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Abstract

Symbolic regression (SR) is an area of interpretable machine learning that aims
to identify mathematical expressions, often composed of simple functions, that
best fit in a given set of covariates X and response y. In recent years, deep
symbolic regression (DSR) has emerged as a popular method in the field by
leveraging deep reinforcement learning to solve the complicated combinatorial
search problem. In this work, we propose an alternative framework (GFN-SR) to
approach SR with deep learning. We model the construction of an expression tree
as traversing through a directed acyclic graph (DAG) so that GFlowNet can learn a
stochastic policy to generate such trees sequentially. Enhanced with an adaptive
reward baseline, our method is capable of generating a diverse set of best-fitting
expressions. Notably, we observe that GFN-SR outperforms other SR algorithms
in noisy data regimes, owing to its ability to learn a distribution of rewards over a
space of candidate solutions.

1 Introduction

As a rising field that has garnered growing interest in the AI for Science community, symbolic
regression (SR) aims to solve the following problem: given a dataset of covariates X ∈ Rn×d and
response y ∈ Rn (where n is sample size and d is the dimension of data), SR seeks to search for an
interpretable expression f : Rd → R that best explains the dataset. Specifically, f is required to be a
closed-form symbolic expression that consists of symbols from a pre-defined library L containing
operators like exp(·), ÷, and variables like xi, 1 ≤ i ≤ d. By learning both the structure and
parameters (i.e. constants and variables) of a mathematical expression, SR thus explores a far richer
search space and is more flexible than traditional regression tasks (e.g. linear regression) with fixed
functional forms. On the other hand, the solution of SR is naturally more interpretable and succinct
than black-box function approximations (e.g. non-linear neural networks), making it particularly
useful in fields where interpretability matters, such as physics or cognitive science (Tenachi, Ibata,
and Diakogiannis 2023; Musslick 2021).

Despite its appeal for automated scientific discovery, SR is widely acknowledged to be a challenging
problem (Petersen et al. 2019; La Cava et al. 2021). In fact, due to the combinatorial nature of
the underlying search problem, SR can be framed as an NP-hard problem (Virgolin and Pissis
2022). Historically, SR has been tackled through combinatorial optimization techniques like Genetic
Programming (GP; Koza et al. 1989; Vladislavleva et al. 2008). GP maintains a population of
symbolic expressions that evolves over time to enhance the best-fit function for a given dataset.
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However, GP is known to be sensitive to initialization and choice of hyper-parameters, and it scales
poorly with the data size due to its computational complexity (Hassanat et al. 2018).

In recent years, there has been a flourishing of new SR methods. Although varying in many
aspects, these methods coincidentally leverage the binary-tree representation of symbolic expressions.
Bayesian Symbolic Regression (BSR) specifies the priors behind different operators and the likelihood
of different modifications on the expression tree (Jin et al. 2020). It thus approximates the high-
dimensional posterior distribution of suitable symbolic expressions for a dataset by taking Reversible
Jump MCMC tree samples. On the other hand, AI-Feynman (Udrescu et al. 2020) relies on recursively
exploiting the subtree of an expression and solving the simplified problems.

Most notably, Deep Symbolic Regression (DSR) exploits the discrete and sequential nature of
building a valid expression tree (Petersen et al. 2019). Under a deep reinforcement learning frame-
work, DSR models the construction process of an expression tree as querying a trajectory of “to-
kens” τ = [τ1, ..., τT ] (elements from the library L) one at a time from the categorical distribution
p(τi|θ, τ1, ..., τi−1), which derives from a neural network policy parametrized by θ (such as an RNN).
The completed expression tree will then be evaluated based on its fit to the dataset (e.g. normalized
RMSE), and the evaluation will be transformed into a reward function R(τ) (e.g. 1/(1+NRMSE(τ)))
to “reward” the trajectory. Ultimately, the objective is to optimize θ to maximize the objective: 1

J(θ) = Eτ∼p(τ |θ)[R(τ)] (1)

i.e. the expected reward along the trajectory τ , which translates to the expected fitness to the dataset
for an expression generated by DSR.

