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Abstract

There has been an increasing interest in methods
that exploit permutation reasoning to search for
directed acyclic causal models, including the “Or-
dering Search” of Teyssier and Kohler and GSP of
Solus, Wang and Uhler. We extend the methods of
the latter by a permutation-based operation tuck,
and develop a class of algorithms, namely GRaSP,
that are computationally efficient and pointwise
consistent under increasingly weaker assumptions
than faithfulness. The most relaxed form of GRaSP
outperforms many state-of-the-art causal search
algorithms in simulation, allowing efficient and
accurate search even for dense graphs and graphs
with more than 100 variables.

1 INTRODUCTION

Searching for causal models by identifying patterns of con-
ditional independence in observational data has become a
well-established activity, though it is not without detractors.
For one thing, it is commonly believed that the only cor-
rect method for establishing causal relationships is through
experimental manipulation, as is done in a randomized con-
trolled trial. Accordingly, causal inference from observa-
tional data alone can be seen as second-rate. This is not
completely unreasonable; many causal search algorithms,
even in seemingly ideal conditions at reasonable sample
sizes, demonstrate poor performance, calling into question
whether their inferences can be relied upon. Furthermore,
the theoretical assumptions made by these algorithms are
often criticized for being too strong. More specifically, these
algorithms assume that the true model belongs to a model
class with no latent variables or no cycles, and that the pat-
terns of conditional independence in the data generating
distribution can be represented by the assumed model class
exactly. The latter assumption is called the causal faithful-

ness condition, or faithfulness in short, and can be violated
(or almost violated) by unexpected patterns of conditional
independence that arise from subtleties in the distribution,
such as (near) determinism or (almost) path cancellation.

The most common model class assumed by causal search al-
gorithms is characterized by directed acyclic graphs (DAGs).
Many algorithms for causal inference search the space of
causal DAGs, such as the PC (“Peter and Clark”, [Spirtes
et al., 2000]) and GES (“Greedy equivalence Search”,
[Chickering, 2002]) algorithms, and provably return a set of
DAGs that contains the true model under faithfulness. How-
ever, as depicted in Section 5.2, the performance statistics of
these algorithms are extremely slow to converge, especially
when the true model is densely connected. One hypothesis
for this phenomenon is that almost-violations of faithfulness
frequently occur and impede search procedures [Uhler et al.,
2013]. Accordingly, the performance of these algorithms
might be improved by relaxing faithfulness, as is done by
the SP (“Sparsest Permutation”) algorithm of Raskutti and
Uhler [2018]. SP considers the space of variable orderings
and builds a DAG using a procedure inspired by Verma and
Pearl [1988], where the parents of each variable are selected
from the preceding variables in the permutation. Ultimately,
the permutations that induce DAGs with the minimal edge
count are selected.

Raskutti and Uhler [2018] proved that if the data generating
distribution is a graphoid, then the set of DAGs returned by
SP contains the true model asymptotically under an assump-
tion strictly weaker than faithfulness. While SP recovers the
set of all frugal models, it is super exponential in the number
of variables, that is, if there are n variables, then there are n!
permutations that must be visited. In practice, it is limited to
a maximum of about nine variables due to its computational
complexity. This naturally raises the question: is there an
algorithm that is equally accurate in most cases for such
data, but that can scale to larger problems?

Teyssier and Koller [2005] give a clever search and score
procedure, “Ordering Search”, over variable permutations,
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pointing out that when two adjacent variables in a permu-
tation are swapped, only local scores for the swapped vari-
ables need to be recalculated, the rest of the score calcula-
tion remains unchanged—this swapping operation is called
an adjacency transposition (AT). The Ordering Search al-
gorithm greedily traverses the space of permutations with
adjacency transpositions using a hill-climbing approach,
random restarts, and a tabu list. However, they do not give
any consistency guarantees.

The ESP (“Edge Sparsest Permutation”) algorithm of Solus
et al. [2021] iterates upon the Ordering Search algorithm by
greedily traversing the space of permutations by sequences
of ATs where each AT leads to an equal or smaller edge
count, found by depth first search (DFS), to achieve asymp-
totic correctness. Also, their TSP (“Triangle Sparsest Per-
mutation”) algorithm uses the theory of Chickering [2002]
to navigate the space of DAGs, more efficiently than ESP,
under a stronger assumption. A simulation study using a
Python implementation of TSP [Solus et al., 2021] suggests
that this procedure is fast, but has difficulty scaling accu-
rately to moderate or large sized graphs [Lu et al., 2021].

To address the scaling problem for both accuracy and tim-
ing, in this paper we explore different ways of traversing the
space of permutations that get closer to the performance and
assumption relaxation of Raskutti and Uhler while main-
taining scalability. As part of this effort, we also use the
“Grow-Shrink” algorithm from Margaritis and Thrun [1999]
to learn the DAG.

