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Abstract
Developing an educational test can be expen-
sive and time-consuming, as each item must be
written by experts and then evaluated by collect-
ing hundreds of student responses. Moreover,
many tests require multiple distinct sets of
questions administered throughout the school
year to closely monitor students’ progress,
known as parallel tests. In this study, we focus
on tests of silent sentence reading efficiency,
used to assess students’ reading ability over
time. To generate high-quality parallel tests,
we propose to fine-tune large language models
(LLMs) to simulate how previous students
would have responded to unseen items. With
these simulated responses, we can estimate
each item’s difficulty and ambiguity. We first
use GPT-4 to generate new test items following
a list of expert-developed rules and then apply
a fine-tuned LLM to filter the items based on
criteria from psychological measurements. We
also propose an optimal-transport-inspired
technique for generating parallel tests and show
the generated tests closely correspond to the
original test’s difficulty and reliability based
on crowdworker responses. Our evaluation
of a generated test with 234 students from
grades 2 to 8 produces test scores highly
correlated (r=0.93) to those of a standard test
form written by human experts and evaluated
across thousands of K-12 students.

1 Introduction

Developing an educational test can be resource-
intensive and time-consuming, as each item must
be written by experts and then evaluated by collect-
ing hundreds of student responses. This process
of evaluating items in terms of properties like dif-
ficulty and their ability to discriminate between
student abilities, known in psychometrics as item
calibration, is fundamental to test development.

Furthermore, schools often require the creation
of multiple, distinct test forms (a collection of
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Figure 1: Student test scores for human-generated
vs model-generated tests. Comparison of student
scores on a test form of item-response-simulator-filtered
language-model-generated items and a test form of
human-generated items for a sentence reading efficiency
test. The human-generated test form was designed by
experts and calibrated across thousands of K-12 stu-
dents; the AI test form was generated by GPT-4 and
filtered by our proposed item-response simulator.

unique items) administered throughout the aca-
demic year, allowing for close monitoring of stu-
dent progress while minimizing practice effects.
These test forms, designed to be content-equivalent
and reliably produce identical individual scores as
the original test form, are known as parallel tests.
Each step of the test development process, from
expert item writing to extensive item calibration
through large-scale data collection and ultimately
parallel test creation and validation, poses signifi-
cant demands in terms of resources and time. These
challenges emphasize the necessity for an auto-
mated and efficient test development framework.

In response to the challenge of item develop-
ment, many works have proposed leveraging lan-
guage models to generate items for educational as-
sessments and instruction (Agarwal et al., 2011;
Stasaski et al., 2021; Srivastava and Goodman,
2021; Heck and Meurers, 2022; Rathod et al., 2022;
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Figure 2: Method overview. We first train the simulator to predict a student’s response to a question conditioned on
their previous responses. Then, we generate new items and insert them into past tests for simulation. Finally, we
perform simulation and match the new items to an existing test. Note the simulation and generation models differ.

Zou et al., 2022; White et al., 2022). However, esti-
mating the relevance, quality, and difficulty of these
generated items and test forms is an open challenge
that must be carefully addressed for both psycho-
metric and NLP communities as well as stakehold-
ers in our education system. We propose an item-
response simulator, training LLMs with student
response data and simulating the responses of past
participants on new items in order to calibrate them.

As a case study, we apply this method to develop
and calibrate new items for a silent Sentence
Reading Efficiency (SRE) task (Burkhardt
et al., 2023), which we elaborate on in Section 2.
We then propose an optimal-transport-inspired
technique for generating parallel test forms with
the new items by referring to a well-calibrated
human-written test form. In doing so, we make the
following contributions:

1. We address a novel task of automated item
calibration for sentence reading efficiency, re-
quiring a model capable of predicting both
responses and response times.

2. We propose fine-tuning LLMs to estimate the
properties of unseen items by simulating how
past participants would have responded.

3. We demonstrate the effectiveness of marginal-
izing response-conditioned LLM predictions
over a distribution of past participants to esti-
mate their responses to new questions.

4. By automatically creating parallel test forms,
we deploy our system to K-12 education and
demonstrate its high quality through large-
scale (n = 234) student evaluation.

Overall, our work advances the measurement of
reading efficiency by introducing scalable methods
to generate test items. We address the novel task of
parallel test generation without collected responses

and approach parallel test construction with simu-
lated responses as relaxed optimal transport.

Children can be sad.
True (Response time: slow)

You sleep on a log.
False (Response time: slow)

[...]

Sweaters can be made of coal.
False (Response time: very slow)

You can feed a hamster.
False (Response time: very slow)

You can fill a balloon with air.

Figure 3: Example prompt used for training and simula-
tion. Given a prompt similar to this, the item-response
simulator predicts the relevant item parameters – in our
case, the student response and their log-response time.

