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ABSTRACT

The rapid advancement of image generation models has made it increasingly diffi-
cult for people to distinguish AI-generated images from real ones. To prevent the
potential risks associated with the misuse of fake images, AI-generated image de-
tection has gained significant attention. Existing methods neglect the inherent dif-
ferences between real and fake images, thus lacking robustness and generalization
ability. In this work, we innovatively investigate AI-generated image detection
using bit-planes, and introduce the bit reversed image. We propose a simple yet
effective pipeline consisting of construction of bit reversed images, gradient-based
patch selection and a convolutional classifier. Extensive experiments on more than
40 benchmarks verify the effectiveness of our approach across different settings,
including evaluations of generalization capability and zero-shot performance. Par-
ticularly, our approach achieves nearly 100% accuracy on eight benchmarks for
cross-generator evaluation on the GenImage dataset.

1 INTRODUCTION

The realism of images produced by advanced generative models, such as Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) and Diffusion Models (Rombach et al., 2022), has
improved dramatically in recent years. This progress raises serious concerns about the potential
misuse of AI-generated images (Juefei-Xu et al., 2022), such as the creation of deceptive or harmful
content. Such risks underscore the pressing need for robust methods that can accurately differentiate
AI-generated images from real ones.

While early deep learning-based deepfake detection methods primarily target images generated by
GANs, most current approaches focus on identifying images synthesized by diffusion models. Ex-
isting works can be categorized into three groups: spatial domain-based, frequency domain-based,
and patch-based approaches. The first category analyzes pixel-level texture patterns and gradient
artifacts (Tan et al., 2023) and reconstruction error (Wang et al., 2023b). The second reveals arti-
facts often imperceptible in pixel space by focusing on frequency artifacts (Zhang et al., 2019) and
high-frequency features (Dzanic et al., 2020). The third approach learns and aggregates features
from local patches rather than processing the entire image (Chen et al., 2024b; Zheng et al., 2024;
Yang et al., 2025). However, these methods employ sophisticated models to learn effective features
from images, thereby neglecting to discover the inherent differences between real and fake images.

A grayscale image can be reversibly decomposed into eight bit-planes. Least Significant Bit (LSB)
substitution is a well-known technique in the fields of information hiding (Chan & Cheng, 2004)
and steganography (Elharrouss et al., 2020). Bit-plane has shown potential and advantages in image
stabilization (Ko et al., 1998), image encryption (Gan et al., 2019), image compression (Zhang et al.,
2024b), and implicit neural representations (Han et al., 2025). Such bit-plane-based methods are
primarily designed for image processing. Since bit-planes inherently possess the ability to convey
fine details within an image, they hold the potential to discern subtle differences between real and
AI-generated images. However, marrying bit-planes and AI-generated image detection, which is a
promising direction, has not been studied yet.

Regarding the original image as an encoding constructed by eight bit-plane images, we innovatively
introduce the bit reversed image, which simply reverses the permutation order of bit-planes before
constructing the image. The bit reversed image has two distinct characteristics. First, it can be
reversibly converted into bit-plane images or the original image. Second, the visual content of the
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Figure 1: Comparison of bit reversed images between real and fake images. We find that notice-
able artifacts appear in certain regions of reversed images in fake images. Conversely, the noise in
bit reversed images of real images tends to be more naturally distributed.

original image is encrypted, while the noise and fine details are amplified. Figure 1 shows the
comparison of corresponding bit reversed images between real and AI-generated images. It can be
seen that, for fake images, artifacts are apparent in the corresponding bit reversed images.

To this end, we propose a simple yet effective approach for AI-generated image detection. We first
synthesize the bit reversed image from the original image based on bit-planes, and then design a
patch-based classifier to detect fake content. Specifically, we investigate both bit forward image and
bit reversed image during the bit-plane-based image construction. The patch-based classifier con-
sists of the gradient-based patch selection followed by a convolutional classifier. Both construction
of bit reversed images and gradient-based patch selection operate at millisecond-level speed and
involve no trainable parameters. The convolutional network is adapted to prevent premature feature
compression and accommodate small image patches as input. We assess our approach across various
AI-generated image detection settings, including cross-generator evaluation, zero-shot generaliza-
tion, and cross-dataset evaluation. Our approach achieves state-of-the-art performance on more than
40 benchmarks, significantly surpassing existing approaches. In summary, our main contributions
are as follows:

• Innovative deepfake representation: We innovatively tackle AI-generated image detec-
tion based on bit-planes, and introduce the bit reversed image that can be reversibly con-
structed from the original image.

• Efficient pipeline design: We propose a simple yet effective pipeline for AI-generated
image detection, named RAID, which significantly outperforms existing approaches on
standard benchmarks while operating at the millisecond level.

2 RELATED WORK

AI-Generated Image Detection: Existing methods can be roughly categorized into spatial domain-
based, frequency domain-based, and patch-based approaches. In contrast, this work is among the
first bit-plane-based approaches.

For spatial domain-based methods, GLFF (Ju et al., 2023) utilizes a fusion of global and local fea-
tures to effectively capture inconsistencies at multiple scales. DIRE (Wang et al., 2023b) leverages
reconstruction error as a fundamental detector for AI-generated images. LaRE2 (Luo et al., 2024)
incorporates refinement mechanisms for both spatial and channel features to boost feature learning.
Jia et al. (2025) exploit color distribution inconsistencies via quantization–restoration analysis.

