
DynoClass: A Dynamic Table-Class Detection System
Without the Need for Predefined Ontologies

Anonymous Author(s)
Affiliation
Address
email

Abstract

Table-class detection plays a crucial role in various data tasks. Traditional ap-1

proaches typically depend on predefined ontologies such as DBpedia[1], but these2

are often insufficient for domain-specific or evolving datasets. In response, we3

present DynoClass, a novel table-class detection system that leverages the power of4

large language models (LLMs) and eliminates the reliance on external ontologies.5

DynoClass uses LLMs to generate table classes and descriptions directly from6

sample data and existing documentation, dynamically constructing hierarchical7

ontology classes. This approach matches the performance of traditional methods8

while eliminating the need for predefined ontologies.9

1 Introduction10

Common data tasks, such as machine learning, often require integrating datasets from multiple11

sources using unions and joins. One of the key challenges in this process is table-class detection[2],12

which involves identifying the semantic structure of tables. Tables with similar semantic structures13

share commonalities in integration; for example, they may have the same join condition in data14

integration. This property can be leveraged to simplify tasks in data integration, such as schema15

matching[3, 4], entity resolution[5, 6], dataset search[7], and the creation of dataset catalogs and16

knowledge bases.17

Recent advancements in large language models (LLMs) have significantly expanded their applicability18

across numerous table-related tasks. These models, trained on vast datasets of natural language, are19

capable of handling tasks beyond their initial training objectives with minimal fine-tuning. Due to20

their ability to interpret both structured data and natural language, LLMs are particularly well-suited21

for handling complex table-related tasks[8, 9, 10], including table-class detection. For instance,22

Kayali et al. (2023) [11] introduced a novel approach to table-class detection by leveraging predefined23

ontology classes. They utilize LLMs to analyze sample table data and contextual information, then24

select the most appropriate class from a subset of DBpedia [1] ontology classes.25

However, relying on an external ontology like DBpedia is undesirable in practice because ontologies26

are often incomplete. This is because domain-specific or enterprise tables will not be represented in an27

open-domain ontology, or data simply evolves overtime. Additionally, creating and maintaining such28

ontologies within a domain requires considerable effort. As a result, a table can be misclassified into29

a table class simply because it’s the closest available match. Such misclassifications can significantly30

increase the effort required to perform downstream tasks efficiently.31

For example, Table 1 is a table contains information specifically about electric vehicles (EVs),32

including their battery capacity, range, and charging time. Due to the absence of an Electric33

Vehicle ontology class, Table 1 is mapped to the Automobile1 class.34

1http://dbpedia.org/ontology/Automobile

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

http://dbpedia.org/ontology/Automobile


Meanwhile, a data analyst studying the average charging efficiency across different EV models35

would like to search for relevant datasets from a dataset search system based on table-class detection36

results from DBpedia. However, due to the incompleteness of DBpedia ontology, the system37

cannot distinguish between EVs and non-EVs within the Automobile class, handing the effort of38

differentiating datasets about EVs to the data analyst.39

Brand Model Battery Capacity (kWh) Range (miles) Charging Time (hours)
Tesla Model 3 75 353 8.5
Nissan Leaf 40 149 6.0
Chevrolet Bolt EV 66 259 9.5
BMW i3 42 153 7.2

Table 1: Example table for electric vehicle (EV) data

To address these challenges, we propose an approach for table-class detection that leverages LLMs40

without relying on external ontologies. Our approach uses LLMs to generate a rich description of a41

table from a sample of the table and any available documentation. The LLM also generates a small42

ontologies specific to the table. We then scan the tables and merge each table-specific ontology into a43

global set of hierarchical ontologies. We show that this paradigm can generate ontologies of similar44

quality to those defined by experts on certain benchmarks.45

2 Background46

2.1 Problem Definition47

Table-class Detection: Given a table Ti, determine its appropriate class Cj , such that each row48

rk ∈ {r1, r2, . . . , rn} represents an instance of the class Cj .49

This definition, as presented by Kayali et al. [11], encapsulates the fundamental goal of table class50

detection: identifying a semantic class that accurately represents the common type embodied by all51

rows within a given table. For example, consider Table 1. The appropriate class for this table would52

be ElectricVehicle, as each row represents a specific electric vehicle model with attributes commonly53

associated with electric vehicles, such as battery capacity, range, and charging time.54

