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Abstract

The application of Convolutional Neural Networks (CNNs) to process point cloud1

data as geometric representations of real objects has gained considerable attention.2

However, point clouds are less structured than images, which makes it difficult to3

directly transfer important CNN operations (initially developed for use on images)4

to point clouds. For instance, the order of a set of points does not contain semantic5

information. Therefore, ideally, all operations must be invariant to the point order.6

Inspired by CNN-related operations applied to images, we transfer the concept of7

strided and transposed convolutions to point cloud CNNs, enabling deterministic8

network modules to operate directly on points. To this end, we propose a novel9

strided convolutional layer with an auxiliary loss, which, as we prove theoretically,10

enforces a uniform distribution of the selected points within the lower feature11

hierarchy. This loss ensures a learnable and deterministic selection, unlike the12

iterative Farthest Point Sampling (FPS), which is commonly used in point cloud13

CNNs. The high flexibility of the proposed operations is evaluated by deploying14

them in exemplary network architectures and comparing their performances with15

those of similar (already existing) structures. Notably, we develop a light-weight16

autoencoder architecture based on our proposed operators, which shows the best17

generalization performance.18

1 Introduction19

The processing of point clouds is crucial for numerous modern applications. For example, in20

autonomous driving, LiDAR sensors enable vehicles to create a 3D scan of their surroundings and21

operate based on the obtained information. While there are several sophisticated CNN architectures22

for image data, key network modules like convolutions with varying stride and max-pooling cannot23

be directly applied to point clouds. This is because point clouds are sets of points, which are located24

arbitrarily in the three-dimensional Euclidean space, and are not structured like pixels in images.25

Therefore, no grid structure defines how to concatenate the feature vectors of individual points to26

a tensor that captures all nodes of the point cloud. Consequently, operations on the tensor must be27

permutation invariant to ensure consistent computation and resemble those of image processing.28

While there are several concepts of convolutions with a stride of one that have been applied to point29

clouds [21, 24, 20, 3], there is no approach that transfers permutation invariant convolutions with a30

higher stride directly to point clouds without an additional auxiliary grid. Yet for image processing,31

feature hierarchies enforced with strided convolutions are a crucial concept in many well-known deep32

learning architectures, e.g., Autoencoders [10], u-net [19], and YOLO [18, 16, 17].33

Hence, this work draws motivation from the assumption that transferring deterministic strided34

and transposed convolutions to point clouds offers great potential. It’s main contributions can be35

summarized as follows:36
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• We provide a proxy for permutation invariant convolutions with a step size larger than one37

for point clouds based on an auxiliary loss, which, as we will prove, ensures selection38

diversity. Complementary, we provide a proxy for transposed convolutions that does not39

require knowledge of the points. Since both approaches operate directly on the points, they40

are closely related to the operation of their original counterparts from image-based CNNs.41

• Using these building blocks, we construct an autoencoder1 that not only outperforms the42

current state-of-the-art for reconstructing the complete point cloud but also generalizes43

better than existing approaches.44

• We show that a properly configured version of our model can learn meaningful high-level45

features despite being light-weight. Moreover, we demonstrate that our selection strategy can46

be integrated into existing architectures and replace FPS without a great loss in performance.47

The remainder of this paper is organized as follows: The relevant work related to CNNs on point48

clouds is outlined in Section 2. In Section 3, we introduce our proposed approaches that essentially49

transfer strided and transposed convolutions from the image domain, placing a particular emphasis on50

the auxiliary selection loss. Potential applications for the network modules as well as the associated51

experimental and ablation studies are presented in Section 4. At last, Section 5 concludes this work.52