For frequency domain-based methods, Corvi et al. (2023b;a) extend spectral analysis to diffusion
models by identifying unique frequency fingerprints. PatchCraft (Zhong et al., 2023) postulates
that artifacts predominantly manifest in high-frequency texture regions. FreqNet (Tan et al., 2024)
compels the model to learn source-agnostic features by incorporating high-frequency representa-
tion modules and frequency convolution layers into the CNN classifier. Karageorgiou et al. (2025)
introduce a method based on frequency reconstruction and reconstruction similarity.

As for patch-based methods, PatchCraft (Zhong et al., 2023) regards the difference between the
patches with the highest and lowest diversity as the detection criterion, while SSP (Chen et al.,
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Figure 2: Pipeline for the proposed method. Given an RGB image, our approach first extracts
the bit reversed image based on bit-planes, then heuristically selects an image patch, and finally
performs fake classification using a trainable convolutional network. In the adapted ResNet-50, ↓2
indicates a 2× downsampling of spatial resolution in feature learning.

2024b) selects the patch with the highest diversity to expose artifacts. Other studies challenge the
adequacy and effectiveness of relying solely on a single patch or several patches. Zheng et al. (2024)
present a classifier trained on patch-shuffled images and aggregates patch-wise features. Yang et al.
(2025) randomly replace partial patches with real patches to force the model to learn artifacts from
all patches. Xiao et al. (2025) show that high-quality AI-generated image detection can be improved
by selecting patches identified through low-level visual cues.

Bit-Plane-Based Image Processing: Bit-plane-based operations play a significant role in image
processing. A notable example is Least Significant Bit (LSB) substitution (Chan & Cheng, 2004),
which is a simple and widely adopted data hiding method. Bit-plane-based methods can be used
for reversible data hiding in encrypted images by exploiting intra- and inter-bit-plane correlations
or using asymmetric coding (Kumar et al., 2023; Zhang et al., 2024a). They can also be applied to
image stabilization (Ko et al., 1998) and image encryption (Gan et al., 2019). Recently, Punnappu-
rath & Brown (2021) propose a bit-plane-wise deep learning framework for bit-depth reconstruction
that progressively recovers residuals at each bit-plane level. Zhang et al. (2024b) present bit plane
slicing with a dimension-tailored autoregressive model to enhance latent variable use and improve
lossless image compression efficiency. Han et al. (2025) introduce a bit-plane decomposition ap-
proach for implicit neural representations, enabling faster convergence and lossless fitting of high
bit-depth signals. Different from these works, we study bit-plane-based method for AI-generated
image detection.

3 METHODOLOGY

We address AI-generated image detection from the perspective of bit-planes. The pipeline of our
approach is shown in Figure 2. Details are described below.

3.1 CONSTRUCTION OF BIT REVERSED IMAGES

A grayscale image can be losslessly decomposed into eight binary images using bit-plane decom-
position, each representing a specific bit-plane. For the RGB image, each channel corresponds to a
gray-scale image, which can be subsequently decomposed as 8 bit-planes. Higher bit-planes cap-
ture the major structural or low-frequency information, while lower bit-planes contain finer details,
high-frequency information, or noise.

AI-generated artifacts tend to be exposed in the high-frequency components of an image (Zhong
et al., 2023; Tan et al., 2024), which typically encompass the noise patterns and texture details of
an image. Consequently, the effective representation of these noise patterns and texture details be-
comes a primary focus. Instead of focusing on high-frequency components, we unveil AI-generated
artifacts from the perspective of bit-planes of an image.
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Figure 3: Visualizations of bit-planes, bit reversed images and bit forward images for real and
AI-generated RGB images. k = {0, 1, . . . , 7} is index of bit-planes. For bit reversed or forward
images, k denotes the positions of the left circular shift operation, as defined in Eqs. (4) and (5). For
AI-generated images, different values of k result in varying degrees of artifacts.

To highlight artifacts in the AI-generated image, a straightforward idea is to reverse the order of
eight bit-planes before recomposing the image. Let xc denote the c-th channel of the RGB image,
where c ∈ {R,G,B}, and the eight bit-planes are given by {xc

k | k = 0, 1, . . . , 7}. The composed
image is computed as:

x̃c =

7∑
k=0

wk · xc
k, (1)

where wk denotes the weight of the k-th bit-plane. The eight weights can be written as a weight
vector w = [w0,w1,w2,w3,w4,w5,w6,w7].

For constructed images, varying the value of w yields composed images of different styles. These
images can be categorized into two types: Bit Forward Images and Bit Reversed Images, as visual-
ized in Figure 3.

Bit Forward Images: The default weight vector is:

w = [20, 21, 22, 23, 24, 25, 26, 27]. (2)

The weights are determined by the positions of the bit-planes. Specifically, for the k-th bit-plane, the
corresponding weight is 2k. The original image can be equivalently recovered using these weights.

Given a weight vector with eight elements, performing a left circular shift by one position iteratively
yields eight distinct vectors. The transformed weight vector after performing a left circular shift by
k positions is:

w = [2k, 2k+1, . . . , 27, 20, . . . , 2k−1]. (3)

Bit Reversed Images: The bit reversed image can be obtained by reversing the order bit-planes,
and the corresponding weight vector is:

w = [27, 26, 25, 24, 23, 22, 21, 20]. (4)

For the k-th bit-plane, the corresponding weight is 27−k. Since higher bit-planes have smaller
weights, the bit reversed image can amplify fine details and noise in the original image.

