 2024), SGAN (Yuan et al.,
2024), and ASHGAT (Ouyang et al., 2024) utilize
GCNs or GATs to robustly model the interactions
between aspects and contexts. AG-VSR (Feng
et al., 2022) exemplifies this trend by combining
attention-assisted GCNs with variational sentence
representations for more robust classification. How-
ever, the expressiveness of these hybrid models
comes at the cost of increased computational over-
head and architectural complexity, which can limit
their scalability in large-scale applications.

3 Overview of our Proposed Model
Framework

In ABSA, we define the task as a sequence-to-
class problem. Given a sentence-aspect pair (s, a),
where s = {wy,ws, ..., w,} represents the sen-
tence tokens and @ = {ay,as,...,a,} denotes
a subsequence corresponding to the aspect term,

the objective is to predict the sentiment polarity of
aspect a within the sentence s.

To address the three key challenges of NSA
in ABSA, aspect overlap (conflicts arising from
proximate or semantically related aspects), sparse
misses (omission of sentiment-bearing cues out-
side selected tokens), and global noise (signal dilu-
tion caused by token compression), we introduce
(A3SN), a novel attention-based framework. It in-
corporates four attention branches: compression
(cmp) to model long-range dependencies, selection
(slc) to capture fine-grained features, sliding win-
dow (win) to retain local contextual cues, and am-
plification (amp) to emphasize aspect-sentence rele-
vance. For each branch C € {cmp, slc,win, amp},
attention is computed across h heads to extract
diverse relational patterns. A gated fusion mech-
anism then adaptively integrates these represen-
tations, enabling the model to concentrate on es-
sential features. This design empowers the model
to capture subtle yet crucial relationships between
aspects and their sentence contexts, improving per-
formance on ABSA tasks.

3.1 Embedding Module

In BERT (Devlin et al., 2018) encoding, the
sentence-aspect pair is structured as [CLS] + sen-
tence + [SEP] + aspect + [SEP], forming the in-
put sequence. This format allows for extracting
an aspect-aware hidden state vector, denoted as h.
This aspect-aware hidden state vector serves as a
rich representation that incorporates information
from both the input sentence and the associated
aspect, enabling deeper understanding and more
effective analysis in ABSA tasks.

hi,...,hn =BERT([wy,...,wy]) (1)

3.2 Token Compression

The Token Compression branch is designed to cap-
ture the broader semantic context in which an as-
pect appears. In ABSA tasks, understanding the
general sentiment of a review or sentence often
requires looking beyond the immediate vicinity
of the aspect term. To facilitate this, the branch
compresses the key and value token sequences, K
and V4, into coarser-grained representations that
summarize higher-level abstractions over extended
spans of the input sequence.

This compression is achieved by dividing the
token sequence into overlapping blocks of length [
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Figure 1: A3SN Architecture. Left: The framework processes through four parallel attention branches: compressed
attention for coarse sentiment patterns, selected attention for sentiment-critical tokens, sliding attention for local
aspect context, and amplified attention to strengthen aspect-sentiment relationships, Right: Visualization of attention
patterns, with green areas indicating computed sentiment scores and white areas showing skipped regions.

with stride d, and applying a learnable transforma-
tion ¢ (implemented as an MLP) to each block:

q =hWq, Ki=hWg, V,=hW, (2

where W, Wy, and W, are trainable weight matri-
ces.

e t—1
K™ = {¢(Kid+1:id+l) |0<i< { d J}
l 3)
em ) t—
Vi = {ﬁb(VidH:idH) [0<i< {dJ }
4

The attention weights and final output are then com-
puted as:

P = Softmax (g (K;™)7) )

O™ — Attn(qy, KS™, V™) (6)

This reduces the effective sequence length from ¢
to approximately |¢/l], providing a scalable mech-
anism for modeling long-range sentiment depen-
dencies in text.

i Q05
tiV;
= =, O
Zj:l Q5

=1

Attl’l(qt, Kf, ‘ch)
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d}. 1s the dimension of k

3.3 Token Selection

The Token Selection branch focuses on identifying
fine-grained, aspect-specific sentiment cues. Un-
like the Token Compression branch, which sum-
marizes the global context, this branch selects the

most informative blocks based on attention-derived
importance scores.