2 Silent Sentence Reading Efficiency

How can we measure students’ reading abilities?
Oral Reading Fluency (ORF) is a widely used mea-
sure in research and practice, measuring words read
correctly per minute (Fuchs et al., 2001; Domingue
et al., 2022). Recently, researchers have examined
the relationship between oral and silent reading flu-
ency (Kim et al., 2011) and shifted focus to silent
reading, as it is the most common form of read-
ing for K-12 students. However, given the lack
of observable verbal responses, it is a more chal-
lenging measurement task. Our task, silent Sen-
tence Reading Efficiency (SRE), is an online, self-
administrated measure assessing the speed with
which a student can read simple English sentences
(Burkhardt et al., 2023). Modeled after other stan-
dardized silent reading fluency measures such as
Test of Silent Reading Efficiency and Comprehen-
sion (TOSREC) (Johnson et al., 2011; Kim et al.,
2012), SRE requires students to read sentences and
respond whether each is True or False, which we
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Figure 4: Factors affecting reading efficiency scores. (left) the relationship between each participant’s total score
and their response accuracy, (right) and their median response time in log scale. This indicates that response time
is a more important factor that contributes to reading efficiency than accuracy. Note that the response times of
participants with similar accuracy (e.g., >0.95) vary substantially and predict total scores.

refer to as the item truth value (see Fig. 3). A
student responds to as many sentences as they can
within three minutes, and the final score is the num-
ber of correctly answered sentences minus incor-
rectly answered ones. Unlike TOSREC, SRE tar-
gets reading efficiency with less emphasis on read-
ing comprehension. This complicates item develop-
ment, requiring syntactically and semantically sim-
ple sentences with only vocabulary that all school-
age students should be able to read and understand.

We focus on SRE for three reasons. First, from
an educational perspective, there is a high demand
from schools to closely monitor students’ reading
development. Thus, it is important to develop
diverse parallel test forms with identical difficulty
and reliability. Manually authoring thousands of
items and collecting the data to match test forms is
extremely time-consuming and resource-intensive.
Second, from a psychological measurement
standpoint, SRE is a task where both accuracy
and response time are crucial in determining
ability. This characteristic does not align well
with classic psychometric models, such as Item
Response Theory (Lord, 1980), which focus on
accuracy. Third, of particular relevance to the NLP
community, measuring sentence-level reading
fluency rather than comprehension poses a novel
challenge, as traditional readability metrics and
linguistic features fail to predict fluency accurately.

3 Training Dataset

We collect student data from 1st grade to high
school by working closely with more than 30 di-
verse school partners in the United States for two
school years (See Fig. 5 for breakdown by grade
level). All data is collected under IRB guidelines.
As part of the SRE validation study (Burkhardt
et al., 2023), each student completed two 3-minute
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Figure 5: Dataset grade distribution. The grade distri-
bution of students in the dataset discussed in Section 3,
based on the grades they reported through the SRE app.

blocks with different test forms: one with TOSREC
grade-specific sentences (maximum number of
items varies by grade, but less than 70), and the
other the Lab test form, consisting of 130 sentences
curated by two human experts through an itera-
tive design process. After filtering students with
response times indicative of random guessing (me-
dian response times under 500 ms; n = 108), the
final fine-tuning dataset includes 1962 participants
with 183,782 responses. Fig. 4 indicates that the
total score (i.e., the reading efficiency) of each stu-
dent is more correlated with their median response
time than how accurately they respond to each ques-
tion, which underscores the importance of incor-
porating response time modeling to capture item
difficulty during the item calibration process.

4 Methods

4.1 Item Generation

We use GPT-4 (OpenAI, 2023) to generate diverse
sentences through zero-shot prompting and avoided
giving specific examples. We first generate univer-
sally true sentences (temperature = 1, six comple-
tions, with at most 5000 tokens generated) and then
transform each true sentence into a corresponding



false sentence by asking the model to change 1 or
2 verbs, nouns, or adjectives. After several rounds
of iteration, we developed the following prompt —
each rule after the third was added iteratively in
response to observed failure cases:

Generate 150 sentences.
Rules:
1) The sentences have different length

between 3 to 15 words.
2) 1st grade students should be able to

read and understand the sentences.
3) Use only Kindergarten and high

frequency vocabulary words to
generate the sentences.

4) Make sure that each sentence is a
sentence stating a universal fact
that is immediately , obviously true.

5) If humans are used as the subject in
a sentence , make sure it states a
life experience that is true for
everyone.

6) The sentence should not require any
inferential comprehension skills to
read nor understand.

7) The sentences should not be
subjective nor describe opinions.

8) The sentences should not be centric
to any country nor culture.

9) The sentences should be very diverse.

Excluding unexpected generation output (e.g.,
blank strings) and exact duplicates, this prompt
gave us 761 true sentences. However, we found it
generated few long sentences even though “3 to 15
words” was specified, so we prompted the model
to generate an additional 100 sentences with an ad-
ditional rule specifying “at least 10 words in each
sentence.” We then used a prompt to transform
each true sentence into a corresponding false sen-
tence: Transform each of the following sentences
into false sentences by changing 1 or 2 verbs,
nouns, or adjectives, and the sentences should
be universally false. Ultimately, this produced a
corpus with 861 true and 861 false sentences.