Similarly, a left circular shift can be applied to generate eight different weight vectors. The resulting
vector after performing a left circular shift by k positions is:

w = [27−k, 26−k, . . . , 20, 27, . . . , 28−k]. (5)

3.2 PATCH-BASED CLASSIFIER

After constructing bit-reversed images, we design a patch-based classifier that consists of Gradient-
Based Patch Selection and a Convolutional Classifier.
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Gradient-Based Patch Selection: Although artifacts in bit-reversed images serve as a critical fea-
ture for distinguishing real and generated images, they still contain a lot of irrelevant information that
may interfere with detection. To mitigate such interference and amplify the artifacts, we introduce
Gradient-Based Patch Selection (GBPS) to select the most informative patch from each image.

Given the bit-reversed image x̃c, we partition it randomly into non-overlapping patches. To evaluate
the sparsity of image gradients along various directions, we propose a divergence-based scoring
function. For a noisy patch z̃p, where p represents the patch index, the score gp is calculated as
follows:

gp =
∑
d∈D

∥∥x̃c ∗ gd
∥∥
1
, (6)

where ∗ denotes the image convolution operation, ∥ · ∥1 represents the L1 norm of the matrix and
D = {x, y, xy, yx} defines the set of gradient directions. The convolution kernels gx, gy, gxy and
gyx are described as:

gx = [−1 1] , gy = gT
x ,

gxy =

[
−1 0
0 1

]
, gyx =

[
0 −1
1 0

]
.

(7)

The score measures gradients in horizontal, vertical, and diagonal directions. High scores typi-
cally correspond to regions with strong high-frequency variations, which are more likely caused
by noise or structural details rather than meaningful image content. In AI-generated images, such
high-divergence areas often indicate artifacts resulting from imperfections in the generative models.
Therefore, we select the noisy patch with the highest gp score:

z̃p∗ = argmax
p

gp, (8)

where p∗ denotes the index of the best image patch.

Although PatchCraft (Zhong et al., 2023), ESSP (Chen et al., 2024b) and our GBPS all involve
patch-based selection, ours distinguishes them in three main aspects. First, GBPS relies on a
gradient-based score instead of evaluating texture diversity. Second, our formulation is efficiently
implemented through image convolution. Finally, our approach identifies the patch with the maxi-
mum score, whereas ESSP opts for the minimum and PatchCraft employs more than a single patch.

Patch-Based Convolutional Classifier: After selecting the important image patch, we feed it into
a ResNet-50–based convolutional classifier (He et al., 2016), chosen for its simplicity and effective-
ness. To adapt ResNet-50 for 32×32 patches, we introduce several modifications to preserve spatial
information and prevent premature feature compression. Specifically, we reduce the stride of the ini-
tial convolution from 2 to 1, keeping the output resolution at 32×32, and remove the max-pooling
layer to avoid downsampling to 16×16. We further modify the first bottleneck block in the second
layer by changing the strides of both the 3×3 and the corresponding 1×1 convolutions from 2 to 1,
ensuring the output remains 32×32. The third and fourth layers remain unchanged, so the adapted
ResNet-50 produces 8×8 features before the final pooling layer. By alleviating aggressive early
downsampling, these modifications preserve fine spatial details essential for accurate representation
learning while maintaining the hierarchical feature extraction capacity of ResNet-50.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We conduct extensive experiments on various mainstream datasets, including AIGCDetection-
Benchmark (AIGCDB) (Zhong et al., 2023) and GenImage (Zhu et al., 2024). We adopt accuracy
(ACC) as the evaluation metric.

AIGCDB: AI-generated images in the AIGCDB are generated by 17 GAN-based or Diffusion-
based generators. We train the model on the subset ProGAN, and test on all 17 subsets to compute
the average accuracy.

GenImage: GenImage benchmark is a million-scale dataset especially designed for AI-generated
image detection. Real images are sourced from ImageNet dataset (Deng et al., 2009), while AI-
generated images are generated by eight mainstream GAN and Diffusion based generators, including
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Method AIGCDB GenImage

BigG Midj Wuk SDV1.4 SDV1.5 ADM GLIDE VQDM Avg.

Spec (Zhang et al., 2019) - 49.8 52.0 94.8 99.4 99.2 49.7 49.8 55.6 68.8
DeiT-S (Touvron et al., 2021) - 53.5 55.6 98.9 99.0 99.8 49.8 58.1 56.9 71.6
LGrad (Tan et al., 2023) 75.3 - - - - - - - - -
LNP (Liu et al., 2022) 83.8 - - - - - - - - -
CNNSpot (Wang et al., 2020) 70.8 46.8 52.8 78.6 96.3 95.9 50.1 39.8 53.4 64.2
GramNet (Liu et al., 2020) 68.4 51.7 54.2 98.9 99.2 99.1 50.3 54.6 50.8 69.9
ResNet-50 (He et al., 2016) 69.7 52.0 54.9 98.2 99.9 99.7 53.5 61.9 56.2 72.1
GenDet (Liu et al., 2020) - 75.0 89.6 92.8 96.1 96.1 58.0 78.4 66.5 81.6
Swin-T (Liu et al., 2021) - 57.6 62.1 99.1 99.9 99.8 49.8 67.6 62.3 74.8
F3Net (Qian et al., 2020) - 49.9 50.1 99.9 99.9 99.9 49.9 50.0 49.9 68.7
UnivFD (Ojha et al., 2023) 78.4 80.3 73.2 75.6 84.2 84.0 55.2 76.9 56.9 73.3
PatchCraft (Zhong et al., 2023) 89.3 72.4 79.0 89.3 89.5 89.3 77.3 78.4 83.7 82.3
DIRE (Wang et al., 2023b) 67.9 72.6 58.5 58.5 99.2 95.4 61.6 79.3 49.8 72.1
LaRE2 (Luo et al., 2024) 54.2 63.4 84.9 83.7 99.1 99.0 90.8 92.0 64.0 84.5
ESSP (Chen et al., 2024b) 50.1 73.9 82.6 98.6 99.2 99.1 78.9 88.9 96.0 89.7
AIDE (Yan et al., 2025) 92.8 66.9 79.4 98.7 99.7 99.8 78.6 91.8 80.3 86.9
VIB-Net (Zhang et al., 2025) - 95.8 61.3 75.9 71.6 70.0 71.5 69.4 86.7 84.2