To ensure consistency, the same block size and
stride are used across both branches: I’ = | = d.
The selection branch reuses the attention scores
from the compression branch:

P =P ©)
It selects the top-n most relevant blocks:

Iy = {top-n(P)}

The corresponding keys and values are concate-
nated as:

10)

K} = CatlKy iy | i€ 1] (A1)
VP = CatlVip gy |1 € 1] (12)
The output is then:
O3 = Attn(qy, K3, V') (13)
This branch ensures that specific, sentiment-

bearing phrases (e.g., adjectives and opinion terms)
are directly considered in the final aspect represen-
tation.

3.4 Sliding Window

The Sliding Window branch captures sentiment
signals that occur near the aspect. This is espe-
cially useful for short texts like tweets or comments,
where sentiment expressions are typically located
in the immediate neighborhood of the aspect term.

This branch preserves local dependencies by
maintaining a fixed-size window of tokens near
the current position ¢:

Rzmn = Kmax(O,t—w):t (14)



V™ = Vinax(0,-w):t (15)
OFin = Attn(q;, K™, Vi) (16)
The hyperparameter w defines the window size,

allowing the model to focus on nearby tokens that
may include sentiment-modifying words.

3.5 Amplify Aspect-Sentence Awareness

While the previous branches tackle distinct ABSA
challenges, each remains persistently vulnerable
to a specific limitation: token selection suffers
from aspect overlap, where proximate aspects trig-
ger selection conflicts; token compression leads
to global noise, as it may dilute aspect-specific
signals; and sliding window mechanisms often re-
sult in sparse misses, omitting critical sentiment
cues due to fixed-size windowing. To overcome
these persistent issues, we propose a fourth atten-
tion mechanism A3SN, designed to explicitly en-
hance interactions between aspect terms and sen-
tence context by doubling the attention weights be-
tween them. By doing so, we aim to encourage the
model to extract and harness richer aspect-sentence
information.

This augmentation is achieved by utilizing an
amplify matrix, denoted as Amplify,,., which mir-
rors the size of the multi-head attention weight
matrix, as shown in Figure 1. Given the final input
sequence [CLS]wi, a1, as, wy [SEP]ay, az [SEP],
the amplify matrix Amplify_,, is formulated as:

g11 912 gi,N

g21 G922 92,N
Amplify, . = . . a7

gN,1 gN,2 gN,N

where the elements g; ; are defined as:

ifw, € s&wj€aorw; €a&w; €s

i = 1, otherwise

(18)
ft K;T 4+ Mask
score — max(q.K;" + Mask) (19)
Vg
Score™™ = score o Amplify, (20)
O;™ = scoreamp - Vi (1)

where o represents the Hadamard product.

This approach enforces stronger interactions be-
tween aspect and sentence tokens by magnifying
their attention weights, ensuring that even in the
presence of overlapping aspects, sparse cues, or
noisy compression, the model retains and leverages
crucial aspect-specific sentiment signals.

3.6 Attention and Gating Mechanism

To combine the information from different
branches: token compression, selection, sliding
window, and amplified attention, we use a gating
mechanism. Each gate controls the contribution of
its respective branch to the final output:

he = g0 +g7¢- O +.¢}"™- O} +g;"™- O™

(22)
Here, each gate value g € [0, 1] is computed us-
ing a learnable function (an MLP followed by a
sigmoid activation). These values are dynamically
adjusted based on the input context, enabling the
model to adaptively weigh local, global, and aspect-
specific cues during sentiment inference.

3.7 Training

We employ mean pooling to condense the contex-
tualized embeddings h., which assists downstream
classification tasks. Following this, we apply a lin-
ear classifier to generate logits. Finally, a softmax
transformation converts the logits into probabilities,
facilitating ABSA. Each component is pivotal in
analyzing input text for ABSA tasks, from the em-
bedding layer to the sentiment classification layer.

hmp = MeanPooling(h.) (23)

p(a) = softmax(Wyhmp + by) (24)

Here, W, and b,, are trainable parameters, consist-
ing of learnable weights and biases.

We utilize the standard cross-entropy loss as our
primary objective function:

LO)=— > > logp(a)

(s,a)€D ceC

(25)

computed over all sentence-aspect pairs in the
dataset D. For each pair (s, a), representing a sen-
tence s with aspect a, we compute the negative
log-likelihood of the predicted sentiment polarity
p(a). Here, § encompasses all trainable parameters,
and C denotes the collection of sentiment polarity
classes.