4.2 Item Evaluation
For training, we fine-tuned an LLM to predict stu-
dent responses conditioned on previous responses,
which we refer to as an item-response simula-
tor. We train on a manually authored, anonymized
corpus of 1,962 participants collected by the lab,
ranging from 1st grade to adulthood, containing
response times and responses (i.e., true or false),
described in Section 3. Specifically, each train-
ing example consists of a randomly-selected subset
of a sampled participant’s responses, which are
arranged in random order. The model was then
trained to predict the response and response time
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Figure 6: Generated item simulated parameters. We
visualize the probability that the simulator assigns to
a “true” student response for the GPT-4 generated sen-
tences, colored by whether they came from the “true” or
“false” set. For many “false” sentences scored as true,
GPT-4 generated a sentence with the wrong truth value.

of the final item, conditioned on the previous items,
as visualized in Figure 3. In our final model con-
figuration, we use Low-Rank Adaptation (LoRA)
(Hu et al., 2022) on a 13-billion parameter LLaMA
model (Touvron et al., 2023) with 8-bit weights
(Dettmers et al., 2022a,b) and a substantial 0.5
dropout on the adapter layers and final layer to miti-
gate overfitting. We include more detail on hyperpa-
rameters considered in Appendix E and discuss all
differences between the hyperparameters used for
the crowdworker and school student evaluations.

To apply this model for evaluating new items,
we sampled previous participants and insert the
generated item as the final item in a randomly
sampled subset of their responses. Then, aggregat-
ing over many sampled participants per item, we
calculate a mean and standard deviation response
time for each sentence, as well as the expected
proportion of simulated responses that were true
or false for each sentence. Figure 6 visualizes the
probabilities and response times simulated by the
item-response simulator for the generated items,
aggregated over a hundred sets of sampled student
responses. Crucially, modeling the probabilities
allows the simulator to identify ambiguous items
– items for which a nontrivial percent of responses
are expected to be incorrect. In Figure 6, false
items with higher probabilities and true items
with lower probabilities are more ambiguous. We
include a qualitative analysis in Appendix A.2.

4.3 Parallel Test Form Construction

We first simulate student responses to both the
lab test form and the generated items and try to
identify a set of generated items that corresponded
well to the lab test form. However, it is important



to be able to generate multiple distinct test sets –
schools require multiple distinct parallel test forms
to be administered throughout the year. A naive
strategy would greedily pair the most similar items
and then remove them when selecting new items
for an additional test. But, this would ensure that
successive tests would be gradually less similar to
the original test and cannot ensure diverse items
in each test. Instead, we duplicate the lab test form
once per desired parallel test and find the best
pairing between the lab and generated items. This
is an unbalanced, constrained optimal transport
problem, which we solve as follows: we first
assign each duplicated lab item a probability of
corresponding to a generated item, with no prob-
ability of true items being paired to false items and
a term subtracted from the logits proportional to
the distance between the lab and generated items.

We then minimize 1) the expected distances be-
tween the lab items and their paired generated items
in the selected parameters (i.e., simulated response
time), 2) the semantic similarity (over a threshold)
within each copy of the dataset, and 3) the probabil-
ity that the same generated item would be selected
multiple times. This is a non-convex optimization
problem, but by initializing the logits to reasonable
initial values (e.g., logits proportional to distance),
we found that the resulting simulated optimized
tests converged and corresponded closely to the
parameters that our model simulated for the lab-
generated items. Figure 11 visualizes these simu-
lated scores across two simultaneously generated,
distinct test sets, as well as the ambiguous set of
items for reference when optimizing for both accu-
racy and response time. Precisely, we sum over:

ℓdistance =
d∑

a=1

n∑
i=1

m∑
j=1

PaijDaij , (1)

ℓreuse =
d∑

a=1

d∑
b=1

m∑
i=1

m∑
j=1,j ̸=i

Pa·i · Pb·j , (2)

ℓcosine =
d∑

a=1

n∑
i=1

n∑
j=1,i ̸=j

PaiCijPaj , (3)

for P ∈ Rd×n×m, D ∈ Rn×m, C ∈ Rn×n where
n is the number of generated items and m is the
number of lab test form items, and d is the number
of test copies to optimize. P is the probability
that a lab test form item will be mapped to a given
generated item, D is the pairwise distance between
the lab and generated item parameters, and C is the
semantic similarity between generated items.

Note that we only apply the optimal transport al-
gorithm in crowdworker experiments, as the aim of
the school student evaluation is primarily to demon-
strate the usefulness of the item-response simulator
in a collaborative setting, with more detail on the
human-in-the-loop filtering included in Section 5.3.
However, in future school deployments, we will use
this algorithm, allowing us to jointly handle multi-
ple optimization criteria. Because of the human-in-
the-loop filtering setup, it was necessary to instead
perform deduplication separately for the school stu-
dent evaluation, discussed in Appendix C. We dis-
cuss implementation details further in Appendix E,
and the full pipeline in Figure 2.

4.4 Additional Filtering

For the crowd-worker experiments, we filter the
dataset for safety using GPT-4, discussed in Ap-
pendix D. For the school experiment, we manually
review the questions for safety and ambiguity out of
an abundance of caution and responsibility to pro-
vide high-quality items, discussed in Section 5.3.