RAID (ours) 93.5 98.9 97.2 97.7 98.9 98.8 97.8 99.1 97.5 98.4

Table 1: Evaluation on the datasets of AIGCDB (Zhong et al., 2023) and GenImage (Zhu et al.,
2024). Following existing protocols, for AIGCDB, models are trained on ProGAN and evaluated on
all subsets of AIGCDB, with the averaged accuracy reported; for GenImage, models are trained on
Stable Diffusion V1.4 and evaluated on all subsets, including BigGAN (BigG), Midjourney (Midj),
Wukong (Wuk), Stable Diffusion V1.4 (SDV1.4), Stable Diffusion V1.5 (SDV1.5), ADM, GLIDE,
and VQDM.

BigGAN (Brock et al., 2018), Midjourney (Mid, 2022), Wukong (wuk, 2022), Stable Diffusion V1.4
(Rombach et al., 2022), Stable Diffusion V1.5 (Rombach et al., 2022), ADM (Dhariwal & Nichol,
2021), GLIDE (Nichol et al., 2021), and VQDM (Gu et al., 2022). Following the setting of (Luo
et al., 2024; Yan et al., 2025; Chen et al., 2024b), we train the model on subset Stable Diffusion
V1.4, and test on all eight subsets.

Implementation Details: The image is first resized to 256×256 before construction of bit reversed
image. Patches are randomly sampled during training. After the 32×32 patch is selected, it is fed
into the subsequent modified ResNet-50 classifier, which is pretrained on ImageNet (Deng et al.,
2009). Training is conducted with a maximum of 16 epochs, a batch size of 64, a learning rate
of 0.0001, and the Adam optimizer. For zero-shot scenarios, we only utilize real images of Ima-
geNet (Deng et al., 2009). Apart from bit-reversed construction and patch selection, these images
are fed into modified ResNet-50 pretrained on bit-reversed images to obtain the average feature af-
ter the final global average pooling. Then the testing images are input into the same architecture to
obtain testing features for evaluating distances from features of real images.

4.2 EVALUATION OF AI-GENERATED IMAGE DETECTION

Evaluation on the AIGCDB and GenImage: We compare our results with other mainstream meth-
ods on three datasets, and results are shown in Table 1.

On the AIGCDB dataset, our approach surpasses all prevailing methods, achieving an average ac-
curacy of 93%.

On the GenImage dataset, despite marginally inferior performance on a few subsets, our method
exhibits extremely strong generalization capabilities on all subsets, and achieves an average accuracy
of 98.4%, surpassing SOTA approaches by over 8.7% margin.

Capability of Generalization: We compare our approach with four competitive methods (DIRE,
ResNet-50, LaRE2, and ESSP) on eight subsets of GenImage (Zhu et al., 2024). As shown in
Figure 4, existing mainstream methods achieve reasonable results only when the training subset and
testing subset are identical, and easily encounter difficulties when evaluated on subsets from unseen
generators. Despite recent methods (e.g., LaRE2 and ESSP) mitigating these generalization issues
by achieving strong performance on subsets such as Wukong, Stable Diffusion V1.4, and Stable
Diffusion V1.5, they still struggle to detect AI-generated images on other subsets, such as BigGAN,
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(a) BigGAN (b) Midjourney (c) Wukong (d) SDV4

(e) SDV5 (f) ADM (g) GLIDE (h) VQDM

Figure 4: Evaluation of generalization capability. Four competitive methods (DIRE, ResNet-
50, LaRE2, and ESSP) and our approach are trained on eight subsets (corresponding to eight sub-
plots) and evaluated on eight subsets (corresponding to eight dimensions of each subplot) of Gen-
Image (Zhu et al., 2024).

Method BigGAN Midjourney Wukong SDV1.4 SDV1.5 ADM GLIDE VQDM Avg.

RIGID (He et al., 2024) 53.0 94.1 87.8 87.0 87.2 51.4 45.9 52.2 69.8
AEROBLADE (Ricker et al., 2024) 58.3 40.2 51.4 52.6 55.1 50.7 29.4 52.8 48.8
Manifold (Brokman et al., 2025) 77.6 55.5 65.4 62.0 63.0 57.3 88.3 76.9 68.2

RAID (ours) 91.0 85.9 86.2 86.3 86.8 85.5 83.9 84.5 86.3

Table 2: Zero-shot AI-generated image detection on the GenImage dataset. We compare our
results with other mainstream zero-shot methods on the GenImage.

