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Abstract

The progress introduced by pre-trained lan-
guage models and their fine-tuning has resulted
in significant improvements in most down-
stream NLP tasks. The unsupervised fine-
tuning of a language model combined with fur-
ther target task fine-tuning has become the stan-
dard QA fine-tuning procedure. In this work,
we demonstrate that this strategy is sub-optimal
for fine-tuning QA models, especially under a
low QA annotation budget, which is a usual set-
ting in practice due to the extractive QA label-
ing cost. We draw our conclusions by conduct-
ing an exhaustive analysis of the performance
of the alternatives of the sequential fine-tuning
strategy on different QA datasets. Our experi-
ments provide one of the first investigations on
how to best fine-tune a QA system under a low
budget, and is therefore of the utmost practical
interest for the QA practitioner.

1 Introduction

In the recent few years, transformer-based lan-
guage models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), T5 (Raffel et al.,
2019)) and GPT-3 (Brown et al., 2020), play a
vital role in the Natural Language Processing
(NLP) community. Being trained on a tremen-
dous amount of data in a unsupervised fashion,
they become the de facto starting point of any mod-
ern NLP pipeline. The reason is that the adapt-
ability to new tasks of these so-called foundation
models (Bommasani et al., 2021) has led to sub-
stantial improvements in many NLP downstream
tasks, such as sequence classification (Gonzalez-
Carvajal and Garrido-Merchan, 2020), text sum-
marization (Miller, 2019), text generation (Raffel
et al., 2019) and question answering (Yang et al.,
2019). However, this adaptability comes at a cost:
adapting foundation models to a specific and com-
plex task requires a significant amount of annotated
samples in order to fine-tune those models to the
task at hand (Antonello et al., 2021). In practice,

the training datasets for domain specific tasks are
usually rather small due to budget constraints. Hav-
ing access to hundred of labeled samples for a task
is common and is not tagged as a few-shots sce-
nario, yet the limited annotation budget still makes
the fine-tuning task tedious. To circumvent this is-
sue, a double fine-tuning step is usually introduced.
It consists of fine-tuning the pre-trained foundation
model on a large scale training dataset which is as
close as possible (domain and objective) to the tar-
get task, and is then further fine-tuned on the given
domain/task for which training data is scarce. The
result is a model that had been trained as a founda-
tion model, which is a Pre-trained Language Model
(PLM) like BERT (Devlin et al., 2019), then fine-
tuned on a large-scale more specific task (LM’ ),
and ultimately refined on the domain/task at hand
(LM"). Note that this is applied sequentially. In
this work, we explore how to best fine-tune mod-
els for domain-specific Question Answering (QA)
with limited training data. In this paper, we con-
sider extractive QA, and we therefore denote QA
as the task of answering questions asked in natu-
ral language and finding the answer text-span in
a document containing the answer. In the double
fine-tuning step stated above, we can use Stanford
Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016) which is a high-quality QA dataset
that covers diverse knowledge for the PLM to train
on. Using a transform-based language model as the
PLM starting point, PLM fine-tuned on SQuAD can
therefore act as the intermediary model (LM’ ) for
domain specific question answering. This model
is the go-to choice for general QA scenarios. The
performance of these state-of-the-art QA models
have gained traction and given more attention to
the QA task. Nonetheless, in many real-life sce-
narios, specific-domain QA has a range of field
applications which is narrower than SQuAD and
may not appear in the SQuAD training data. This
calls for building domain-specific dataset to further



fine-tune a QA model for the domain at hand to pro-
duce a QA model LM”. This last fine-tuning step
is domain-dependent, and the practitioner’s goal
is also to ultimately keep the number of annotated
training samples low - he is under a low annotation
budget constraint. In practice, such an annotation
task pairs remains achievable for a couple of hun-
dred QA examples and for a single domain, but
it hardly scales to all the different domains that a
company building QA systems needs to deal with —
producing questions and annotating them with their
corresponding text fragment in a document is much
more difficult and time-consuming than creating
text classification labels for instance. As a conse-
quence, the assumption is that a limited number
of training QA pairs are usually provided to fine-
tune LM” to prepare its domain drift towards the
domain specific QA task. In this paper budget
refers to the number of domain-specific annotations
available at the time of fine-tuning LM”. The main
pending issue is how to best fine-tune a QA model
down to a target domain under such low annotation
budget conditions.