5 Evaluations

5.1 Model Evaluation

Experimental design. For our computational
model evaluation, we primarily validated our model
by evaluating its ability to generalize to a random
subset of 10% of the items in the dataset described
in Section 3, not used for training. As also done
for simulation, for each training example, we con-
catenated a subset of one student’s responses to
items they responded to, arranged in random or-
der, visualized in Figure 3. We exclude the student
response for the last item and fine-tune the model
to predict it. As a detail, we also found that bin-
ning the input text corresponding to the student
response times as “very fast”, “fast”, “medium”,
“slow”, or “very slow” based on their quantile of
overall data reduced overfitting. We believe this
may reduce the model’s ability to correlate specific
sets of millisecond-level response times with stu-
dent responses. Note that we calculated the bins
based on the overall response time distribution be-
cause the variance across questions in the training
dataset was much smaller than the variance across
students. We include further item-level analysis for
both the generated items and the item-response sim-
ulator’s evaluations of these items in Appendix A.

Results. On our evaluation dataset, we find
our simulator’s item-aggregated predicted response



times are well-correlated with the item-aggregated
true response times, with a correlation coefficient
(r) of 0.50, and correspondingly, an r2 of 0.25, and
for predicted vs. actual aggregate probabilities, we
found r = 0.76 (r2 = 0.58) with a 25.4% RMSE.

5.2 Crowdworker Evaluation

Experimental design. Since school-aged students
must be provided with carefully vetted tests with
human supervision, we aim to utilize crowdworker
evaluation to address questions that cannot be rea-
sonably obtained through student evaluation alone:

1. Can the parallel AI test form (without any
human filtering) reliably produce identical to-
tal scores compared with the well-calibrated,
human-generated test form?

2. How well can the item-response simulator
identify ambiguous generated items, and do
these items actually challenge the reliability
of the SRE measure?

To answer these questions, we develop a new ver-
sion of the SRE task with three 3-minute blocks ran-
domly ordered: human-generated sentences (Lab
form), GPT-generated items filtered by the item-
response simulator (parallel AI form), and GPT-
generated items with ambiguous items identified by
the item-response simulator (ambiguous AI form).
To create the two AI-generated splits, we first di-
vide the generated items according to the median
accuracy of items in the training data and then fol-
low our construction method in Section 4.3 on the
unambiguous items and sample randomly for the
ambiguous items. We recruited 50 participants via
Prolific and paid ≈$15.00 per hour. 6 participants’
results were found either incomplete or random
guessing and were removed from the data analysis.

Results. The total score of each participant is
counted by the total correct responses subtracted
from the total incorrect responses. Figure 7 (top)
shows that the total scores produced by the parallel
AI test form achieve a high correlation (r = 0.92)
with the scores produced by the Lab form. In addi-
tion, the overall difficulty of the parallel AI form
is highly identical to the difficulty of the Lab form.
Figure 7 (bottom) suggests that the test form with
ambiguous AI items identified by the item-response
simulator correlates much less (r = 0.75) than the
parallel test form above. These comparisons sug-
gest the item-response simulator, without human in-
tervention, is able to flag unseen, ambiguous items
that actually challenge test reliability.
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Figure 7: Crowdworker scores. Comparison of scores
of Prolific participants on Lab test form with parallel AI
test form (top) vs. ambiguous AI test form (bottom).

5.3 School Student Evaluation

Experimental design. The school student evalua-
tion aims to answer three questions:

1. Can filtered GPT-generated items reliably pro-
duce identical total scores compared with
human-generated items?

2. Can the item-response simulator outperform
traditional readability metrics in predicting the
response time and difficulty of unseen items?

3. And qualitatively, what are some items that
the item-response simulator could predict well
and what are some that it couldn’t?

We use the item-response simulator to select the
optimal 130 GPT-generated true sentences and 130
false sentences, 260 items in total. Then, to ensure
the appropriateness of the test items for school-
aged children to read and test, the authors, who
are familiar with K-12 reading assessments, review
and remove items that were still ambiguous (20
items, e.g., “A hill is flat and square.”), could have
an inappropriate interpretation (4 items), dangerous
(2 items: “Babies drink gasoline.” or “Soap is for
eating.”), required too much world knowledge (4
items, e.g., “A brick is made from clay”) or are sub-
jective (1 item, “A doll can be fun to play with.”).
Note that, in this school experiment, for robustness
and out of concern for automation bias, we do not
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Figure 8: Response time predictions. Relationship between Flesch Kincaid grade vs. median response time (ms,
left) and model predicted response times vs. actual median response times (ms, right) on the school student study.

Table 1: Parameters for human-generated items (Lab
test form) and GPT-generated items with LLM and hu-
man filtering (AI test form). Accuracy and response
times are based on item-response simulator simulations.

Truth Mean Len (Words) Acc Median RT (ms) Std. RT (ms)

Lab False 6.13 0.860 2926 202
True 6.75 0.933 2691 392

AI False 5.02 0.872 2879 198
True 5.42 0.947 2477 223

automatically filter the potentially offensive sen-
tences as we do in the crowdworker experiments.

We then implement and deploy a new version
of the SRE task with 2 blocks: human-generated
sentences (Lab test form) and GPT-generated sen-
tences filtered by the item-response simulator ac-
cording to accuracy and response time (details in
App. E.3) and then human experts (AI test form).
234 students in grades 2-8 from a California public
school participated in this study, and three students
were removed from the analysis due to a median
response time under 500ms (i.e., random guessing).