4 Experiment

4.1 Datasets

Our experiments utilize three public sentiment anal-
ysis datasets: the Laptop and Restaurantl4 review
datasets from the SemEval 2014 Task (Pontiki et al.,
2014), and the Tivitter dataset employed by (Dong
etal., 2014). For detailed statistics of these datasets,
refer to Table 2.



Model Restaurant14 Laptop14 Twitter
Acc. F1 Acc. F1 Acc. F1

ATAE-LSTM (Wang et al., 2016) 77.20 - 68.70 - - -

IAN (Ma et al., 2017) 78.60 - 72.10 - - -

RAM (Peng et al., 2017) 80.23 70.80 7449 71.35 69.36 67.30
MGAN (Fan et al., 2018) 81.25 7194 7539 7247 7254 70.81
BERT (Devlin et al., 2018) 85.79 80.09 7991 76.00 7592 75.18
CBERT (Wu et al., 2018) 86.27 80.00 79.83 76.12 76.44 75.35
AEN+BERT (Song et al., 2019) 83.12 73.76 7993 76.31 7471 73.13
IMAN+BERT (Zhang et al., 2019) 83.95 75.63 80.53 7691 7572 74.50
MAN (Xu et al., 2020) 84.38 7131 78.13 73.20 76.56 72.19
MAMN_W (Wang et al., 2021) 86.52 81.57 8135 77.83 76.59 75.27
HN-PMAT+BERT (Wu and Li, 2022)  85.13 76.21 79.71 75.80 75.45 73.30
IMHSACap+BERT (She et al., 2023) 85.00 7790 81.03 77.62 7630 75.19
RGAT+BERT (Wang et al., 2020) 86.60 81.35 78.21 74.07 76.15 74.88
BERT4GCN (Xiao et al., 2021) 84.75 T77.11 7749 73.01 7473 73.76
TGCN+BERT (Tian et al., 2021) 86.16 79.95 80.88 77.03 76.45 75.25
AGVSR+BERT (Feng et al., 2022) 86.34 80.88 79.92 75.85 76.45 75.04
KHGCN+BERT (Song et al., 2024) - 80.87 77.90 - -

ASHGAT+BERT (Ouyang et al., 2024) 85.49 79.23 79.98 76.58 - -

A3SN (ours) 87.32 81.27 82.05 7892 7797 76.33

Table 1: Experimental results comparison on three publicly available datasets.

Dataset Division Pos Neg Neu
Restl4  Train 2164 807 637
Test 727 196 196
Laptop  Train 976 851 455
Test 337 128 167
Twitter  Train 1507 1528 3016
Test 172 169 336

Table 2: Statistics of three benchmark datasets

4.2 Implementation

Our A3SN model employs the pre-trained BERT
model to extract word representations from the last
hidden states (Devlin et al., 2018). We adopt 4
attention heads to enhance representation learning.
For the model architecture, we experimented with
varying numbers of layers: 3 layers proved opti-
mal for the Laptop and Twitter datasets, while the
Restaurant dataset achieved superior performance
with a 2 layers. We set the sliding window size to
10, compress block size to 4, and compress block
sliding stride to 2. For the selection branch, we use
a selection block size of 4 and retain number of
selection blocks as 2. To mitigate overfitting, we
apply a dropout rate of 0.2. During training, we

utilize the Adam optimizer with its default configu-
ration, as outlined in (Kingma and Ba, 2014), to op-
timize model parameters and promote convergence
toward an optimal solution. These representations
are fine-tuned during training to adapt to our spe-
cific ABSA task. We implement the model using
the PyTorch framework, which supports efficient
and scalable training.

