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ABSTRACT

Real-world datasets frequently exhibit long-tailed class distributions alongside
noisy labels, posing compounded challenges for robust learning. While recent
methods have made progress, they often neglect the uneven impact of label noise
across classes, resulting in insufficient correction for tail classes. This imbal-
ance further introduces erroneous over-regularization on other classes, ultimately
undermining long-tailed learning. To address these challenges, we propose Class-
Adaptive Rectification with Experts (CARE), a parameter-efficient framework built
upon vision–language models, which performs class-aware label correction by
jointly leveraging three complementary sources of supervision: noisy observed la-
bels, text embeddings, and image features. CARE further employs a class-adaptive
Top-K expert consensus mechanism, which assigns smaller K to tail classes in
order to extract reliable candidate labels and recalibrate class frequencies. This re-
finement yields faithful class-frequency estimation, thereby enabling more reliable
long-tailed calibration. We evaluate CARE on CIFAR-100-LTN, mini-ImageNet-
LTN, and real-world datasets, including Food101N and WebVision-50. Across all
benchmarks, CARE consistently surpasses recent state-of-the-art methods, achiev-
ing up to 3.0% accuracy improvements in certain settings. The source code is
temporarily available at https://anonymous.4open.science/r/CARE-9F10.

1 INTRODUCTION

Deep learning models rely heavily on large-scale datasets that are not only accurately annotated but
also approximately class-balanced to ensure robust generalization (Menon et al., 2021). The rise
of large-scale foundation models in recent years has further amplified this demand for high-quality
labeled data (Dong et al., 2023; Li et al., 2024a), as insufficient label quality may introduce unintended
prior biases during training. However, such ideal conditions are rarely met in real-world scenarios.
Accurate labeling is often prohibitively time-consuming and labor-intensive, while data acquisition
pipelines inherently introduce imbalance due to varying collection difficulty across classes (De Angeli
et al., 2022; Hoyer et al., 2022). Rare or under-represented categories, often referred to as tail classes,
are particularly difficult to collect, leading to extreme data skew (Wang et al., 2017). Consequently,
real-world datasets are inherently challenged by the co-occurrence of pervasive annotation errors
(noisy labels (Xiao et al., 2015)) and extreme class imbalance (long-tailed distributions (Zhang
et al., 2023b)), which synergistically degrade model generalization and severely impair recognition
performance, especially on tail classes. When tackled separately, long-tail learning methods assume
clean labels and thus may amplify mislabeling in scarce tail classes, while noisy-label learning
methods assume roughly balanced classes and tend to discard noisy samples, thereby losing valuable
information in under-represented categories (Zhang et al., 2024).

To address the practical and pervasive challenge of learning from data with both label noise and
long-tailed distributions, the concept of long-tailed noisy label (LTNL) learning has recently been
introduced (Lu et al., 2023; Zhang et al., 2023a). Several recent studies have explored this joint
setting, with some methods incorporating long-tail characteristics into the noise detection process. A
common strategy involves first identifying noisy samples, followed by applying long-tailed learning
techniques (Yi et al., 2022; Zhang et al., 2023a). However, such sequential pipelines critically
depend on the performance of the specifically designed noise detectors, which are typically tailored
to either noise robustness or long-tailed data, limiting their effectiveness in addressing both issues
simultaneously. For example, Chen et al. (2025) propose a Robust Logit Adjustment (RLA), which
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(a) Ground-truth label distribution (GTLD).
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(b) Observed label distribution (OLD).
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(c) RLD 1 by class-agnostic LC.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Ground-truth

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Ground-truth Noise

0
100
200
300
400
500
600

0 10 20 30 40 50 60 70 80 90

Ground-truth Noise

0
100
200
300
400
500
600

0 10 20 30 40 50 60 70 80 90

Ground-truth Noise

target origin noise

Many FewMedium

Many Medium Few Many Medium Few

Many Medium Few

motivationc motivationd(d) RLD 2 by class-agnostic LC.

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Ground-truth

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

Ground-truth Noise

0
100
200
300
400
500
600

0 10 20 30 40 50 60 70 80 90

Ground-truth Noise

0
100
200
300
400
500
600

0 10 20 30 40 50 60 70 80 90

Ground-truth Noise

target origin noise

Many FewMedium

Many Medium Few Many Medium Few

Many Medium Few

motivationc motivationd(e) RLD 3 by class-aware LC.

Figure 1: Class-wise label distribution comparison on CIFAR-100. (a) shows the ground-truth
distribution with an imbalance factor of 10. (b) presents the distribution under 50% joint noise. (c–e)
show rectified label distributions (RLDs) obtained by different label correction (LC) methods.

first corrects the noisy labels and then leverages the refurbished label distribution for logit adjustment,
yet still relies on a class-agnostic label correction strategy. Moreover, most existing methods simplify
the problem by assuming a uniform noise rate across classes, ignoring the more realistic scenario
where tail classes tend to exhibit higher noise levels. Lu et al. (2023) take a more flexible view by
considering discrepancies between the observed and intrinsic class distributions, highlighting the
need for more flexible and class-aware solutions.

Table 1: Acc. (%) comparison across differ-
ent rectified labels.

Lable distribution NR Head Med. Tail All
GTLD (Figure 1(a)) 0 86.2 84.9 82.9 84.8
OLD (Figure 1(b)) 50% 79.6 79.9 78.8 79.5
RLD 1 (Figure 1(c)) 24% 80.6 79.7 78.2 79.6
RLD 2 (Figure 1(d)) 25% 77.0 76.5 77.0 76.8
RLD 3 (Figure 1(e)) 28% 81.4 80.9 80.2 80.9

Although class-agnostic label refurbishment methods
show promise in reducing overall noise, their effective-
ness under long-tailed scenarios is limited and can even
degrade performance in certain cases. In particular, we
preliminarily adopted the label correction strategy from
Chen et al. (2025), generating two rectified label distri-
butions under different hyperparameters, as illustrated

in Figure 1(c) and Figure 1(d). For comparison, we also present the ground-truth label distribu-
tion, the initial 50% joint noise distribution, and the CARE-refined class-aware label distribution in
Figure 1(a), Figure 1(b), and Figure 1(e), respectively. Fine-tuning CLIP with these three types of
noisy-labeled data yields the results shown in Table 1. Despite achieving similar overall noise rates
and significantly reducing label noise compared to the original noisy labels, the results reveal that
insufficient correction of tail-class labels (e.g., Figure 1(c)) yields limited performance gains (79.6%
vs. 79.5% ), or even leads to degradation, as seen in Figure 1(d) vs. Figure 1(b) (total accuracy
76.8% vs. 79.5%). The decline stems from inaccurate regularization introduced during long-tailed
learning. This observation shows that merely lowering the noise ratio is not sufficient, and class-aware
rectification is essential. In contrast, by emphasizing accurate tail label correction, RLD 3 (shown
in Figure 1(e)) ensures that the strong calibration induced by tail classes is meaningful, while the
weaker regularization from uncorrected head labels avoids over-regularization and/or over-calibration.
This class-aware strategy leads to more balanced supervision and improves overall robustness.