Our contribution is a study of the different strate-
gies one can use to fine-tune a domain-specific
extractive QA model. This study is exhaustive
as we report experiment for 108 different strate-
gies, applied to 4 different datasets (we discussed
432 trained models, each ran 5 times, see Sec-
tion 4). We provide a complete protocol and eval-
uation scheme freely available to the community'.
Based on these contributions, we explored different
low annotation budget scenario for which our find-
ings are as follows: (1) We demonstrate that the
standard sequential QA fine-tuning strategy is sub-
optimal for QA under a budget, (2) Contrary to rea-
sonable expectations, fine-tuning the text encoder
using masked language modeling on domain cor-
pus prior task fine-tuning does not provide an im-
provement (we even consistently observed a slight
degradation of performance), (3) A very low anno-
tation budget goes a long way, that is 200 annotated
QA pairs is very efficient with respect to the anno-
tation required, (4) We demonstrate that is it better
to go either with a small annotation budget with
a careful choice of the fine-tuning strategies, or
to go for more than 1, 600 annotations. Anything
doubling of the annotation budget in between only
resulting in a 2% improvement in rare cases.

'code and dataset are available in a github repository, pri-
vate during the review process

2 Related Work

In Question Answering there are mainly three fine-
tuning strategies to adapt a language model to a
specific domain. These strategies are non-exclusive
so that the standard process to create a domain ex-
tractive QA system is to apply them as a sequential
pipeline as depicted in Figure 1. In what follows,
we describe and discuss the related works to each
of these fine-tuning steps.
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Figure 1: Mainstream methods for QA fine-tuning.

2.1 Knowledge-Alignment Fine-tuning

Knowledge-Alignment Fine-tuning aims to inte-
grate information about the underlying text corpus
into the LM. It is often achieved using masked
language modeling task, inherited from the LM
pre-training objective. It helps aligning the knowl-
edge from the target domain which can be sub-
stantially different from what the used LM is pre-
trained on. For different NLP tasks this fine-tuning
strategy has shown performance improvements.
For example (Lee et al., 2019) fine-tunes BERT
via knowledge-alignment on Biological corpora
(PubMed). The corresponding model BioBERT,
can outperforms the BERT model in many biomed-
ical text mining tasks like Named Entity Recogni-
tion (NER), Relation Extraction (RE) and QA. Sim-
ilarly (Nguyen et al., 2020) generate BERTweet
by knowledge-alignment fine-tuning with 850M
English tweets. The resulting model gets improve-
ments in part-of-speech tagging, NER, and text
classification. Nonetheless, it has been shown
in (Zhao and Bethard, 2020) that the benefits vary
depending on the task and on the flavor (base or
large) version of BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models. (Edwards
et al., 2020) also reports difficulties to fine-tune a
BERT model with a limited domain corpus, which
is usually the case for domain-specific extractive

QA.



2.2 Task-Alignment Fine-tuning

Task-Alignment Fine-tuning aims at adapting the
pre-trained LM to the target task, that is extractive
QA in the scope of this work. Generally, pub-
licly available large datasets are used for this pur-
pose. In the QA domain, the dataset of choice is
SQuAD (Rajpurkar et al., 2016) as it contains more
than 100k questions on significantly different top-
ics. In order to obtain a neural extractive QA model,
the LM is used as a text encoder, then two indepen-
dent softmax layers are added on top of it in order to
predict the start index and stop index of the answer
span (Devlin et al., 2019). The added layers being
shallow, the LM weights are not frozen, and the
training therefore updates the LM parameters with
respect to the extractive QA task. This fine-tuning
strategy is for example used in (Kratzwald et al.,
2020a; Moller et al., 2020). However, in (Merchant
et al., 2020), the authors demonstrate that SQuAD-
based fine-tuning involves only shallow changes
to the LM and mostly to its top layers. In (Cui
et al., 2019) the authors try to alleviate this issue
by introducing sparse attention in BERT attention
heads when fine-tuning — this however comes to
a complexity cost and a modest improvement on
SQuAD fine-tuning. Few methods take interests
in finding significantly different alternatives, but
in (Khashabi et al., 2020), the authors do take an
opposite stance. They train a unified QA model,
where unified means able to perform multiple form
of QA (extractive, multiple choice, etc.). As the
model is trained to generalize to different QA task
formats and still performs well on all domain tasks,
it is afterwards fine-tuned on each target dataset
which ultimately leads to as many QA models.

2.3 Target Data Fine-tuning

Target Data Fine-tuning is adapting the LM to
the target task using target task labeled training
data. This allows considerable performance im-
provements, it is limited by the amount of training
data. There are different variations of this strategy.
Either the model is directly fine-tuned using the
target data (as done in (Kratzwald et al., 2020a;
Moller et al., 2020)) or it is trained on a mix be-
tween general QA questions and the target ones. In
the latter case questions from SQuAD can be used
to mix as it is done in (Kratzwald and Feuerriegel,
2019). The authors only explore one way to com-
bine these data, and it is therefore not assumed here
that this is the best strategy.

