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Abstract

Equilibrium propagation (EP) is a training framework for physical systems that1

minimize an energy function. A key feature of EP is that it uses the system’s2

intrinsic physics during both inference and training, making it a candidate for3

the development of energy-efficient processors for machine learning. EP has4

been explored in various classical physical systems, including classical Ising5

networks and elastic networks. We extend EP to quantum systems, where the6

energy function that is minimized is the mean energy functional (expectation7

value of the Hamiltonian), whose minimum is the Hamiltonian’s ground state.8

As examples, we study the settings of the transverse-field Ising network and the9

quantum harmonic oscillator network – quantum analogues of the Ising network10

and elastic network.11

1 Introduction12

Commercial applications of machine learning (ML) are powered by classical digital computing. Mean-13

while, fundamental research explores alternative computing paradigms to enhance ML capabilities.14

Quantum computing leverages the principles of quantum mechanics to encode and process informa-15

tion in ways that classical computers cannot, potentially handling exponentially larger amounts of16

information. In contrast, neuromorphic computing, taking inspiration from the brain’s energy effi-17

ciency, aims to leverage analog physics and compute-in-memory platforms to significantly reduce the18

cost of inference and training in ML [Marković et al., 2020]. An emerging field of research known as19

‘physical learning’ [Stern and Murugan, 2023] shares similar goals with neuromorphic computing, but20

explores the inherent physics of any physical system for computation, without necessarily mimicking21

neurons and synapses – see Momeni et al. [2024] for a very recent review.22

A key lesson from ML research over the past decades is the effectiveness of frameworks for optimizing23

cost functions, e.g. the backpropagation framework. One challenge for neuromorphic computing24

and physical learning has been the search for such frameworks that adhere to local computation25

and local learning rules, which are essential features for implementation on analog compute-in-26

memory platforms. In recent years, several gradient-descent training frameworks for physical systems27

have been proposed. For instance, Lopez-Pastor and Marquardt [2023] introduced a framework28

applicable to arbitrary time-reversal invariant Hamiltonian systems, and Wanjura and Marquardt29

[2024a] developed a method for extracting weight gradients in optical systems based on linear wave30

scattering. The present paper focuses on the training framework known as equilibrium propagation.31

Equilibrium propagation (EP), introduced in Scellier and Bengio [2017], is a training framework32

for energy-based systems, in which physics drives the system’s state towards the minimum of an33

energy function (equilibrium or steady state). EP extracts the gradients of the cost function using34

two equilibrium states corresponding to different boundary conditions, which are then used to locally35
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adjust the trainable weights of the system. EP has been applied to various systems, including resistor36

networks [Kendall et al., 2020], elastic and flow networks [Stern et al., 2021], spiking networks37

[Martin et al., 2021], the (classical) Ising model [Laydevant et al., 2024], and coupled phase oscillators38

[Wang et al., 2024]. Recent experimental demonstrations have shown the applicability of EP on39

hardware: Dillavou et al. [2022, 2024] built two generations of self-learning resistor networks,40

Altman et al. [2024] built a self-learning elastic network, [Yi et al., 2023] used a variant of EP in a41

memristor crossbar array, and Laydevant et al. [2024] used EP on D-wave to train a classical Ising42

network (where, interestingly, they used quantum annealing to reach the ground state). Simulations43

have further underscored the potential of EP for ML applications: in particular, Laborieux and Zenke44

[2022] trained an energy-based convolutional network to classify a downsampled version of the45

ImageNet dataset. More broadly, [Zucchet and Sacramento, 2022] have highlighted EP’s general46

applicability to any bilevel optimization problem (beyond the training of energy-based systems),47

including meta-learning [Zucchet et al., 2022].48

We introduce Quantum Equilibrium Propagation (QEP), an extension of EP to quantum systems.49

In QEP, the system is brought to the ground state of its Hamiltonian, parameterized by real-valued50

trainable weights, to produce a prediction. The algorithm performs gradient descent on the expectation51

value of an observable, which serves as the cost function to optimize. Thus, in QEP, the classical52