2 Related Work on Point Cloud CNNs53

One of the first techniques that enabled the use of CNNs and convolution operations for point clouds54

was to voxelize them. However, these operations cannot be applied directly to point clouds without55

the supporting grid structure. Moreover, voxelization scales cubically with voxel resolution, so these56

approaches represent a tradeoff between computational cost and accuracy.57

PointNet, introduced by Qi et al. (2017), was the pioneering neural network architecture for applying58

deep learning directly to point clouds. The concept of the network is to first process each point59

individually and finally apply global max-pooling to enable the processing of the feature vector with a60

fully connected neural network. The main disadvantage of PointNet is that it cannot directly incorpo-61

rate local features of neighboring points into the convolution. The enhanced version PointNet++ [15],62

was the first network to introduce feature hierarchies while working directly with points. PointNet++63

uses iterative farthest point sampling (FPS) [5] to define regions processed by lower-level PointNets,64

with higher-level features captured in the points sampled by FPS.65

The Dynamic Graph CNN (DGCNN) proposed by Wang et al. (2019) introduces two novel ideas: first,66

EdgeConv, a new type of convolution that operates on the k-nearest-neighbor-graph (k-NN-graph) of67

the point cloud, and second, a dynamic update of the k-NN-graph giving the network its name. The68

former is the first convolution operation on points which is conceptually transferred from the image69

domain. It is based on the observation that in images, the convolutional kernel operates on the eight70

nearest neighbor pixels (also known as Moore neighborhood) of a pixel. A concept for convolutions71

with a stride greater than one, however, is missing.72

Other approaches to convolutions on point clouds include KPConv [20] and PAConv [24]. Like73

DGCNN, PAConv processes the k-NN-relationships. However, instead of directly learning weights,74

an assembled weight matrix is predicted. This matrix is used to compute features of neighbor relation-75

ships. PAConv can therefore be integrated into existing architectures as a novel and versatile concept.76

KPConv, contrarily, operates with a spatial kernel instead of relying on the k-NN-neighborhood.77

Notably, KPConv proposes an analogy to convolutions with a stride greater than one, which is based78

on a grid subsampling strategy with a cell size depending on the radius of the kernels. The points for79

different hierarchies are determined by the barycenters of the original points in each cell. Hence, the80

stride approach does not operate directly on the points. Since all information must be incapsulated in81

a code word, the upsampling approach from KPConv, passing the information gathered in barycenters82

to the before aggregated points, is not suitable to construct a decoder for this task.83

Generally, the approaches for point cloud autoencoders are based on the idea that point clouds84

describe the surfaces of objects. The approach is to fit a 2D grid by trying to stretch, squeeze and85

fold it onto the 3D surface. The corresponding origami instructions are saved in the code word of the86

autoencoder. The first network to propose this idea was FoldingNet [26]. However, this technique87

1The corresponding code can be found in the supplementary material.
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struggles when objects possess holes, or multiple objects are present, as the network then has to88

stretch the 2D grid across empty space. To solve this issue the most recent approach to reconstructing89

a complete point cloud, TearingNet [13], additionally learns how to cut and tear the 2D grid into90

the desired shapes. This is done very successfully as it is the state-of-the-art for autoencoding point91

clouds with multiple objects. Recently, the utilization of transformer architectures has extended to the92

point cloud domain as well [27, 6, 28]. In particular Point-M2AE [28] leverages FPS-based feature93

hierarchies and is pre-trained with the self-supervised task of masked autoencoding. Contrarily to94

complete reconstruction, only parts of the point clouds are covered and reconstructed. They are never95

seen by the entire model, necessitating the meaningful reconstruction of previously unseen points.96

Consequently, skip connections between encoder and decoder are permissible as the objective is to97

uncover points that have not been exposed through those skip connections.98

Instead of using stride to reduce the number of processed points as done by image CNNs, other99

learnable subset approaches have been proposed for point clouds, aiming to improve over FPS with a100

network-decided and permutation independent selection of points. While according to its definition101

FPS is permuation invariant, in most applications a greedy or iterative version of FPS is considered to102

decrease computational complexity. The greedy sampling technique is not permutation invariant as103

the subsampled output depends on a random starting point and can, thus, result in inconsistent outputs.104

Gumbel Subset Sampling (GSS) proposed in Yang et al. [25] employs a Gumbel-Softmax to enable a105

soft learnable selection of points during training and performs a reparameterization during inference.106

This leads to a Gumbel-Max which then selects specific points in the point cloud. Nevertheless, GSS107

does not ensure diversely selected points and the final network setup requires a combination of FPS108

and GSS in order to improve the performance. Critical point layers proposed by Nezhadarya et al.109