ADM, and Midjourney. Remarkably, our method, merely trained on one subset, shows exceptional
detecting accuracy on all subsets, exhibiting excellent generalization capability.

Zero-Shot Generalization Performance: To further verify the effectiveness of our bit reversed im-
ages, we conduct zero-shot AI-generated image detection using only real images from ImageNet for
training. As there is limited prior work on this zero-shot setting, we compare our approach with three
methods: RIGID (He et al., 2024), AEROBLADE (Ricker et al., 2024), and Manifold (Brokman
et al., 2025). Results on the eight subsets of GenImage (Zhu et al., 2024) are shown in Table 2.
Without using AI-generated images for training, our RAID achieves 86.3% average accuracy and
strong performance across all eight subsets, whereas other mainstream zero-shot methods perform
well on only a few subsets.

4.3 ABLATION STUDIES AND ANALYSES

We conduct extensive ablation studies and analyses to validate the effectiveness of our approach.
All models are trained on Stable Diffusion V1.4, and evaluated on eight subsets of GenImage: Big-
GAN (Big), Midjourney (Mid), Wukong (Wuk), Stable Diffusion V1.4 (SD4), Stable Diffusion V1.5
(SD5), ADM, GLIDE (GLI) and VQDM (VQD).

Ablation Studies: We respectively remove modules of Bit Reversed Images (BRI), and Gradient-
Based Patch Selection (GBPS) and compare results in Table 3. After removing the BRI and GBPS
modules, the average accuracy drops from 98.4% to 87.7% and 74.8%, respectively, highlighting
the importance of each module in enhancing detection performance and generalization capability.

Performances of Different Bit Reversed and Forward Images: To determine which bit reversed
or forward image is the most effective, we compare results of diverse bit reversed and forward
images in Table 4. In terms of bit reversed images, 1⃝ represents full reversal and exhibits the most
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Method BigGAN Midjourney Wukong SDV1.4 SDV1.5 ADM GLIDE VQDM Avg.

RAID (ours) 98.9 97.2 97.7 98.9 98.8 97.8 99.1 97.5 98.4
w/o BRI 74.1 90.9 99.6 99.9 99.9 58.1 90.5 84.1 87.7
w/o GBPS 57.0 58.2 99.9 100.0 99.9 55.0 58.7 60.3 74.8
w/o BRI-GBPS 52.0 54.9 98.2 99.9 99.7 53.5 61.9 56.2 72.1

Table 3: Ablation studies. We conduct the ablation studies by removing modules of Bit Reversed
Images (BRI), and Gradient-Based Patch Selection (GBPS), respectively.

Method Bit Order: From 0 to 7 Big Mid Wuk SD4 SD5 ADM GLI VQD Avg.

B
it

R
ev

er
se

d
Im

ag
es 1⃝ 7 6 5 4 3 2 1 0 98.9 97.2 97.7 98.9 98.8 97.8 99.1 97.5 98.4

2⃝ 6 5 4 3 2 1 0 7 92.5 92.2 94.2 97.3 97.4 87.7 97.8 88.3 93.6
3⃝ 5 4 3 2 1 0 7 6 90.9 81.9 92.5 95.2 95.2 74.2 75.3 91.7 87.4
4⃝ 4 3 2 1 0 7 6 5 90.7 92.2 89.2 94.3 94.2 76.0 82.0 89.3 88.7
5⃝ 3 2 1 0 7 6 5 4 97.7 98.9 94.5 97.9 98.2 88.2 89.7 94.3 95.1
6⃝ 2 1 0 7 6 5 4 3 97.4 97.1 95.9 97.2 97.1 97.2 97.7 96.5 97.0
7⃝ 1 0 7 6 5 4 3 2 96.9 97.5 92.7 97.9 98.0 88.2 99.0 90.7 95.2
8⃝ 0 7 6 5 4 3 2 1 89.8 95.5 92.4 96.4 96.3 82.0 88.3 89.0 91.4

B
it

Fo
rw

ar
d

Im
ag

es 1⃝ 0 1 2 3 4 5 6 7 74.1 90.9 99.6 99.9 99.9 58.1 90.5 84.1 87.7
2⃝ 1 2 3 4 5 6 7 0 81.4 86.5 95.1 98.3 98.6 60.1 81.7 82.4 86.0
3⃝ 2 3 4 5 6 7 0 1 91.1 91.9 91.9 96.6 96.6 63.5 80.6 86.2 87.7
4⃝ 3 4 5 6 7 0 1 2 97.3 95.2 96.5 98.8 98.7 86.6 82.3 97.1 94.3
5⃝ 4 5 6 7 0 1 2 3 96.6 98.9 94.0 98.1 98.3 83.4 83.4 93.3 93.5
6⃝ 5 6 7 0 1 2 3 4 98.5 98.3 97.1 98.3 98.4 97.3 98.7 98.7 98.0
7⃝ 6 7 0 1 2 3 4 5 95.2 97.7 93.6 98.0 97.8 87.2 98.7 98.8 95.0
8⃝ 7 0 1 2 3 4 5 6 90.5 93.3 98.9 99.7 99.7 77.1 98.3 82.4 92.8

Table 4: Performances of different bit reversed and forward images. Different bit reversed and
forward images are utilized. Our approach is 1⃝ of bit reversed images, and 1⃝ of bit forward images
is the baseline using the original RGB image.

competitive results of 98.4%, demonstrating the effectiveness of prioritizing lower-order bit-planes.
In terms of bit forward images, average accuracies achieve a high level for variants 4⃝∼ 7⃝, when
more lower-order bit-planes are moved to higher-order positions. Notably, it reaches the peak of
98.0% for the 6⃝.