In what follows, we give an elaboration of the theoretical
background of our set of permutation-based procedures,
GRaSP (“Greedy Relaxations of Sparsest Permutation”).
GRaSP has three tiers, GRaSP0 (basically equivalent to
TSP), GRaSP1 (basically equivalent to ESP), and GRaSP2

(a novel relaxation); we show how moving from a lower tier
to a higher tier results in a gradual theoretical relaxation
of the permutation search space and thus an improvement
in accuracy. We then follow this with a study of oracle
behavior for GRaSP0, GRaSP1, and GRaSP2 on exhaustive
lists of independence models with violations of faithfulness
for all 4-variable regular Gaussian and positive discrete
distributions and all 5-variable unfaithful DAGs with added
marginal independencies between a pair of variables. We
also give a detailed simulation study for the linear, Gaussian
case for larger possibly dense models of up to 100 variables,
with consistently accurate results using GRaSP2. Further,
we study an empirical example to test GRaSP2. We then
give a conclusion and discussion where we point out areas
of immediate future work.

2 CONTRIBUTIONS

The most salient contribution is that GRaSP2 can scale to
at least 100 variables with average degree at least 10 on a

laptop with high adjacency and arrowhead precision and
recall for the linear, Gaussian case, addressing the long-
standing practical problem of dense graph causal search in
a meaningful way.

Second, theoretical assumptions required for causal discov-
ery from previous works have been simplified, in places
corrected, and reworked as a structured study of causal ra-
zors in Appendix D. Accordingly, the proof that GRaSP0,
TSP, and by implication GSP, require faithfulness is a logi-
cal discovery. Also, the proof that faithfulness is equivalent
to unique Pearl-minimality is a novel contribution.

Third, we extended the discussion of unit tests initiated in
[Solus et al., 2021] considerably, using the criterion that
a wide variety of unit tests should systematically pass on
all initial permutations using a d-separation oracle. More
specifically, we run GRaSP on models detailed in Šimecek
[2006a,b] and those listed in Appendix G.

Finally, the tuck operation is a novel transformation that has
not been considered in the literature before. We show that
traversals in the DAG-associahedron (defined in Appendix
C) can be equivalently done via a tuck. Reframing TSP in
terms of the tuck operation allows TSP and ESP to be neatly
placed into a hierarchy. Moreover, it admits the natural
generalization to GRaSP2 (by not restricting which edges
can be tucked).

3 BACKGROUND

Throughout this paper, italicized letters are used to denote
variables (e.g., X1, Y ) and boldfaced letters for sets of
variables (e.g., X). Graphical definitions and notations re-
lated to directed acyclic graphs (DAGs) are provided in
Appendix A.1. A DAG G over a set of measured variables
V = {X1, ..., Xm} consists of m vertices v = {1, ...,m}
where each vertex i associates to the variable Xi, and each
directed edge between two distinct vertices j → k repre-
sents the direct causal influence from Xj to Xk. We write
i ⊥G j |k to denote the d-separation relation between i and
j given k in G for any pairwise disjoint subsets of vertices
i, j,k ⊆ v. Similarly, given a joint probability distribution
P over V, denote X ⊥⊥P Y |Z as the conditional inde-
pendence (CI) relation between X and Y given Z for any
pairwise disjoint subsets of variables X,Y,Z ⊆ V.

A model is a pair (G,P) where G is a DAG and P is a
joint probability distribution over the same set of measured
variables V. We use G∗ to refer to the true data-generating
DAG such that (G∗,P) is the true model assumed to always
exist. Certain standard properties of a model can be defined
in terms of the d-separation relations in G and the CI rela-
tions in P . Denote I(G) = {⟨Xj,Xk |Xl⟩ : j ⊥G k | l}
where Xi = {Xj ∈ V : j ∈ i} for every i ⊆ v, and
I(P) = {⟨X,Y |Z⟩ : X ⊥⊥P Y |Z}. Let DAG(V) be the
set of all possible DAGs over V.



Definition 3.1 (Markov) For any joint probability distribu-
tion P over V, define CMC(P) = {G ∈ DAG(V) : I(G) ⊆
I(P)} as the set of Markovian DAGs. (G∗,P) satisfies the
Markov assumption if G∗ ∈ CMC(P).

Definition 3.2 (Faithfulness) For any joint probability dis-
tribution P , define CFC(P) = {G ∈ CMC(P) : I(P) ⊆
I(G)} as the set of faithful DAGs. (G∗,P) satisfies the faith-
fulness assumption if G∗ ∈ CFC(P).

A causal search algorithm is a procedure of recovering the
causal information of the true DAG from its underlying
joint probability distribution. Let MEC(G) be the Markov
equivalence class (MEC) of G such that I(G) = I(G′) for
each G′ ∈ MEC(G). One crucial goal of causal search is the
identification of MEC(G∗) from P . With regard to this goal,
a causal search algorithm is correct if its output DAG (or the
DAG induced by its output) is in MEC(G∗). All known causal
search algorithms assume the Markov assumption, and some
well-known algorithms in the relevant literature (e.g., GES)
assume faithfulness as well. Nevertheless, as pointed out
by Uhler et al. [2013], learning CI relations from data by
hypothesis testing is error-prone, and almost-violations of
faithfulness are common. This motivates the exploration of
causal search algorithms which rely on assumptions strictly
weaker than faithfulness. These assumptions, faithfulness
included, are what we refer to as causal razors.

One recent approach proposed by Raskutti and Uhler [2018]
is the SP algorithm, which identifies the set of sparsest
permutations defined over v under the following causal
razor. Let E(G) be the set of directed edges in a DAG G.