[12] select points based on the number of highest feature activations per point. This operation is110

permutation invariant. However, an equal distribution of the points is not enforced and it cannot be111

ensured that the network identifies critical points at the beginning of the training. Finally, Lin et al.112

[11] present different sampling strategies that are tailored in advance to specific tasks and can be113

learned by the network. These strategies are designed to enable the network to perform well on their114

respective tasks, but lack generality.115

3 Developing Strided and Transposed Convolutions for Point Clouds116

As outlined above, there exists a research gap regarding the important concept of convolutions with a117

stride greater than one operating directly on the points. Currently, iterative FPS is used for this purpose.118

However, it is not permutation invariant, and hence results in inconsistent outputs. Our approach119

to convolutions with a stride greater than one operates on the k-NN-graph and samples points by120

itself for higher feature hierarchies. This is done with an auxiliary loss which enforces a uniform121

distribution of the selected points. Further, we propose a counteracting transposed convolution. The122

individual network components are described in the following.123

Strided Convolutions Generally, in the convolution operation on images, the learnable kernel124

weights are multiplied by the pixels that match the weights in their position relative to a central pixel.125

This central pixel has neighboring central pixels that the kernel is applied to as well. The distance126

between those positions is determined by the stride as its value corresponds to the step size between127

two kernel positions. For point clouds, the convolutional layers with a stride of one proposed in this128

paper, operate similarly to those from DGCNN with the nearest neighbors being determined based129

on the dynamic graph. Slightly deviating from DGCNN, the feature vectors from the current node130

to its k-nearest-neighbors are gathered behind the feature vector of the current node, and a (1× 1)131

convolutional kernel is applied to this tensor. Thus, all neighboring points contribute to the feature132

result and not just those with the highest activation.133

Unlike basic convolution, convolutional layers with a stride greater than one decrease the size of the134

input, which requires the network to compress the information. While basic convolutions can be135

used on the k-NN-graph, this approach does not work for strides greater than one because there is no136

inherent method to select the central points. In the image domain, a typical convolution that reduces137

the size of a feature map has a stride of two and a convolutional kernel of size (3× 3). To mimic this138

convolution in the case of point clouds, the kernel should only be applied on ⌊n
4 ⌋ nodes. To ensure139

a similar spacing as between the central pixels of images, the points should not overlap each other140

within the 4-nearest-neighbor neighborhood. However, splitting the point cloud into such subgroups141
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may not always be possible (e.g., selecting nine points of a uniform 6× 6 point grid) and may not142

always yield the same result (consider points with equal distances to its 2-nearest neighbors placed143

on a circle). The main idea to overcome these obstacles and realize a stride greater than one for point144

clouds, nevertheless, is to let the network decide which nodes to process further in the successive145

layers and simultaneously enforce a diverse selection of points. Letting the network decide which146

nodes to process further is implemented with an attention map, i.e., a vector with one importance147

value per node, predicted by the network. This resembles a score function s(pi) computing a score148

for each node pi of the point cloud P . From this attention map, the ⌈ n
fd
⌉ highest values and the149

corresponding node indices are selected. Here, fd is the factor by which the set of points should be150

decreased. This means that the value of fd corresponding to the typical strided convolution is 4. The151

nodes that have not been selected in the multi-dimensional feature map are then dropped.152

Auxiliary Selection Loss If the network decides itself which nodes to keep and which not, it may153

happen that only nodes in an arbitrary fraction of the point cloud are selected at the beginning of154

the training. Then, a diverse selection of points cannot be simultaneously enforced. This does not155

correspond to the idea of strided convolutions for images, and the network cannot process the full156

information. Additionally, the selection may be unstable and unpredictable for the network, causing157

problems in the learning process. Thus, the network needs to learn which nodes are neighbors in the158

feature map and preferably select non-neighboring nodes to attain evenly distributed points. To guide159

the prediction of the attention map referred to above, in this direction, an auxiliary loss capturing the160

diversity of the selected nodes is computed. In order to do so, for every node, the attention values of161

its (fd − 1)-nearest neighbors are gathered behind the attention value of the corresponding node in162