4.3 Baseline Comparisons

We conduct a comprehensive comparison with
state-of-the-art (SOTA) baselines to evaluate the
effectiveness of our model against both attention-
based models: ATAE-LSTM (Wang et al., 2016),
IAN (Ma et al, 2017), RAM (Peng et al.,
2017), MGAN (Fan et al., 2018), BERT (De-
vlin et al., 2018), CBERT (Wu et al., 2018),
AEN (Song et al., 2019), IMAN (Zhang et al.,
2019), MAN (Xu et al., 2020), MAMN_W (Wang
et al., 2021), HN-PMAT (Wu and Li, 2022),
IMHSACap (She et al., 2023) and hybrid-based
models: RGAT+BERT (Wang et al.,, 2020),
BERT4GCN (Xiao et al., 2021), TGCN (Tian
et al, 2021), AG-VSR+BERT (Feng et al.,
2022), KHGCN (Song et al., 2024), ASH-



Text

A3SN w/o Amplified Attention A3SN Labels

Then the [system]ne, would many times not [power down|peg NV, NV) (NV,Nv) (N,N)
without a forced power-off

Our [waiter],os was friendly and it is a shame that he didn’t Pv',Px) Pv,Nv) (PN
have a supportive [staff],es to work with.

Both a number of the [appetizer]yos and [pasta specials]pos were PV ,PV) Pv,Pv) (PP
amazing.

Great [food] s but the [food]ne, was dreadful! (Pv,Px) Pv,Nv) (PN
It was our only opportunity to visit and wanted an authentic Ov) Ov) 0)

[Italian meal]ey.

Table 3: Case studies comparing A3SN with and without the amplified attention module. Predictions are shown

alongside gold sentiment labels.

GAT+BERT (Ouyang et al., 2024).

The overall performance of all the models is
shown in Table 1, from which several observations
can be noted. The A3SN model outperforms all
baseline models across all three datasets, surpass-
ing those that incorporate semantic, syntactic, and
external knowledge information. Notably, the per-
formance of BERT is significantly enhanced when
integrated with A3SN, even without relying on syn-
tactic structures or additional knowledge resources,
resulting in a simpler yet more effective model.
This demonstrates that A3SN improves the model’s
capacity to understand and utilize the complex rela-
tionships between sentences and their correspond-
ing aspects, thereby boosting overall performance.
Furthermore, the results reaffirm the effectiveness
of the pre-trained BERT model in the ABSA task,
as it already outperforms several existing models.
Nevertheless, integrating A3SN yields further per-
formance gains, indicating that even strong base
models benefit from our proposed method. these
findings collectively confirm the efficacy of A3SN
in capturing essential interactions between aspect
terms and contextual sentences for sentiment clas-
sification, while effectively addressing challenges
such as sparse misses and aspect overlap.

4.4 Ablation study

We performed ablation experiments on the Restau-
rant, Laptop14, and Twitter datasets to investigate
the impact of each component in the proposed
A3SN model. The results are presented in Ta-
ble 4. Specifically, the variant “w/o amplified atten-
tion” removes the amplified aspect-sentence aware-
ness attention branch, which plays a crucial role
in addressing challenges such as aspect overlap
and sparse aspect-opinion associations. Excluding
this component leads to notable performance drops
of 2.10%, 1.84%, and 1.86% in accuracy on the

Restaurant, Laptop, and Twitter datasets, respec-
tively, highlighting its effectiveness in enhancing
fine-grained aspect-context interaction. The “w/o
compression attention” setting removes the rep-
resentation derived from the token compression
mechanism. This ablation results in a decline of
1.21%, 0.68%, and 1.19%, indicating that token
compression plays a meaningful role in reducing
noise and preserving salient contextual informa-
tion. Similarly, the “w/o selection attention” variant
omits the contribution of the token selection mod-
ule. We observe a performance reduction of 1.29%,
0.72%, and 1.15%, suggesting that selecting high-
relevance tokens is important for modeling aspect-
aware sentiment signals. Lastly, removing the slid-
ing window attention component in “w/o sliding
window” leads to accuracy reductions of 0.68%,
0.44%, and 1.00%, confirming the benefit of lo-
calized context aggregation over fixed-length seg-
ments. These results highlight that each component
contributes to A3SN’s ability to model fine-grained
aspect-context interactions. The full A3SN model
achieves the best performance, demonstrating the
effectiveness of jointly integrating compressed, se-
lected, and localized attention with the amplified
aspect-sentence awareness mechanism for robust
ABSA.

Model Rest14 Acc. Laptl4 Ace. Twit Acc.
A3SN 87.32 82.05 7797
w/o amplified attention 85.22 80.21 76.11
w/o compression attention 86.11 81.37 76.78
w/o selection attention 86.03 81.33 76.82
w/o sliding window 86.64 81.44 76.97

Table 4: Ablation study results on three benchmark
datasets (%).