Definition 3.3 (U-frugality) For any joint probability distri-
bution P , define Fr(P) = {G ∈ CMC(P) : ¬∃G′ ∈ CMC(P)
s.t. |E(G′)| < |E(G)|} and uFr(P) = {G ∈ Fr(P) :
¬∃G′ ∈ Fr(P) s.t. G′ /∈ MEC(G)} as the sets of frugal DAGs
and uniquely frugal, or u-frugal, DAGs respectively. (G∗,P)
satisfies the u-frugality assumption if G∗ ∈ uFr(P).1

In words, u-frugality requires that G∗ is not only the sparsest
Markovian DAG, but also that all sparsest Markovian DAGs
belong to the same MEC as G∗. Raskutti and Uhler [2018]
showed that SP is correct under u-frugality which is strictly
weaker than faithfulness. Below we introduce some neces-
sary notations of permutation-based algorithms. To begin
with, we refer the readers to Appendix A.2 for the graphoid
axioms. Generally speaking, every joint probability distri-
bution is a semigraphoid, strictly positive distributions are
graphoids, and regular Gaussian distributions are composi-
tional graphoids.

Given V = {X1, ..., Xm}, let Π(v) be the set of all per-
mutations over v = {1, ...,m}. For each π ∈ Π(v), let πi

1This assumption is named as sparsest Markov representation
(SMR) in [Raskutti and Uhler, 2018].

be the i-th vertex in π, π[j] be the index of vertex j in π
(s.t. ππ[j] = j), and Pre(j, π) = {πi : 1 ≤ i < π[j]} be
the set of vertices that precede j’s index in π. We say that
π ∈ Π(v) is a causal order of G ∈ DAG(V) if i ∈ Pre(j, π)
for each j ∈ v and each i ∈ An(j,G) (i.e., the set of j’s
ancestors in G). Given a graphoid P over V, each π ∈ Π(v)
induces a DAG Gπ satisfying the following condition:

j ∈ Pre(k, π) and Xj ⊥/⊥P Xk |XPre(k,π)\{j}

⇔ (j → k) ∈ E(Gπ). (RU)

(RU) is the method of constructing a unique DAG from π
and P discussed in [Raskutti and Uhler, 2018]. It is derived
from a more general method in [Verma and Pearl, 1988].
The two methods will be compared in Appendix A.3. But
we refer to Gπ as the DAG induced from π and the graphoid
P using (RU) unless specified otherwise. Obviously, π is a
causal order of Gπ . Below is an important feature of Gπ .

Definition 3.4 (SGS-minimality) For any joint probability
distribution P , define SGS(P) = {G ∈ CMC(P) : ¬∃G′ ∈
CMC(P) s.t. E(G′) ⊂ E(G)} as the set of SGS-minimal
DAGs.2

Theorem 3.5 [Verma and Pearl, 1988, Raskutti and Uhler,
2018] Given a graphoid P over V, Gπ induced by π using
(RU) is Markovian and SGS-minimal for every π ∈ Π(v).

The theorem above states that, for every permutation π, the
induced DAG Gπ is Markovian and no subgraph of Gπ is
Markovian. By identifying the sparsest permutation π̂ =
argminπ∈Π(v) |E(Gπ)|, Gπ̂ returned by SP is guaranteed to
be in MEC(G∗) when u-frugality is satisfied. Nevertheless, SP
needs to examine all |v|! permutations in Π(v) to identify
the sparsest one and hence lacks scalability. Solus et al.
[2021] introduce a greedy version of SP, namely Triangle
SP (TSP), which is proven to be correct under faithfulness.3

Below, we provide a quick and simple sketch of this result.

TSP borrows the Chickering algorithm in [Chickering,
2002] to perform their depth-first search (DFS) proce-
dure. For each vertex i ∈ v, let Pa(i,G) be the set of
parents in G. A directed edge j → k is covered in G if
Pa(j,G) = Pa(k,G) \ {j}.

Theorem 3.6 (Chickering sequences) [Chickering, 2002]
Given a set of variables V, for every pair of DAGs G,H ∈

2We follow Zhang [2013] to refer to this minimality condition
as the one discussed in [Spirtes et al., 2000].

3In [Solus et al., 2021], Greedy SP (GSP) is an operational
version of TSP which imposes a depth bound on the DFS proce-
dure and a parameter specifying the number of runs on selecting
an arbitrary initial permutation. They claimed that TSP can be
correct even when faithfulness fails. We examine their claim more
carefully in Section 4 and Appendix C.



DAG(V), if I(H) ⊆ I(G), there exists a sequence of DAGs,
call it a Chickering sequence ⟨H = G1,G2, ...,Gk = G⟩
(from H to G) s.t. I(Gi) ⊆ I(Gi+1) and Gi+1 is obtained
from Gi by either reversing a covered edge or deleting a
directed edge for each 1 ≤ i < k.4

A sequence of DAGs ⟨G1, ...,Gk⟩ is said to be weakly de-
creasing if |E(Gi)| ≥ |E(Gi+1)| for each 1 ≤ i < k. Ob-
viously, every Chickering sequence is weakly decreasing.
Given an arbitrary initial permutation π ∈ Π(v), TSP uses
DFS to search for a Chickering sequence from Gπ to some
SGS-minimal DAG Gτ where |E(Gπ)| > |E(Gτ )|, and up-
date Gπ as Gτ until no such Gτ is found. Now we demon-
strate TSP’s correctness under faithfulness.