To this end, we propose a novel framework named Class-Adaptive Rectification with Experts (CARE)
for robust learning under long-tailed noisy label (LTNL) settings. CARE leverages three comple-
mentary sources of information, namely, observed labels, Vision-Language Model (VLM)-based
text embeddings, and VLM-based image features, to derive class-adaptive expert consensus for
robust label rectification. Without introducing additional parameters, CARE identifies low-noise
candidates through adaptive class-wise Top-K voting, where larger K values are used for head
classes and smaller K for tail classes to reflect their respective data abundances and reduce confir-
mation bias in underrepresented categories. The expert-consensus semantics are then dynamically
integrated into class frequency estimation, while low-confidence predictions are filtered through a
strict hierarchical filtering mechanism that enforces consistency across classes. This enables CARE
to produce reliable label distributions and perform effective noise correction. Our main contributions
are summarized as follows: 1) We identify that ignoring tail label noise, while significantly reducing
overall noise rate, fails to improve overall performance under long-tailed distributions. 2) We propose
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a parameter-free CARE framework that unifies noisy label correction and long-tailed calibration for
improved generalization. 3) We design a class-aware consensus mechanism that dynamically adjusts
correction confidence based on class frequency and inter-expert agreement. 4) Extensive experiments
on both synthetic and real-world LTNL benchmarks demonstrate that CARE consistently outperforms
state-of-the-art methods under various noise and imbalance settings.

2 PROPOSED METHOD

2.1 PRELIMINARIES

Basic Notations. Given a C-class classification problem, where the training set is denoted as
Dtrain = {(xi, ỹi)}Ni=1, with xi representing an input image and ỹi ∈ Ỹ being the corresponding
observed label. Due to annotation noise, the observed label set Ỹ may differ from the unknown
ground-truth label set y ∈ Y , and such discrepancies are regarded as noisy labels. Without loss of
generality, classes are indexed in descending order of sample frequency ni, i.e., n1 > n2 > . . . > nC ,
with n1 ≫ nC , characterizing the long-tailed nature of the data distribution. Throughout this paper,
subscripts are used to indicate sample or class indices.

Problem Analysis. In long-tailed noisy-label learning, the combination of sample scarcity and
annotation noise severely degrades tail-class performance (Sheng et al., 2024b). Existing methods
often apply class-agnostic corrections that fail to distinguish intrinsic uncertainty (from few samples)
and actual noise, leading to over-filtering of tail data and biased learning (Shu et al., 2025; Zhang
et al., 2023a; Lu et al., 2023). Moreover, long-tail rebalancing techniques may amplify the impact
of mislabeled tail samples (Menon et al., 2021; Li et al., 2023). These issues hinder both label
refinement and distribution calibration (see Appendix A for detailed analysis). We propose CARE
that refines noisy labels by computing high-confidence consensus across multiple experts. By
explicitly enhancing tail-class label reliability and disentangling class uncertainty from annotation
noise, CARE enables more accurate and robust long-tail distribution calibration.

2.2 METHOD OVERVIEW.

CARE integrates three complementary sources of information to estimate reliable class distributions:
1) Text Expert (TE). A CLIP-based text encoder (Radford et al., 2021) predicts class confidences
from the semantic description of each label (no additional fine-tuning). 2) Image Expert (IE). A
CLIP-based image encoder generates visual-semantic class confidences for each input image, fine-
tuned via AdaptFormer (Chen et al., 2022) for downstream tasks. 3) Observed-label expert is
referred to as Base Expert (BE). BE utilizes the original (noisy) annotations, which nonetheless
retain valuable class-indicative information. CARE aggregates class-wise confidence scores from all
three experts using a relevance-weighted strategy to compute a consensus distribution. This yields
a refined label distribution that simultaneously 1) down-weights unlikely noisy assignments in tail
classes, 2) preserves high-confidence head-class labels, and 3) approximates the true underlying class
frequencies. The resulting corrected labels exhibit substantially reduced noise rates and a distribution
closer to the intrinsic (clean) data distribution. Finally, standard long-tail calibration (e.g., logit
adjustment (Menon et al., 2021)) can be applied.

2.3 COMPOSITION OF PARAMETER-FREE EXPERTS

This approach integrates signals from three distinct experts (text, image, and observed-label), leverag-
ing their complementary strengths to identify high-confidence candidate classes, rather than relying
on a single source.

Text Expert (TE). We leverage the text encoder of a pre-trained VLM, such as CLIP (Radford
et al., 2021), to embed each class label into a shared visual-semantic space and obtain {tc}Cc=1. This
encoder captures rich prior knowledge from large-scale pre-training and aligns textual semantics with
visual representations. By computing the similarity between embedded label texts and image features,
the model can estimate class-wise confidence scores without requiring additional fine-tuning. This
allows TE to provide robust semantic guidance and highlight potentially correct classes, unaffected by
the corrected observed labels. For an input image x1, TE provides the confidence vector pTE = {pTE

c }
based on the cosine similarity between the general image feature f̂ (extracted from the pretrained

1We omit subscript notation for clarity.
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image encoder) and the corresponding text features tc:

pTE
c =

exp(zTE
c )∑C

j=1 exp(z
TE
j )

, with zTE
c = s · t⊤c f̂

∥tc∥∥f̂∥
, (1)

where s is the scale parameter. The softmax-normalized similarity yields a semantic prior over class
labels based purely on text-image alignment, without additional fine-tuning.

Image Expert (IE). The image expert is derived from the fine-tuned CLIP image encoder, which
produces task-adapted visual representations f for each input image x. To enhance adaptability to
the downstream tasks while maintaining efficiency, we adopt AdaptFormer (Chen et al., 2022) for
parameter-efficient fine-tuning. It is worth noting that this fine-tuning is performed solely for the
final classification purposes, and the resulting adapted image encoder is reused for label correction
without introducing additional training objectives. IE provides the confidence vector pIE = {pIE

c } by
the similarity between f and the class-specific weights wc of the linear classifier W:

pIE
c =

exp(zIE
c )∑C

j=1 exp(z
IE
j )

, where zIE
c = s · w⊤

c f

∥wc∥∥f∥
. (2)

IE leverages the fine-tuned visual representation tailored to the target domain and serves as a byproduct
of the main training pipeline. It remains parameter-free during the expert consensus phase.

Observed-Label Expert (BE) The observed-label expert, namely the base expert, relies directly on
the original (potentially noisy) label annotations. Despite their unreliability, these labels still contain
valuable supervision, especially for head classes that contain a large number of accurate labels. BE
treats the observed label as an indicator of class assignment and serves as a complementary weak
signal in the consensus-building process. The observed label ŷ is represented as a one-hot confidence
vector pBE = {pBE

c }, where only the ŷ-th entry is set to 1.

2.4 CLASS AWARE EXPERT CONSENSUS ACCUMULATION

To address the limitations of class-agnostic label refurbishment, particularly its inability to differenti-
ate between head and tail class noise, we introduce a class-aware expert consensus mechanism. We
adopt a consensus strategy that accumulates class-wise support across experts, effectively refining the
label distribution with an awareness of class frequency.

Class Aware Expert Consensus. To evaluate the reliability of the observed label, we first identify
the top-K most confident predictions from both TE and IE:

T ∗
K = TopK(p∗), (3)

where ∗ ∈ {TE, IE}, p∗ denotes the confidence scores from the respective expert. To improve
robustness against noisy labels and long-tailed class distributions, we introduce a class-adaptive
Top-K consensus mechanism. The number of top predictions considered, K is adaptively determined
based on the frequency of each class. Specifically, classes with higher sample counts (head classes)
are assigned larger K, while those with fewer samples (tail classes) are assigned smaller K, allowing
the model to allocate trust more appropriately across the class spectrum. Formally, the class-specific
K is defined to be proportional to the class frequency: Kc ∝ ne

c, where ne
c denotes the sample count

for class c at epoch e. At the initial stage (e = 0), n0
c is computed based on the observed labels. For

e > 0, ne
c is updated using the corrected labels from the previous training epoch.