In this version, students first see the human-
generated block with a maximum of 130 items.
Then, in the second block, students see 130
randomly-ordered GPT-generated sentences (from
an item pool of 200 filtered items). The overall pre-
dicted item parameters based on the item-response
simulator are shown in Table 1.

Results. There is a high correlation (r = 0.93)
in terms of total scores between the filtered AI test
form and the Lab form (Fig. 1). We also found that
the two test forms match closely in difficulty, al-
though we did not explicitly aim to match the iden-
tity line when creating the AI test form for schools.

In terms of predicting the unseen item param-
eters (accuracy and median response time), the
item-response simulator outperforms the Flesch
Kincaid method (Fig. 8) and accomplishes a task
that the traditional psychometric models (e.g., Item
Response Theory) cannot due to the unseen items
(Table 2) - however, we note that prior work has
attempted to model item difficulties using linear

Table 2: Model comparisons: prediction correlations
Accuracy Median RT (ms)

Item Response Theory NA NA
Flesch Kincaid -0.001 (-0.109, 0.106) 0.254 (0.149, 0.351)

Item-Response Simulator 0.316 (0.215, 0.410) 0.509 (0.427, 0.586)

logistic test model (Sonnleitner, 2008; Stenner,
2022) and estimate IRT parameters from text data
in other contexts (Ehara, 2018; Settles et al., 2020).

Fig. 9 showcases example items that are ac-
curately and inaccurately predicted by the item-
response simulator. Overall, the simulator can ef-
fectively screen difficult or ambiguous items.

6 Related Work

6.1 Item Generation

Earlier methods for the automatic item/question
generation include rule-based or template-based ap-
proaches (e.g., Mitkov and Ha (2003); Flor and Ri-
ordan (2018)) and attempts to adaptively generate
questions (Du et al., 2017). Additional work has fo-
cused on contexts in which generating high-quality
questions (e.g., math word problems) requires step-
by-step reasoning (Keller, 2021). In particular,
question generation for passage-based reading com-
prehension (Agarwal et al., 2011; Stasaski et al.,
2021; Heck and Meurers, 2022; Rathod et al., 2022;
Zou et al., 2022) and for teaching second languages
(Chinkina and Meurers, 2017; Srivastava and Good-
man, 2021) have been especially well-explored.

More recently, White et al. (2022) demonstrate
the effectiveness of using GPT-3 to create test
items comparable to gold standard TOSREC test
items for assessing reading fluency at first and
eighth-grade levels. However, their approach
still requires extensive human intervention and
human evaluation for real-world use. Specifically,
they demonstrate the feasibility of GPT-3 for
item generation but do not develop an approach
to calibrate items in terms of difficulty or filter
items that would function poorly in the real world.



Difficult for students but easy for the simulator.

False: Music makes people sleep.
True: People wear sunglasses in

sunlight.
True: Bananas are yellow when ripe.

Easy for students but difficult for the simulator.

False: Octopuses have two arms.
True: We use our stomach to digest food.
False: We wear belts to loosen pants.

Easy for both students and the simulator.

True: A turtle has a shell.
False: Books have pages with salsa.
True: Children play in the playground.

Difficult for both students and the simulator.

False: Stars are invisible at night.
False: Chairs have no legs.
True: Mushrooms grow in damp areas.

Figure 9: Example item difficulties as perceived by
students and by the item-response simulator.

Relatedly, Srivastava and Goodman (2021) fine-
tune a model to generate questions adaptively for
teaching reverse translation by predicting whether
a student will correctly complete a translation.
While their study is a seminal prior work, it is not
directly applicable to parallel test generation. First,
we require a fixed item bank that can be closely
reviewed before deployment because our items will
be given to children and because we cannot have
extra latency. Moreover, the best models for many
zero-shot item generation tasks cannot be fine-
tuned by the public, but prior work suggests that
small models can effectively validate much more
powerful models (Cobbe et al., 2021). Finally, we
focus on providing reliable assessment, while their
approach is only applicable to instruction.

6.2 Item Evaluation

Although item generation has broadly received
more attention from the NLP community than item
evaluation, there are several influential works in
this area, especially leveraging language models.
Language models have been used as a proxy for
reading, with prior work highlighting the limited
correlation between human and language model
readability: studies like Schwarm and Ostendorf
(2005) and Si and Callan (2001) demonstrate that
the perplexity of a language model is a powerful
indicator of the likelihood that a sentence is gen-
erated from a corpus of a given difficulty. These
works are also related to knowledge tracing, i.e.,

modeling student knowledge (Piech et al., 2015;
Abdelrahman et al., 2023). More recent studies,
such as Benzahra and Yvon (2019) and Martinc
et al. (2021), contrast this finding, noting that lan-
guage model perplexity and other statistical met-
rics were imperfect estimators of readability, but
metrics derived from them performed well across
datasets. Importantly, predicting reading fluency,
while naturally related to reading comprehension,
is a distinct and under-explored area.