Definition 3.7 (U-P-minimality) For any joint probability
distribution P , define Pm(P) = {G ∈ CMC(P) : ¬∃G′ ∈
CMC(P) s.t. I(G) ⊂ I(G′)} and uPm(P) = {G ∈ Pm(P) :
¬∃G′ ∈ Pm(P) s.t. G′ /∈ MEC(G)} as the sets of P-minimal
DAGs and uniquely P-minimal DAGs respectively. (G∗,P)
satisfies the u-P-minimality assumption if G∗ ∈ uPm(P).5

Theorem 3.8 [Zhang, 2013] For any joint probability dis-
tribution P , CFC(P) = Pm(P) = MEC(G∗) if faithfulness
holds.

A DAG being P-minimal, as in Definition 3.7, states that
there exists no Markovian DAG which can entail a proper
superset of CI relations, and its unique variant further re-
quires that all P-minimal DAGs belong to the same MEC
as G∗. We elaborate the importance of u-P-minimality in
the next section. By Theorem 3.6, TSP guarantees that its
output Ĝπ is P-minimal. When faithfulness holds, Theorem
3.8 ensures that Ĝπ ∈ MEC(G∗), and hence TSP is correct.

Notice that the identification of a Chickering sequence from
Gπ to a P-minimal Gτ is essentially a DAG-based operation.
In the next section, we introduce our permutation-based
operation to converge to a P-minimal DAG, and propose
a class of greedy permutation-based algorithms which em-
ploys weaker causal razors than TSP does.

In addition to TSP, Solus et al. [2021] introduced another
greedy algorithm, namely Edge SP (ESP), which is defined
by weakly decreasing traversals over the DAG associahe-
dron (i.e., the permutohedron contracted by I(P)). These
technical terms are defined in the Appendix C. ESP is shown
to be assuming a weaker causal razor than TSP. In the next
section, we will draw a logical discovery on how ESP is
connected to our novel permutation-based operation.

4The original theorem in [Chickering, 2002] is expressed in
terms of addition of directed edges. This modification helps by
indicating that every Chickering sequence is a weakly decreasing
sequence. In addition, one can easily observe that there does not
exist any Chickering sequence from H to G if I(H) ⊈ I(G).

5P-minimality refers to the minimality condition discussed in
[Pearl, 2009].

4 METHODS

In this section, we introduce a class of permutation-based al-
gorithms with a generic name Greedy Relaxations of Spars-
est Permutation (GRaSP). Three tiers of relaxation will be
studied: GRaSP0 is our basic algorithm, GRaSP1 relaxes the
search criterion of GRaSP0 while GRaSP2 further relaxes
that of GRaSP1. This hierarchy allows the identification
of MEC(G∗) under progressively weaker causal razors. In
addition, we show that GRaSP0 is logically equivalent to
TSP, and GRaSP1 to ESP. All proofs are left in Appendix B-
D. First, we introduce our characteristic permutation-based
operation tuck and how it operates under different types of
directed edges.

Definition 4.1 (Tuck) Consider any graphoid P over V,
any π ∈ Π(v), and any j, k ∈ v where π[j] < π[k]. Rewrite
π as ⟨δ1, j, δ2, k, δ3⟩ where each δi is a (possibly empty)
sub-sequence of π.6 Let γ and γc be the sub-sequences
⟨i ∈ δ2 : i ∈ An(k,Gπ)⟩ and ⟨i ∈ δ2 : i /∈ An(k,Gπ)⟩
respectively. Define

tuck(π, j, k) =

{
⟨δ1,γ, k, j,γc, δ3⟩ if (j → k) ∈ E(Gπ)
π otherwise.

Definition 4.2 Given a DAG G, a directed edge (j → k) ∈
E(G) is said to be singular if there exists no directed path
from j to k in G except j → k. Define

Et(G) =


covered edges in E(G) if t = 0

singular edges in E(G) if t = 1

E(G) if t = 2.

Readers can verify that E0(G) ⊆ E1(G) ⊆ E2(G) holds
for any DAG G. The introduction of singular edges is cru-
cial to our logical discovery that every move ESP takes in
the DAG associahedron (as defined in Appendix C) corre-
sponds to tucking a unique singular edge. Figure 1 provides
an example on how tuck works for each defined type of
edges. As seen in the example, tuck is an operation that
aims to change a permutation minimally to obtain a differ-
ently induced DAG, while a broader class of directed edges
generally leads to more possible re-orderings of the vertices.

After clarifying how tuck works, we can define a sequence of
tuck operations, particularly when applied to covered edges,
and how a sequence of covered tucks (ct) is connected to a
Chickering sequence.