Class Frequency Accumulation. Let F ∈ RC denote the frequency accumulation vector for x. For
each candidate class c ∈ {1, . . . , C}, we update F as:

F(e)
c = F(e−1)

c + δc=ỹ ·
(
I[c ∈ T TE

K ] · wTE + I[c ∈ T IE
K ] · wIE

)
+ I[c ∈ T TE

K \ {ỹ}] · pIEc + I[c ∈ T IE
K \ {ỹ}] · pTE

c + pBE
c ,

(4)

where e represents the current epoch. δc=ỹ is the Kronecker delta function. pIEc and pTE
c are the

confidence scores for class c from IE and TE, respectively (set to zero if c /∈ T TE
K or T IE

K ). The
expert-specific cumulative weights are defined as:

wIE = 1−
C∑

j=Kc+1

pIEj , wTE = 1−
C∑

j=Kc+1

pTE
j . (5)
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Figure 2: Overview of CARE. Different colors in the label denote classes, and intensity reflects
confidence. ① illustrates expert consensus (TE and BE agree on Top-1 of TE). The top-1 confidence
of TE that is refined by removing unlikely classes is assigned to the consensus class (blue). Top-2
and Top-3 confidences, lacking consensus, are individually accumulated. ② depicts a no-consensus
case, where each expert contributes confidence to their top predictions.

If the observed label appears among the top-K confidences of either expert, it is considered likely
to be clean. In this case, we suppress the contribution of classes with low confidence (i.e., those
less likely to be correct) and accumulate the remaining confidence scores as frequency evidence for
the observed class. Conversely, if the observed label is absent from both top-K confidences of the
experts, we treat it as potentially noisy and only accumulate the confidence scores corresponding to
the top predicted categories of the experts.

Noisy Label Correction and Long-Tail Calibration. In the dynamic accumulation process, the
dynamically rectified label of sample x is obtained from the accumulated class frequency distribution
in each round and is used for model supervision. Let yr,(e) be the corrected label at epoch e:

yr,(e) = argmax
c

F(e)
c . (6)

Based on the rectified labels, we can recount the distribution of labels n
r,(e)
c for class c that are

relatively closer to the ground-truth label distribution:

nr,(e)
c =

N∑
i=1

I(yr,(e) = c), c = 1, 2, . . . , C, (7)

where I is the indicator function. The rectified label distribution can be used in conjunction with
various long-tail learning methods, for example, the logit adjustment (LA) loss (Menon et al., 2021)
for optimization:

LLA

(
x; yr,(e) = c

)
= − log

exp
(
zIEc + log P̂(yr,(e) = c)

)
∑C

j=1 exp(z
IE
j + log P̂(yr,(e) = j))

, (8)

where P̂(yr,(e) = c) denotes the rectified class prior probability that is derived based on Equation (7).

The label correction for a single input image in CARE, which is performed jointly during training, is
illustrated in Figure 2. The overall training algorithm is summarized in Algorithm 1 in Appendix B.

2.5 RATIONALE ANALYSIS

Noise Suppression via Expert Consensus. Multi-expert Top-K consensus naturally suppresses noisy
labels by leveraging agreement among experts. Since the true labels are more likely to consistently
appear in Top-K predictions across each expert, while random noisy labels are not, this mechanism
acts as a robust filter, similar in spirit to ensemble-based noise suppression (Lee & Chung, 2020).
Formally, we state:
Theorem 1 (Reliability Amplification via Class-aware Expert Consensus). Let pTE and pIE be
conditionally independent, and assume the expected confidence on the true class y is higher than any
other class:

E[pTE
y ] > E[pTE

c ], E[pIE
y ] > E[pIE

c ], ∀c ̸= y. (9)
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Then, for a class-specific Top-Kc consensus set, the probability of both experts including y is
significantly higher than for any noisy label c ̸= y:

Pr(y ∈ T TE
Kc
∩ T IE

Kc
)≫ Pr(c ∈ T TE

Kc
> T IE

Kc
). (10)

Proof Sketch. Since both experts assign higher expected confidence to the true label y than any noisy
label c ̸= y, the chance of y being jointly included in the Top-Kc sets of both experts is much higher
than for any incorrect class. This amplifies the reliability of true labels through consensus.
A formal proof is provided in Appendix C. Theorem 1 yields the consensus-driven denoising effect:

Corollary 2 (Consensus-Based Label Refinement). By aggregating the consensus votes over training,
the method constructs a frequency matrix aligned with clean labels. As training progresses ( e
increases), correct consensus increasingly dominates F(e)

y in Equation (4), leading to a bootstrapped
denoising that iteratively improves label quality.

The above corollary leads to the following implications.

Remark 1. (Implications of Consensus-Based Label Refinement).
• Independent expert consensus suppresses high-confidence noise.
• Aggregated over time, consensus acts as a robust voting that progressively corrects noisy labels.

Class-Adaptive Top-K Balances Head-Tail Confidence. CARE adaptively adjusts the number of
top-K candidates per class based on estimated class frequency. Tail classes, with limited data and
unstable predictions, require stricter consensus to suppress noise-induced interference. In contrast,
head classes benefit from relaxed consensus due to concentrated confidence and sufficient supervision.
This design introduces the following theoretical advantage.

Proposition 3 (Tail-Class Consensus Robustness). For any tail class c with low ne
t , selecting a

smaller Kt improves the expected consensus precision compared to a global K:

E[Precision@Kt] > E[Precision@K], for K > Kt. (11)

The proof is provided in Appendix D. Theorem 3 yields the following practical implications.

Remark 2. (Implications of Class-Aware Consensus).
• The class-aware consensus mechanism offers theoretical robustness for tail-class prediction under

noisy and imbalanced conditions.
• The adaptive Kc accounts for class imbalance, more flexibility for head classes and conservative

consensus for tail classes while preventing spurious head-class candidates from dominating tail-
class decisions, ensuring a discriminative and class-sensitive consensus.

• As training progresses and labels are refined, yr becomes increasingly aligned with the true class
distribution, reinforcing supervision and long-tailed bias calibration, especially for rare categories.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP AND BASELINE METHODS

Datasets. Synthetic Datasets: We evaluate CARE on both synthetic and real-world long-tailed noisy
label datasets following Lu et al. (2023) and Zhang et al. (2023a). For the synthetic dataset, we
construct a long-tailed noisy-label version of CIFAR-100 (Krizhevsky et al., 2009) (CIFAR-100-LTN)
by subsampling its training set to follow an exponential class distribution with a predefined imbalance
factor (IF ), and then injecting symmetric, asymmetric, or joint noise at a predefined noise rate
(NR), following the protocol in Zhang et al. (2023b). Real-world Noise: The WebVision-50 (Li
et al., 2017) with inherent long-tailed distributions and noisy labels is adopted as real-world noise.
Following SSBL2 (Zhang et al., 2024), we subsample Food101N (Lee et al., 2018) into three different
long-tailed noisy datasets by the IF of 20, 50, and 100 with inherent noise as real-world noise. For
mini-ImageNet (Jiang et al., 2020), we create a long-tailed version via exponential subsampling and
inject real-world web noise, forming ImageNet-LTNr (abbreviated as Img-LTNr).