EP’s energy function is replaced by the system’s Hamiltonian, and the equilibrium state extremizing53

the energy function is replaced by the ground state of the Hamiltonian. The central ingredient for54

translating from EP to QEP is the energy expectation value, minimized (more generally, extremized)55

at the Hamiltonian’s ground state (more generally, eigenstates). Similar to EP, an interesting feature56

of QEP is the locality of the learning rule, which might be useful for the development of specialized57

quantum hardware with reduced classical overhead, where measurements of the weight gradients58

and adjustments of the trainable weights would be performed locally. To illustrate QEP, we study the59

settings of the transverse-field Ising network and the quantum harmonic oscillator network – quantum60

analogues of the Ising model and elastic network.61

In parallel to this work, two other strongly related manuscripts on quantum extensions of EP have62

recently appeared on Arxiv [Massar and Mognetti, 2024, Wanjura and Marquardt, 2024b]. Massar63

and Mognetti [2024] also studied the thermal case of EP, where a thermodynamic system settles to64

the minimum of the free energy functional, and showed how to extract the weight gradients from65

thermal fluctuations alone, while Wanjura and Marquardt [2024b] established a connection between66

EP and Onsager’s reciprocity.67

Figure 1: Example of a network, trainable via equilibrium propagation (EP). While in classical
EP, the system is taken at the minimum of its energy function, in QEP the system is taken at the
Hamiltonian’s ground state.
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2 Quantum Equilibrium Propagation68

We present Quantum Equilibrium Propagation (QEP), a version of Equilibrium Propagation (EP) for69

quantum systems. For a brief presentation of classical EP, see Appendix A. For a brief presentation70

of the concepts of quantum mechanics required for QEP, see Appendix B.71

We consider a quantum system, serving as a ‘learning machine’, whose Hamiltonian is parameterized72

by trainable weights w = (w1, w2, . . . , wM ). An input x can also be supplied to the system. We73

denote the corresponding Hamiltonian as Ĥ(w, x). We assume that the system can be set in its74

ground state |ψ(w, x)⟩, characterized by75

Ĥ(w, x)|ψ(w, x)⟩ = E(w, x)|ψ(w, x)⟩, (1)

where E(w, x) is the ground state energy level, i.e. the lowest eigenvalue of Ĥ(w, x). Similar to76

the classical setting, the ground state |ψ(w, x)⟩ is used to encode a prediction on the desired output77

y, based on the supplied input x. We also assume an observable Ĉ(y) parameterized by y, whose78

expectation value in the state |ψ(w, x)⟩ represents the cost function to minimize,79

⟨Ĉ(y)⟩ψ(w,x) = ⟨ψ(w, x)|Ĉ(y)|ψ(w, x)⟩. (2)

The goal is to adjust the trainable weights of the Hamiltonian to minimize this cost function. Similar80

to classical EP, we assume that Ĉ(y) is the Hamiltonian of an interaction between the system’s state81

|ψ⟩ and desired output y, and that this interaction can be integrated into the system. Specifically, we82

form the ‘total Hamiltonian’83

Ĥβ = Ĥ(w, x) + βĈ(y), (3)
where β ∈ R controls the strength of the new interaction. Given an input-output pair (x, y) from84

training data, QEP proceeds as follows.85

1. Set β = 0. For each k ∈ {1, 2, · · · ,M}, repeat the following step T times: reach the86

ground state |ψ0
⋆⟩ of Ĥ0 (with associated ground state energy E0

⋆), characterized by87

Ĥ0|ψ0
⋆⟩ = E0

⋆ |ψ0
⋆⟩, (4)

and measure the Hamiltonian derivative ∂Ĥ0

∂wk
. Denote the outcomes of the T measurements88

as h(1)k (0), h
(2)
k (0), . . . , h

(T )
k (0).89

2. Set β > 0 and proceed as above. For each k ∈ {1, 2, · · · ,M}, repeat the following step90

T times: reach the ground state |ψβ⋆ ⟩ of Ĥβ (with associated ground state energy Eβ⋆ ),91

characterized by92

Ĥβ |ψβ⋆ ⟩ = Eβ⋆ |ψβ⋆ ⟩, (5)

and measure the Hamiltonian derivative ∂Ĥβ

∂wk
. Denote the outcomes of the T measurements93

as h(1)k (β), h
(2)
k (β), . . . h

(T )
k (β).94

3. Update the trainable weights w1, w2, . . . , wM as95

∆wk =
η

β

[
1

T

T∑
t=1

h
(t)
k (0)− 1

T

T∑
t=1

h
(t)
k (β)

]
. (6)