Definition 4.3 (ct-sequence) Given a graphoid P over V,
for any π, τ ∈ Π(v), τ is said to be a ct-mutation of π
if there exist j, k ∈ v s.t. (j → k) ∈ E(Gπ) is covered

6To be precise, δ1 = ⟨πi : 1 ≤ i < π[j]⟩, δ2 = ⟨πi : π[j] <
i < π[k]⟩, and δ3 = ⟨πi : π[k] < i ≤ |π|⟩.
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covered:

singular:

general:

1 2 4 3 4 5 6 7

1 2 3 5 4 5 6 7

3 4 1 2 3 4 5 6 7

Figure 1: Consider π = ⟨1, 2, 3, 4, 5, 6, 7⟩ and its induced
Gπ shown on the right. Each of the three orderings on the left
illustrates how a directed edge between two darkly shaded
vertices is tucked to obtain a new permutation. For example,
consider 1 → 4 which is not singular due to the directed
path 1 → 3 → 4. Performing tuck(π, 1, 4) requires the
identification of the intermediate vertices between 1 and 4
in π which are ancestors of 4 in Gπ (i.e., the lightly shaded
3). Then, while the positions of other vertices remain intact,
3 and 4 are moved to the front of 1.

and τ = tuck(π, j, k). Also, ⟨π1, ..., πm⟩ is said to be a ct-
sequence if πi+1 is a ct-mutation of πi for each 1 ≤ i < m,
and (Gπi ,Gπl) are pairwise distinct for any 1 ≤ i < l ≤ m.

Lemma 4.4 [Appendix B] Given a graphoid P , for any
π ∈ Π(v) and any Chickering sequence from Gπ to some
H ∈ SGS(P) considered by TSP, there exists a ct-sequence
⟨π, ..., τ⟩ s.t. Gτ = H.

Similar to the DAG-based DFS over Chickering se-
quences employed by TSP, the lemma above motivates our
permutation-based DFS over ct-sequences as shown in Al-
gorithm 1.

Algorithm 1: DFS: dfs(P, π, d, dcur, t)

Input: (a) P: a graphoid over V; (b) π ∈ Π(v); (c) d:
depth bound; (d) dcur: recorder of the recursive
call; (e) t: type of directed edges

Output: τ ∈ Π(v) where score(τ) ≥ score(π)
1 foreach (j → k) ∈ Et(Gπ) do
2 τ ← tuck(π, j, k)
3 if score(τ) = score(π) and dcur < d then
4 τ ← dfs(P, τ, d, dcur + 1, t)

5 if score(τ) > score(π) then
6 return τ

7 return π

First, we use negative edge count as the scoring function
in our oracle version of the algorithm such that score(π) =
−|E(Gπ)| where Gπ is induced from π and P . d bounds the
search depth of DFS. We assume that d = |v|! for now
and call the corresponding algorithm unbounded. We will
examine some small number d in light of finite samples in
Section 5.2. Also, we assume that no induced DAG can be

Algorithm 2: GRaSPt: grasp(P, π, d, t)
Input: (a) P: a graphoid over V; (b) π ∈ Π(v); (c) d:

depth bound; (d) t: tier of GRaSP
Output: τ ∈ Π(v) where score(τ) ≥ score(π)

1 if t ̸= 0 then
2 π = grasp(P, π, d, t− 1)

3 τ ← π
4 do
5 π ← τ
6 τ ← dfs(P, π, d, 1, t)
7 while score(τ) > score(π)
8 return τ

1 2

3

(a) Gπ1 = G⟨3,1,2⟩

1 2

3

(b) Gπ2 = G⟨1,3,2⟩

1 2

3

(c) Gπ3 = G⟨1,2,3⟩

Figure 2: Example of a ct-sequence ⟨π1, π2, π3⟩ where
I(P) = {⟨X1, X2 |∅⟩}. The blue (covered) edges indi-
cate how a subsequent permutation is obtained by tuck. For
example, 3 → 1 in (a) specifies that π2 is obtained from
tuck(π1, 3, 1). Also, Algorithm 1 returns π3 = ⟨1, 2, 3⟩
since the DAG in (c) is sparser than those in (a) and (b).

revisited in the DFS procedure in order to avoid any infinite
loop between DAGs.

Next, Et(Gπ), as defined in Definition 4.2, is the crucial
function distinguishing our three tiers of GRaSP in Algo-
rithm 2. Consider t = 0 in particular. Given an arbitrary
initial permutation π, Algorithm 1 performs a greedy pro-
cedure to identify a ct-sequence from π. Figure 2 shows a
simple example. Then Algorithm 2 iterates the DFS in Al-
gorithm 1 until no sparser permutation can be found. Let τ̂
be the output of Algorithm 2 where Gτ̂ is the induced DAG
accordingly. The theorem below ensures that Gτ̂ ∈ Pm(P).

Theorem 4.5 [Appendix B] Given a graphoid P over V
and any π ∈ Π(v), if Gπ /∈ Pm(P), then there exists a
ct-sequence T = ⟨π, ..., τ⟩ s.t. Gτ ∈ Pm(P).

By Theorem 4.5, the correctness of unbounded GRaSP0

under faithfulness follows immediately from Theorem 3.8.
As shown by Forster et al. [2020], CFC(P) = Fr(P) holds
under faithfulness. Since Algorithm 2 requires that the per-
mutation returned by a higher tier of GRaSP cannot be
denser than that returned by a lower tier, the correctness of
unbounded GRaSP1 and unbounded GRaSP2 under faith-
fulness immediately follows. The sample version of GRaSP
can be obtained by substituting the graphoid P with an



i.i.d. observational dataset D, and score(π) with the BIC
score of Gπ fromD (defined in Appendix E). Pointwise con-
sistency under faithfulness directly follows from the local
consistency of BIC.7

Corollary 4.6 Unbounded GRaSP0, GRaSP1, and GRaSP2

are correct and pointwise consistent under faithfulness.

