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Abstract

Equilibrium propagation (EP) is a training framework for physical systems that
minimize an energy function. EP uses the system’s intrinsic physics during both
inference and training, making it a candidate for the development of energy-efficient
processors for machine learning. EP has been studied in various classical physical
systems, including classical Ising networks and elastic networks. We present a
version of EP for quantum systems, where the energy function is the Hamiltonian’s
expectation value, whose minimum is reached at the ground state. As examples, we
study the settings of the transverse-field Ising network and the quantum harmonic
oscillator network – quantum analogues of the network models studied within
classical EP.

1 Introduction

Machine learning (ML) is currently powered by classical digital computing. Meanwhile, fundamental
research explores alternative computing paradigms to enhance ML capabilities. Quantum computing
leverages the principles of quantum mechanics to encode and process information in ways that classi-
cal computers cannot, potentially handling exponentially larger amounts of information. In contrast,
neuromorphic computing, taking inspiration from the brain’s energy efficiency, aims to leverage
analog physics and compute-in-memory platforms to significantly reduce the cost of inference and
training in ML [Marković et al., 2020]. The field of ‘physical learning’ aims to unite these efforts by
exploring the inherent physics of any physical system (whether classical or quantum) for computation,
without necessarily mimicking neurons and synapses [Stern and Murugan, 2023] – see Momeni et al.
[2024] for a very recent review.

Over the past decades, progress in ML research has been driven by the effectiveness of frameworks
for optimizing cost functions based on the backpropagation (BP) algorithm. One challenge for
the field of physical learning has been the search for frameworks that are as effective as BP, while
adhering to local computation and being robust to analog noise, which are essential for efficient
implementations on analog compute-in-memory platforms. In recent years, several gradient-descent
training frameworks for physical systems have been proposed. For instance, Lopez-Pastor and
Marquardt [2023] introduced a framework applicable to arbitrary time-reversal invariant Hamiltonian
systems, and Wanjura and Marquardt [2024a] developed a method for extracting weight gradients in
optical systems based on linear wave scattering. The present paper focuses on the training framework
known as equilibrium propagation.

Equilibrium propagation (EP) [Scellier and Bengio, 2017] is a training framework for energy-based
systems, that is systems whose physics drives their state towards the minimum of an energy function
(equilibrium or steady state). EP extracts the gradients of the cost function using two equilibrium
states corresponding to different boundary conditions, which are then used to locally adjust the
trainable weights. EP requires only knowledge of trainable interactions, and thus is applicable
in partially unknown systems too. EP has been applied to various systems, including continuous
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Hopfield networks [Scellier and Bengio, 2017], resistor networks [Kendall et al., 2020], elastic and
flow networks [Stern et al., 2021], spiking networks [Martin et al., 2021], weakly connected oscillatory
networks [Zoppo et al., 2022], the (classical) Ising model [Laydevant et al., 2024], and coupled phase
oscillators [Wang et al., 2024]. More generally, EP applies in systems obeying variational principles
[Scellier, 2021]. Recent experimental demonstrations have shown the applicability of a variant of EP
called ‘Coupled Learning’ on hardware: Dillavou et al. [2022, 2024] built two generations of self-
learning resistor networks, and Altman et al. [2024] built a self-learning elastic network. Additionally,
[Yi et al., 2023] used another variant of EP in a memristor crossbar array, and Laydevant et al. [2024]
used EP on D-wave to train a classical Ising machine (where they used quantum annealing to reach
the ground state). Simulations have further underscored the potential of EP for ML applications: in
particular, Laborieux and Zenke [2022] trained an energy-based convolutional network to classify
a downsampled version of the ImageNet dataset. More broadly, [Zucchet and Sacramento, 2022]
have highlighted EP’s general applicability to any bilevel optimization problem (beyond physical,
energy-based learning), including meta-learning [Zucchet et al., 2022].