Similar to classical EP, the central insight of QEP is that the above learning rule (Eq. (6)) approximates96

one step of gradient descent on the expectation value of the cost observable.97

Theorem 1. The gradient of the cost function can be approximated as98

∇w⟨ψ(w, x)|Ĉ(y)|ψ(w, x)⟩ =
d

dβ

∣∣∣∣
β=0

⟨ψβ⋆ |
∂Ĥβ

∂w
|ψβ⋆ ⟩ (7)

≈ 1

β

[
⟨ψβ⋆ |

∂Ĥβ

∂w
|ψβ⋆ ⟩ − ⟨ψ0

⋆|
∂Ĥ0

∂w
|ψ0
⋆⟩

]
(8)

≈ 1

β

[
1

T

T∑
t=1

h
(t)
k (β)− 1

T

T∑
t=1

h
(t)
k (0)

]
. (9)
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Theorem 1 directly follows from Theorem 2 and Lemma 3. We first comment on the differences99

between EP and QEP, and then discuss the properties of EP that transfer to QEP.100

Compared to the classical setting, the characteristics of quantum measurements affect the training101

procedure in several ways. First, since a quantum measurement only gives an unbiased estimate of102

the expectation value, multiple measurements of the Hamiltonian derivatives ∂Ĥ
∂wk

are required to103

get better estimates of the weight gradients. Second, since the state of a quantum system generally104

changes upon measurement of a Hamiltonian derivative, the system must be reset to its ground105

state after each measurement. Third, the Hamiltonian derivatives ∂Ĥ
∂wj

and ∂Ĥ
∂wk

cannot generally106

be measured simultaneously unless they commute (we will see, however, in Sections 2.1-2.2 that107

a large fraction of the Hamiltonian derivatives can typically be measured simultaneously). Fourth,108

QEP involves two levels of approximation in the estimate of the gradient of the cost function. In109

addition to the first level (also present in classical EP), which is due to the finite difference used to110

approximate the derivative d
dβ at β = 0, a second level is due to the probabilistic nature of quantum111

measurements.112

QEP also shares multiple features of classical EP. Suppose the total Hamiltonian of the system can be113

expressed as the sum of Hamiltonians corresponding to individual interactions or contributions, i.e.114

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + · · ·+ ĤM (10)

where Ĥk is the Hamiltonian of an interaction parameterized by wk (for 1 ≤ k ≤M ), and Ĥ0 does115

not depend on any trainable weight. Then the Hamiltonian derivatives simplify to ∂Ĥ
∂wk

= ∂Ĥk

∂wk
. If the116

trainable weight wk is stored close to where the observable ∂Ĥk

∂wk
is measured, the learning rule for117

wk is local. Moreover, no knowledge of Ĥ0 is required, so the system’s Hamiltonian need not be118

fully known. Finally, similar to the classical setting where the equilibrium state need not be stable but119

only a critical point (stationary state) of the energy function, QEP applies to any eigenstate of the120

system’s Hamiltonian, not just the ground state. One condition for Eq. (8) to hold, however, is that121

the nudge eigenstate |ψβ⋆ ⟩ must be obtained as a smooth deformation (adiabatic transformation) of122

the free eigenstate |ψ0
⋆⟩ when varying the nudging parameter from 0 to β ̸= 0.123

Next, we present for illustration the setting of the transverse-field Ising model and quantum harmonic124

oscillator network.125

2.1 Transverse-Field Ising Model126

As a first example, we consider the transverse-field Ising model, a quantum version of the classical127

Ising model described in Section A.1. While a classical Ising network of N classical spins can be in128

either of 2N possible configurations, a quantum Ising network of N spins exists in a superposition129

of these 2N configurations (i.e. a linear combination with coefficients in C). Hence the major130

difference between the classical and the quantum settings: while the state of the classical model is131

described by a N -dimensional binary-valued vector, the state of the quantum model is described by a132

2N -dimensional complex-valued vector. We denote the d = 2N basis states as |σ1σ2 · · ·σN ⟩ with133

σk ∈ {↑, ↓} for each k ∈ {1, 2, . . . , N}, e.g. | ↑↑ · · · ↑↑⟩, | ↑↑ · · · ↑↓⟩ and similarly for the other134