To summarize, the most common fine-tuning strat-
egy used in literature for domain adaptation in
QA is as follows: first the pre-trained language
model (PLM) is optionally further pretrained in
a unsupervised fashion on the domain corpus at
hand using the masked language modeling task
(PLM+), second the PLM (or optionally PLM+) is
fine-tuned on SQuAD via Task-Alignment Fine-
tuning (LM’ ), and third the network is fine-tuned
again on the domain QA pairs annotations that one
may have (LM"”). We are not aware of any study
that tried to compare the different fine-tuning strate-
gies and also considered several ways to combine
SQuAD and domain-specific corpora when fine-
tuning domain-specific extractive QA systems.

3 Methodology

We considered the following options.

MLM Knowledge-Alignment Fine-tuning: In
our experiments, we used the Masked Language
Modeling (MLM) task to distill the knowledge
of the corpora into the LM as discussed in Sec-
tion 2.1. To assess whether knowledge-alignment
fine-tuning via MLM helps improve performance
under low-budget situations, we conduct the
experiments both with and without this procedure
for all combinations of fine-tuning strategies
presented in Section 3.1.

SQuAD Fine-tuning: Following explanations
from Section 2.2, we include the possible steps to
build a pretrained QA model based on SQuAD.
Target Data Fine-tuning and Domain Drift
Boosting: Target data fine-tuning (training on the
domain labelled QA samples) usually happens
after fine-tuning the text encoder on SQuAD, a
high-quality rich dataset for aligning the model
to the open domain QA setting. However, when
it comes to a dataset that is substantially different
from SQuAD, both in wording and syntax, this
method may become undesirable due to the
significant domain drift (Elsahar and Gallé, 2019).
Furthermore, it is known that LMs tend to behave
unstable (Mou et al., 2016) and lean to overfit the
dataset. Since we are experimenting on low budget
situations, this effect is amplified and should be
avoided. In order to solve this problem, we explore
the option to merge the SQUAD and Target QA
dataset together in order to make the fine-tuning
process stable and avoid the catastrophic forgetting
usually happening in QA fine-tuning. The merged
fine-tuning approach can benefit from the original



hyper-parameters used in SQuAD fine-tuning and
bypass the errors that may occur during extensive
hyper-parameters searching. Ultimately we would
want to have as many target samples than general
samples, but accumulating high-quality training
datasets of SQuAD’s size for every domains
is expensive and hardly realistic (Section 1).
Inspired by the techniques from classification with
imbalance classes, we choose to undersample
or oversample the datasets in order to put more
emphasis on the domain-specific data. In our case,
options available will be either undersampling
SQuAD or oversampling the target dataset. The
expectation is that the model does not overfit the
target training data as it has also to optimize the
general QA training samples that are not included
in the domain. Nonetheless, the merging of both
general and target QA samples is rarely used in the
literature, and the ratio on how to best merge the
general and target datasets is heavily understudied.
For this reason, we devised different merging
options that we will later compare — we will show
that merging is actually the best strategy and that
all of the merging options are not equal.

To best describe these merging options, we
will use the following notations. Let D, be the
general QA training dataset, D, the target QA
training dataset and D; the final merge training
dataset we want to build given a dataset merging
option. We then define the following merging
options :

» TargetQA, that is only the target samples — in
other words no merge, s.t. Dy = Dy

* MP, Merge Partial SQuAD based ona a 1:1
merge. Since |Dy| >> |Dy|, we take all
samples from Dy, and we sample n samples
from Dy, s.t. Dy = Dy U {s1,...,s,} where
s U (Dgy) and U(Dy) denotes the uniform
distribution over the set Dy and n = | D/

* MPO, Merge Partial SQuAD with Oversam-
pling is close to the previous MP strategy, but
in MPO we sample three times the set D; so
that the resulting merged QA training dataset
Dy is twice larger — in MPO the model will
see three times more the target samples (as
the best reported value in the work (Kratzwald
and Feuerriegel, 2019)) in order to amplify the
learning signals for the target domain while
still having to satisfy the samples sampled

from D,. More formally in that merging op-
tion: Dy = D;UD;UD;U{s1,..., s, } where

si = U(Dy).

* MW, Merge Whole SQuAD, that is the union
of both training dataset s.t. Dy = D; U D,
For that merging option, the QA model will
be trained on much more training samples for
better QA in general, at the expense to learn
from a weaker signal coming from the target
task. It is interesting to note that under this
merging option, the training data are abso-
lutely the same than the mainstream sequen-
tial approach to fine-tuning, although there
are not drawn sequentially when training but
mixed in a single training step. This single
difference, embarrassingly simple, accounts
however for 5 and up to 10 macro-f1 increase
for all datasets but one when the budget is set
to 100 annotations.

* MWO, Merge Whole SQuAD with Oversam-
pling is close to the previous MW strategy but
we do the same oversampling as MPO, then
we have Dy = D; U Dy U Dy U Dy where D,
keeps its original size.