Despite proving their effectiveness on SR benchmarks, DSR and its variants suffer from an inherent
limitation within the RL setup: maximization of expected reward is often achieved through exploiting
a single high-reward sequence of actions (Sutton et al. 1999). The issue becomes particularly critical
under noisy settings, where equations with symbolic differences might produce datasets that appear
deceptively similar. Therefore, the ability to generate diverse high-reward candidate equations—
instead of clinging onto a single highest-reward solution—is a desirable property in such scenarios
(E. Bengio et al. 2021).

In this paper, we present GFN-SR, a deep-learning SR method based on Generative Flow Networks
(GFlowNets; GFN; Y. Bengio et al. 2021). GFN-SR sequentially samples tokens from a stochastic
policy (represented by a deep neural net) to construct expression trees, similar to DSR. However, by
casting SR into a GFlowNets problem instead of a return-maximization RL one, GFN-SR aims to
align the distribution over the generated expressions proportional to their fit to the dataset, measured
by a reward function R(·). Therefore, GFN-SR is able to not only identify a high-reward expression
when one exists but also generate a set of diverse candidates when the reward distribution over the
space of expressions is multi-modal.

To summarize our contributions: (1) we propose a novel deep-learning SR method by leveraging
GFlowNets as sequential samplers, (2) we come up with an adaptive reward function that balances
exploration with exploitation, (3) we report experiments evaluating our method’s performance in
settings with and without noise, showcasing its superior performance over other methods when the
data are noisy.

2 Methods

2.1 SR under GFlowNets framework

In this section, we formalize the Symbolic Regression problem within the GFlowNets framework
(Y. Bengio et al. 2021). We denote a complete expression tree as a binary tree representation of
mathematical expressions with non-leaf nodes being operators or functions (in this paper, we use
“operators” specifically for binary operators and “functions” for unary ones), and leaf nodes being
variables and constants. Each token in the expression tree is part of a pre-defined library L. A
complete expression tree s can be reproduced from scratch: starting with an empty tree s0, one can
take the pre-order traversal of s and sequentially add nodes to the tree. We can define S to be the

1In fact, the DSR paper adopted a risk-seeking version of this objective Jrisk(θ) = Eτ∼p(τ |θ)[R(τ)|R(τ) >
Rϵ] (ϵ is a risk threshold) and demonstrated its superiority over vanilla policy gradient (VPG) that uses the
objective above. Nevertheless, both objectives seek to maximize an expectation and suit the needs of this paper.
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Figure 1: A part of the state space S and transitions between expression trees when we limit the
maximum depth to two (see discussion of depth constraint below). The source state s0 is an empty
tree on the left, and terminal states are complete expression trees within orange plates. Any node in
grey indicates that it has not been constructed yet. The token library L includes, but is not limited to,
sin, ×, and variables x, y.

overall set of complete expression trees and all intermediate trees in the above sequential construction
process. Similarly, we denote A as the set of directed edges that represent all possible transitions
between elements in S towards constructing some complete expression tree s ∈ S . Trivially, since a
transition can only happen when we add a new node to the previous intermediate tree, the combination
{S,A} creates a directed acyclic graph (DAG) for GFlowNets to be trained on (in fact, {S,A} is a
tree graph due to the pre-order traversal specification). In this DAG, s0 is the source and any complete
expression tree is a sink (terminal state). Figure 1 illustrates a small part of the state space S of
expression trees and the possible transitions from an empty tree to a valid expression.