2.2 Related works55

Table representation learning has shown significant potential in table-class detection. Methods like56

DoDuo [12], TaBERT [13], and TURL [14] convert tables into token sequences and use pre-trained57

Transformer-based language models (LMs) to encode the serialized data. Notably, TaBERT [13]58

enables joint understanding of both natural language (NL) and tabular data, allowing for table-class59

detection based on the generated embeddings.60

Chorus [11] proposes using LLMs to directly select the table class from a set of predefined DBpedia61

[1] ontologies, based on sample data and documentation text.62

Shen et al. [15] also use LLMs to improve entity set and taxonomy expansion. Their approach uses63

two main steps: "find siblings" and "find parents," by creating a fine-tuned training set to figure out64

where to place new entities. While they focus on keywords (e.g., products), we focus on tables with65

detailed documentation, which makes better use of the LLMs’ ability to understand natural language.66

3 Methods67

In this work, we propose a novel approach for table-class detection and ontology construction that68

operates independently of prior knowledge or external ontologies by leveraging the power of LLMs69

and embedding-based similarity measures. Our method classifies tables into relevant classes, uses70

LLMs to generate rich descriptions, and iteratively generates nodes that represent the table’s class,71

and inserts them into existing hierarchical ontology classes. Figure 1 illustrates an example workflow72

for our methods.73

3.1 Table Preprocessing74

The first step of our algorithm leverages LLMs to generate a comprehensive description of each input75

table. For each table, we sample k rows, combining this with any available table documentation, and76

2



Figure 1: Example Workflow for DynoClass

use LLMs to produce a detailed and context-rich description. This description includes several key77

elements: the specific entity type represented by the table (e.g., a person, product, or event), possible78

parent entity types (reflecting hierarchical ontologies), the table’s ontology class name (which situates79

the table within the broader ontology), a brief summary of the table’s purpose, the general entity type80

(to capture higher-level conceptual groupings like object or event), and potential sibling entity types81

within the same domain (which may indicate related entities under the same or adjacent ontology82

classes). This initial classification provides a rich, contextual understanding of each table, forming83

the basis for our hierarchical tree construction.84

3.2 Hierarchical Ontology Classes Construction Algorithm85

After generating detailed descriptions and initial classifications for each table, we proceed to construct86

hierarchical ontology classes. This process involves inserting and merging each table-specific87

ontology into a set of hierarchical ontology classes.88

Algorithm 1 Hierarchical Ontology Classes Construction for Table-class Detection
Require: Set I = {(Ri, Pi, Ci, Si, Ei, Bi)} where Ri: Root entity, Pi: Possible parents, Ci: Class,

Si: Description, Ei: Entity type, Bi: Possible siblings
1: Initialize O ← ∅,R ← ∅ ▷ Processed nodes and root elements
2: for each x = (Ri, Pi, Ci, Si, Ei, Bi) ∈ I do
3: new_node← CREATENODE(Ri, Ci, Ei, Si)
4: related_tree← FINDMOSTRELATEDTREE(Ri, Pi, Bi) ▷ Use embeddings
5: if related_tree = null then
6: R ← R∪ {new_node}; O ← O ∪ {new_node}
7: else
8: decision, (parent, child)← FINDPOS(new_node, related_tree) ▷ LLM-based
9: if decision = “merge′′ then

10: merged_node← MERGENODES(parent, child) ▷ Nodes represent same concept
11: O ← O ∪ {merged_node}
12: else if decision = “sibling′′ then
13: new_parent← CREATEPARENT(parent, child) ▷ Create new sibling for root
14: O ← O ∪ {new_parent, parent, child}
15: else
16: INSERTNODE(parent, child) ▷ Insert node into tree
17: O ← O ∪ {parent, child}
18: end if
19: end if
20: ADDNODEANDEMBEDDING(new_node,Ri) ▷ Update embeddings
21: end for
22: returnR