Implementation Details. We adopt CLIP (Radford et al., 2021) ViT-B/16 as the backbone and
Adaptformer (Chen et al., 2022) as the fine-tuning strategy. The model is trained for 20 epochs on all
datasets with a batch size of 128 using SGD (initial learning rate 0.01, momentum 0.9, weight decay
5× 10−4). The computer resources for the experiments are provided in Appendix E.
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Table 2: Top-1 acc. (%) on CIFAR-100-LTN with joint noise. Res32 and Res18 are abbreviations for
ResNet-32 and PreAct ResNet18, respectively.

Dataset CIFAR-100-LTN
Imbalance Factor 10 100
Noise Ratio 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
CE 48.5 43.3 37.4 32.9 26.2 31.8 26.2 21.8 17.9 14.2
LDAM-DRW (Cao et al., 2019) 54.0 50.4 45.1 39.4 32.2 37.2 32.3 27.6 21.2 15.2
NCM (Kang et al., 2020) 50.8 45.2 41.3 35.4 29.3 34.9 29.5 24.7 21.8 16.8
MiSLAS(Liu et al., 2022) 57.7 53.7 50.0 46.1 40.6 41.0 37.4 32.8 27.0 21.8
Co-teaching (Han et al., 2018) 45.6 41.3 36.1 32.1 25.3 30.6 25.7 22.0 16.2 13.5
CDR (Xia et al., 2020) 47.0 40.6 35.4 30.9 24.9 27.2 25.5 22.0 17.3 13.6
Sel-CL+ (Li et al., 2022d) 55.7 53.5 50.9 47.6 44.9 37.5 36.8 35.1 32.0 28.6
RoLT (Wei et al., 2021) 54.1 51.0 47.4 44.6 38.6 35.2 31.0 27.6 24.7 20.1
RoLT-DRW (Wei et al., 2021) 55.4 52.4 49.3 46.3 40.9 37.6 32.7 30.2 26.6 21.1
HAR-DRW(Yi et al., 2022) 51.0 46.2 41.2 37.4 31.3 33.2 26.3 22.6 19.0 14.8
RCAL (Zhang et al., 2023a) 57.5 54.9 51.7 48.9 44.4 41.7 39.9 36.6 33.4 30.3
ECBS-Res32 (Li et al., 2024b) 58.4 55.6 53.8 52.8 51.2 41.6 40.7 38.5 37.1 35.5
ECBS-Res18 (Li et al., 2024b) 63.6 62.3 60.1 58.2 55.3 45.6 44.8 43.0 39.9 39.1
CLIP (zero-shot) 64.4 64.4 64.4 64.4 64.4 64.4 64.4 64.4 64.4 64.4
CLIP+CE 82.1 81.3 80.1 78.8 77.2 71.0 69.2 67.8 66.5 63.8
CLIP+CE w. CARE (ours) 82.4 81.7 81.0 79.8 78.6 71.5 70.5 69.4 67.9 65.4
CLIP+LA (Shi et al., 2024) 84.0 83.0 82.4 80.8 79.5 80.5 79.1 77.4 76.6 75.3
CLIP+RLA* (Chen et al., 2025) 83.9 83.0 82.5 81.4 80.7 74.0 72.3 71.0 69.2 66.7
CLIP+LA w. CARE (ours) 83.9 83.5 83.0 81.9 80.7 80.7 79.8 78.5 77.5 76.7

Table 3: Top-1 Acc. (%) on CIFAR-100-LTN with
IF = 10 under symmetric and asymmetric noise.

Dataset CIFAR-100-LTN
Noise Type Symmetric Asymmetric
Noise Ratio 0.4 0.6 0.2 0.4
CE 34.5 23.6 44.5 32.1
LDAM (Cao et al., 2019) 31.3 23.1 40.1 33.3
LA (Menon et al., 2021) 29.1 23.2 39.3 28.5
IB (Park et al., 2021) 32.4 25.8 45.0 35.3
DivdeMix (Li et al., 2020) 54.7 45.0 58.1 42.0
UNICON (Karim et al., 2022) 52.3 45.9 56.0 44.7
MW-Net (Shu et al., 2019) 32.0 21.7 42.5 30.4
RoLT (Wei et al., 2021) 42.0 32.6 48.2 39.3
HAR (Yi et al., 2022) 38.2 26.1 48.5 33.2
ULC (Huang et al., 2022) 54.9 44.7 54.5 43.2
TABASCO (Lu et al., 2023) 56.5 46.0 59.4 50.5
ECBS (Li et al., 2024b) 56.7 48.1 60.5 52.1
CLIP zero-shot 64.4 64.4 64.4 64.4
CLIP+CE 78.8 74.5 79.3 64.4
CLIP+CE w. CARE (ours) 80.3 77.2 80.3 67.5
CLIP+LA (Shi et al., 2024) 80.5 76.0 80.1 68.2
CLIP+RLA* (Chen et al., 2025) 80.9 77.0 80.6 69.3
CLIP+LA w. CARE (ours) 81.5 79.2 80.8 70.5

Compared Methods. We compare CARE
with three groups of methods: Long-tail
(LT) learning: LDAM (Cao et al., 2019),
NCM (Kang et al., 2020), MiSLAS (Liu
et al., 2022), LA (Menon et al., 2021), and
influence-balanced loss (IB) (Park et al.,
2021). Noisy label (NL) learning: Co-
teaching (CT) (Han et al., 2018), Men-
torNet (Lu et al., 2018), CDR (Xia et al.,
2020), ELR+ (Liu et al., 2020), MoPro (Li
et al., 2021), NGC (Wu et al., 2021),
Sel-CL (Li et al., 2022d) DivideMix (Li
et al., 2020), and UNICON (Karim et al.,
2022). Long-tailed noisy label (LTNL)
learning: MW-Net (Shu et al., 2019),
ROLT (Wei et al., 2021), HAR (Yi et al.,
2022), ULC (Huang et al., 2022), H2E (Yi
et al., 2022), TABASCO (Lu et al., 2023),
RCAL (Zhang et al., 2023a), ECBS (Li
et al., 2024b), SSBL2 (Zhang et al., 2024)
and RLA (Chen et al., 2025).

3.2 MAIN COMPARISON RESULTS2

Comparison Results on Synthetic LTNL Datasets. We evaluate CARE on CIFAR-100-LTN under
joint, symmetric, and asymmetric noise (see Tables 2 and 3). Standard LT or NL learning methods
outperform CE, as they address class imbalance or label noise, respectively. LT methods benefit
tail class learning by leveraging estimated class priors from observed labels, while NL methods
mitigate noise through instance selection or loss correction. LTNL methods, tailored to address both
challenges, achieve better overall results. Recent methods like RCAL, TABASCO, and RLA yield
robust performance, but degrade under noise rates and severe class imbalance. For example, RCAL
drops to 30.3% under joint noise with IF = 100 and NR = 50%, while TABASCO reaches only
50.5% under asymmetric noise (IF = 10, NR = 40%). In contrast, CARE consistently outperforms
both LT/LN methods and prior LTNL methods, especially under challenging settings. For example,
on CIFAR-100-LTN, our method achieves 76.7% under joint noise (IF = 100, NR = 50%) and
79.2% under symmetric noise (IF = 10, NR = 60%), surpassing CLIP+LA by 1.4% and 3.2%,
respectively. Compared to CLIP+RLA, CARE further improves accuracy by 10.0% and 2.2% under

2Entries marked with * use our CLIP-based re-implementation; best results are in bold.
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Table 4: Top-1 Acc. (%) on
Img-LTNr with NR of 0.4.