2N − 2 basis states.135

Similar to the Ising energy function of Eq. (32), the Hamiltonian of the transverse-field Ising model136

has couplings between spins Jjk ∈ R and bias fields hk ∈ R applied to individual spins, which we137

view as trainable weights. The Ising Hamitonian takes the form138

ĤIsing = −
∑

1≤j<k≤N

JjkẐjẐk −
N∑
k=1

hkX̂k, (11)

where Ẑk and X̂k are the Pauli operators, defined as follows. The Pauli Ẑk operator acts as a139

phase-flip operator on the k-th spin, according to:140

Ẑk |σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩ = +|σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩, (12)

Ẑk |σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩ = −|σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩. (13)
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The Pauli X̂k operator acts as a bit-flip operator on the k-th spin, according to:141

X̂k |σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩ = |σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩, (14)

X̂k |σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩ = |σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩. (15)

In this setting, the gradients of the Ising Hamiltonian with respect to the trainable weights, required142

in the learning rule of Eq. (6), are given by143

∂ĤIsing

∂Jjk
= −ẐjẐk,

∂ĤIsing

∂hk
= −X̂k. (16)

Importantly, the Pauli Ẑk operators (1 ≤ k ≤ N ) commute with one another, allowing them to be144

measured simultaneously (when the system is in the ground state). Similarly, the Pauli X̂k operators145

(1 ≤ k ≤ N ) also commute and can be measured simultaneously. However, Ẑj and X̂k do not146

commute, so they cannot be measured simultaneously.147

2.2 Quantum Harmonic Oscillator Network148

As a second example, we consider the quantum harmonic oscillator network, a quantum analogue149

of the elastic network model presented in Section A.2. It consists of N quantum particles, such as150

atoms, interacting via harmonic potentials. We assume for simplicity that each atom is described by a151

one-dimensional (rather than three-dimensional) position. While the classical elastic network model is152

described by the N -dimensional vector of positions of the atoms (r1, r2, · · · , rN ) ∈ RN , the state of153

the quantum network is a superposition of all these configurations. In this setting, the state vector is a154

function ψ : RN → C (the wave function), that assigns a complex number ψ(r1, r2, · · · , rN ) to each155

possible configuration (r1, r2, · · · , rN ). Contrary to the quantum Ising network, the corresponding156

Hilbert space is infinite-dimensional.157

The position and momentum operators of the i-th atom, denoted as r̂i and p̂i, are defined by their158

action on the wavefunction as follows:159

(r̂iψ)(r1, r2, · · · , rN ) = riψ(r1, r2, · · · , rN ), (17)

(p̂iψ)(r1, r2, · · · , rN ) = −iℏ
∂ψ

∂ri
(r1, r2, · · · , rN ), (18)

where i is the imaginary unit (i2 = −1) and ℏ is the reduced Planck constant. Similar to the elastic160

energy function, the Hamiltonian of the quantum harmonic oscillator network is given by:161

ĤQHO =

N∑
i=1

p̂2i
2mi

+
1

2

∑
1≤i,j≤N

kij (r̂i − r̂j)
2
, (19)

where p̂2i
2mi

is the kinetic energy operator of the i-th atom, and 1
2kij (r̂i − r̂j)

2 is the harmonic162

potential operator between the i-th and j-th atoms. In these expressions, mi are the masses of the163

atoms and kij are the spring constants, which serve as trainable weights. The partial derivatives of164

the Hamiltonian with respect to the spring constants are given by165

∂ĤQHO

∂kij
=

1

2
(r̂i − r̂j)

2
. (20)

It is straightforward to verify that all r̂i operators commute with one another, which allows us to166

measure these observables simultaneously to obtain the gradients of the cost function.167

3 Discussion168

Equilibrium Propagation (EP) has been studied in various classical physical systems, and has been169

implemented experimentally in resistor networks, classical Ising networks and elastic networks.170

EP is generally applicable to systems that extremize an energy functional. Quantum Equilibrium171

Propagation (QEP) extends EP to quantum systems, where the extremized functional is the mean172

energy, achieving its extrema at the eigenstates of the system’s Hamiltonian. QEP can serve both as a173
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normative framework for training quantum systems, and to justify the use of EP in physical systems174

where quantum effects may arise and where the classical EP framework is not directly applicable.175