the attention map, resulting in a matrix M . Ideally, from a selection diversity perspective, the two163

following conditions are met: the first entry in each row of the selected points equals one2, and the164

other values of this row equal zero. Further, in the rows of the non-selected points, the first entry165

should be zero and one of the other entries one. Table 1 shows an example for an ideal M . If both166

conditions are met, it is ensured that 1) there are no neighboring selected points (all row entries167

are zero except for the first one), and 2) every non-selected point has a selected neighbor (one of168

the entries, except for the first one, is not zero). Then, the selected points are evenly spread in the169

k-NN-graph over which the strided convolution will slide. To measure to what extent the desired170

properties are met by the network, a loss per row and column is computed. The values in every row171

are summed, and as it should yield one for every point in the ideal setting, the deviation is measured172

in terms of the squared error. The column-wise loss is computed only for the selected points, in which173

case the sum of the first column entries should yield ⌈ n
fd
⌉, and the sum of the remaining columns174

should yield zero. The total loss is the sum of all parts multiplied by 1
fd

as a weighting factor in the175

case of different 1
fd

throughout the network. An illustration of the whole selection operation can176

be seen in Figure 3. Assuming that mi,j is the entry in the ith row and the jth column of M , the177

mathematical equation for the auxiliary loss LS is178

LS =
1

fd
·

[(⌈ n
fd

⌉∑
i=1

mi,1

)
−
⌈
n

fd

⌉]2

+

fd∑
j=2

(⌈ n
fd

⌉∑
i=1

mi,j

)2

+

n∑
i=1

[( fd∑
j=1

mi,j

)
− 1

]2
 . (1)

Theorem 3.1. In the case of the global optimum with LS = 0 and under the requirement that179

s(pi) ≥ 0,∀pi ∈ P , there cannot be two neighboring selected points.180

Proof. It is sufficient to show that the matrix until row ⌈ n
fd
⌉ will cause LS > 0 as181 ∑n

i=⌈ n
fd

⌉+1((
∑fd

j=1 mi,j) − 1)2 ≥ 0. To this end, we show that in the simplest setting LS > 0 if182

two neighboring points are selected. We proceed to show that if a matrix already caused LS > 0183

independent of the particular deviation, neither an addition of a row nor a column can lead to LS = 0184

which completes the induction. For the global optimum of LS = 0 all row sums ri =
∑fd

j=1 mi,j185

must equal the optimal value r∗i = 1,∀i and all column sums cj =
∑⌈ n

fd
⌉

i=1 mi,j must equal the186

optimal value c∗1 = ⌈ n
fd
⌉ and c∗j = 0,∀j ∈ {2, . . . , fd}. In the simplest case of fd = 2 and two187

selected points p1 and p2 (i.e., n ∈ {3, 4}) with attention values s(p1) = a1 > s(p2) = a2 if p1 is a188

2Note that the value corresponding to a node being selected can be any value > 0 if the network does not
need too large weights to attain it. Here, 1 is chosen as an analogy to true and false.
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Table 1: Illustration of the ideal setting for diversely selected points if fd = 3. p1 and p2 are the
selected points (blue) and receive an importance value of 1 (first value column s(pi) of the table
depicting M ). Their fd-nearest-neighbor neighborhood is represented by the orange lines. All other
points receive an importance value of 0 but either p1 or p2 is their first nearest neighbor (NN1).

P1

P6

P2
P5

P4

P3
Node s(pi) NN1 NN2

p1 1 0 0
p2 1 0 0
p3 0 1 0
p4 0 1 0
p5 0 1 0
p6 0 1 0

nearest neighbor of p2 to attain the global optimum for LS it is required that c1 = a1 + a2
!
= c∗1 = 2189

and r2 = a1 + a2
!
= r∗2 = 1 yielding a contradiction. Thus, either dc,1 = c1 − c∗1 ̸= 0 or190

dr,2 = r2 − r∗2 ̸= 0 or both. In the general case ∃j : dc,j ̸= 0 ∨ ∃i : dr,i ̸= 0 and thus191

d =

⌈ n
fd

⌉∑
i=1

|dr,i|+
fd∑
j=1

|dc,j | > 0. (2)