Dataset Img-LTNr

Imbalance Factor 10 100
CE 31.5 31.5
DivdeMix 49.0 34.7
UNICON 41.6 31.1
MW-Net 40.3 31.1
RoLT 24.2 16.9
HAR 38.7 31.3
ULC 47.1 34.8
TABASCO 49.7 37.1
ECBS 50.8 36.9
CLIP zero-shot 54.0 54.0
CLIP+CE 83.4 80.5
CLIP+CE w. CARE 84.6 81.5
CLIP+LA 83.7 80.8
CLIP+RLA* 84.0 79.9
CLIP+LA w. CARE 84.4 81.9

Table 5: Top-1 Acc. (%) on
WebVision-50 (WV50).

Train Webvision-50
Test WV50 IMG12
CE 62.5 58.5
Co-teaching 63.6 61.5
MentorNet 63.0 57.8
ELR+ 77.8 70.3
MoPro 77.6 76.3
NGC 79.2 74.4
Sel-CL+ 80.0 76.8
RCAL+ 79.6 76.3
ECBS 80.0 76.1
CLIP zero-shot 62.0 62.0
CLIP+CE 84.2 83.5
CLIP+CE w. CARE 84.7 83.6
CLIP+LA 85.1 84.3
CLIP+RLA* 85.0 84.2
CLIP+LA w. CARE 85.3 83.8

Table 6: Top-1 Acc. (%) on
Food101N with raw noise.

Dataset Food101N
Imbalance Factor 20 50 100
LA 64.2 48.7 46.4
ELR+ 58.6 49.0 44.1
DivideMix 64.0 54.7 52.6
DivideMix-LA 71.5 63.7 59.0
DivideMix-DRW 64.2 54.0 53.7
MW-Net 56.7 47.4 41.9
HAR-DRW 54.1 48.3 41.8
H2E 70.4 63.7 58.7
SSBL2 74.4 69.1 63.7
CLIP zero-shot 69.0 69.0 69.0
CLIP+CE 81.3 76.9 72.6
CLIP+CE w. CARE 81.6 79.0 75.2
CLIP+LA 84.8 84.4 83.7
CLIP+RLA* 84.1 82.2 77.2
CLIP+LA w. CARE 85.3 84.6 84.1
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Figure 3: Noise rate dynamics during train-
ing of different class splits.

Table 7: Ablation study on CIFAR-100-LTN

BE TE IE NR (%) ACC (%)
✓ 50.0 78.7
✓ ✓ 50.0 78.7
✓ ✓ 50.0 78.7
✓ ✓ ✓ 27.8 80.3

Table 8: Analysis of three experts

Head Med. Tail All
BE NR ↓ (%) 36.0 56.9 72.8 50.0

CARE NR ↓ (%) 18.1 33.3 53.3 27.8
BE ACC ↑ (%) 83.4 79.1 72.3 78.7

CARE ACC ↑ (%) 81.8 81.1 77.3 80.3

the same settings. It is also worth noting that while RLA is designed to enhance LA in noisy
and imbalanced scenarios, it may occasionally underperform LA, particularly under severe noise
conditions, possibly due to class-agnostic label refurbishment. For a more detailed comparison,
Appendix F further examines how CARE improves the performance of existing ResNet backbones.
Comparison Results on Real-world Datasets. Table 4, Table 5, and Table 6 report the comparative
results on three real-world datasets. As shown in Table 4, our method achieves the highest top-1
accuracy on Img-LTNr under both moderate (IF = 10) and severe (IF = 100) imbalance. Notably,
CARE consistently improves performance when integrated with CE or LA, surpassing existing
methods such as DivideMix, ECBS, and CLIP+RLA. Besides, Appendix G analyses why CE loss
outperforms the LA loss in an imbalance factor of 10. In Table 5, CARE achieves the highest
accuracy (85.3%) on the WebVision test set and maintains competitive performance on ImageNet,
demonstrating strong robustness to real-world noise and large-scale data. On Food101N (Table 6),
our method achieves superior accuracy across all IF . In particular, it outperforms CLIP+RLA
by a large margin under severe imbalance (e.g., +6.9% at IF = 100) and further improves upon
CLIP+LA by up to +0.4%, indicating its complementary effect in refining label adjustment in noisy
long-tailed scenarios. These results verify the effectiveness of CARE in enhancing noise tolerance
and representation learning, especially under realistic and challenging long-tailed distributions.

3.3 FURTHER ANALYSIS

Evolution of Class-Level Noise During Training. As illustrated in Figure 3, the class-level noise
rates on the CIFAR-100-LTN dataset (50% joint noise, IF = 10) decrease markedly as training
progresses. After the second epoch, both overall and noise rates across classes of varying sample
sizes drop sharply and then stabilize, offering increasingly reliable supervision. This trend provides
increasingly accurate supervision for model training. Remarkably, despite having fewer clean samples,
tail classes benefit greatly from CARE and achieve noise rates comparable to head classes, showing
its effectiveness in correcting noisy labels even under severe imbalance.
Effectiveness of Expert Collaboration. The ablation results in Table 7 verify the individual
contributions of each component (BE, TE, IE), where full integration yields a substantial performance
gain (+1.6%) and significantly lowers the noise ratio from 50.0% to 27.8%. Removing either TE or
IE leads to no improvement in accuracy or noise reduction, indicating that collaborative consensus

8
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among the experts is crucial. Further breakdown in Table 8 shows that CARE not only reduces noise
more effectively across all class splits (especially tail: from 72.8% to 53.3%), but also achieves
higher accuracy for tail classes (+5.0%) compared to the baseline expert (BE). These results validate
the design of CARE and its ability to enhance both label quality and generalization in long-tailed
noisy settings. Interestingly, while CARE improves tail performance, head class accuracy slightly
decreases. This trade-off arises from the stronger regularization effect imposed by logit LA on head
classes, which is further reinforced by the improved label reliability of tail classes under the proposed
consensus mechanism. Appendix H provides complementary visual analysis for the ablation study.
Appendix I further analyzes cumulative frequency-based correction with varying BE weight, and
Appendix J shows ablation results for different forms of K (top-K predictions).

4 RELATED WORK

Noisy Label Learning Noisy label learning can generally be categorized into three groups: noisy
sample separation, label correction, and noise regularization. To separate noisy samples, various
metrics have been explored, including loss values (Lu et al., 2018; Han et al., 2018; Li et al., 2020),
logit values (Pleiss et al., 2020), Jensen-Shannon divergence (Yao et al., 2021; Karim et al., 2022),
and the distance between sample features and class prototypes (Ji et al., 2024). For label correction,
many methods aim to revise noisy annotations. For example, partial label learning (Sheng et al.,
2024a; Wang et al., 2022; Feng & An, 2019) assumes each training instance is associated with a
candidate label set that contains the true label. PLS (Albert et al., 2023) further incorporates the
confidence of the corrected labels. Other methods estimate the noise transition matrix (Yao et al.,
2020; Cheng et al., 2022; Lin et al., 2024) to infer the label most likely to be correct. In terms of
noise regularization, several strategies have been proposed to reduce the influence of noisy labels.
These include re-weighting training examples (Ren et al., 2018; Liu & Tao, 2015) and designing
noise-robust loss functions, such as backward and forward loss correction (Patrini et al., 2017), gold
loss correction (Hendrycks et al., 2018), MW-Net (Shu et al., 2019), and Dual-T (Yao et al., 2020).