The algorithm utilizes several key functions to build and maintain the hierarchical structure:89

3



• FindMostRelatedTree(Ri, Pi, Bi): Use embedding-based cosine similarity to identify the top-k90

related hierarchical ontology classes and let LLMs select the most relevant one from the candidates.91

• FindPos(new_node, related_tree): Utilizes LLMs to determine the optimal position of the new92

node within the related tree. It returns a decision (merge/sibling/insert) along with the relevant93

parent-child pair. For large trees, we break them down into individual root-to-leaf paths to ensure94

the entire path fits within the LLM’s context window.95

• MergeNodes(parent, child): Combines nodes representing the same concept, consolidating96

information and updating the tree structure.97

• InsertNode(parent, child): Adds the new node to the appropriate position in the existing tree, as98

determined by the result of FindPos.99

• AddNodeAndEmbedding(new_node,Ri): Generates and associates an embedding with the100

newly created or updated node, facilitating future similarity comparisons.101

4 Experiments102

Data and Model For the dataset, we evaluate the same subset as Kayali et al. [11], consisting103

of 237 tables from the T2Dv2 dataset, and compare our results against the baselines DoDuo[12],104

TaBERT[13], and Chorus[11]. For the benchmark models, we follow the same experimental settings105

for DoDuo and TaBERT as outlined by Kayali et al. We use the Bedrock anthropic.claude-3-5-106

sonnet-20240620-v1:0 model for both CHORUS and our model, which supports a 200k token context107

window.108

Evaluation Setting For each node in the hierarchical tree of class Ci, classifying any descendant109

of it as class Ci is consistent to the hierarchical tree. Following strategies in Kayali et al. [11], we110

evaluate all classifications that are consistent to the generated hierarchical tree, compute the precision,111

recall and F1 score with respect to each table class, and report the best weighted average based on112

sizes of each class.113

Evaluation Results As shown in Table 2, our model achieves the highest F1 score of 0.930,114

outperforming all other baselines, including Chorus, which uses LLMs with predefined ontologies.115

This demonstrates that leveraging an LLM without relying on a predefined ontology can still achieve116

very high performance.117

F-1 Score Precision Recall
DoDuo-Viz 0.654 66.8% 68.3%
DoDuo-Wiki 0.757 78.6% 76.9%
TaBERT 0.746 76.3% 76.8%
Chorus 0.922 89.9% 94.6%
DynoClass 0.930 93.0% 91.2%

Table 2: Performance comparison of different models.

Error Analysis One of the main errors occurs when a table labeled as ’nursing school’ actually118

refers to a ’university’. Another frequent error arises when the system struggles to clearly differentiate119

between ’political party’ and ’election’. These issues illustrate cases where a single real-world table120

can be associated with multiple nodes within the same hierarchical class, or even across different121

hierarchical ontology trees, which can lead to misclassifications in our current methods.122

5 Conclusion123

In conclusion, we presented DynoClass, a novel approach to table-class detection that leverages large124

language models to generate dynamic, hierarchical ontologies without relying on predefined classes.125

Our method addresses the limitations of traditional approaches while outperforms existing methods126

on the T2Dv2 dataset. Looking ahead, we plan to enhance the scalability of DynoClass, optimize the127

system to reduce computational costs, and improve its ability to handle overlapping or ambiguous128

classifications within hierarchical ontology trees.129

4



References130

[1] Sören Auer et al. “DBpedia: a nucleus for a web of open data”. In: Proceedings of the 6th131

International The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference.132

ISWC’07/ASWC’07. Busan, Korea: Springer-Verlag, 2007, pp. 722–735. ISBN: 3540762973.133