For instance, QEP could provide insights into the work by Laydevant et al. [2024], which employed176

quantum annealing in the context of classical EP.177

Similar to EP, one attractive feature of QEP is the locality of the learning rule. This locality might178

be advantageous for building specialized quantum computers with reduced classical computation179

overhead, where the physical quantities serving as trainable weights would be located near the location180

where the Hamiltonian derivatives are measured. Another attractive feature is that the Hamitonian181

terms of interactions that do not depend on trainable weights need not be known explicitly, so182

that QEP is partially agnostic to the system’s Hamiltonian. A difference in the quantum setting is183

the probabilistic nature of measurements. Multiple measurements are generally required to obtain184

accurate gradient estimates of the cost function, which could necessitate additional memory to store185

the outcomes. To address this, studying the effect of single measurements of single eigenstates (free186

or nudge) on the variance of the gradient estimator would be useful, similar to the study by Williams187

et al. [2023] in the classical setting. Another difference with the classical setting is that Hamiltonian188

derivatives generally cannot be measured simultaneously, unless they commute. We discussed the189

transverse-field Ising model and the quantum harmonic oscillator network and we have seen that190

measurements in these models can largely be parallelized.191

Similar to the classical setting where EP can be applied to any stationary state (critical point) of the192

system’s energy function, QEP can be applied to any eigenstate of the system’s Hamiltonian, not just193

the ground state. While this feature provides greater flexibility, a caveat is that for Eq. (8) to hold, the194

nudge eigenstate must in principle be obtained as a smooth deformation (adiabatic transformation) of195

the free eigenstate. It remains to be seen whether this condition is necessary or can be further relaxed196

in practice.197

The next step would be to simulate QEP numerically, but we leave this for future works. For quantum198

Ising networks, the exact diagonalization method becomes impractical when the number of spins N199

exceeds a few dozen due to the exponential growth of the state space (d = 2N ). For larger systems,200

approximate methods such as the Density Matrix Renormalization Group (DMRG) and Variational201

Monte Carlo (VMC) could be employed.202
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A Equilibrium Propagation251

In this appendix, we review the Equilibrium Propagation (EP) training framework [Scellier and252

Bengio, 2017] and the classical Ising network and elastic network where it has been used.253

EP applies in physical systems governed by dynamics that drive their state s towards the minimum254

of an energy function E . These systems contain trainable weights w = (w1, w2, . . . , wM ) and can255

take an input x supplied as a boundary condition. We denote the corresponding energy function as256

E(w, x, s). During inference, given an input x, the system evolves towards its equilibrium or steady257

state, characterized by258

s(w, x) = argmin
s

E(w, x, s). (21)

The system thus implements a function x 7→ s(w, x). Training the system consists in adjusting the259

weights w so that s(w, ·) matches a desired input-output function. Mathematically, we use a cost260

function C(s(w, x), y) which, given an input x and its associated desired output y, measures the261

accuracy of the prediction s(w, x) by comparing it with y. Training the system can be formulated as262

a bilevel optimization problem:263

minimize J (w) = E(x,y) [C(s(w, x), y)] , (22)

subject to s(w, x) = argmin
s

E(w, x, s), (23)

where E(x,y) represents the expectation value over input-output pairs (x, y) from the training data.264

The conventional method to solve this problem is gradient descent on the upper-level objective: at265

each step of training, an input-output pair (x, y) is picked from the training data, and the trainable266

weights are adjusted in proportion to the gradient of the cost function: ∆w = −η∇wC(s(w, x), y),267

where η > 0 is a learning rate. The remaining task is to obtain or estimate the weight gradients,268

∇wC(s(w, x), y), using the system’s physics. This is what EP enables us to do. The central idea of269

EP is to view the cost function C(s, y) as the energy of an interaction between the state variables (s)270

and desired outputs (y), which can be incorporated into the system’s energy function to form the271

‘total energy function’,272

Eβ(w, x, s, y) = E(w, x, s) + βC(s, y), (24)

where β ∈ R is a parameter termed the ‘nudging parameter’ that controls the strength of this new273

interaction. See Figure 1. EP proceeds in three steps:274

1. Set β = 0 and let the system settle to an equilibrium state s0⋆, called the ‘free state’,275

characterized by276

s0⋆ = argmin
s

E0(w, x, s, y) = s(w, x). (25)

For each k ∈ {1, 2, · · · ,M}, measure ∂E0

∂wk
(w1, . . . , wM , x, s

0
⋆, y), i.e. the partial derivative277

of the energy function with respect to wk.278

2. Set β > 0 and let the system reach a new equilibrium state sβ⋆ , called the ‘nudge state’,279

characterized by280

sβ⋆ = argmin
s

Eβ(w, x, s, y). (26)