Long-Tailed Noisy Label Learning Several recent studies have been proposed to address the
compounded challenges arising from the coexistence of noisy labels and unbalanced/long-tailed data.
A common strategy is to identify and separate clean and noisy samples. For example, CNLCU (Xia
et al., 2022) enhances the small loss method (Han et al., 2018) by designating a subset of samples with
large losses as clean. TABASCO (Lu et al., 2023) addresses a complex scenario where noisy labels
may cause an intrinsic tail class to appear as a head class, proposing a bi-dimensional separation
metric to adapt to different cases. SSBL2 (Zhang et al., 2024) separates noisy samples based on
model prediction confidence and loss values. Another line of work focuses on emphasizing the
importance of different samples by reweighting or regularization (Ren et al., 2018; Shu et al., 2019;
Cao et al., 2021; Wei et al., 2022; Jiang et al., 2022; Chen et al., 2025). Meanwhile, improving
representation learning (Zhou et al., 2022; Yi et al., 2022; Zhang et al., 2023a; Li et al., 2024b)
explores intrinsic feature-space structures to mitigate noise propagation. Despite their merits, these
methods underutilize the observed labels that implicitly contain weak but valuable information about
the underlying ground-truth. Additional discussion of long-tailed learning is provided in Appendix K.

5 CONCLUDING REMARKS

In this paper, we have demonstrated that simply rectifying noisy labels in a class-agnostic way
does not guarantee improved learning for tail classes, nor does it necessarily enhance overall model
performance. The challenge of correcting noisy labels in tail classes is even more pronounced due
to their inherent sparsity and underrepresentation. To address this, we propose the Class-Adaptive
Rectification with Experts (CARE) framework, which not only rectifies noisy labels in head classes
effectively but also focuses on the challenging task of correcting noisy labels in tail classes through
a class-aware expert-consensus strategy. This approach ensures more accurate label rectification
across all classes in various long-tailed noise scenarios, enabling the model to better capture the
representative features of each class and, ultimately, improving overall performance.

While CARE achieves consistent improvements, it requires maintaining class frequency distributions
during training, introducing extra memory overhead. Our future work will focus on optimizing
memory usage to reduce this cost while preserving efficiency. In addition, CARE has the potential to
integrate additional expert sources, such as image-aware experts from contrastive learning, to further
enhance label rectification and model performance. We also leave this as an avenue for future work.
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ETHICS STATEMENT

Our research focuses on enhancing the robustness of long-tailed noisy label learning with the proposed
framework, unlocking the significant practical potential of learning under noisy and imbalanced data
distributions. This work is both technical and practical, with direct applications to robust visual
recognition in long-tailed noisy label scenarios. We have carefully considered the potential societal
impacts and do not foresee any direct, immediate, or negative consequences. We are committed to
the ethical dissemination of our findings and encourage their responsible use.

REPRODUCIBILITY STATEMENT

All results in this work are reproducible. We provide an anonymous link in the abstract, which
contains all the code necessary for reproduction, along with the requirements needed to set up the
environment. The experimental settings are detailed in Section 3.1, including implementation details
such as the dataset setup and model configuration. Information on the computational resources is
provided in Appendix E.
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APPENDIX: CLASS-AWARE RECTIFICATION WITH EXPERTS FOR ROBUST
LONG-TAILED NOISY LABEL LEARNING

A DETAILED PROBLEM ANALYSIS FOR LONG-TAILED NOISY-LABEL
LEARNING

In long-tailed noisy-label learning, performance degradation on tail classes arises from the compound-
ing effects of intrinsic uncertainty due to sample scarcity and extrinsic uncertainty caused by label
noise. We denote the observed label ỹ as a noisy version of the ground-truth label y, sampled from a
corruption distribution η(y | ỹ). Due to long-tailed distribution, the number of samples per class nc

varies greatly, with nc ≪ nh for tail (c ∈ T ) and head (h ∈ H) classes, respectively.

We summarize the core challenges as follows:

Class-Agnostic Label Correction. Take the label correction methods (Han et al., 2018; Li et al.,
2020; Lienen & Hüllermeier, 2024; Baik et al., 2024) as an example, noise-robust methods rely on a
global confidence threshold τ :

Dclean = {(xi, ỹi) | max
c

p(c | xi) > τ}. (12)

However, for tail classes (c ∈ T ), the estimated confidence p(c | x) tends to be lower due to fewer
samples:

E[p(c | x)] ∝ nc. (13)

Thus, using a class-agnostic τ results in the disproportionate rejection of valid tail samples.

Confusion Between Uncertainty and Noise. Let σ2
c = Var[p(c | x)] denote prediction variance for

class c. Tail classes often have higher σ2
c , yet this uncertainty is mistaken as noise:

Uncertainty(x) = 1−max
c

p(c | x). (14)

High Uncertainty(x) does not always imply label corruption for tail samples. This leads to erroneous
filtering:

Pr[ỹi = yi | Uncertainty(xi) > δ]≫ 0, for c = ỹi ∈ T . (15)

Amplified Mislabeling Impact via Rebalancing. Reweighting or logit adjustment methods amplify
loss from under-represented classes:

L(xi, ỹi) = αc · ℓ(f(xi), ỹi), αc ∝
1

nc
. (16)

However, since noisy label rate ρc is typically higher for tail classes:

ρc = Pr(ỹ ̸= y | y = c), ρc ↑ as nc ↓, (17)

which leads to over-calibration driven by incorrect labels from tail classes.

Summary. Due to the imbalance in confidence, variance, and noise rate, class-agnostic correction
and rebalancing strategies result in:

1) Over-filtering of clean tail samples,
2) Retention of confident noisy head labels,
3) Amplification of noise-induced gradient bias in tail classes.

To address this, our proposed CARE computes a class-specific confidence consensus that leverages
semantic priors and adjusts to category frequency, thereby disentangling class uncertainty from
annotation noise and enabling effective distribution refinement.

B ALGORITHM FOR CARE

The training procedure for CARE is outlined in Algorithm 1.
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Algorithm 1 Class-Aware Rectification with Experts

Require: Training set D = {xi, ỹi}, pre-trained model
Ensure: Fine-turned model

1: Initialize {yr,(0)i }Ni=1 ← {ỹi}Ni=1, candidate count vector F ∈ RN×C ← {pBE
i }Ni=1, class

frequency n
r,(0)
c =

∑N
i=1 δ(ỹi = c), fine-turning module ϕ.

2: for e = 1 to E do
3: Kc ← f(ne

c), where f(∗) is monotonically increasing function , for example, f(x) =⌊
(x)1/4

⌋
.