For the given DAG {S,A} as well as a reward function R(·) acting on the terminal states in S , GFN
is a generative model with the objective to sequentially generate a complete expression tree s ∈ S
with probability (E. Bengio et al. 2021)

π(s) ≈ R(s)

Z
=

R(s)∑
s′∈Sc R(s′)

(2)

where Z is a normalizing constant summing up all terminal rewards, and Sc ⊂ S is the set of all
complete expression trees. Due to the size of Sc being often intractable, GFN treats Z as a learnable
parameter. To achieve the objective in Equation 2, GFN also needs to learn a stochastic forward-
sampling policy PF (·|·), which is represented by a deep neural network with parameter θ. For a
given state s ∈ S, PF (·|s) describes a categorical distribution with support {s̃ ∈ S : s → s̃ ∈ A}.
In our context, PF (·|s) boils down to a categorical distribution over all possible tokens from L and
governs the next construction step from s.

To optimize parameters θ for the stochastic policy in GFN-SR, we adopt the trajectory balance (TB)
loss proposed by Malkin et al. 2022. Let τ = (s0 → s1 → · · · → sn = s) be the trajectory of
generating a complete expression tree s from scratch, we have:

LTB(τ) =

(
log

Zθ

∏n
i=1 PF (st|st−1; θ)

R(s)
∏n

i=1 PB(st−1|st)

)2

(3)

where we condition both Z and PF on θ to highlight their dependencies. The PB(st−1|st) term
appearing in the denominator refers to a backward-sampling policy, which estimates the distribution
of predecessors for a given state in the construction and is usually jointly learnt with PF . Fortunately,
the tree structure of {S,A} in our problem setup gives each non-empty expression tree in S a unique
predecessor (we can simply identify the most recently inserted node by reverting the pre-order and
remove this node to obtain the predecessor). The TB loss for GFN-SR thus simplifies to:

L∗
TB(τ) =

(
log

Zθ

∏n
i=1 PF (st|st−1; θ)

R(s)

)2

(4)
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Figure 2: Illustration of the sequential expression tree construction. Through stochastic policy
emits a raw categorical distribution, which is adjusted and re-normalized by the in-situ constraints
(probabilities being zeroed out are labelled in red color). Finally, tokens for the next tree nodes are
sampled and added to the growing expression tree following pre-order. This figure also corresponds
to Figure 1, which views the same process but from a state space perspective.

Malkin et al. 2022 has shown that minimizing the TB loss is consistent with achieving the desirable
objective in Equation 2. Finally, the stochastic policy is optimized via mini-batch gradient descent on
θ.

2.2 LSTM as the policy network

A key design choice in GFlowNets is the deep neural network behind the stochastic (forward) policy.
As our goal is to sequentially predict the next token (symbol in our library L), we take inspiration
from recurrent neural network (RNN) models that have been widely adopted by deep SR methods
for similar sequence prediction tasks (Petersen et al. 2019, Landajuela et al. 2022). In particular,
GFN-SR leverages Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber 1997).
Through the inclusion of gating mechanisms (input, forget, and output gates) for the memory cell
state, LSTMs can learn longer-term dependencies in the input sequences (Van Houdt, Mosquera,
and Nápoles 2020). This facet of LSTMs aligns with our need to construct subsequent segments of
expression trees based on prior, and potentially distant, tokens. In our implementation, we feed the
one-hot representation of parent and sibling tokens of the next token to be generated into our LSTM
policy network 2. The LSTM then emits a probability vector of length equal to the size of library L
that represents a categorical distribution over the next token. Details on our LSTM architecture and
hyper-parameters are listed in the Appendix.

2.3 Applying constraints to reduce computational complexity

Before a token is sampled out based on the probabilities emitted by the policy network, we apply
in-situ constraints on the space of possible tokens by zeroing out certain entries in the probability
vector and reweighing it. These constraints effectively reduce the computational complexity and
accelerate the search for high-quality candidates. They are rules based on realistic assumptions that
fall into the following categories:

Composition constraints We disallow certain compositions of operators and functions since they
rarely exist in real equations (Petersen et al. 2019). For instance, a trigonometric function can not
be nested in another one so expressions like sin(cos(x) + sin(x)) is ruled out. We also prohibit
functions that are inverse with each other to be composed directly (e.g. (

√
x)2).