Measure again the partial derivative ∂Eβ

∂wk
(w1, . . . , wM , x, s

β
⋆ , y) for each k ∈281

{1, 2, · · · ,M}.282

3. Update the trainable weights w1, w2, . . . , wM as283

∆wk =
η

β

[
∂E0

∂wk
(w, x, s0⋆, y)−

∂Eβ

∂wk
(w, x, sβ⋆ , y)

]
, (27)

where η > 0 is a learning rate.284

The main theoretical result of EP is that the above contrastive learning rule (27) approximates one285

step of gradient descent on the cost function.286
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Theorem 2 (Equilibrium Propagation). The gradient of the cost function with respect to the trainable287

weights can be approximated as288

∇wC(s(w, x), y) =
d

dβ

∂Eβ

∂w
(w, x, sβ⋆ , y)

∣∣∣∣
β=0

(28)

≈ 1

β

[
∂Eβ

∂w
(w, x, sβ⋆ , y)−

∂E0

∂w
(w, x, s0⋆, y)

]
. (29)

Theorem 2 is proved in Scellier and Bengio [2017]. One difference with traditional machine learning289

methods which use automatic differentiation (i.e. backpropagation) is that EP does not perform exact290

gradient descent on the cost function, but rather approximates it. We review improved versions of EP291

that mitigate this problem in Appendix ??. Next, we discuss some important features of EP.292

First, one of the primary interests of EP is that, in a wide range of physical systems, the contrastive293

learning rule of Eq. (27) is local for each trainable weight. To see this, let w = (w1, w2, . . . , wM ) be294

the set of trainable weights, and assume that the energy function is separable,295

E = E0 + E1 + E2 + · · ·+ EM , (30)

where each Ek (with 1 ≤ k ≤ M ) is the energy term of an interaction parameterized by wk (and296

wk only), while E0 is an energy term that does not depend on any trainable weight. The energy297

derivatives arising in the learning rule simplify as ∂E
∂wk

= ∂Ek

∂wk
. If the energy term Ek involves only298

state variables spatially close to wk, the learning rule for wk is local in space. Below we illustrate299

this property in the classical Ising model [Laydevant et al., 2024] and elastic network model [Stern300

et al., 2021].301

Second, the system’s energy function may be partially unknown. Specifically, in the above decompo-302

sition, while knowledge of the energy derivatives ∂Ek

∂wk
is required, the energy term E0 need not be303

analytically known. Below we illustrate this property in the elastic network model.304

Last, the equilibrium states s(w, x) and sβ⋆ of Eq. (21) and Eq. (26) need not be stable (i.e. minima of305

their repective energy functions). Theorem 2 is more generally valid when s(w, x) and sβ⋆ are critical306

points (i.e. saddle points) of their respective energy functions, satisfying the stationary conditions307

∂E
∂s

(w, x, s(w, x)) = 0,
∂Eβ

∂s
(w, x, sβ⋆ , y) = 0. (31)

See Scellier [2021, Chapter 2] for a brief discussion on this matter. A condition for Theorem 2 to308

hold is that the nudge state sβ⋆ must be the stationary state obtained as a smooth deformation of s0⋆ as309

we gradually vary the nudging parameter from 0 to β ̸= 0.310

Next, we present two examples of physical systems where EP is applicable. We illustrate the locality311

of the learning rule and the fact that the energy function may be partially unknown.312

A.1 Ising Network313

As a first example, we present the (classical) Ising model of coupled spins. This widely studied model314

has been explored in particular as a computing platform for machine learning, and recently studied in315

the context of EP [Laydevant et al., 2024]. The model consists of N classical spins, characterized316

by their state σk ∈ {+1,−1} for 1 ≤ k ≤ N , representing “up” or “down” states. The state of the317

system is represented by the N -dimensional vector of spin states, s = (σ1, σ2, . . . , σN ), so the state318

space is discrete and finite, consisting of 2N possible configurations. The Ising energy function that319

the system seeks to minimize is defined as320

EIsing(σ1, σ2, . . . , σN ) = −
∑

1≤j<k≤N

Jjkσjσk −
N∑
k=1

hkσk, (32)

where Jjk represents the couplings between spins, and hk represents the bias fields applied to321

individual spins. These parameters serve as trainable weights in the model. The partial derivatives of322

the energy function with respect to these trainable weights, given by323

∂EIsing
∂Jjk

= −σjσk,
∂EIsing
∂hk

= −σk, (33)
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involve only information that is locally available to Jjk and hk, respectively.324