6.3 Parallel Test Form Construction
The body of work on constructing parallel tests
spans decades (Armstrong et al., 1992, 1994; Gib-
son and Weiner, 1998; Sun et al., 2008; Ignjatović
et al., 2021). However, as most of these works point
out, identifying the optimal pairing is an NP-hard
problem. To circumvent this, the works often rely
on item selection heuristics. For example, Arm-
strong et al. (1992, 1994) calculate the degree to
which each item is correlated with the total test
score and then attempt to generate tests with simi-
lar expected distributions of final scores. Similarly,
Sun et al. (2008) uses a genetic algorithm to max-
imize the similarity in the expected information
gain of each item across a set of tests. In contrast,
we pose this as a relaxed optimal transport prob-
lem – we frame our optimization as a differentiable,
probabilistic relaxation of this underlying optimal
transport problem and solve it directly. This allows
us to incorporate other optimization criteria that are
important but rarely seen in parallel test literature,
such as item diversity and truth parity constraints.

7 Conclusion
Our study presents a new framework to generate
test items and select them according to their
effectiveness to assess students by leveraging large
language models and previous student responses.
We use silent sentence reading efficiency assess-
ment, a task with implications for the millions of
students who take such tests annually, to illustrate
the utility of this framework by generating new
test items, predicting the difficulty and ambiguity
of unseen items, and creating multiple parallel
test forms that have comparable quality and appro-
priateness to human-generated test forms as well
as remain appropriately difficult for students. We
ultimately validate our approach with a wide range
of evaluations, including more traditional machine
learning metrics, crowdworker evaluations, as well
as a real-world deployment in K-12 classrooms.



Limitations

While our case study demonstrates the effective-
ness of using large language models and previous
student responses, it carries several limitations:

Generalization to other types of tests and
questions: The framework presented in this case
study focuses primarily on assessing students’ read-
ing efficiency. However, we have not yet demon-
strated that our approach can easily generalize to
other kinds of tests and assessments. No aspect of
this approach is inherently dependent on the SRE
task, but more research is needed to investigate
the applicability of our methods to a wider range
of educational tests. Although multiple-choice
questions are not typically used in real-world silent
sentence reading fluency evaluation (Bloomquist,
2017), we believe with a comparable amount of
data, we could replicate this success for other test
formats such as multiple-choice questions.

Filtering and evaluation in school student
evaluation: Due to ethical considerations, certain
aspects of our study, such as automated filtering
of ambiguous or inappropriate items, could not be
deployed in the school student evaluation. Conse-
quently, the items in the school student evaluation
had to be carefully reviewed by experts before ad-
ministration. This highlights the need for more
robust and reliable methods for filtering and eval-
uating generated items in real-world educational
settings. Although we now have validation support-
ing the item-response simulator, deploying aspects
like automatic filtering will require further study,
not only to assess accuracy and sensitivity but also
to mitigate automation bias and risks.

Fine-tuning and data limitations: The item-
response simulator was fine-tuned on data collected
from diverse schools in the United States, but the
model is trained on a uniform distribution of these
students. However, the students whose responses
are used for training and simulation may differ
demographically from the schools to which the
tests are deployed. Thus, the model’s performance
in predicting item difficulty and ambiguity may
not generalize to all populations or school contexts.
Moreover, we have not quantified the degree to
which additional generated examples from GPT-4
continue to be novel – language models fine-tuned
using reinforcement learning from human feedback
(RLHF) are believed to suffer from mode collapse
(Zhu et al., 2023), so ensuring that generated items
continue to be meaningfully different is essential.

Reliance on closed and restricted LLMs: Our
study uses GPT-4 for generating and filtering test
items. However, access to GPT-4 may be expensive
if generating many thousands of items. In addition,
we fine-tuned LLaMA (Touvron et al., 2023), but
LLaMA’s license does not support commercial use.
As a result, the exact approach in this paper cannot
be applied in commercial contexts. Fortunately,
LLaMA replications are underway, and artifacts
have already been released (Geng and Liu, 2023).

Ethics Statement
There are naturally many ethical considerations
in the context of this work. First, all handling of
student data must be extremely careful and consid-
erate of the privacy of the students. In this work,
we have taken care to ensure that the data used is
not personally identifiable and that the data is used
appropriately. We have also acted in accordance
with the guidelines of our IRB. At all points, before
presenting data to humans, especially to children,
multiple rounds of review and analysis were per-
formed to ensure that the data was appropriate. The
value of our work is to largely reduce the burden
of the test creation and invite humans to act as the
final safeguards and experts to be responsible for
reviewing as few items as possible.

As for the ethical implications of the work itself,
there are several to consider. First, language mod-
els exhibit and potentially exacerbate biases that
are already present in society. Humans, of course,
also exhibit these biases, but by automating this
pipeline, we may reduce the possibility of human
intervention to correct for these biases. Second, the
ability to use language models in this context may
result in an emphasis on tests being developed that
are compatible with language models – however,
aspects like visual and phonetic information are
valuable for reading fluency evaluation and many
other tasks, and we should be mindful to avoid tai-
loring tests closely to language models’ strengths.