If adding a new column by increasing fd to fd + 1 could cause d = 0 its attention values must be192

mi,fd+1 = −dr,i,∀i and ∃i : dr,i ̸= 0 ∧ ∄j : dc,j ̸= 0 needs to be true. Thus, the loss requires193

c∗fd+1 = 0
!
=

⌈n/fd⌉∑
i=1

−dr,i. (3)

Per requirement there can only be mi,j ≥ 0 and therefore dr,i ≤ 0,∀i which yields a sum greater194

than zero and thus a contradiction to 3. If adding a new row by increasing the number of selected195

points could cause d = 0, its attention values must be m⌈ n
fd

⌉+1,1 = −dc,1 + 1 and m⌈ n
fd

⌉+1,j =196

−dc,j ,∀j ∈ {2, . . . , fd} since c∗1 increases by 1 if a new row is added. Further, analogously to above197

∃j : dc,j ̸= 0 ∧ ∄i : dr,i ̸= 0 must be true. Hence, for this case g = 0 requires198

r∗⌈n/fd⌉+1 = 1
!
= (−dc,1 + 1) +

fd∑
j=2

−dc,j =

fd∑
j=1

−dc,j + 1 ⇒ 0
!
=

fd∑
j=1

−dc,j . (4)

The argument now is the same as it was for adding a new column. Thus, adding rows and columns199

cannot change d to be equal to zero which is the requirement for the global optimum and therefore,200

two selected points neighboring each other yields LS ̸= 0.201

While in theory, the proof requires that s(pi) ≥ 0,∀pi ∈ P , our experiments have shown that202

in practice, it is sufficient to employ a LeakyReLU instead of a ReLU activation function on the203

predictions. Advantageously, the complete selection operation causes the network to learn an order204

of nodes from the point cloud represented by the attention vector. This order will be independent205

of the order of nodes in the input tensor as all operations performed are permutation invariant. The206

independence property of point clouds enables the construction of autoencoders for point clouds that207

can learn a common representation for it, disregarding the input permutation of points. Further, a208

reduced point subset allows the network to connect nodes previously far apart from one another.209

Transposed Convolutions Upsampling of feature maps, in the case of CNNs for images, often210

happens via transposed convolutions. Transposed convolutions are also referred to as convolutions211

with fractional strides. This step size, smaller than one, is obtained by adding spacing between the212

entries of the feature map. Thus, a kernel processes neighboring relations in a less dense but rather213

more spacious manner. If a stride of 1
2 is applied the distance between positions in the input is doubled214

and the void positions are filled with zero entries. On this new feature map, the kernel is applied215
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max gather

select

backpropagate
auxiliary loss

output

(a) (b)

Figure 1: (a) Illustration of the proposed convolution with a stride greater than one on point clouds.
The input tensor (omitting the batch dimension) consists of the points in orange (two channels for
two-dimensional points) and the gathered k-nearest-neighbor points attached to them in blue (with
k = 1 for visibility reasons). Potentially, multiple layers of 1× 1 kernel convolutions (grey box over
the input tensor) operate on this tensor and from the resulting importance vector, the ⌈ n

fd
⌉ values with

the highest score are selected (curly braces). The input feature map is reduced to the corresponding
nodes (bottom right) and the auxiliary loss is computed based on the importance vector (top right).
(b) Illustration of the upsampling operation on point clouds. The exemplary input feature map (left)
contains 3 points (shown by different colors). Every k-nearest-neighbor relationship is processed
individually (middle) leading to an increase of the point dimension.

with a step size of one. Thus, in most cases, only two previous positions are covered by a kernel.216

Compliant with the desired reproduction of convolution operations for point clouds during the novel217

upsampling operation, the neighboring relationships are considered individually. In this operation, a218

kernel creates a feature of a new point by processing the current point and one of its nearest neighbors219

without knowledge of the point positions which should be sampled. This way, learned information220

about the surrounding of a current point captured in its feature vector can be translated into new221

points. This operation can be seen in Figure 3. Specifically, every point pi is repeated fu times and222

stacked with the vectors pointing from pi to its fu − 1 nearest neighbors and the null vector. This223

yields n ∗ fu different point vector pairs which are processed by a normal convolution operation224

producing n ∗ fu points in a new feature space. This way, the convolutions with a stride greater than225

one can be undone and higher-level features can be translated into lower-level ones.226