In this work, we derive a quantum version of EP. In Quantum Equilibrium Propagation (QEP), the
system is brought to the ground state of its Hamiltonian, parameterized by real-valued trainable
weights, to produce a prediction. The algorithm performs gradient descent on the expectation value
of an observable, which serves as the cost function to optimize. The central ingredient for translating
from EP to QEP is the variational principle of quantum mechanics: the Hamiltonian’s expectation
value is minimized (more generally, extremized) at the Hamiltonian’s ground state (more generally,
eigenstates). Thus, in QEP, the Hamiltonian’s expectation value represents the classical EP energy
function, and eigenstates represent equilibrium states. Similar to EP, QEP only requires knowledge
of trainable interactions, and has a local learning rule, which might be useful for the development of
specialized quantum hardware with reduced classical overhead, where measurements of the weight
gradients and adjustments of the trainable weights would be performed locally. To illustrate QEP, we
study the settings of the transverse-field Ising network and the quantum harmonic oscillator network –
quantum analogues of the Ising model and elastic network.

In parallel with this work, two other strongly related manuscripts exploring quantum extensions of EP
have recently been published on Arxiv [Massar and Mognetti, 2024, Wanjura and Marquardt, 2024b].
Massar and Mognetti [2024] also studied EP in thermal systems, where the system settles into the
minimum of the free energy functional, and demonstrated how weight gradients can be extracted
solely from thermal fluctuations, while Wanjura and Marquardt [2024b] established a connection
between EP and Onsager reciprocity.

2 Quantum Equilibrium Propagation

We present Quantum Equilibrium Propagation (QEP), an extension of EP for quantum systems. For a
brief presentation of classical EP, see Appendix A. A primer on the necessary concepts of quantum
mechanics is provided in Appendix B.

We consider a quantum system, serving as a ‘learning machine’, with a Hamiltonian Ĥ(w, x),
parameterized by trainable weights w = (w1, w2, . . . , wM ) and an input x = (x1, x2, . . . , xP ). The
system’s ground state, represented as |ψ(w, x)⟩, satisfies:

Ĥ(w, x)|ψ(w, x)⟩ = E(w, x)|ψ(w, x)⟩ (1)

where E(w, x) denotes the ground state energy. This ground state serves to encode a prediction on a
target output y = (y1, y2, . . . , yK) corresponding to the supplied input x. We also introduce a ‘cost
operator’ Ĉ(y) parameterized by y, whose expectation value in the state |ψ(w, x)⟩,

⟨Ĉ(y)⟩ψ(w,x) = ⟨ψ(w, x)|Ĉ(y)|ψ(w, x)⟩, (2)

serves as the cost function. The goal is to adjust the trainable weights of the Hamiltonian to minimize
this cost function. Assuming that the cost operator can be integrated in the system as an interaction
Hamiltonian (interaction between the system’s state |ψ⟩ and target output y), we form the ‘total
Hamiltonian’:

Ĥβ = Ĥ(w, x) + βĈ(y), (3)

where β ∈ R controls the strength of the cost interaction.
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Finally, we partition the trainable weights into groups, such that the Hamiltonian derivatives ∂Ĥβ

∂wj

and ∂Ĥβ

∂wk
commute for any pair wj and wk within the same group. Given an input-output pair (x, y)

from training data, QEP proceeds as follows.

1. Set β = 0 and reach the ground state |ψ0
⋆⟩ = |ψ(w, x)⟩ of Ĥ0 (with ground state energy

E0
⋆ = E(w, x)), characterized by

Ĥ0|ψ0
⋆⟩ = E0

⋆ |ψ0
⋆⟩. (4)

Measure the Hamiltonian derivatives ∂Ĥ0

∂wk
for all trainable weights of a given group. Repeat

this step for the other groups of commuting trainable weights. Repeat T times and denote
the measurement outcomes as h(1)k (0), h

(2)
k (0), . . . , h

(T )
k (0), for each wk.