Next, we want to highlight two logical discoveries with
respect to the discussion of TSP and GRaSP0.

Theorem 4.7 [Appendix B] Given a graphoid P and an
initial permutation, the DAG returned by TSP is the same
as the DAG induced by the output of unbounded GRaSP0.

The theorem above suggests that TSP and GRaSP0 are logi-
cally equivalent. Additionally, contrary to what Solus et al.
[2021] argued, faithfulness is a necessary condition for TSP.

Theorem 4.8 [Appendix B] Given a graphoid P , faithful-
ness is necessary for the correctness of TSP.

This theorem is entailed by a novel logical result that
CFC(P) = uPm(P) as proven in Appendix B. Thus, the
two theorems together prompt the usage of GRaSP with
a higher tier. Extending E0(·) to E1(·) and E2(·) licenses a
higher tier of GRaSP to attain a strictly sparser permutation
under unfaithfulness. Examples of this sort will be studied
in Section 5.1 and Appendix D.

Corollary 4.9 Given a graphoid P , unbounded GRaSP2 is
correct under a strictly weaker causal razor than unbounded
GRaSP1, which is correct under a strictly weaker causal
razor than unbounded GRaSP0.

Further, in Appendix C, we show the logical equivalence
between unbounded GRaSP1 and ESP. As a consequence,
unbounded GRaSP2 is a relaxation beyond the two causal
razors discussed in [Solus et al., 2021]. That said, we are
aware of cases where unbounded GRaSP2 is incorrect un-
der u-frugality. Such a counterexample will be studied in
Section 5.1 and Appendix D.

We conclude this section by discussing how to use the DAG-
inducing method in [Verma and Pearl, 1988] based on BIC
scores. This facilitates our simulations done in Section 5.2.
Given a semigraphoid P over V, each π ∈ Π(v) induces a
DAG Gπ satisfying the following condition:

Xj ∈M⇔ (j → k) ∈ E(Gπ) (VP)

where M is a Markov boundary of Xk relative to XPre(k,π)

(defined in Appendix A.3). Lemma A.4 highlights that the
7See [Haughton, 1988] and [Chickering, 2002] for the (local)

consistency of BIC.

DAGs induced by (VP) and (RU) are equivalent when P is
a graphoid. But (VP) is preferred since we can estimate the
unique Markov boundary by the Grow-Shrink (GS) algo-
rithm from [Margaritis and Thrun, 1999] using BIC scores
and avoid hypothesis testing needed in (RU). We leave the
discussion of the GS algorithm in Appendix E. In Section
5.2, we are going to evaluate the performance of GRaSP
through (VP) and GS in light of finite samples.

5 SIMULATIONS

In this section, we review empirical results of unfaithful
u-frugal models with respect to DAGs and algorithmic per-
formance on Gaussian distributed data generated under a
variety of situations. References to the code and instanti-
ated models with replicability instructions are included on
a GitHub site for the project8. Also referenced will be a
running version of GRaSP in the Tetrad project (Ramsey
et al. [2018]) as well as tabular data for all simulations. A
scalable Python translation of GRaSP2 using (VP) with a
linear, Gaussian BIC score is included in the causal-learn
Python package.9

5.1 U-FRUGAL FAITHFULNESS VIOLATIONS

In what follows, we consider three sets of u-frugal models
that violate faithfulness. The sets of models correspond to:
regular Gaussian distributions over four variables [Šimecek,
2006a], discrete distributions over four variables satisfying
the intersection graphoid axiom and the Spohn condition
(this includes all positive discrete distributions) [Šimecek,
2006b] (see Appendix A.2), and unfaithful DAGs (uDAGs)
over five variables where a path cancellation induces a
marginal independence between a pair of variables (see
Appendix G)10. In Table 1, these sets are denoted Gaussian,
Discrete, and uDAGs, respectively.

We evaluate the capabilities of GRaSP0, GRaSP1, and
GRaSP2 to recover u-frugal DAGs using an independence
oracle on models from each set. We say that a GRaSP vari-
ant recovers the u-frugal model if it can do so from every
permutation; if the algorithm can reach the u-frugal model
from every permutation, then the correctness of the variant
will be independent of the DFS implementation.

Table 1 provides a computational proof that there are
GRaSP1 models not found by GRaSP0, and GRaSP2 mod-
els not found by GRaSP1. These results support the claims
in Corollary 4.9.

8https://github.com/cmu-phil/grasp.
9https://github.com/cmu-phil/

causal-learn.
10The first two sets of models can be found at http://5r.

matfyz.cz/skola/models.

https://github.com/cmu-phil/grasp
https://github.com/cmu-phil/causal-learn
https://github.com/cmu-phil/causal-learn
http://5r.matfyz.cz/skola/models
http://5r.matfyz.cz/skola/models


GRaSP0 GRaSP1 GRaSP2 Total
Gaussian 0 7 10 10
Discrete 0 79 84 84
uDAGs 0 19 49 61

Table 1: The number of u-frugal models recovered by
GRaSP0, GRaSP1, and GRaSP2 from three sets of u-frugal
models that violate faithfulness. A model is considered to
be recovered if it is recovered from every permutation.