[2] Michael J Cafarella et al. “Webtables: exploring the power of tables on the web”. In: Proceed-134

ings of the VLDB Endowment 1.1 (2008), pp. 538–549.135

[3] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. “Generic schema matching, ten136

years later”. In: Proc. VLDB Endow. 4.11 (Aug. 2011), pp. 695–701. ISSN: 2150-8097. DOI:137

10.14778/3402707.3402710. URL: https://doi.org/10.14778/3402707.3402710.138

[4] Roee Shraga, Avigdor Gal, and Haggai Roitman. “ADnEV: cross-domain schema matching139

using deep similarity matrix adjustment and evaluation”. In: Proc. VLDB Endow. 13.9 (May140

2020), pp. 1401–1415. ISSN: 2150-8097. DOI: 10.14778/3397230.3397237. URL: https:141

//doi.org/10.14778/3397230.3397237.142

[5] Alexandros Zeakis et al. “Pre-Trained Embeddings for Entity Resolution: An Experimental143

Analysis”. In: Proc. VLDB Endow. 16.9 (May 2023), pp. 2225–2238. ISSN: 2150-8097. DOI:144

10.14778/3598581.3598594. URL: https://doi.org/10.14778/3598581.3598594.145

[6] Giovanni Simonini et al. “Entity resolution on-demand”. In: Proc. VLDB Endow. 15.7 (Mar.146

2022), pp. 1506–1518. ISSN: 2150-8097. DOI: 10.14778/3523210.3523226. URL: https:147

//doi.org/10.14778/3523210.3523226.148

[7] Sonia Castelo et al. “Auctus: a dataset search engine for data discovery and augmentation”. In:149

Proc. VLDB Endow. 14.12 (July 2021), pp. 2791–2794. ISSN: 2150-8097. DOI: 10.14778/150

3476311.3476346. URL: https://doi.org/10.14778/3476311.3476346.151

[8] Ralph Peeters and Christian Bizer. “Entity matching using large language models”. In: arXiv152

preprint arXiv:2310.11244 (2023).153

[9] Zezhou Huang et al. “The Fast and the Private: Task-based Dataset Search”. In: arXiv preprint154

arXiv:2308.05637 (2023).155

[10] Zezhou Huang and Eugene Wu. “Cocoon: Semantic Table Profiling Using Large Language156

Models”. In: Proceedings of the 2024 Workshop on Human-In-the-Loop Data Analytics. 2024,157

pp. 1–7.158

[11] Moe Kayali et al. “CHORUS: foundation models for unified data discovery and exploration”.159

In: arXiv preprint arXiv:2306.09610 (2023).160

[12] Yoshihiko Suhara et al. “Annotating Columns with Pre-trained Language Models”. In: Proceed-161

ings of the 2022 International Conference on Management of Data. Association for Computing162

Machinery, 2022. ISBN: 9781450392495. URL: https://doi.org/10.1145/3514221.163

3517906.164

[13] Pengcheng Yin et al. “TaBERT: Pretraining for joint understanding of textual and tabular data”.165

In: arXiv preprint arXiv:2005.08314 (2020).166

[14] Xiang Deng et al. “Turl: Table understanding through representation learning”. In: ACM167

SIGMOD Record 51.1 (2022), pp. 33–40.168

[15] Yanzhen Shen et al. “A Unified Taxonomy-Guided Instruction Tuning Framework for Entity169

Set Expansion and Taxonomy Expansion”. In: arXiv preprint arXiv:2402.13405 (2024).170

5

https://doi.org/10.14778/3402707.3402710
https://doi.org/10.14778/3402707.3402710
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.14778/3397230.3397237
https://doi.org/10.14778/3598581.3598594
https://doi.org/10.14778/3598581.3598594
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3523210.3523226
https://doi.org/10.14778/3476311.3476346
https://doi.org/10.14778/3476311.3476346
https://doi.org/10.14778/3476311.3476346
https://doi.org/10.14778/3476311.3476346
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906

	Introduction
	Background
	Problem Definition
	Related works

	Methods
	Table Preprocessing
	Hierarchical Ontology Classes Construction Algorithm

	Experiments
	Conclusion