We also considered a curriculum learning ap-
proach (Bengio et al., 2009), in which more sim-
ple QA pairs will be used and we would intro-
duce more and more difficult QA samples as the
training progresses. Since evaluating the QA pair
difficulty is not trivial, we explore this possibil-
ity by brute-force as we generated a large number
of experiments with different QA pairs splits that
are introduced as the training progress. We ob-
served no significant changes in the target model
performances, suggesting that either a curriculum
approach is not applicable here, or that there is only
a very limited number of QA pair sequences that
can actually serve a curriculum learning approach.
While this was not the primary focus of our work,
the existence or nonexistence of such “golden se-
quences" has yet to be investigated. Moreover,
note that we propose merging options in this paper
while, as stated in Section 2, sequential transfer
learning (PLM — SQuAD — TargetQA) is the
go-to method used in most, if not close to all, QA
model fine-tuning pipeline in practice.

3.1 Fine-tuning combinations

As stated above, there are a series of options that
we can choose to improve the performance of QA



models fine-tuning. Combining the options in dif-
ferent manner lead to as many fine-tuning strategies.
In our experiments, we include strategies that can
reasonably yield fine-tuning improvements — we
especially discard the combination that first per-
form fine-tuning on the target dataset and then on
SQuAD. The meaningful strategies of fine-tuning
options we consider for extractive QA fine-tuning
in this work are the following:

* PLM — SQuAD

* PLM — TargetQA

* PLM — SQuAD — TargetQA
* PLM — SQuAD — MP

PLM — SQuAD — MPO
PLM — MP

PLM — MPO

* PLM — MW

* PLM — MWO

All the methods listed above will be experimented
with knowledge-alignment fine-tuning (unsuper-
vised masked language modeling on the target doc-
ument corpus) as well, so that we end up with 18
different fine-tuning strategies.
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Figure 2: Fine-tuning strategies and combinations con-
sidered in our study.

3.2 Datasets

SQuAD is a QA dataset introduced in (Rajpurkar
et al., 2016). The dataset contains 100,000 triplets
(passages, question, answer). The passages come
from 536 Wikipedia articles. The questions and
answers are constructed mainly by crowdsourcing:
annotators are allowed to ask up to 5 questions on
an article, and need to mark the correct answers in
the corresponding passage. The major difference

between SQuUAD and previous QA datasets such as
CNN/DM (Hermann et al., 2015), CBT (Hill et al.,
2016), etc, is that the answers in SQuAD are not a
single entity or word, but may be a phrase, which
makes its answers more difficult to predict.

As target domain QA datasets, we consider the fol-
lowing four domain-specific datasets:
COVID-QA (Moller et al., 2020) is a question an-
swering dataset on COVID-19 publications. The
dataset contains 147 scientific articles. The quality
of the dataset is assured as all the question-answer
pairs are annotated by 15 experts with at least a
master degree in biomedicine.

CUAD-QA (Hendrycks et al., 2021) contains ques-
tions about legal contracts in the commercial do-
main. The corpus, curated and maintained by the
Atticus Project, contains more than 13, 000 anno-
tations in 510 contracts. The original task is to
highlight important parts of a contract that are nec-
essary for human to review. We convert it into a
question-answering task in SQuAD fashion. The
passages to select are lengthy compared to SQuAD
paragraphs.

MOVIE-QA contains questions about movie plots
extracted from Wikipedia. We constructed the
dataset from the DuoRC (Saha et al., 2018) dataset.
The original dataset is an English language dataset
of questions and answers collected from crowd-
sourced AMT workers on Wikipedia and IMDb
movie plots. It contains two sub-datasets SelfRC
and ParaphraseRC. We sampled questions from the
SelfRC since the answers of the ParaphraseRC sub-
set are paraphrased from the movies plot.

KG-QA is a dataset that we constructed from the
Wikidata knowledge base. It contains keyword
questions that are constructed semi-automatically
as it is done in a knowledge extraction task using
QA techniques borrowed from (Kratzwald et al.,
2020b). More specifically, We extracted 982 enti-
ties accompanied by their related Wikipedia pages
containing predicates like game platform, devel-
oper, game mode and etc.

Those four datasets were chosen so that they
represent different domains and contain ques-
tion/answer/context with different characteristics.
For the purpose of budget analysis, we randomly
sampled 2,000 examples from each dataset for
comparison, and we split our datasets in 5-fold
cross validation manner to reduce randomness in
our experiments. All datasets are in SQuADv1.1
version i.e. all the questions are answerable.



3.3 Budget Setting

Inspired by the training size analysis in (Edwards
et al., 2020), we choose the following experiment
budget sizes: 100, 200, 400, 800, 1200, 1600.
Those examples are randomly extracted from the
training set. As for evaluation of the QA systems
in different situations, we use the hold-out test sets
(400 examples) for comparison.

3.4 Dataset Analyses

In the following, we are trying to measure the gap
between SQuAD and each dataset from different
perspectives.