Finally, while the ability to efficiently generate
test items could lower the barrier to universal as-
sessment and lead to more equitable assessment
policies, it’s important to proceed with caution and
keep humans in the loop at each stage – particu-
larly when it pertains to educational assessment in
young children. Thus, as we begin implementing
AI-based assessment systems at scale, we advocate
for proceeding with caution, keeping educational
experts in the loop at each stage, and keeping an
eye toward equity as we strive for efficiency.
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A Model Analysis

A.1 Analyzing GPT-4-generated Sentences

GPT-4 and, more broadly, language models fine-
tuned based on human preferences have well-
known challenges with mode collapse – although
higher temperatures theoretically encourage diver-
sity, this training step causes models to be more
likely to express a single “modal” opinion (San-
turkar et al., 2023). We observed a similar pattern,
with a much higher degree of similarity across dif-
ferent instances of model generations as opposed
to across items within a single generation. This
was part of the motivation for encouraging the
model to generate many diverse sentences in a sin-
gle prompt instead of performing many indepen-
dent calls. The following were some of the highly
similar sentences that remained even after the item-
response-simulator-based filtering, as determined
by the sentence embedding model we used to filter
the sentences further:

A stove is for cooking food.
A stove is for cooking.

Fruit grows on trees and plants.
Fruits grow on trees and plants.

Cows give us milk to drink.
Cows give us milk.

A toothbrush cleans our teeth.
Toothbrushes clean our teeth.

Apples grow on apple trees.
Apples grow on trees.

A bicycle has two wheels.
A bike has two wheels.

Vegetables are good for our health.
Vegetables are healthy food.

Kites can fly in the sky.
Kites fly in the wind.

A boat floats on water.
A boat goes on water.

Ice cream is cold and sweet.
Ice cream is cold.

Toothpaste cleans our teeth.
Toothpaste helps to clean teeth.

A.2 Analyzing item-response-simulator
Predictions

We observe several interesting patterns in our
item-response simulator, especially in combination
with GPT-4. For example, as mentioned in
Figure 6, many of the truest “false” sentence
sentences generated by GPT-4 were, in reality, true
and many of the least false or most uncertain “true”
sentences were in fact somewhat ambiguous. Note
this trend was particularly pronounced for the sup-

posedly “false” sentences, where the item-response
simulator determined that the following sentences
were the least false (excluding repeated sentences)
– most are at least arguably true:

[Keys lock doors. Ducks honk and fly.
Boats sink in water. We bake food
in ovens. A farmer eats food. Rain
falls from the ground. Shadows form
in darkness. We cut food with
spoons. Umbrellas are used to keep
us wet during rainstorms. Sailboats
have a sail to avoid the wind and
stay still on the water. Lightning
comes after thunder. Water is
frozen. Ants are large insects that
can carry heavy loads and work
together. We eat when we are full.
People use tools to break things. A
shirt uncovers our body. Buses take
us places slowly. Families swim
together. Autumn leaves stay on
trees. Blankets help keep you cold.
A bathtub releases water. A nap
makes us tired.]

The mistake of making an explicitly, unambigu-
ously incorrect truth judgment was not an observed
failure case for generated “true” sentences: for
these sentences, the model was unlikely to gen-
erate something outright false and more likely to
generate something ambiguously true or only sub-
jectively true. For example, the following true ex-
amples were the ones where the model was most
uncertain - many of them contain statements that
are not universally true, confusing, or difficult to
assign a truth value. The following “true sentences”
were among the ones where the model was least
certain of the student response:

1. “Foxes are orange and fast..” Foxes come in a
variety of colors and fast is subjective.

2. “A hill is small and round..” Relative to moun-
tains, sure, but this is not universally true.

3. “Clocks have twelve numbers.” What about
digital clocks and 24-hour clocks?

4. “The moon changes shape..” The moon ap-
pears to change shape in the sky, but it does
not actually change shape.

5. “Dolphins are not fish..” While true (disregard-
ing folk taxonomy), this is clearly a world-
knowledge-heavy question.

6. “Rice grows in water..” Again, this requires
an unreasonable amount of world knowledge.

B Preliminary Crowdworker Study

We performed an initial crowdworker study where
we performed our optimization to match each copy
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Figure 10: Preliminary crowdworker study results.
Results from the preliminary crowdworker study. While
the unfiltered items matched the difficulty more poorly
than the filtered items, we incorporated these observa-
tions when constructing our main crowdworker study.

of the lab dataset to a generated item in terms of
both accuracy and response time. We observed
that the difficulty did not perfectly match that of
the lab dataset, as represented by the identity line,
although it corresponded much more closely than
the unfiltered dataset. When comparing the ground
truth data to the predictions, the cause of this was
clear: the few lab items that the model identified as
ambiguous were substantially less ambiguous than
predicted. However, for the generated items, they
were actually ambiguous. This transformed false
negatives into true negatives in the dataset, harming
performance. As a result, for our final prolific
study and for the school evaluation, we filtered by
the median accuracy but did not optimize it when
matching generated and lab items.

Figure 10 shows both filtered and unfiltered test
forms correlate well with the lab test form. How-
ever, there are important caveats: first, prolific par-
ticipants represent a substantial distribution shift
for the model which was trained primarily on K-12
students – they performed far better on average;

second, we found that the difficulty of the filtered
corpus matched the lab corpus far more.