4 Experiments227

Autoencoders make use of down- and upsampling operations, and hence, are suitable to exemplarily228

apply both presented proxies for the point cloud domain. The encoder of the network presented in229

this work is analogous to the well-known ResNet structure [9], with the additional auxiliary loss230

LS from Equation 1 enabling strided convolutions. The decoder structure also employs the ResNet231

blocks and implements the concept for transposed convolutions. For a more detailed description of232

the architecture specifics see the appendix. To test the performance of our proposed selection strategy233

in other architectures, we replace the FPS module in Point-M2AE with our FPS alternative. However,234

incorporating our selection into the Point-M2AE Transformer is not straightforward since their235

masking strategy depends on the selection module in a way that the neighborhood embeddings of the236

unmasked points do not interfere with those of the masked points. Consequently, the selection must237

be completed before the network calculations are carried out. Our proposed selection is intentionally238

based on the previous layer output. This way the selection module can leverage the knowledge of what239

points cause high activations in previous layers. Incorporating this selection after the computation240

of the different hierarchical layers, however, enables the network to select points at the boundary241

between masked and unmasked tokens in the transformer and causes the training to not converge.242

Therefore, we build two versions: Point-M2AE-c with a selection module only processing the spatial243

information of the points and Point-M2AE-e for which the first selection module is based on the244

neighborhood embeddings. These embeddings are independent of the masking and the following245

selections are again based on the points themselves.246

6



N/A 24.58 28.19 28.30

 4.72  6.54  8.92 11.58

16.22 18.97 21.35 N/A

N/A 24.98 28.54 28.89

 4.45  6.21  8.45 11.01

16.39 19.19 21.72 N/A

N/A  6.16  7.29  9.19

 6.21  7.10  9.08 N/A

 4.21  5.53  7.49  8.25

FoldingNet TearingNet Ours

KIMO3 KIMO4 KIMO5 KIMO6 KIMO3 KIMO4 KIMO5 KIMO6 KIMO3 KIMO4 KIMO5 KIMO6

KIMO (+1)

KIMO ( 0)

KIMO (-1)

Train Data

T
e

s
t 
D

a
ta

Figure 2: The performance values of the different models given in terms of the extended chamfer
distance (Equation 5), multiplied by factor 100 for better readability. Each of the models (represented
by three separate blocks) was trained on four training data sets (columns per block) and tested with
those validations sets deviating in their grid size by ±1 (rows). The best performing not cross tested
model is marked in bold.

4.1 Point Cloud Reconstruction247

In the first experiment, we investigate on the reconstruction ability of the proposed autoencoder248

and train it as well as Folding- and TearingNet3 on the KIMO3-6 data sets proposed by [13],249

synthesized out of the KITTI 3D object data set [7] by cutting out traffic participants, and designed250

with challenging multiple-object scenes in mind. In our experiments, each data set contains 50,000251

training instances and 10,000 test instances, deviating from the original construction description of252

the data sets to make the trained models more comparable. Therefore, Tearing- and FoldingNet are253

trained with their default parameters. Our own networks are trained with a learning rate of 4 · 10−3254

which is exponentially decreasing and halved every 80 epochs. The k is set to 10 and the fd and fu255

values are set to 6 for every layer, yielding a code word that consists of 57 points described each by256

9 code word channels (cc). The performance of all models is evaluated with the extended chamfer257

distance [26, 13] between the reconstructed and the original point cloud. This metric between two258

point sets S1 and S2 is defined as259

d(S1, S2) = max

{
1

|S1|
∑

x1∈S1

min
x2∈S2

∥x1 − x2∥2,
1

|S2|
∑

x2∈S2

min
x1∈S1

∥x2 − x1∥2
}
. (5)

The chamfer distance is the loss function of the Folding- and TearingNet. For our network, we found260

a slightly improved performance when using squared distances between points in the loss function.261