2. Set β > 0 and repeat the same step as above: reach the ground state |ψβ⋆ ⟩ of Ĥβ , with
ground state energy Eβ⋆ , characterized by

Ĥβ |ψβ⋆ ⟩ = Eβ⋆ |ψβ⋆ ⟩. (5)

For each Hamiltonian derivative ∂Ĥβ

∂wk
, denote the T measurement outcomes as

h
(1)
k (β), h

(2)
k (β), . . . h

(T )
k (β).

3. Update the trainable weights w1, w2, . . . , wM as

∆wk =
η

β

[
1

T

T∑
t=1

h
(t)
k (0)− 1

T

T∑
t=1

h
(t)
k (β)

]
, (6)

where η > 0 is a learning rate.

The central result of QEP is that the learning rule of Eq. (6) approximates one step of gradient descent
on the expectation value of the cost operator, as stated in the following result.

Theorem 1. The gradient of the cost function can be approximated as

∇w⟨ψ(w, x)|Ĉ(y)|ψ(w, x)⟩ =
d

dβ

∣∣∣∣
β=0

⟨ψβ⋆ |
∂Ĥβ

∂w
|ψβ⋆ ⟩ (7)

≈ 1

β

[
⟨ψβ⋆ |

∂Ĥβ

∂w
|ψβ⋆ ⟩ − ⟨ψ0

⋆|
∂Ĥ0

∂w
|ψ0
⋆⟩

]
(8)

≈ 1

β

[
1

T

T∑
t=1

h(t)(β)− 1

T

T∑
t=1

h(t)(0)

]
. (9)

Theorem 1 follows from the classical EP formula (Theorem 2 in Appendix A) and the variational
principle of quantum mechanics (Lemma 3 in Appendix B). First, we comment on the differences
between EP and QEP, and then we discuss the properties of EP that transfer to QEP.

Compared to the classical setting (Appendix A), the characteristics of quantum measurements affect
the training procedure in several ways. First, QEP involves two levels of approximation in the
estimate of the gradient of the cost function. In addition to the finite difference used to approximate
the derivative d

dβ at β = 0, a second level of approximation is due to the probabilistic nature of
quantum measurements: since a quantum measurement only gives an unbiased estimate of the
expectation value, multiple measurements of the Hamiltonian derivatives ∂Ĥ

∂wk
are required to get

better estimates of the weight gradients. Second, since the state of the system generally changes
upon measurement of a Hamiltonian derivative, the system must be reset to its ground state after
each measurement. Third, the Hamiltonian derivatives ∂Ĥ

∂wj
and ∂Ĥ

∂wk
cannot generally be measured

simultaneously unless they commute – we will see, however, in Section 3 that the trainable weights
can typically be partitioned into p groups of commuting Hamiltonian derivatives, with small p (p = 1
or p = 2 in our examples).
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QEP also inherits from key features of classical EP. Suppose the total Hamiltonian of the system can
be expressed as the sum of Hamiltonians corresponding to individual interactions or contributions,
i.e.

Ĥ = Ĥuntrainable + Ĥ1 + Ĥ2 + · · ·+ ĤM (10)

where Ĥk is the Hamiltonian of an interaction parameterized by wk (for 1 ≤ k ≤ M ), and
Ĥuntrainable does not depend on any trainable weight. Then the Hamiltonian derivatives simplify to
∂Ĥ
∂wk

= ∂Ĥk

∂wk
. If the trainable weight wk is stored close to where the observable ∂Ĥk

∂wk
is measured,

the learning rule for wk is local. Moreover, the system’s Hamiltonian need not be fully known: in
particular, no knowledge of Ĥuntrainable is required. Finally, similar to the classical setting where
the equilibrium state need not be a minimum but only a critical point (stationary state) of the energy
function, QEP only requires reaching an eigenstate of the Hamiltonian, not necessarily the ground
state. One condition for Eq. (8) to hold, however, is that the nudge eigenstate |ψβ⋆ ⟩ must be obtained
as a smooth deformation (adiabatic transformation) of the free eigenstate |ψ0

⋆⟩ when varying the
nudging parameter from 0 to β ̸= 0. It remains to be seen whether this condition is necessary or can
be further relaxed in practice.