5.2 LINEAR GAUSSIAN SIMULATIONS

We studied GRaSP’s performance in the linear Gaussian
case by varying simulations parameters around a config-
uration with 60 variables, an average degree of 6, and a
sample size of 1,000 against two standard algorithms: fGES
[Chickering, 2002, Ramsey et al., 2017] and PC [Spirtes
et al., 2000]. In Figure 4, we vary the number of measured
variables from 20 to 100 with values 20, 30, 40, 50, 60, 70,
80, 90, and 100. In Figure 3, we vary the average degree
from 2 to 10 with values 2, 3, 4, 5, 6, 7, 8, 9, and 10. For
Figure 5, we vary the sample size from 200 to 100,000,
with values 200, 500, 1,000, 2,000, 5,000, 10,000, 20,000,
50,000, and 100,000. In all cases, we draw coefficient val-
ues uniformly from U(−1, 1) and incorporate independent
additive exogenous noise distributions set to N(0, 1). All
statistics are averaged over 20 independent runs. Finally, in
Figure 6, we give the running times for our Java implemen-
tation of the algorithms. All of the algorithms except PC
used BIC with a parameter penalty multiplier of 2 as a score;
PC used partial correlation with a significance threshold of
0.001 as a conditional independence test. For the GRaSP
variants, we allow tucks of covered edges up to depth 3, and
tucks of non-covered edges at depth 1 when applicable11.
In all cases, we follow the procedure set out in the text of
running lower tiers of GRaSP before running higher tiers of
GRaSP to guarantee consistent improvement of statistics.

In these figures, precision = TP/(TP + FP) and recall =
TP/(TP +FN ), where TP is the number of true positives,
FP is the number of false positives, and FN is the number
of false negatives. We give precision and recall statistics
for adjacencies and arrowheads separately. For adjacencies,
true (false) adjacencies are pairs of vertices that are (not)
adjacent in the generative graphical model, and positive
(negative) adjacencies are pairs of vertices that are (not)
adjacent in the estimated graphical model for each algorithm,
respectively. For arrowhead statistics, a true arrowhead is a
directed edge in the CPDAG12 of the generative graphical

11In the Java implementation of the algorithm, we include pa-
rameters for uncovered depth and non-singular depth to provide
the user with more control over this heuristic.

12A CPDAG (a.k.a. “pattern”) is a graphical representation of
the Markov equivalence class for a DAG. See [Spirtes et al., 2000]
for details.
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Figure 3: Average degree varied, measured variables fixed
to 60, sample size fixed to 1,000.

model and a positive arrowhead is a directed edge in the
CPDAG of the estimated DAG, with negative and false
arrowheads indicating the absence of these directed edges
in their respective CPDAGs.

Figure 3 shows that algorithmic performance is strongly
dependent on the average degree. While the compared al-
gorithms generally perform well on sparse models, their
performance drops off as the density increases. The excep-
tion is GRaSP2, which dominates this group of algorithms,
with a strong performance for both adjacencies and arrow-
heads as average degree is increased.

Figure 4 shows the result of varying the number of measured
variables. Notably, increasing the number of measured vari-
ables while holding the average degree constant decreases
graph density. We see upward trends for some arrowhead
statistics corresponding to this decrease in density. Again,
GRaSP2 dominates this group of algorithms, with strong
precision and recall for both adjacencies and arrowheads.

All compared algorithms claim pointwise consistency, how-
ever, as shown in Figure 5, GRaSP2 outputs (nearly) correct
models at much smaller sample sizes; the alternative meth-
ods output incorrect models even with 100,000 samples.
This might suggest that GRaSP2 is better equipped to handle
almost-violations of faithfulness in linear Gaussian models.
As with previous figures, GRaSP2 dominates this group of
algorithms for precision and recall for both adjacencies and
arrowheads for all sample sizes studied.

Figure 6 shows that all the algorithms on average return
in under two minutes for the studied scenarios. However,
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Figure 5: Sample size varied, measured variables fixed to
60, average degree fixed to 6.

given the log scale, it should be noted that the computation
time for GRaSP2 increases exponentially with respect to the
average degree of the graph and with respect to the number
of measured variables. Other algorithms see similar slow-
downs, but, other than GRaSP1, none of the other algorithms
experience as significant of a slow-down.13

13All simulations in this paper were run on a MacBook Pro
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Figure 6: Measured variables fixed to 60 when not varied,
average degree fixed to 6 when not varied, sample size fixed
to 1,000.

In this paper, we focused on algorithms that can run on a
100 variable problem in a reasonable amount of time on a
laptop. However, we would be remiss if we did not mention
a recent algorithm by Lu et al. [2021] called Triplet A∗ that
performs in terms of accuracy as well as, if not better than,
GRaSP2. We declined to directly compare the Triple A∗

algorithm in our Figures because it was unable to finish our
simulations in reasonable time; for instance, the point they
give in their Figure 6 for the 60-variable, average degree
5 case was already as slow as could be managed (personal
communication); we took our simulations out to an average
degree of 10. In lieu of this, we include in Appendix F.1
results of running GRaSP2 on their published simulation
data.