2due to the pre-order, the parent token exists for any node but the root, and sibling exist for all nodes as the
right child. We use a placeholder empty token if either does not exist.
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Depth constraints We constrain how long an expression can be by imposing constraints on the depth
(or height) of its corresponding expression tree. When the next node of a tree under construction
is at maximum depth, we zero out all probabilities except for tokens representing variables and the
constant symbol. This constraint is especially useful since we often process a batch of expressions
together and the longest expression dictates the computation speed through the policy network.

Constant constraints Any function (i.e. unary operator) cannot take constant as its argument
since that would simply represent another constant; any binary operator can only take constant as its
right child, which (1) reduces expression redundancies due to the symmetry of tree structure and (2)
prevents both arguments of such operator to be constants. The constant tokens are specially handled
in GFN-SR as they are not assigned specific values during construction, and we instead optimize
them in a separate process after full expressions are built (details in Appendix C). These constraints
thus save a considerable amount of time fitting constants.

Figure 2 uses a concrete example to illustrate the two procedures (2.2, 2.3) above in sequentially
generating an expression tree.

2.4 Reward baseline for GFlowNets

In this section, we discuss the role of reward function R and a novel design of reward baseline for
GFlowNets (the terminology “baseline” is inspired by Weaver and Tao 2013).

Based on Equation 2, a properly trained GFlowNet learns to generate a terminal state s ∈ S with
probability π(s) ∝ R(s), thus the reward function should reflect our satisfaction on choosing s as a
solution to our problem. For the SR task, a reward function assigns a non-negative scalar to a terminal
state (expression tree) s ∈ S to measure how well s fits in the given dataset (X, y). Usually, the
reward function is some transformation on a loss function (e.g. RMSE, MAE) that quantifies such
fitness. We assume R(s) = 1/(1 + RMSE(s)) as the “vanilla” reward function in the following
discussion.

Generating a diverse set of high-quality candidate expressions requires a good balance between
exploration and exploitation. GFlowNets are good at exploration by design since their training
objective encourages generating expressions with probabilities proportional to the rewards. However,
if the landscape of R(s) is multi-modal yet the modes are not peaked enough, GFlowNets would
find it difficult to concentrate on regions with high rewards. To address this issue, we can adjust
R such that low-reward expressions receive even lower rewards, while high-performing solutions
are awarded greater rewards to emphasize their superiority. As a result, the distribution of R would
concentrate around the modes. Denote B > 0 as a baseline that does not depend on s, and consider:

RB(s) = R(s)

(
1 + γ

(R(s)

B
− 1
))

(5)

where γ ∈ [0, 1] is a scaling hyper-parameter that controls the degree of adjustment. We can easily
verify that RB(s) is non-negative and satisfies the aforementioned properties. In the actual implemen-
tation, B is initialized to be the average vanilla reward of expressions in the first batch. As training
proceeds, we gradually increase B toward the average vanilla reward for the top-performing expres-
sions seen so far. The pseudo-codes for calculating the baseline and adjusted reward are included in
Appendix A. Source code for GFN-SR is available at https://github.com/listar2000/gfn_sr.

3 Experiments

3.1 Noiseless Nguyen benchmark

We first experiment GFN-SR on the Nguyen benchmark problems (Uy et al. 2011) to evaluate its
general capacity in fitting the given dataset (in terms of RMSE) when there is no noise. The Nguyen
benchmark includes 12 distinct expressions of various complexity (see below) and has been widely
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used to evaluate SR methods.