In terms of hardware demonstration, Laydevant et al. [2024] implemented an Ising network on the325

D-Wave Ising machine, employing the quantum annealing procedure of D-Wave to reach the ground326

state. They trained it to classify the MNIST handwritten digits using EP. They also emulated a small327

convolutional Ising network, using the Chimera architecture of D-Wave’s chips to implement the328

necessary convolutional operations.329

A.2 Elastic Network330

As a second example, we consider the elastic network model, studied by Stern et al. [2021] in the331

context of Coupled Learning (CL), a variant of EP. We follow the methodology of Kendall et al.332

[2020] to treat the case of nonlinear networks and illustrate that EP is partly agnostic to the system’s333

energy function.334

We consider a network of N masses m1,m2, . . . ,mN interconnected by springs. We denote the335

position of mass mi as r⃗i, and we denote r⃗ij := r⃗i − r⃗j . We assume that the force F⃗ij exerted by336

the spring between masses mi and mj on mass mj is central, and we denote Eij the resulting elastic337

potential energy stored in the spring. These are defined as338

F⃗ij = −fij(∥r⃗ij∥)
r⃗ij

∥r⃗ij∥
, Eij =

∫ ∥r⃗ij∥

0

fij(u)du, (34)

where fij(·) is a linear or nonlinear characteristic. We also assume that some of the network springs339

follow Hooke’s law, fij(∥r⃗ij∥) = kij (∥r⃗ij∥ − ℓij), where kij is the spring constant and ℓj is the340

spring’s rest length, and we view these kij’s and ℓj’s as the trainable weights of the system. The341

corresponding energy term is Eij = 1
2kij (∥r⃗ij∥ − ℓij)

2. The state of the system is the vector of mass342

positions, s = (r⃗1, r⃗2, . . . , r⃗N ), and the total elastic energy stored in the network is given by343

Eelastic(r⃗1, r⃗2, . . . , r⃗N ) =
∑

untrained (i,j)

Eij︸ ︷︷ ︸
=E0

+
∑

trainable (i,j)

1

2
kij (∥r⃗i − r⃗j∥ − ℓij)

2
. (35)

The partial derivatives of the energy function with respect to these weights are given by344

∂Eelastic
∂kij

=
1

2
(∥r⃗i − r⃗j∥ − ℓij)

2
,

∂Eelastic
∂ℓij

= kij (ℓij − ∥r⃗i − r⃗j∥) . (36)

As in the Ising model, the energy function is separable, so the learning rule is local. This example345

also illustrates that EP is agnostic to the characteristics fij of untrained springs: no knowledge of E0346

is required. A difference with the Ising model is that the space of possible network configurations,347

R3N , is continuous and infinite, while the space of configurations of the Ising model is discrete and348

finite.349

An experimental realization of an elastic network that learns using CL was performed by Altman350

et al. [2024]. In their implementation, they used the spring rest lengths ℓij as trainable weights, while351

keeping the spring constants fixed (untrained).352
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B Concepts of Quantum Mechanics353

Next, we present the concepts of quantum mechanics that are necessary to extend EP to quantum354

systems. In particular, we present the variational principle of quantum mechanics that enables this355

extension (Lemma 3).356

The state vector of a quantum system, denoted |ψ⟩, belongs to a complex vector space H equipped357

with an inner product ⟨·|·⟩ (specifically, a Hilbert space). For simplicity of presentation, we assume358

here that H is finite-dimensional with dimension d. The system’s Hamiltonian, Ĥ , is a linear359

operator acting on the Hilbert space, Ĥ : H → H, with the property of being self-adjoint. Due to Ĥ360

being self-adjoint, its eigenvalues are real. We denote the eigenvectors of Ĥ as |ψ0⟩, |ψ1⟩, ..., |ψd−1⟩,361

and the associated eigenvalues as E0 ≤ E1 ≤ . . . ≤ Ed−1, such that:362

Ĥ|ψk⟩ = Ek|ψk⟩, 0 ≤ k ≤ d− 1. (37)
Eq. (37) is known as the time-independent Schrödinger equation. The eigenvectors |ψk⟩ are also363

called the eigenstates of the Hamiltonian, and their associated eigenvalues Ek are the energy levels.364