Computation Efficiency: We compare the computational efficiency of our approach with other
mainstream methods (DIRE, LaRE2, and ESSP) in Table 5. For the inference speed, DIRE and
LaRE require multiple steps to construct the feature map, resulting in higher latency (1.99 s and
250 ms, respectively), while our approach completes this process in a single step, taking only 2.09
ms. The patch-based method ESSP takes a total of 31.99 ms, while our approach operates at the
millisecond level. In terms of model parameters, other mainstream methods mainly rely on large
pretrained models (e.g., diffusion), which introduce a substantial number of parameters. In contrast,
our approach is significantly more lightweight and efficient, requiring only 23.5 M parameters.

Robustness Against Image Degradation: In Table 6, we show AI-generated image detection re-
sults of our approach against two representative types of image degradation: Gaussian blur and JPEG

Method
Time Params

Feature Extraction Total Feature Extraction Total

DIRE (Wang et al., 2023b) 1.99 s 2 s 644.8 M 688.3 M
LaRE2 (Luo et al., 2024) 250 ms 260 ms 1066.2 M 1165.8 M
ESSP (Chen et al., 2024b) 25.10 ms 31.99 ms 7.1 M 30.7 M

RAID (ours) 2.09 ms 4.23 ms 0 23.5 M

Table 5: Comparison of computation efficiency. Our approach and other mainstream methods are
compared in computation time and model parameters.

8
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Method Gauss-0 Gauss-1 Gauss-2 Gauss-3 JPEG-100 JPEG-98 JPEG-95 JPEG-90

RAID (ours) 98.4 84.8 80.4 77.5 98.4 82.3 79.5 75.6
ESSP (Chen et al., 2024b) 89.7 80.9 58.3 53.4 89.7 80.3 74.5 66.0

Table 6: Results under image perturbations. Gaussian blur with different standard deviations and
JPEG compression with varying quality levels are applied to the input image.

Figure 5: Visualizations of AI-generated images and the corresponding probabilities of small
patches predicted as fake. The images are resized to 256×256, with a patch size of 32×32, so each
image is evenly divided into 8×8 patches. For each sample, the original RGB image is on the left,
and fake probabilities on the corresponding bit reverse image are on the right. The probability is at
the center of each patch, with more intense blue colors representing higher probabilities. Regions
with probabilities greater than 0.5 indicate patches that are successfully predicted as fake.

compression. Compared to the single patch-based ESSP (Chen et al., 2024b) using the original RGB
image, our patch-based method using the bit reversed image is more robust to image degradation and
noise perturbation.

Visualizations of Fake Probabilities of Patches: Since our approach is based on single patch
of bit reversed image, we visualize the predicted fake probabilities for evenly divided patches in
Figure 5. We select AI-generated images that appear highly realistic, and visualize the predicted
fake probabilities of patches of bit revised images. We find that artifacts in AI-generated images are
invisible in the original images, but become visible in bit reversed images and can be successfully
detected by our model.

5 CONCLUSION

In this paper, we studies AI-generated image detection from the perspective of bit-planes and in-
troduce an innovative representation named bit reversed image. The bit reversed image is a re-
versible encoding of the original RGB image, but it evidently amplifies artifacts that are invisible
in the original image. Following this insight, we propose a simple yet highly effective approach
for AI-generated image detection. Extensive experiments, including cross-generator evaluation,
cross-dataset evaluation, and zero-shot AI-generated image detection, consistently demonstrate the
effectiveness of our approach. In addition, it contains only 23.5 million parameters and runs in mil-
liseconds. One limitation of our approach is that the deepfake image classification model we use is
the standard ResNet. We will design a more tailored architecture by incorporating the characteristics
of bit reversed images.

9
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ETHICS STATEMENT

This work proposes a method for detecting AI-generated images, with potential positive impact in
enhancing deepfake detection and preventing misuse of generative models. A possible risk is that
the method could be exploited to improve deepfake generation. To mitigate this, we plan to adopt
responsible release practices.

REPRODUCIBILITY STATEMENT

All implementation details, datasets, and hyperparameters are described in the paper and supple-
mentary material. We will release the code and pretrained models to ensure full reproducibility of
our results.
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APPENDIX

A NEW DATASETS FOR AI-GENERATED IMAGE DETECTION

A.1 DATASET DESCRIPTION

GID: We construct a new dataset to further evaluate the performance. Real images are sourced from
ImageNet (Deng et al., 2009), and the AI-generated images are generated by currently competitive
generators: Google Imagen 2, FLUX.1, DALL-E 3, Stable Diffusion 3, and WANX 2.1.

GVD: We also construct a challenging benchmark for AI-generated image detection, employing AI-
generated images extracted from AI-generated videos, which are generated by state-of-the-art video
generative models including MuseV (Xia et al., 2024), SVD (Blattmann et al., 2023), Mora (Yuan
et al., 2024), CogVideo (Hong et al., 2022), Text2Video-Zero (Khachatryan et al., 2023), Tune-A-
Video (Wu et al., 2023), and VideoCrafter2 (Chen et al., 2024a). Real images are extracted from
videos including HD-VG (Wang et al., 2023a), Youtube, and Bilibili.