3.4.1 Corpus Analysis

COVID-QA CUAD-QA MOVIE-QA KG-QA
SQuAD 36.0 34.8 414 50.6

Table 1: Vocabulary overlap (%) between domain spe-
cific datasets and general dataset SQuAD.

Domain Similarity.  We compute a domain
similarity metric to objectively identify if a dataset
is close or far from SQuAD. We consider the
top-10K most frequent unigrams (stop-words
excluded) in each datasets and compute the
vocabulary overlap (see Table 1). We observed
that MOVIE-QA and KG-QA have a stronger
similarity with SQuAD dataset than the others.
This is reasonable since MOVIE-QA and KG-
QA are based on movie plots from wikipedia
and wikipedia pages of video game entities
respectively. COVID-QA and CUAD-QA are
relatively far from SQuAD since the two domains
are very specialized either in biology or legal terms.

Dataset o ecion  peranswer  per document  COTPUS ¢
RoBERTa-PC 160Gb
SQuAD 1006 316 11664  13Mb
COVID-QA 943 1393 402183  50Mb
CUAD-QA 1853 4187 842879  153Mb
MOVIE-QA  7.35 25 60181  6.8Mb
KG-QA 332 165 137365 17Mb

Table 2: Characteristics of QA datasets used in our
experiments. ROBERTa-PC is RoOBERTa Pre-training
Corpora (PC) reported here for comparison. Candidates
are answer candidates in the corpus.

Corpus size: The size of the text corpus is shown
in Table 2. Note that the corpus size is a fraction

of the corpus used for PLMs.

3.4.2 Question/Answer/Passage Analysis

Different lengths of questions, answers and pas-
sages can lead to different inference difficulties.
Therefore, the length distribution (see in Table 2)
can be a very important metric for evaluating the
characteristics of four datasets. First of all, from
the answer length, SQuAD together with KG-QA
and MOVIE-QA are dominated by short answers.
More specifically, the questions in MOVIE-QA
are mostly based on character names or dates of
specific events. As for KG-QA, the questions are
keyword queries and the answers are constructed
with the object entities. With this respect, KG-QA
and MOVIE-QA can be considered as SQuAD-like
but KG-QA is relatively difficult due to the key-
word queries. Besides, all the three datasets are
based on wikipedia articles with different granu-
larity: SQuAD is the built on top of paragraphs,
MOVIE-QA is curated from the movie plots while
KG-QA is based on the entire article which can be
a bit lengthy. Second, the passages of CUAD-QA
are collected from commercial legal contracts in
a specific format. It is substantially different than
Wikipedia articles in the way of sentence expres-
sion and wording choices. Also there is an impor-
tant gap between CUAD-QA and other datasets
in answer length, which infers it is a more diffi-
cult and absolutely not SQuAD-like dataset. For
COVID-QA, the dataset built on top of biological
papers, which is also lengthy to infer. But for the
questions and answers, either in the way of asking
questions or the type of the answers, COVID-QA is
not far from SQuAD. For that matter, COVID-QA
is a dataset similar to SQuAD, but relatively more
difficult for inference.

Overall one can say that the gap between COVID-
QA and MOVIE-QA with SQuAD is smaller than
the two other datasets since the questions and an-
swers length as well as the domain are relatively
similar.

4 Experiment

4.1 Language Model and fine-tuning
strategies

In our experiments we use ROBERTa (Liu et al.,
2019) as our starting PLM. RoBERTa is built on
BERT: it mainly optimizes key hyper-parameters
and simplifies the training objective and training
mini-batches size. ROBERTa achieves better per-



formance than BERT in many benchmarks like
GLUE (Wang et al., 2019), SQuAD (Rajpurkar
et al., 2016) and RACE (Lai et al., 2017), which
explains this choice over BERT base or large mod-
els. To build extractive QA models, we apply
two independent softmax layers for predicting the
starting and the ending index of the answer span
as in (Devlin et al., 2019). Parameters of soft-
max layers and the PLM are updated when fine-
tuning. As for implementation details, we use the
pre-trained, 12-layer, 768-hidden, 12-heads, 125M
parameters, ROBERTa base model from Hugging-
face hub. AdamW (Loshchilov and Hutter, 2019) is
used as the optimizer for fine-tuning with learning
rate set to 3e — 5. The results are reported using
5-fold cross validation. We explore 18 different
fine-tuning combinations (see Section 3.1) for 6
different annotation budget sizes (see Section 3.3)
over 4 datasets. Moreover each unique experiment
is actually run 5 times for different data splits to
get significant results. We therefore hereby provide
results based on 2, 160 evaluation runs (with 1918
fine-tuned models). All 2,160 evaluation runs re-
quire 62.5 days of 4 Titan XP GPUs to complete.