C Naive Deduplication

After training these models and validating that
their predictions appeared reasonable, we filtered
the items to include only ones where the predicted
response time was closest to the trendline relating
sentence length (in words) to response time.
We further filtered them by predicted accuracy,
selecting only the ones that the model was most
confident students would answer correctly (in
particular, we chose the top 200 true and false
sentences). Finally, we used sentence embeddings
generated for each sentence by the “paraphrase-
mpnet-base-v2” model to select the most similar
pairs of sentences (in terms of absolute cosine
distance, to also capture sentences that were
similar in meaning but opposite in truth value)
(Reimers and Gurevych, 2019). If the sentences
had the same truth value, we would remove one at
random. If they were different, we would remove
the one corresponding to the majority class. This
ensured we were left with a roughly equal number
of both true and false sentences, with 260 in total.

However, this carried a limitation: by dedupli-
cating before selecting items, we may eliminate
potentially good items. By deduplicating after se-
lecting items, we must anticipate the proportion of
items that must be deduplicated in advance. Moti-
vated partly by this, we then explored techniques to
simultaneously optimize semantic similarity along-
side test set quality in a less heuristic way.

D Additional Filtering

To remove potentially inappropriate items for
classroom settings, we further prompt GPT-4 to
evaluate the appropriateness of their own gen-
eration (with temperature = 0.1, and at most
1000 tokens generated). Note that this was
only used for the crowdworker experiments –
for the school student evaluation, we performed
this filtering manually out of an abundance
of caution. We use the following prompt:
Return the following true or false

sentences if it is potentially
offensive or dangerous for children
to read.



E Implementation Details

E.1 Item Evaluation
We explored various training methods, includ-
ing Low-Rank Adaptation (LoRA) (Hu et al.,
2022) on a model using 8-bit weights (Dettmers
et al., 2022a,b), optimizing only a subset of the
weights represented as an additive term (a matrix
constructed as the product of two vectors that
is added to the original linear layer weights).
We also explored training a linear head on top
of a pre-trained model - initially, we used the
mean of the final hidden state embeddings, but
later observed that this underperformed, as the
considered models were autoregressive and the
prediction is only possible from the final example,
and not the participant-specific few-shot examples.
Instead, we used the final example’s final hidden
state, which performed better. Each training
example corresponds to a subset of a sampled
participant’s responses – however, when we
simulate responses to an item for evaluation, we
sample many participants, predict their responses
to the new item, then aggregate the predictions.

For initial exploration, we primarily explored
a variety of Open Pre-trained Transformer (OPT)
language models with between 125 million and
6.7 billion parameters (Zhang et al., 2022). For
the final implementation, we primarily considered
LLaMA models, varying from 7 billion parameters
to 65 billion parameters (Touvron et al., 2023).
The largest model we fine-tuned with LoRA had 13
billion parameters and the largest model we used
with a linear classifier had 65 billion parameters,
leveraging four 40GB A40 GPUs. In practice,
we found that these largest models were too slow
for our purposes, ultimately using a 13-billion
parameter LLaMA model.

We ultimately selected a constant learning rate
of 2e−5 with a batch size of 32 sets of items, in-
cluding a random sample of up to 30 student item-
response pairs (fewer only if the student responded
to fewer items). We use Low-Rank Adaptation
(LoRA) (Hu et al., 2022) on a model using 4-bit
weights (Dettmers et al., 2022a,b, 2023), optimiz-
ing only a subset of the weights. We trained our
model for 600 steps, each of which contained 32
items, with gradient accumulation over a batch size
of 4. Training the model required approximately 6
hours, while simulating all of the GPT-generated
items with 100 previous participants required ap-
proximately 24 hours.
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Figure 11: Test form item distribution comparison.
Simulated response time and accuracy distributions for
generated test forms.
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Figure 12: Item information comparison. Item infor-
mation based on 2-parameter logistic IRT.

E.2 Parallel Test Form Construction

We perform our optimization over each item-pair’s
logits with Adam with a learning rate of 0.1 and
evaluate item similarity using the absolute cosine
similarity between their sentence embeddings from
SentenceTransformers’s paraphrase-mpnet-base-v2

(Reimers and Gurevych, 2019), disregarding items
with absolute similarity below 0.5. Note that we
initially attempted to use Feydy et al. (2019)’s dif-
ferentiable optimal transport library, geomloss, but
unbalanced problems require a reach hyperparam-
eter to be specified, and we found that no reach
works across all points. Figure 11 showcases the
predicted response time and accuracy distributions
in each test forms.



E.3 School Student Evaluation Filtering
Based on feedback from experts, for our school
student evaluation, we initially filtered using two
threshold criteria: first, accuracy must be greater
than 85%, which corresponds to the median item
accuracy in our dataset; second, the response time
should be within a standard deviation of the mean
response time per word (disregarding the intercept
– i.e., the extrapolated amount of time we expect a
participant to take for an item with no length).

F Item Information Analysis

By fitting a 2-parameter logistic item response the-
ory model to the student responses to both the Lab
and AI-filtered test forms, we obtain the Fisher
information (Fisher, 1925) for each item. Fig-
ure 12 shows that GPT-generated false sentences of-
fer higher item information than human-generated
false sentences, while there is no significant differ-
ence for true sentences. Although IRT is not the
perfect psychometric model for the SRE task, this
finding is encouraging to show the potential of the
GPT-generated items.