h1 = x3 + x2 + x h2 = x4 + x3 + x2 + x

h3 = x5 + x4 + x3 + x2 + x h4 = x6 + x5 + x4 + x3 + x2 + x

h5 = sin(x2) cos(x)− 1 h6 = sin(x) + sin(x+ x2)

h7 = log(x+ 1) + log(x2 + 1) h8 =
√
x

h9 = sin(x) + sin(y2) h10 = 2 sin(x) cos(y)

h11 = xy h12 = x4 − x3 +
y2

2
− y

For comparison, we also run the same benchmarks on three other SR methods: GP, DSR, and
BSR. Each of these methods has its unique hyper-parameters and architectures, and we tune them
deliberately so that the total number of expression evaluations in one run (for one benchmark
function) is around 25 million. We perform 20 repeating trials (but with different seeds) of the
Nguyen benchmarks for each method and calculate the mean & standard error of the RMSEs (for
detailed experimental setups for each method, see Appendix C).

Table 1: RMSE comparison of SR methods on Nguyen benchmarks
(standard error in parenthesis))

Benchmark Dataset GFN-SR DSR GP BSR

Nguyen-1 U(20, -1, 1) 0(0) 0(0) 0(0) 0(0)
Nguyen-2 U(20, -1, 1) 0(0) 0(0) 0(0) .002(.001)
Nguyen-3 U(20, -1, 1) 0(0) 0(0) 0(0) .01(.004)
Nguyen-4 U(20, -1, 1) .02(.002) 0(0) .05(.005) .01(.003)
Nguyen-5 U(20, -5, 5) .15(.021) .35(.028) .51(.023) .19(.066)
Nguyen-6 U(20, -5, 5) .25(.082) .012(.005) .90(.435) .47(.158)
Nguyen-7 U(20, 0, 2) .128(.035) .014(.0002) .044(.002) 6.2e-4 (2.9e-4)
Nguyen-8 U(20, 0, 4) 0(0) 0(0) .091(0) 9.6e-4 (4.6e-4)
Nguyen-9 U(20, [0, 1]2) .023(.015) 0(0) .048(.011) .001(.001)
Nguyen-10 U(20, [0, 1]2) .053(.014) .013(.019) .044(.006) .025(.014)
Nguyen-11 U(20, [0, 1]2) .025(.012) .017(.021) .069(.012) .054(.005)
Nguyen-12 U(20, [0, 1]2) .037(.014) .040(.004) .080(.021) .082(.003)

In general, results in 1 demonstrate the superiority of deep SR methods in terms of producing best-
fitting solutions to a given dataset without noise. While DSR takes the lead for many benchmarks, we
are thrilled to observe that GFN-SR, which is not trained under a return-maximization objective, still
exhibits competitive performance and even outperforms other methods in Nguyen-5 and Nguyen-12.
These results demonstrate the potential and efficacy of our new framework leveraging GFlowNets in
symbolic regression tasks.

3.2 Noisy synthetic dataset

We set up a synthetic benchmark that is specially designed to evaluate an SR method’s ability to
recover exact symbolic expressions under noise. The benchmark consists of six equations that are
grouped into three pairs (we denote equations in the ith pair as fi and gi):

Pair 1: f1 = x3 + x2 + x g1 = sin(x)(
√
x+ expx) x ∈ [0, 1]

Pair 2: f2 = log(x+ 1) g2 = 0.5 · x x ∈ [−0.1, 0.1]
Pair 3: f3 = x2 − 4x+ 3 g3 = 4 · (1−

√
x) x ∈ [0, 1]