4: T TE,(e)
i ← TopK(pIE

i |Kc), T IE,(e)
i ← TopK(pTE

i |Kc)

5: Update F
(e)
i for xi according to Equation (4)

6: y
r,(e)
i ← argmaxc F

(e)
i

7: Update n
r,(e)
c according to Equation (7)

8: Compute the final loss L using {xi, y
r,(e)
i } and {nr,(e)

c }Cc=1.
9: Update ϕ by ϕe+1 = ϕe − α · ∇L

10: end for

C PROOF OF THEOREM 1

Proof. We decompose the probability of consensus on class y as follows:

Pr(y ∈ T TE
Kc
∩ T IE

Kc
) = Pr(y ∈ T TE

Kc
) · Pr(y ∈ T IE

Kc
). (18)

Assuming pTE and pIE are conditionally independent. Under the assumption that y has the highest
expected confidence:

E[rank(y)] < E[rank(c)], ∀c ̸= y. (19)

Since Kc ∝ ne
c, frequent (head) classes are allowed higher Kc, which increases:

Pr(y ∈ T ∗
Kc

) =

Kc∑
k=1

Pr[rank(y) = k]. (20)

Top-K inclusion probability increases with Kc. For a noisy label c ̸= y, the probability that both
experts place it in Top-Kc is:

Pr(c ∈ T TE
Kc

) · Pr(c ∈ T IE
Kc

)≪ Pr(y ∈ T TE
Kc

) · Pr(y ∈ T IE
Kc

), (21)

as c is not favored in expectation. Consequently,

Pr(y ∈ T TE
Kc
∩ T IE

Kc
)≫ Pr(c ∈ T TE

Kc
∩ T IE

Kc
). (22)

D PROOF OF THEOREM 3

Proof. We aim to show that for any tail class t with low sample frequency ne
t at epoch e, using a

smaller class-specific Top-K value Kt yields higher consensus precision compared to using a larger
K.

Notation

- Dt: the set of all samples belonging to tail class t.

- E: the set of experts.

-Rm(x,K): Top-K classes predicted by expert m for input x, i.e.,

Rm(x,K) := TopK(zm).

Define

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

- Pt(K): Total number of times class t appears in the Top-K predictions across all experts and all
samples. - Tt(K): Total number of correct Top-K predictions for class t, i.e., predictions on samples
from Dt where t ∈ Rm(x,K).

Then the consensus precision for class t under Top-K is defined as:

ConsensusPrecisiont(K) :=
Tt(K)

Pt(K)
.

Proof Sketch

Step 1 Larger K increases false positives for tail class t.

When K is large, each expert includes more classes in its Top-K predictions. Since tail class t has
low sample frequency, the probability of t appearing in the Top-K of a sample **not** from class t
(i.e., a false positive) increases. Thus, Pt(K) grows faster than Tt(K).

Additional Observation: Saturation of correct predictions vs. growth of false positives

For each sample from class t, at most |E| experts can correctly include t in their Top-K, so:

Tt(K) ≤ |E| · |Dt|.

This term is upper-bounded and cannot increase indefinitely. In contrast, as K increases, the number
of samples from other classes that mistakenly include t in their Top-K grows significantly, leading to
a rapid increase in:

Pt(K)− Tt(K) (false positives).

Step 2: Smaller K suppresses the inclusion of t on non-t samples.

Reducing K limits the number of classes per prediction, which reduces the chance of incorrectly
including rare class t in the predictions for other classes. This slows the increase of Pt(K) while
preserving most of Tt(K) for confident cases, thus improving:

ConsensusPrecisiont(K) =
Tt(K)

Pt(K)
.

Step 3 For tail classes, Pt(K) contains more noise under large K.

Let ϵt(K) denote the expected proportion of false positives in Pt(K). For tail classes, as K increases:

ϵt(K) :=
Pt(K)− Tt(K)

Pt(K)
↑,

indicating more of the Top-K inclusions of t are incorrect. Thus:

ConsensusPrecisiont(K) = 1− ϵt(K) ↓ .

Conclusion To mitigate noisy inclusions and preserve precision for rare classes, a smaller class-
specific Kt should be adopted for tail class t:

ConsensusPrecisiont(Kt) > ConsensusPrecisiont(K), for Kt < K.

E COMPUTATIONAL RESOURCES

To ensure a fair comparison, all the experiments are executed on the following hardware: Intel (R)
Xeon (R) Gold 5220, operating at 2.20GHz, equipped with 251GB RAM, and a single NVIDIA
GeForce RTX 3090 GPU with 24 GB of memory.
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Table 9: Accuracy (%) Comparison of CARE (with ResNet + GloVe) on CIFAR100-LTN.

Datasets/Methods without CARE with CARE
CIFAR100_IF100_NR50 (Joint Noise) 45.4 47.0
CIFAR100_IF10_NR40 (Symmetric Noise) 61.0 63.4
CIFAR100_IF10_NR50 (Joint Noise) 58.9 61.1
CIFAR100_IF10_NR60 (Symmetric Noise) 52.3 56.2

Table 10: Accuracy (%) Comparison of CARE (with TABASCO) on CIFAR100-LTN

Datasets/Methods without CARE with CARE
CIFAR100_IF10_NR20 (Asymmetric Noise) 59.39 60.32
CIFAR100_IF10_NR40 (symmetric Noise) 56.52 57.20

F COMPARISON RESULTS ON RESNET BACKBONE

For supplementary analysis, we evaluate the setting where the image expert is implemented with
a ResNet backbone, and the text expert is based on GloVe embeddings (Pennington et al., 2014).
The experimental results of ResNet + GloVe (Pennington et al., 2014) embeddings are presented
as Table 9. Despite using less powerful models, CARE still surpasses the base model, demonstrating
its generalization ability. CARE corrects noisy labels through a consensus mechanism that leverages
the discrepancy among the predicted label distributions of different experts. Rather than depending on
the absolute performance of IE or TE, CARE benefits from the diversity in their predictions, ensuring
that even when the experts are relatively low-performing, as long as their outputs differ meaningfully
from BE, the consensus mechanism remains effective. This robustness is also demonstrated in Table 4
to Table 6, where the zero-shot performance of CLIP (used as IE in our method) varies significantly,
by up to 15% (54.0% vs. 69.0%) across two real-world datasets. Despite this large performance gap,
CARE consistently achieves strong results on both datasets, maintaining accuracy above 80%, which
highlights its ability to leverage expert disagreement rather than relying on expert strength alone.

In addition, we conduct experiments with TABASCO (Lu et al., 2023), a long-tailed noisy label
learning method that uses ResNet as backbone. As shown in Table 10, CARE improves the perfor-
mance of TABASCO under different noise ratios. These results indicate that the performance gains
are not solely attributable to the backbone but arise from the core design of CARE, which effectively
integrates complementary expert signals to perform robust label correction and tail-aware calibration.

Table 11 reports the performance of the CLIP ResNet backbone in our experiments. These improve-
ments are achieved within just 20 training epochs on noisy label data. The effectiveness of CARE
does not rely on the absolute accuracy of a single expert. Instead, it is driven by the discrepancy
among expert predictions. By comparing the cumulative frequency of predicted labels across different
experts, CARE identifies and corrects potential noisy labels when there is sufficient disagreement with
the base expert. Therefore, even when the auxiliary experts provide relatively inaccurate predictions,
their diversity still provides meaningful signals for correction.

G ANALYSIS OF CE AND LA LOSS IN THE RESULTS ON MINI-IMAGENET

In the results on mini-ImageNet with an imbalance factor of 10, CE loss outperforms the LA loss. An
imbalance factor of 10 means that the sample size of the head classes is ten times that of the tail classes.