4.2 Results

In what follows, we present the main results and
analysis we can deduce from our experiments. It
is important to note that we provide a summary
table with all our results in appendix”. We hereby
discuss our findings step by step, sometimes with a
subset of budget sizes, and the interested reader
can analyse the complete experiments table in
supplementary materials that compile all the 2, 160
evaluation runs.

(1) The standard fine-tuning strategy for QA
is sub-optimal with low training budgets, and
although low training budgets are the de facto
situations in practice (Section 1 in appendix). Out
of 24 dataset and budget combinations, it only
achieves twice the best performance by a small
margin (Table in appendix). On the contrary, the
performance difference between the mainstream
method and the best fine-tuning strategy identified
is up to 12.5% for KG-QA dataset and budget set
to 100. The gap is particularly high for low budget
(k = 100) and tends to be smaller for higher
budgets (k > 800) see in Table 3. For very low

Note that this is provided in appendix at reviewing time,
and that this page will be included in the paper as camera-ready
versions of accepted long papers will be given one additional
page of content (up to 9 pages)

budget (k = 100) the average difference is 6.93%,
which is very substantial. A reminder here is that
such improvement comes at no additional cost for
QA practitioners.

Annotation Budget

100 200 400 800 1200 1600
Baseline 56.70 61.35 64.88 67.45 68.90 69.90
Best strategy 63.63 65.85 67.78 69.83 70.75 71.40

Difference +6.93 +45 +29 4238 +1.85 +1.5

Table 3: Comparison between the best fine-tuning strat-
egy and baseline strategy: average performance(%) of
QA system in different domain (legal, biology, movie
plots and video games).

(2) Knowledge-Alignment Fine-tuning has lim-
ited improvements in domain-specific QA under
a budget. For most of the experiments, we can-
not observe that knowledge-alignment fine-tuning
(more specifically MLM) steadily and repeatedly
improves the accuracy of the models, overall we
even consistently observed a slight degradation
of performance (Table 4). Moreover, over the
few occurrences where MLLM helps, it does only
by a small margin (Table in appendix). While
knowledge-alignment fine-tuning was reported to
be helpful for other NLP tasks, our experiments
show that this is not the case for low annotation
budget extractive QA. We associate this to the cor-
pora size of the domain datasets that are several
order of magnitude smaller then the corpora used
in other works where MLM was identified to be
useful. Large text corpora are rather exceptional
in domain specific QA scenarios, we conclude that
MLM fine-tuning is generally not advisable.

Dataset
COVID-QA CUAD-QA MOVIE-QA KG-QA

No MLM 55.44 38.70 78.06 77.62
With MLM 52.97 38.97 77,62 63.9
Difference -2.47 +0.27 -0.44 -0.95

Table 4: Average performance (%) difference after
MLM procedure evaluated over all the budgets and
strategies.

(3) A low annotation budget goes a long way.
Domain-specific training data is assumed to
be the best signal to optimize the network in
order to achieve better performances. We show
here that, fortunately, even a small number of
samples lead to significant improvements. To
illustrate this, we compare the baseline QA system



(RoBERTaBase-SQuAD) with other fine-tuning
strategies. In very low-budget scenarios (k = 100)
we observe average performance improvements
range between 3.4% and 27,8% (Table 5). For
high budgets it ranges between 5.2% and 40.8%.
This result is partially consistent with the claim
by (Hazen et al., 2019) that low budget fine-tuning
is actually overestimating the budget in the
practical settings since we have just shown that it
depends on the domain drift from SQuAD.

Dataset
COVID-QA CUAD-QA MOVIE-QA KG-QA

Zero-shot 53.8 12.2 80.2 41.9
Low Budget 62.3 40.0 83.6 68.6
Difference +8.5 +27.8 +3.4 +26.7
High Budget 67.3 50.2 854 82.7
Difference +13.5 +38.0 +5.2 +40.8

Table 5: Performance difference (%) between Zero-
Shot scenarios and Few-Shot scenarios with low budget
(K = 100) and high budget sizes K = 1,600

(4) Do not compromise: either go small or big
annotation budget. One of the main issue for the
practitioners is to know what improvement to ex-
pect if one invests more in the QA pair annotation
budget - we remind here that building such anno-
tations are more difficult and therefore costly than
text classification for instance. We compare the
performance improvements that one can achieve by
increasing the number of training data — more train-
ing data obviously tend to lead to better models, but
we want to measure here how worthy is increasing
training dataset size. For instance, what are the ex-
pectations a practitioner can have if he is willing to
double his annotation effort? To answer this ques-
tion, we compare the best performing fine-tuning
strategy for each budget (between K = 100 and
k = 1,600) for the different datasets, assuming
that a practitioner is also able to run all strategies to
compare them and pick the best one for each bud-
get. We observe the relative gain for each budget
jump as reported in Figure 3.