These equations are seemingly simple and solvable in noiseless settings (in fact f1 is the first equation
in the Nguyen benchmark). However, within the domains we specify, equations in each group are
symbolically different yet very close to each other (see Appendix B for visualization). Therefore, if
we further add noises to the dataset, it becomes challenging for an SR method to recover the right
equation, especially if the method lacks the ability to explore a wide region of solutions and easily
sticks around a single high-reward mode.
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For each equation, the dataset consists of 40 points uniformly sampled from its specified domain
(20 for training and 20 for testing) and responses y under 10% noise level (i.e. noises ϵ ∼ 0.1 ·
N(0, V ar(y)). For each method (GFN-SR, DSR, and BSR), we repeat the experiment for 20 trials
with different seeds and make sure that the number of equation evaluations in each trial is around 25
million for all methods. The recovery rate is defined as the percentage of trails (among all 20 runs)
in which exact symbolic equivalence is achieved by the top predicted equations of a method (for
DSR and BSR, this is achieved if any equation on the Pareto frontier matches the ground-truth; for
GFN-SR, we compare the ground-truth with the most frequently occurring equations in the samples
post-training, which is a stricter condition).

Table 2: Recovery rate of the noisy benchmark under 10% noise
Group 1 Group 2 Group 3

Equation f1 g1 f2 g2 f3 g3

Dataset U(40, 0, 1) U(40,−0.1, 0.1) U(40, 0, 1)

BSR 30% 5% 0% 90% 5% 75%
DSR 75% 5% 5% 40% 5% 90%
GFN-SR 100% 15% 15% 95% 95% 85%

Results in Table 2 show how SR methods are sensitive to the presence of noise, as the recovery
rates are consistently low even for basic expressions like f2. Bayesian Symbolic Regression (BSR)
represents equations as a linear mixture of individual trees (Jin et al. 2020), thus it is not good at
recovering equations exactly. DSR’s return maximization objective, as mentioned earlier, sometimes
misleads it to focus on the wrong but high-reward mode (i.e. the other expression in the group) while
overlooking the correct one. Overall, GFN-SR is capable of generating a diverse set of candidate
expressions and has outperformed the two other methods in recovering every equation except g3.

4 Conclusion and future work

In this paper, we present GFN-SR—a novel symbolic regression method based on GFlowNets. The
GFlowNets objective enables our method to explore and generate diverse candidate expressions,
while the introduction of a reward baseline enables us to exploit high-reward regions only in the
reward landscape. These exciting features are demonstrated through numerical experiments, where
GFN-SR shows competitive performance in noiseless benchmarks and a superior ability to recover
expressions under noise.

However, the proven success of GFN-SR is limited to experiments on the Nguyen benchmarks and
our synthetic dataset. To further verify the effectiveness and understand the numerical properties of
our approach, an immediate next step is to perform experiments on larger datasets, such as SRBench
(La Cava et al. 2021) and Feynman SR database (Udrescu et al. 2020). We would also want to
provide noisy data from real-world problems to confirm GFN-SR’s exciting potential in recovering
expressions from noise.

Another limitation of our current method is the enforcement of pre-order traversal in the tree
construction process. Despite some aforementioned benefits (e.g. simplification of backward policy
PB), this restriction severely limits the number of possible transitions in the state space. If we allow
growing any part of an incomplete tree, {S,A} will still be a valid DAG that we can train GFlowNets
on. This more flexible approach could potentially enhance the exploration of the expression space,
though it may require additional computational time.

Finally, our presented method is versatile, and many of its components admit new ideas. For instance,
Transformers have recently been the prevailing deep learning model for sequence generation tasks in
NLP (Vaswani et al. 2017; Gillioz et al. 2020). They have the potential to replace RNNs as policy
networks and provide a better understanding of global structures within symbolic expressions. Also,
Landajuela et al. 2022 proposed a unified framework to combine deep-learning-based SR methods
with other techniques, such as GP and polynomial regression. It is worth investigating to see how we
can further improve GFN-SR under this framework.
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Appendix A: Pseudocodes

Algorithm 1 Calculate reward and update baseline

Require: a batch of expressions {s1, . . . , sN}
Require: vanilla reward function R
Require: current baseline B
Require: a priority queue of best vanilla rewards Q

1: Hyper-parameters: scale parameter γ, moving average weight α
▷ calculate the vanilla and baseline-aware reward

2: for i in 1 to N do
3: Ri ← R(si)

4: R∗
i ← R(si)× (1 + γ × (R(si)