We analyze the reconstruction capabilities of the different networks (a) for the same type of data set262

that was used for training, and (b) across corresponding neighboring data sets (see Figure 2). To263

ensure better comparability of the results for the cross-data set studies, we scaled all point clouds to264

the size of the point clouds that were used for training the respective model. The results can be seen265

in Figure 2. Our approach outperforms the state-of-the-art models, when the test data corresponds to266

the training data. The most significant performance gain is achieved for the KIMO6 data set with267

many small objects on average. Notably, our proposed approach is very robust, as evidenced by the268

competitive performance on the neighboring data sets. This means that it can handle other data sets269

much better (i.e., it generalizes more) than its two main competitors. However, in our approach, the270

typically superior model is the one trained on the corresponding training data. There is an anomaly271

with KIMO5, as the models trained on KIMO4 outperform it. In contrast, all other models trained on272

non-corresponding training data achieved slightly inferior, yet still comparable, results.273

4.2 Classification274

To assess the capability of our autoencoder to effectively represent 3D data in the generated code275

words, following the methodology employed in prior studies (see Table 2 on the left), we conduct a276

two-step evaluation. First, we train the autoencoder on the ShapeNet [4] data set, which encompasses277

3Note that for the task of compressing the complete information of the scene and reconstructing the original
point cloud, we are not directly comparable with existing transformers like Point-M2AE. This is because they
are trained using a masking strategy to learn as much global information as possible and do not compress
information as networks trained to fully reconstruct a point cloud do. Both approaches are beneficial in different
use cases.
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Table 2: The achieved accuracy of an SVM trained on the representation obtained by different
self-supervised learning models for the ModelNet40 data set.
Model Acc. (%)

T-L Network [8] 65.4
3D-GAN [22] 83.3
Latent-GAN [1] 84.5
FoldingNet [26] 88.4
DGCNN + CrossPoint [2] 91.2
Transformer + OcCo [27] 89.6
Point-BERT [27] 87.4
Point-M2AE [28] 92.9

Model Subsampling fd Acc. (%)

Config-1 ours (6, 6) 37.1
Config-2 ours (14, 8) 67.0
Config-3 ours (12, 12) 81.8

Point-M2AE-fps fps (8, 4, 2) 91.6
Point-M2AE-c ours (4, 2, 4) 90.3
Point-M2AE-e-1 ours + emb (4, 2, 4) 91.2
Point-M2AE-e-2 ours + emb (8, 4, 2) 90.7

55 distinct 3D object categories and over 50,000 3D shapes. Then, we store the code words of the278

previously unseen 3D objects in the ModelNet40 [23] data set and aggregate the information by279

taking the sum of the mean and maximum for every code word. Utilizing those aggregated code280

words, we train a linear Support Vector Machine (SVM) as our classifier. We conduct experiments281

involving different variations of our architecture, as well as variants of Point-M2AE, by replacing282

FPS with our own selection approach. The results of these experiments are presented in Table 2.283

We test our network in three different configurations to vary the amount of features and points in284

the code word. The first one, "Config-1", is equivalent to the network configuration used during285

point cloud reconstruction. Despite outperforming its competitors during the reconstruction task,286

the SVM struggles to effectively distinguish the code word representations. We hypothesize that287

this can be partially attributed to the limited nature of our network’s code word, which comprises 57288

points with 9 cc each. By contrast, the competing model with the highest accuracy "Point-M2AE"289

has 64 points with 348 cc. If we alter the composition of our model’s code word to 19 points and290

27 cc ("Config-2") we are able to increase the SVM accuracy by almost 50% without changing the291

total information of the code word (57× 9 = 19× 27). If we allow more information in the code292

word with "Config-3" (15 points and 137 cc) we are able to achieve a competitive accuracy while293

still maintaining significantly less information in the code word (15× 137 < 64× 348). In addition294

to the aforementioned comparisons, it is crucial to consider the parameter count of the models295

being compared. For instance, Point-M2AE utilizes approximately 15.3 × 106 parameters, while296