Data Distribution of GID and GVD: We primarily use hard cases of AI-generated detection (Ni
et al., 2025), such as plants, vehicles, people, buildings, natures, etc, with similar sample distribu-
tion across these categories. These datasets cover challenging scenarios such as low-illumination
scenes (16.6%, including twilight, dawn, nighttime, low-light environments, etc.), fast-moving ob-
jects (22.4%, including vehicles, human motions, animal movements, natural phenomena, etc), and
extreme environment scenes (4.9%, including high-risk challenges, aerial activities, etc.). Details
about our proposed datasets are summarized in Table 7.

Dataset Subset Generator Label Images

GID

Imagen 2 Imagen 2 Google Imagen 2 Fake 2,000
Real — Real 2,000

FLUX.1 FLUX.1 FLUX.1 Fake 2,000
Real — Real 2,000

DALL-E 3 DALL-E 3 DALL-E 3 Fake 2,000
Real — Real 2,000

SD3 SD3 Stable Diffusion 3 Fake 2,000
Real — Real 2,000

WANX 2.1 WANX 2.1 WANX 2.1 Fake 2,000
Real — Real 2,000

GVD

Group 1

MuseV MuseV Fake 10,000
SVD Diffusion Fake 10,000
CogV CogVideo Fake 10,000
Mora Mora Fake 10,000

HD-VG — Real 40,000

Group 2

COG CogVideo Fake 2,500
T2VZ Text2Video-Zero Fake 2,500
TAV Tune-A-Video Fake 2,500
VC VideoCrafter Fake 2,500

YT-BI — Real 10,000

Table 7: A summary of the introduced datasets: GID and GVD. GID comprises five subsets:
Google Imagen 2 (Imagen 2), FLUX.1, DALL-E 3, Stable Diffusion 3 (SD3), and WANX 2.1.
GVD comprises two groups, and each group contains four fake subsets and one real subset.

A.2 CROSS-DATASET EVALUATION

Evaluation on the GID: We train the model on Stable Diffusion V1.4 from GenImage, and evalu-
ate it on Google Imagen 2 (Image 2), FLUX.1, DALL-E 3, Stable Diffusion 3 (SD3), and WANX
2.1. On the proposed GID dataset, we reproduce the results of recent AI-generated image detection
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methods, including LGrad (Tan et al., 2023), LNP (Liu et al., 2022), CNNSpot (Wang et al., 2020),
GramNet (Liu et al., 2020), UnivFD (Ojha et al., 2023), DIRE (Wang et al., 2023b), LaRE2 (Luo
et al., 2024), AIDE (Yan et al., 2025), and ESSP (Chen et al., 2024b). As shown in Table 8, most
methods face substantial difficulties, with their accuracy dropping to around 50%, which is equiva-
lent to random guessing, highlighting the formidable challenge posed by the GID dataset. Although
recent approaches AIDE and ESSP exceed 80% accuracy, they still significantly underperform our
method achieving 97.7%.

Method Imagen 2 FLUX.1 DALL-E 3 SD3 WANX 2.1 Avg.

LGrad (Tan et al., 2023) 75.7 57.0 77.2 82.5 76.1 73.7
LNP (Liu et al., 2022) 82.4 54.9 9.1 52.1 43.7 48.4
CNNSpot (Wang et al., 2020) 50.5 49.2 59.1 66.2 51.0 55.2
GramNet (Liu et al., 2020) 64.4 49.4 56.8 70.3 64.4 61.1
ResNet-50 (He et al., 2016) 54.9 51.8 63.6 67.5 61.6 60.0
UnivFD (Ojha et al., 2023) 49.7 69.2 50.0 58.7 50.8 55.7
DIRE (Wang et al., 2023b) 51.4 50.0 51.0 77.2 46.9 55.3
LaRE2 (Luo et al., 2024) 57.9 81.1 59.1 60.0 50.5 61.7
ESSP (Chen et al., 2024b) 96.7 84.3 81.8 95.2 83.8 88.4
AIDE (Yan et al., 2025) 87.3 91.0 95.1 86.6 70.3 86.1

RAID (ours) 98.8 99.4 97.4 98.9 94.2 97.7

Table 8: Cross-dataset evaluation on the proposed GID dataset. Models are trained on the
SDV1.4 subset of the GenImage (Zhu et al., 2024), and directly evaluated on Google Imagen 2
(Imagen 2), FLUX.1, DALL-E 3, Stable Diffusion 3 (SD3), and WANX 2.1. We reproduce the
results of different compared methods.

Evaluation on the GVD: We train the model on an image-based dataset, specifically using the
Stable Diffusion V1.4 subset from GenImage, and test it on the GVD dataset, which is collected from
challenging videos. We evaluate LaRE2, AIDE, ESSP and our method, all achieving high detecting
accuracy on GenImage, on our challenging benchmark GVD. As shown in Table 9, all methods
encounter a significant drop on GVD. That demonstrate existing methods have weak capacity for
detecting AI-generated frames extracted from AI-generated videos, which substantially validates
the formidable challenge posed by our proposed dataset GVD for AI-generated image detection.
Nonetheless, our approach evidently surpasses prevailing methods.

Group 1 MuseV SVD Mora CogV HD-VG Avg.