Table 11: Accuracy Comparison (%) of CARE (with CLIP ResNet backbone).

Datasets/Methods without CARE with CARE
CIFAR100_IF100_NR50 (Joint Noise) ACC: 53.3 NR: 42.4 ACC: 53.8
CIFAR100_IF10_NR20 (Asymmetric Noise) ACC: 63.7 NR: 17.1 ACC: 64.1
CIFAR100_IF10_NR40 (Asymmetric Noise) ACC: 52.4 NR: 38.3 ACC:53.2
CIFAR100_IF10_NR60 (Symmetric Noise) ACC: 56.5 NR: 49.8 ACC: 57.5
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Table 12: Analysis of CE and LA loss in the results on mini-ImageNet.

Loss
Class Group

Head Tail

CE 87.3 81.2
LA 81.7 85.2

However, mini-ImageNet is a relatively balanced and moderately sized dataset, and even under this
level of imbalance, the tail classes still retain a reasonable number of training examples, typically in
one hundred. This relatively sufficient amount of data for tail classes allows the model to generalize
reasonably well across both head and tail classes when trained with the CE loss. Consequently, the
disparity in classification performance between head and tail classes is not particularly severe, and
the CE loss can maintain strong overall performance without introducing bias toward any specific
subset of classes. Besides, LA explicitly modifies the logits during training to favor underrepresented
classes by incorporating class prior distributions into the loss function. While this reweighting helps
improve the performance on tail classes, it does so by effectively downscaling the contributions of
head classes. In settings where the imbalance is mild and tail classes already have adequate data to
learn from, this shift in focus can lead to overcompensation. As a result, the performance of head
classes degrades significantly, overshadowing the marginal gains seen in tail-class accuracy. This
trade-off ultimately leads to a decline in overall performance when using LA compared to CE. For
the results on mini-ImageNet with an imbalance factor of 10, we provide the accuracy of head and
tail classes as Table 12.

H COMPLEMENTARY ANALYSIS OF CARE COMPONENTS
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Figure 4: Noise Rate Evolution across CARE Components.

Figure 4 complements Table 7 (in Section 3.3) by illustrating how the label noise ratio evolves across
epochs. It further demonstrates that a single expert alone is insufficient to alter the base expert (BE).
Since the confidence scores from the image expert (IE) and text expert (TE) remain consistently below
1. Consequently, their individual contributions to the frequency accumulation vector F (defined in
Equation (4)) are insufficient to surpass the accumulated support from BE. The single expert cannot
accumulate enough frequency to override BE and induce label correction Collaborative voting among
multiple experts for robust label refinement is necessary.

I ANALYSIS OF CUMULATIVE FREQUENCY-BASED CORRECTION WITH
VARYING BE WEIGHT

To further clarify the core mechanism of our correction strategy, which relies on cumulative frequency
comparison, we analyze the case where the BE weight is set to 1. In this setting, correcting noisy
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Table 13: Effect of Expert Combinations on Noisy Label Correction (BE Weight = 0.5, Symmetric
Noise). NR denotes Noise Rate after correction.

Datasets
Methods

BE+TE BE+IE

CIFAR100_IF10_NR50 NR: 31.8 ACC: 79.8 NR: 29.3 ACC: 79.7

labels in BE requires the cumulative frequency of predictions from IE and TE to exceed that of the
noisy labels in BE. As shown in Table 7 (in Section 3.3), neither IE nor TE alone can accumulate
sufficient clean signals to achieve this correction. We then conducted additional experiments with the
BE weight reduced to 0.5. The results in Table 13 demonstrate that, under this setting, either IE or
TE alone is sufficient to correct noisy labels and improve model performance.

J ABLATION ON THE FORM OF TOP-K PREDICTIONS

Table 14: Ablation Study on K (CIFAR-100-LTN, IF=100, 20%, Symmetric Noise).

K ACC (%)
CLIP+LA (baseline) 76.0
Step form (H:8 M:4 T:1) 76.5
Step form (H:8 M:3 T:2) 76.3
Step form (H:7 M:4 T:2) 76.4
Step form (H:8 M:4 T:2) 76.7
Step form (H:9 M:4 T:2) 76.9
Step form (H:8 M:5 T:2) 76.3
Step form (H:8 M:4 T:3) 76.6
Exponential form (Ki = n0.25

i ) 77.3
Logarithmic form (Ki = log(ni)) 77.3
Linear form 77.5

The K value for each class is proportional to the number of samples in that class. Specifically, it is
computed as the one-fourth power of the number of samples in that class. We empirically adopt this
power-law form as a practical choice. We also conducted ablation experiments on the calculation
form of the hyperparameter K, and the results are shown as Table 14. “H”, “T” and “T” refer to
Head, Medium, and Tail classes, and ni denotes the number of samples in class i. The linear form

is computed as Ki :=
ni − nmin

(nmax − nmin)
∗ (Kmax −Kmin) +Kmin. nmax and nmin represent the

maximum and minimum sample counts, which are set to 9 and 1, respectively. The experimental
results demonstrate that different forms of K, particularly those proportional to class frequency, yield
stable and improved performance.

K RELATED WORK OF LONG-TAIL LEARNING

Long-tailed learning methods typically assume that datasets are correctly labeled (Cui et al., 2019),
and adopt class-wise strategies that can be broadly categorized into four levels (Li, 2022; Shi et al.,
2024). Input level: These approaches manipulate the training data to enhance learning, including
re-weighting, re-sampling (Cui et al., 2019), and data augmentation techniques (Cubuk et al., 2019;
2020). Representation level: Methods at this level modify model training to decouple representation
learning from classifier learning, such as in decoupled training (Kang et al., 2020; Zhong et al., 2021)
and BBN-based approaches (Zhou et al., 2020; Zhang et al., 2021), where features are learned on
imbalanced data, followed by classifier retraining with class-balanced or reversed samples. Ensemble
strategies are also used, including redundant ensembles (Wang et al., 2021; Li et al., 2022a;b; Cai
et al., 2021) and complementary ensembling (Zhou et al., 2020; Cui et al., 2023), which leverage
diverse expert outputs or data partitions. Output level: These methods directly adjust model outputs
to model generalization and classifier performance. Logit adjustment (Menon et al., 2021; Ren et al.,
2020) re-scales predictions, while re-margining techniques (Cao et al., 2019; Li et al., 2023; Menon
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et al., 2021; Li et al., 2022c) assign class-dependent margins to promote better tail-class separation.
Gradient level: CCSAM (Zhou et al., 2023b) and ImbSAM (Zhou et al., 2023a) adapt Sharpness-aware
Minimization (Foret et al., 2021) to strengthen tail-class learning by adjusting gradient contributions
based on class frequency. GNM (Li et al., 2024a) introduces parameter-independent perturbations to
reduce head-class dominance during training.

DISCLOSURE OF LLM USAGE

In line with the ICLR 2026 policy, we acknowledge the use of large language models (e.g., ChatGPT,
DeepSeek) solely for grammar refinement and language polishing. Their use was strictly confined
to enhancing clarity and readability of the text. They were not involved in research conception,
methodological design, algorithm development, data collection or analysis, experimental procedures,
interpretation of results, or any component of the technical contributions. All scientific ideas and
contributions presented in this work are original to the authors.
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