B − 1))
5: end for

▷ update the priority queue with rewards sampled in this batch
6: Q← updatePQ(Q, {R1, . . . , RN})

▷ take the average of rewards in Q
7: B′ ← calcAvgReward(Q)
8: B∗ ← α×B + (1− α)×B′

Ensure: rewards {R∗
1, . . . , R

∗
N}, new baseline B∗

Appendix B: Dataset

Below is the plot of functions f1(x) = x3 + x2 + x and g1(x) = sin(x)(
√
x+ exp(x)) mentioned

in Section 3.2, as well as the noisy observations for 20 sample points at noise level 10% (so they are
similar to the training/testing dataset).
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Appendix C: Experiment Details

Hyper-parameter tuning For GFN-SR, we consider three major hyper-parameters: (1) batch size
b ∈ [250, 500, 1000], learning rate α ∈ [1e-4, 2e-4, 5e-4, 1e-3], and the scaling parameter for reward
baseline γ ∈ [0.1, 0.2, · · · , 0.9]. We tuned them on a simplified Nguyen benchmark and the final
hyper-parameters used are b = 250, α = 5e-4, γ = 0.9.

LSTM architecture The LSTM policy network we use throughout the paper has 2 recurrent layers
and 250 hidden states for each layer. We train the LSTM using Adam optimizer with the learning rate
tuned above (Kingma and Ba 2014). Before we feed the parent and sibling tokens into the LSTM,
they would go through a one-hot encoding.

Token library Throughout all experiments for all methods, the library L includes functions√
·, log, exp, sin, cos, (·)2, operators ×,÷,+,−, variables x1, · · · , xd for input dimension d, and the

constant token. Certain SR methods require specifying the range of constants, which we specify as
the maximum and minimum constant values in our benchmarks.

Constant optimization In GFN-SR, a complete expression with at least one constant token cannot
be evaluated by reward function R directly. This is because these constants are not assigned any
specific value during construction; instead, a constant optimization mechanism is applied. We have
a dictionary and a counter. If an expression with constants has not been discovered before, or if its
counter is at zero, we use BFGS (a numerical optimization algorithm) to find values of the constants
that maximize R. We then cache its reward into the library and set its counter to some number that
determines how frequently should we redo the optimization step. Otherwise, we simply read the
cached reward for the expression from the dictionary and reduce the counter by one.

DSR In our experiments, we use the deep symbolic optimization (DSO) Python package to run DSR
method. Specifically, DSO improves the vanilla DSR method in Petersen et al. 2019 by providing
certain post-processing. We use the same hyper-parameter configuration that Petersen et al. 2019
used in their paper.

BSR Jin et al. 2020 have provided an official implementation of BSR; however, it is not continually
maintained and certain results from the paper cannot be reproduced properly through this repository.
We, therefore, use a third-party’s implementation for the experiments. For BSR, we use a uniform
prior for tokens in the library and a tree num K = 3.

GP We use GPLearn, an open-source Python genetic programming toolkit, for bench-marking SR
problems with GP. The specific parameters that I used are

SymbolicRegressor(population_size=5000 , const_range=(-1, 2),
generations=40 , stopping_criteria=0.001 ,
p_crossover=0.7, p_subtree_mutation=0.1,
p_hoist_mutation=0.05 , p_point_mutation=0.1,
max_samples=1, verbose=1, init_method="full",
parsimony_coefficient=0.01, random_state=0)

and the documentations is available here.

Computation resource We run the above experiments using NVIDIA’s Quadro RTX 6000 GPU
and Intel’s Xeon Gold 6242 CPU.
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https://github.com/dso-org/deep-symbolic-optimization
https://github.com/ying531/MCMC-SymReg
https://github.com/AutoResearch/autora-theorist-bsr
https://github.com/trevorstephens/gplearn
https://gplearn.readthedocs.io/en/stable/examples.html
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