LaRE2 (Luo et al., 2024) 7.1 6.8 23.6 37.5 63.8 41.3
ESSP (Chen et al., 2024b) 33.4 38.4 32.6 39.8 61.5 48.8
AIDE (Yan et al., 2025) 15.7 17.3 27.2 23.2 75.2 48.0
RAID (ours) 44.5 53.6 62.4 62.4 77.2 66.5
Group 2 COG T2VZ TAV VC YT-BI Avg.

LaRE2 (Luo et al., 2024) 13.1 15.8 32.1 38.0 55.8 40.3
ESSP (Chen et al., 2024b) 28.8 18.8 15.4 19.7 47.4 34.0
AIDE (Yan et al., 2025) 2.4 40.2 37.4 23.0 76.3 51.0
RAID (ours) 35.1 20.2 64.6 34.8 79.5 59.1

Table 9: Cross-dataset evaluation on the GVD dataset. We compare our results with other main-
stream methods on GVD.

B ADDITIONAL EXPERIMENTS AND VISUALIZATIONS

B.1 IMPACT OF DIFFERENT WEIGHTS

Table 10 further investigates the impacts of different weights while constructing bit reversed images
in Eq. (1). Generally, we assign most significant weights to the lowest-order bit-planes (such as
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0 1 2 3 4 5 6 7 Big Mid Wuk SD4 SD5 ADM GLI VQD Avg.

1⃝ 128 64 32 16 8 4 2 1 98.9 97.2 97.7 98.9 98.8 97.8 99.1 97.5 98.4
2⃝ 48 48 48 48 32 16 8 4 90.4 93.5 91.5 94.4 93.4 93.0 94.6 97.7 91.3
3⃝ 64 64 64 32 16 8 4 2 94.1 95.9 94.9 96.3 96.2 87.5 95.8 92.2 94.2
4⃝ 32 64 64 64 16 8 4 2 92.9 96.9 93.0 95.3 95.4 85.2 96.5 90.6 93.3
5⃝ 96 96 32 16 8 4 2 1 99.4 98.5 99.0 99.6 99.5 99.3 99.6 99.0 99.3
6⃝ 32 96 96 16 8 4 2 1 98.8 98.3 98.2 98.9 99.0 98.5 99.1 98.0 98.6
7⃝ 32 16 96 96 8 4 2 1 94.6 97.6 93.5 96.5 96.6 86.0 96.3 91.7 94.2

8⃝ Learnable 85.6 70.1 94.7 95.4 95.1 66.5 91.2 57.0 82.2

Table 10: Impact of different weights of bit-planes. Different and learnable weights are utilized
during construction of bit reversed images. The column index denotes the position of bit-planes, and
circled indices are different variants of our approach.

0∼1, 0∼2, 1∼3, etc) based on results of Table 4. The variant 1⃝ denotes our approach, while
8⃝ is the variant with learnable weights during training. Comparing 1⃝ with 2⃝∼ 4⃝, we observe

that increasing the weights of higher bit-planes leads to a noticeable degradation in performance.
In contrast, while comparing 1⃝ with 5⃝, we find that increasing the weights of lower bit-planes
slightly increases the performance. These experiments further highlight the critical role of low-bit
planes for AI-generated image detection. Although the variant of learnable weights eliminates the
need for handcrafted weights and manual tuning, it performs worse than the others, possibly due to
overfitting and the model not recognizing the importance of lower bit-planes. Although 5⃝ performs
even better than ours ( 1⃝), we use the default weights in our approach for simplicity.

B.2 CROSS-GENERATOR PERFORMANCE ON THE GENIMAGE

Trainning Big Mid Wuk SD4 SD5 ADM GLI VQD Avg.

Big 99.6 94.9 86.0 92.5 92.7 99.3 99.7 93.4 94.7
Mid 84.5 96.3 79.2 84.1 84.9 79.2 93.2 99.3 85.0
Wuk 98.8 95.3 98.1 98.4 98.4 97.7 98.4 98.1 97.9
SD4 98.4 96.8 97.5 98.4 98.4 97.7 98.6 97.5 98.0
SD5 97.8 95.9 96.1 97.6 97.8 96.9 98.4 96.2 97.1
ADM 99.7 95.6 88.1 93.8 93.8 99.8 99.8 94.7 95.6
GLI 83.9 82.8 66.6 71.4 71.2 81.9 98.7 95.2 78.7
VQD 99.3 94.8 98.9 99.1 99.0 98.4 99.1 99.6 98.5

Average 95.3 94.1 88.8 91.9 92.0 93.9 98.2 96.8 93.2

Table 11: Cross-generator performance on the GenImage dataset. We train our model on eight
subsets of GenImage subsets respectively, and each model is evaluated on these eight subsets. The
detection accuracy of both training subsets and testing subsets is averaged. For conciseness, Big-
GAN, Midjourney, Wukong, Stable Diffusion V1.4, Stable Diffusion V1.5, ADM, GLIDE, and
VQDM are denoted as Big, Mid, Wuk, SD4, SD5, ADM, GLI, and VQD, respectively.

We train our model on eight subsets of GenImage (Zhu et al., 2024), and evaluate each model on
eight subsets, respectively. As shown in Table 11, all of our models achieve an average accuracy of
exceeding 90%, except for the model trained on GLIDE attains the averaged performance of 87.0%,
possibly due to different feature distribution after bit-reversal. Notably, models encounter a slight
decline when evaluated on the Wukong, demonstrating the challenge inherent in this subset.
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