From this experiment we conclude the follow-
ing. First, providing a small annotation budget
(100 or 200) samples is very efficient with respect
to a zero shot setting (as discussed in the previous
experiment). But we also note that doubling the
annotation effort lead to only a 1% performance
improvement in general and 2% at a maximum. In
practice, doubling the amount of extractive QA la-
bels available for target domain fine-tuning is very

BCOVID-QA 1 CUAD-QA BMOVIE-QA BKG-QA
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Figure 3: Performance difference (%) after x16 data
collection procedure evaluated over low budget (K =
100) and high budget sizes (K = 1, 600).

expensive and therefore do not justify the average
1% improvement (it is also supposed that the exper-
iments were run for all strategies and that the best
one was selected, which add to the complexity to
benefit fully from these 1 up to 2% improvement).
Complementary, after investing around 10 times
the initial budget, the benefit has accumulated and
becomes significant with respect to the effort put
into the annotation budget. As a rule of thumb,
we would advise to either opt for a 200 annota-
tion budget with a careful selection of the MWO
fine-tuning strategy, or to invest for an annotation
budget > 1, 600 without the need to explore differ-
ent fine-tuning strategies in this case. Any effort
within the [200; 1, 600] range imply a weak return
with respect to the time and effort to double each
time the number of domain annotations.

5 Conclusion

In this work we compared different fine-tuning
strategies for extractive QA in low budget scenarios.
Our experiments show that the standard fine-tuning
strategy for QA is sub-optimal, merge fine-tuning
is the most robust and effective fine-tuning strat-
egy, and Knowledge-Alignment Fine-tuning via
MLM does not yield a significant improvement.
Those are all counter-intuitive results with respect
to common practices by the NLP practitioners who
usually apply the standard sequential fine-tuning
pipeline. We remind that these improvement come
at no overhead cost. Finally, our experiments show
what are the performance gains that one can expect
by collecting different amounts of training data for
different domain-specific QA scenarios depending
on similarity with SQuAD.
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MACRO-F1

Dataset Fine-tune Strategy K=100 K=200 K=400 K=800 K=1200 K=1600
RoBERTaBase-SQuAD 53.8 53.8 53.8 53.8 53.8 53.8
RoBERTaBase-MLM-SQuAD 529 52.9 529 52.9 529 52.9
RoBERTaBase-TargetQA 6.5 35.8 46.6 54.3 55.6 59.2
RoBERTaBase-MLM-TargetQA 5.6 17.7 35.1 46.8 53.0 54.5
RoBERTaBase-SQuAD-TargetQA 55.8 583 61.0 63.1 64.3 64.1
RoBERTaBase-MLM-SQuAD-TargetQA 55.0 59.4 60.3 64.2 64.9 64.7
RoBERTaBase-MP 8.9 44.7 51.7 57.3 59.1 59.9

COVID-QA  RoBERTaBase-MLM-MP 13.9 34.1 459 52.6 55.1 59.2
RoBERTaBase-MPO 27.7 39.4 45.1 50.5 543 542
RoBERTaBase-MLM-MPO 18.8 29.3 37.1 474 51.2 52.4
RoBERTaBase-SQuAD-MP 57.1 59.9 62.1 64.0 64.5 64.1
RoBERTaBase-MLM-SQuAD-MP 56.2 58.0 60.7 63.0 62.6 63.4
RoBERTaBase-SQuAD-MPO 54.6 58.5 58.0 60.5 60.4 60.8
RoBERTaBase-MLM-SQuAD-MPO 53.9 56.0 57.0 59.3 58.2 60.2
RoBERTaBase-MW 60.8 62.6 64.2 65.7 66.3 67.3
RoBERTaBase-MLM-MW 60.1 63.0 63.2 64.6 65.5 65.9
RoBERTaBase-MWO 62.3 63.3 64.5 64.1 63.6 64.5
RoBERTaBase-MLM-MWO 62.3 61.2 62.3 62.1 62.8 63.2
RoBERTaBase-SQuAD 12.2 12.2 12.2 12.2 12.2 12.2
RoBERTaBase-MLM-SQuAD 14.2 14.2 14.2 14.2 142 14.2
RoBERTaBase-TargetQA 12.2 13.0 39.0 45.9 47.0 48.5
RoBERTaBase-MLM-TargetQA 12.7 26.2 36.9 44.3 48.0 48.3
RoBERTaBase-SQuAD-TargetQA 35.6 42.8 459 47.1 48.6 50.2
RoBERTaBase-MLM-SQuAD-TargetQA 393 44.0 47.8 48.2 48.9 49.0
RoBERTaBase-MP 12.4 34.6 434 45.6 48.2 49.5