FoldingNet employs around 2×106 parameters. In contrast, our network operates with a substantially297

lower parameter count of approximately 3.4× 105. This disparity in parameter count highlights an298

important aspect to consider when evaluating the efficiency and computational requirements of the299

different models under investigation.300

As expected, Point-M2AE-c with a selection only based on the spatial performance of the points301

performs worse than Point-M2AE-e-1, which, in turn, however, cannot achieve the same performance302

as the original Point-M2AE with the equivalent fd configurations. Nevertheless, the new selection303

strategy proves to be more robust when a large fd is employed. It can be seen that the decrease in304

performance is not as significant for Point-M2AE-e-2 compared to Point-M2AE-e-1 as for Point-305

M2AE-fps compared to Point-M2AE.306

4.3 Ablation307

In the ablation study, we investigate the influence of the choice for the number of nearest neighbors308

per point processed within one convolution and the choice of the fd and fu values. The reconstruction309

quality does not differ significantly for all tested parameters and stabilizes by a chamfer distance310

of approximately 0.018, suggesting that fd and fu are not the bottleneck for the compression of311

information – encouraging a lighter parameter choice leading to computationally less expensive312

models. Further, we implement FPS in our proposed architecture instead of a network guided313

sampling and find that we can achieve the same reconstruction performance as FPS in our architecture314

while producing a permutation invariant code word. The detailed results can be found in the appendix.315

To get a better understanding of the model’s learning process, the distribution of the selected points316

can be analyzed, e.g., using the point sampling depicted in Figure 3. The blue points are selected in317

the first level and the red points in both the first and the second level. If the points are not distributed318
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Epoch 1 Epoch 50 Epoch 300

Figure 3: The model’s point selection (top row and bottom left), and model predictions (bottom
middle and bottom right). Columns correspond to the different epochs (1, 50, and 300) and depict
different aspects of the learning procedure.

well the network will (during the upsampling process) tend to clump up points in the dense areas and319

produce sparse regions for areas that have only a few points selected. This process is controlled by320

the auxiliary loss LS , and its influence can be observed in the left column of Figure 3. The model321

demonstrates inadequate point distribution during the start of the first epoch (top left), whereas,322

by the end of the first epoch (bottom left), it has learned to distribute the points. However, simply323

distributing the points evenly will result in fuzzy edges and poor capturing of surfaces, as can be seen324

in the predictions in the middle column of Figure 3, which displays the original object (top middle)325

and its prediction (bottom middle), respectively, after roughly 50 epochs of training. This prediction326

shows that the model has learned to locate the object and pinpoint the center of mass, but has not327

captured any exact surfaces yet. Also, there are some points that are distributed completely outside328

the desired shape. This happens because the model has problems bounding the figure during the329

upsampling process. Thus, it is also important for the network to specifically select points that are at330

the corner or edges of an object. In the top right of Figure 3, it can be seen that, specifically, the red331

points are very frequently distributed at the contour in a model that has been trained for roughly 300332

epochs. On the bottom right, the corresponding prediction is depicted. The quality of the prediction333

can be visually assessed, as the points form even surfaces with only minimal deviations. Furthermore,334

there are no outliers that scatter far away from their intended position.335

5 Conclusion336

In conclusion, we introduce a novel network-based point selection strategy that guarantees the diver-337

sity of selected points equivalent to FPS, while possessing the advantages of permutation invariance338

and learnability. Employing the proposed strategy in a simple yet effective autoencoder we show its339

superiority compared to previous state-of-the-art approaches on the task of fully reconstructing a340

point cloud with multiple objects. Interestingly, both established methods had difficulties processing341

data types on which they were not trained, while our proposed model generalizes much better and342

suffers only minor performance losses. Even though the model is considerably smaller than recent343

unsupervised learning models it is able to represent a given 3D shape well. Further, the proposed344

FPS alternative proves to be integrateable into other existing architectures and is more helpful for345

the model if based on hierarchical features learned by the model rather than the spatial locations346

of the points. For future work, we plan to integrate our procedure into a transformer architecture347

trained with a masking strategy not dependent on the selected points and further investigate on more348

complex architectures. Moreover, synergies between our selection strategy focusing on diversity, and349

strategies targeting other point subsets, e.g., ones with little noise, are promising to investigate with a350

combined auxiliary loss function.351
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