6 EMPIRICAL EXAMPLE

We give a simple empirical example, the 6-variable Airfoil
example from the Irvine Machine Learning Repository (Dua
and Graff [2017]. The experiment measures sound pressure
elicited by an airfoil in a wind tunnel. The variables in the
example are as follows: (1) Velocity of the wind in the tun-
nel, (2) chord length of the airfoil, (3) angle of attack of the
airfoil, (4) displacement of the wind away from the airfoil,
(5) frequency of the elicited sound, and (6) measured pres-
sure of the elicited sound. (1), (2), and (3) are experimental
variables and thus exogenous; (6) in the experiment is en-
dogenous. The GRaSP2, PC and GES graphs are given in
Appendix F.2. The GRaSP2 model (which is the same as
the SP model) is uniquely frugal; background knowledge
is satisfied, except possibly for (3), which looks to be not
exogenous in the model; here, it helps to remember that

laptop computer, M1, 2020, with 16G of RAM, using the Corretto
18 Java SDK. Memory is the main resource constraint on the
procedure, which is needed for caching scores. Thanks to the
comment of an anonymous reviewer, a machine with 256GB of
RAM may be useful for analyses significantly larger than the ones
studied.



latent variables might exist. This raises the question as to
whether a causally insufficient algorithm might find a model
consistent with (3) being exogenous. We will explore how
GRaSP2 may be used to do latent variable reasoning to see
whether (3) remains non-exogenous in general.

This example has a number of advantages: (a) It is an experi-
ment so readily interpretable as a causal system; (b) because
it is an experiment, partial ground truth for the system can
easily be adduced; and, (c) it is small enough to run SP on
the data, and since this produces a single model, we can
simply compare the output of GRaSP2 to the output of SP
to show that GRaSP2 finds the optimal BIC model.

Further empirical examples with SP (where possible),
GRaSP2, fGES, and PC are given on our GitHub site.

7 DISCUSSION

Permutation-based reasoning in designing causal search
algorithms is increasingly influential in the literature, in-
cluding the methods from Teyssier and Koller [2005] and
Raskutti and Uhler [2018]. We propose a class of algorithms
under the generic name GRaSP characterized by an efficient
permutation-based operation, tuck. All tiers of GRaSP are
shown to be correct and pointwise consistent under the as-
sumption of faithfulness. Also, we show that the two lower
tiers of GRaSP are logically equivalent to the algorithms
TSP and ESP discussed in [Solus et al., 2021]. We further
prove that the final tier of GRaSP makes a strictly weaker
assumption than its lower-tier counterparts and demonstrate
that it outperforms the lower-tier algorithms and two stan-
dard causal search algorithms, PC and fGES, in simulations.

Discussion of GRaSP can be extended in several directions.
First, we have already begun to explore even higher tiers of
GRaSP which relax the search criterion even further. Figure
3 suggests that GRaSP may provide tools helpful for the
discussion of dense graph search. Given the hierarchy of
GRaSP, higher tiers will hopefully improve the performance
statistics and employ weaker assumption than the existing
tiers. Ultimately, we hope to develop a tier of GRaSP that is
correct under u-frugality alone.

Second, many advances have been made in the area of more
or completely general modeling of data distributions, with
corresponding improvements in accuracy of causal search
for algorithms taking general modeling assumptions into ac-
count. It would be helpful to consider how such ideas can be
incorporated into GRaSP. For example, Huang et al. [2018]
show how a consistent general score can be incorporated
into GES; it will be interesting to see whether GRaSP is able
to show similar improvement in applicability when using
such a score.

Third, we have analyzed Gaussian simulations in Section
5, but some simulation work needs to be done to show

that GRaSP works well for discrete distributions (where
the theory is already applicable) and also for mixed Gaus-
sian/discrete distributions studied in [Andrews et al., 2019].

Fourth, the discussion of this paper is built upon the as-
sumptions of causal sufficiency, that is, no latent common
causes, and no selection bias. Causal search without these as-
sumptions was pioneered by the FCI algorithm from Spirtes
et al. [2000] and Zhang [2008]. To improve empirical per-
formance of FCI, Ogarrio et al. [2016] initiated a hybrid
algorithm GFCI which combines GES with FCI. To fol-
low suit, we plan to explore an algorithm that incorporates
GRaSP into GFCI (in place of GES), further improving this
empirical performance.

Fifth, more direct comparisons to other algorithms need
ideally to be done. As a step in this direction, we include fig-
ures on our GitHub site using the simulation parameters in
[Lu et al., 2021], corresponding to their Figures 6, so there
is oblique comparison to the algorithms in those figures, in-
cluding GES and PC in the PCALG package [Kalisch et al.,
2012], Triplet A∗ [Lu et al., 2021], NOTEARS [Zheng et al.,
2018], the GSP implementation in the Python causaldag
package, LiNGAM [Shimizu et al., 2006], and MMHC
[Tsamardinos et al., 2006]. The reader is invited to explore
those comparisons.

Finally, we have taken up just one real data example in
this paper, but it is useful to point out in a forward-looking
way that improvements in the ability to handle latent and
mixed continuous/discrete variables in a scalable and ac-
curate causal search algorithm would put one in a good
position to analyze a number of otherwise difficult real
data examples. Accurate preliminary results consistent with
ground truth using the suggested modification of GFCI for a
number of mixed datasets from the Irvine Machine Learning
Repository ([Dua and Graff, 2017]), for instance, suggest
that this would be a good direction to look for new practical
methods (cf. [Raghu et al., 2018]).
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