CUAD-QA RoBERTaBase-MLM-MP 18.2 31.5 40.1 46.5 47.5 49.1
RoBERTaBase-MPO 214 354 40.5 44.8 452 455
RoBERTaBase-MLM-MPO 20.0 30.5 35.0 442 45.0 455
RoBERTaBase-SQuAD-MP 38.3 42.8 46.1 49.1 49.1 48.7
RoBERTaBase-MLM-SQuAD-MP 38.0 454 47.2 49.7 49.7 49.8
RoBERTaBase-SQuAD-MPO 35.6 40.6 43.4 45.0 45.6 45.7
RoBERTaBase-MLM-SQuAD-MPO 35.8 41.6 444 454 46.1 46.8
RoBERTaBase-MW 35.0 42.0 45.6 48.4 50.5 50.0
RoBERTaBase-MLM-MW 345 41.5 44.6 48.7 494 50.2
RoBERTaBase-MWO 40.0 45.0 46.0 46.6 47.8 47.6
RoBERTaBase-MLM-MWO 39.1 42.7 433 45.8 46.2 46.6
RoBERTaBase-SQuAD 80.2 80.2 80.2 80.2 80.2 80.2
RoBERTaBase-MLM-SQuAD 80.0 80.0 80.0 80.0 80.0 80.0
RoBERTaBase-TargetQA 25.0 51.8 67.5 75.0 78.5 80.1
RoBERTaBase-MLM-TargetQA. 25.9 44.5 54.6 74.9 71.7 79.6
RoBERTuBase-SQuAD-TargetQA 79.3 79.9 81.9 83.2 834 84.0
RoBERTaBase-MLM-SQuAD-TargetQA 79.7 79.9 82.0 83.5 83.8 83.9
RoBERTaBase-MP 54.6 61.4 73.3 79.5 80.5 81.8

MOVIE-QA RoBERTaBase-MLM-MP 524 63.8 73.2 78.7 79.7 81.8
RoBERTaBase-MPO 57.7 66.6 74.2 77.9 80.0 80.7
RoBERTaBase-MLM-MPO 58.9 67.9 73.3 71.7 79.8 80.2
RoBERTaBase-SQuAD-MP 79.2 80.4 82.2 83.5 83.6 84.6
RoBERTaBase-MLM-SQuAD-MP 78.5 80.9 81.0 83.0 84.0 83.3
RoBERTaBase-SQuAD-MPO 79.7 81.3 824 83.3 83.2 834
RoBERTaBase-MLM-SQuAD-MPO 79.4 80.5 81.7 83.6 83.4 82.9
RoBERTaBase-MW 83.6 83.1 84.5 84.4 85.1 85.0
RoBERTaBase-MLM-MW 83.0 82.9 84.5 85.1 854 854
RoBERTaBase-MWO 82.7 84.0 83.9 84.3 84.8 84.0
RoBERTaBase-MLM-MWO 83.1 84.1 84.3 84.9 84.5 84.5
RoBERTaBase-SQuAD 41.9 41.9 41.9 41.9 41.9 419
RoBERTaBase-MLM-SQuAD 35.9 359 359 359 359 359
RoBERTaBase-TargetQA 20.1 26.2 30.4 70.2 76.1 78.6
RoBERTaBase-MLM-TargetQA 243 27.2 33.6 53.1 73.4 79.1
RoBERTaBase-SQuAD-TargetQA 56.1 64.4 70.7 76.4 79.3 81.3
RoBERTaBase-MLM-SQuAD-TargetQA 61.2 66.6 72.6 77.0 79.6 81.5
RoBERTaBase-MP 24.5 27.0 64.5 76.0 77.9 78.8

KG-QA RoBERTaBase-MLM-MP 24.3 28.2 43.8 75.2 78.2 80.5
RoBERTaBase-MPO 28.9 522 714 76.2 79.9 82.2
RoBERTaBase-MLM-MPO 40.2 40.2 70.4 77.8 79.9 82.5
RoBERTaBase-SQuAD-MP 64.6 65.1 73.3 77.1 78.7 81.1
RoBERTaBase-MLM-SQuAD-MP 65.0 66.7 73.5 774 79.0 80.5
RoBERTaBase-SQuAD-MPO 63.9 69.1 73.5 78.4 80.8 82.1
RoBERTaBase-MLM-SQuAD-MPO 63.9 67.8 73.5 71.5 79.8 81.7
RoBERTaBase-MW 66.1 68.2 72.3 75.8 71.7 80.4
RoBERTaBase-MLM-MW 66.2 69.2 73.5 75.8 77.8 81.0
RoBERTaBase-MWO 67.7 69.3 74.2 78.8 80.6 82.5
RoBERTaBase-MLM-MWO 68.6 70.6 74.3 78.0 80.8 82.7

Table 6: Experiment results. K is the budget size. RoBERTaBase-SQuAD-TargetQA is the standard sequential
fine-tuning method, its results are underlined for referenﬁ. RoBERTaBase-SQuAD, often referred as the "baseline
method" in many benchmarks, reflects how well a SQuAD model generalizes on other QA tasks. Best result for
each budget size is given in bold.
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