The eigenstate |ψ0⟩ with the lowest energy level is the ground state.365

In quantum mechanics, a measurable physical quantity is represented by a self-adjoint operator,366

Ô : H → H, called an observable. The set of possible outcomes of measuring Ô is the set of367

eigenvalues of Ô, denoted o0, o1, ..., od−1, which are real due to the self-adjoint property. A peculiar368

aspect of quantum mechanics is that measurement outcomes are inherently probabilistic. When the369

system is in state |ψ⟩, the probability of obtaining outcome ok upon measuring Ô is given by the Born370

rule, pk = |⟨ok|ψ⟩|2, where |ok⟩ is the eigenstate associated with ok, i.e. such that Ô|ok⟩ = ok|ok⟩.371

The expectation value of a measurement of Ô when the system is in state |ψ⟩ is denoted ⟨Ô⟩ψ and372

calculated as ⟨Ô⟩ψ =
∑d
k=1 pkok. Using the spectral theorem for self-adjoint operators, it can be373

shown that this expectation value rewrites374

⟨Ô⟩ψ = ⟨ψ|Ô|ψ⟩. (38)
In statistical terms, the expectation value represents the average result of a large number of measure-375

ments of the observable Ô performed on the system in state |ψ⟩.376

The Hamiltonian Ĥ is an example of an observable, with possible measurement outcomes being377

the energy levels E0, E1, ..., Ed−1. The central result that allows us to transpose EP to quantum378

systems is the following variational formulation of the Hamiltonian’s eigenstates (Lemma 3, proved379

in Appendix ??). It tells us that the Hamiltonian’s expectation value and the ground state can be380

viewed as EP’s ‘energy function’ and ‘equilibrium state’, respectively.381

Lemma 3. The ground state |ψ0⟩ achieves the minimum of the Hamiltonian’s expectation value:382

|ψ0⟩ = argmin
ψ∈H,∥ψ∥=1

⟨ψ|Ĥ|ψ⟩. (39)

More generally, the eigenstates of the Hamiltonian Ĥ are the critical points of the Rayleigh quotient383

ψ 7→ ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ .384

Another peculiar aspect of quantum mechanics is that the act of measuring an observable usually385

changes the system’s state. Specifically, upon measurement of an observable Ô, if the outcome is386

ok, then the system’s state |ψ⟩ instantaneously “collapses” to the eigenstate |ok⟩ corresponding to387

eigenvalue ok. This principle, known as state collapse, implies that measuring Ô a second time388

immediately after the first measurement will yield the same outcome ok and leave the state |ψ⟩ = |ok⟩389

unchanged, in accordance with the Born rule (pk = ⟨ψ|ok⟩ = ⟨ok|ok⟩ = 1). However, state collapse390

has another consequence that does not exist in classical mechanics. Suppose we want to measure391

two observables Ô and P̂ in state |ψ⟩, aiming to obtain (unbiased) estimates of both ⟨Ô⟩ψ and392

⟨P̂ ⟩ψ. Since, in general, the system is no longer in state |ψ⟩ after measuring Ô, we must first reset393

the system to state |ψ⟩ before measuring P̂ . Nonetheless, there is one notable case where it is394

legitimate to measure Ô and P̂ successively without resetting the state of the system between the two395

measurements: this is when the two observables commute, i.e.396

ÔP̂ = P̂ Ô. (40)
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In this case, the two operators P̂ and Ô are simultaneous diagonalizable. Assuming for simplicity397

that the eigenvalues of Ô are all distinct, this means that the eigenstates |o0⟩, ..., |od−1⟩ of Ô are also398

eigenstates of P̂ . Therefore, the probability of collapsing to any eigenstate |ok⟩ is the same under399

each observable (given by the Born rule, pk = |⟨ok|ψ⟩|2), and subsequent measurements of either Ô400

or P̂ will leave the state unchanged. This allows for successive measurements of Ô and P̂ to obtain401

unbiased estimates of their expectation values in the initial state |ψ⟩, without resetting the system402

between the measurements.403

12


	Introduction
	Quantum Equilibrium Propagation
	Transverse-Field Ising Model
	Quantum Harmonic Oscillator Network

	Discussion
	Equilibrium Propagation
	Ising Network
	Elastic Network

	Concepts of Quantum Mechanics