4.5 Case Study

To further evaluate the effectiveness of A3SN in
modeling semantic information and capturing fine-
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Figure 2: Effect of the number of A3SN layers (1) and the window size (w)

grained relationships between aspect terms and con-
textual sentences for ABSA, we conducted a quali-
tative case study using representative sample inputs.
Table 3 presents predictions alongside ground truth
labels for selected examples.

Consider the sentence: "Our waiter was friendly,
and it is a shame that he didn’t have a support-
ive staff to work with." This sentence features
two aspect terms, "waiter" (positive sentiment)
and "staff" (negative sentiment), presenting chal-
lenges for sparse attention models due to aspect
overlap and diluted contextual signals. A3SN accu-
rately predicts the sentiment polarity for "waiter"
using its four-branch attention framework. The
compressed attention for coarse sentiment pat-
terns, selected attention for sentiment-critical to-
kens (e.g., "friendly"), and sliding attention for lo-
cal aspect context. The amplified attention branch
then strengthens the alignment between "waiter"
and its sentiment-bearing context, disambiguat-
ing it from "staff." This layered strategy enhances
A3SN’s ability to resolve aspect overlap, suppress
irrelevant noise, and prioritize relevant contextual
cues. In contrast, an ablated A3SN without ampli-
fied attention incorrectly predicts (waiter, negative)
and (staff, positive), likely due to aspect overlap be-
tween the semantically similar "waiter" and "staff,"
underscoring the amplified attention’s critical role
in precise sentiment alignment. The same case
applies when the input aspect is "staff."

4.6 Effect of Number of Layers

In A3SN’s evaluation on ABSA datasets, we ob-
served distinct optimal layer configurations for
the Laptop and Restaurant datasets, as shown in
Figure 2 (on the left hand side). The Laptop

dataset achieved the highest sentiment polarity pre-
diction performance with three layers, reflecting
its complex sentence-aspect relationships that re-
quire deeper modeling. In contrast, the Restaurant
dataset performed best with a double layer, leverag-
ing its simpler structure and direct sentiment asso-
ciations. This variation underscores the importance
of tailoring model depth to dataset complexity. Us-
ing too few layers for complex datasets like Laptop
risks insufficient modeling, while excessive layers
for simpler datasets like Restaurant may lead to
overfitting. These findings guide A3SN’s configu-
ration for precise sentiment analysis across diverse
ABSA datasets.

5 Conclusion

In this work, we introduce A3SN to address the
issues of aspect overlap, sparse misses, and global
noise, presenting a novel framework that signif-
icantly advances ABSA. By integrating four at-
tention mechanisms, A3SN captures fine-grained,
global, and local sentiment dependencies crit-
ical for precise sentiment polarity prediction.
The enhanced MHA mechanism amplifies aspect-
sentence interactions, effectively modeling com-
plex relationships between aspects and their con-
textual sentences across benchmark dataset. The
gated fusion mechanism further integrates these
feature representations. Experimental results on
three benchmark datasets confirm A3SN’s superior
performance over some SOTA baseline models,
achieving remarkable effectiveness while maintain-
ing simplicity. These results validate the robustness
and efficiency of A3SN, making it a valuable ad-
vancement in sentiment analysis.



Limitations

A3SN’s evaluation is limited to English-language
datasets, and its performance on multilingual or
low-resource languages remains untested, poten-
tially restricting its applicability in diverse linguis-
tic contexts. Secondly, A3SN’s design primarily
targets explicit aspects, but may struggle with im-
plicit aspects. Incorporating aspect detection could
improve performance.
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A Effect of Window Size w

To determine the optimal w, we conducted experi-
ments on the Restaurant and Laptop datasets, eval-
uating window sizes w = {1,2,...,10}. Perfor-
mance was measured using the accuracy for sen-
timent polarity classification. A window size of
w = 5 consistently yielded the highest accuracy
across all datasets, balancing the capture of local
sentiment cues with sufficient contextual breadth.
Smaller windows (e.g., w = 3) missed relevant
context, while larger windows (e.g., w = 10) in-
cluded less relevant tokens, diluting sentiment fo-
cus. The optimal w = 5 ensures that A3SN effec-
tively models short-range dependencies, as illus-
trated in Figure 2 (on the right hand side).
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