3 Examples of Quantum Systems Compatible with QEP

Next, we present for illustration the setting of the transverse-field Ising model and quantum harmonic
oscillator network.

3.1 Quantum Ising Model

As a first example, we consider a quantum version of the classical Ising model studied in classical
EP (Appendix A.1). While a classical Ising network of N classical spins can be in either of 2N
possible configurations, a quantum Ising network of N spins exists in a superposition of these 2N

configurations (i.e. a linear combination with coefficients in C). Hence the difference between
the classical and the quantum settings: while the state of the classical model is described by a
N -dimensional binary-valued vector, the quantum model’s state is represented by a vector in a
2N -dimensional complex vector space. We denote the d = 2N basis states as |σ1σ2 · · ·σN ⟩ with
σk ∈ {↑, ↓} for each k ∈ {1, 2, . . . , N}, e.g. | ↑↑ · · · ↑↑⟩, | ↑↑ · · · ↑↓⟩ and similarly for the other
2N − 2 basis states.

Similar to the classical Ising energy function, the Hamiltonian of a quantum Ising network has
couplings between spins Jjk ∈ R and bias fields hk ∈ R applied to individual spins, which we view
as trainable weights. For example, the Hamiltonian of the transverse-field Ising model is given by:

ĤIsing = −
∑

1≤j<k≤N

JjkẐjẐk −
N∑
k=1

hkX̂k, (11)

where Ẑk and X̂k are the Pauli operators, defined as follows. The Pauli Ẑk operator acts as a
phase-flip operator on the k-th spin, according to:

Ẑk |σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩ = +|σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩, (12)

Ẑk |σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩ = −|σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩. (13)

The Pauli X̂k operator acts as a bit-flip operator on the k-th spin, according to:

X̂k |σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩ = |σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩, (14)

X̂k |σ1 · · ·σk−1 ↓ σk+1 · · ·σN ⟩ = |σ1 · · ·σk−1 ↑ σk+1 · · ·σN ⟩. (15)

In this setting, the gradients of the Ising Hamiltonian with respect to the trainable weights, required
in the learning rule of Eq. (6), are given by

∂ĤIsing

∂Jjk
= −ẐjẐk,

∂ĤIsing

∂hk
= −X̂k. (16)
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Importantly, the Pauli Ẑk operators (1 ≤ k ≤ N ) commute with one another, allowing for simultane-
ous measurements during training. Similarly, the Pauli X̂k operators (1 ≤ k ≤ N ) commute and can
be measured simultaneously. However, Ẑj and X̂k do not commute. In this example, the trainable
weights can be partitioned into two groups of commuting Hamiltonian derivatives.

3.2 Quantum Harmonic Oscillator Network

As a second example, we consider the quantum harmonic oscillator network, a quantum analogue of
the elastic network model studied in classical EP (Appendix A.2). It consists of N quantum particles
interacting via harmonic potentials. For clarity, we assume that the particles have one-dimensional
(rather than three-dimensional) positions. Whereas the state of a classical mass-spring network is
represented by the N -dimensional vector of positions of the particles or masses (r1, r2, · · · , rN ) ∈
RN , the state of the quantum network is a superposition of all these configurations. In this setting,
the state vector is a function ψ : RN → C (the wave function), that assigns a complex number
ψ(r1, r2, · · · , rN ) to each possible configuration (r1, r2, · · · , rN ). The corresponding Hilbert space
is infinite-dimensional.

The position and momentum operators of the i-th particle, denoted as r̂i and p̂i, are defined by their
action on the wavefunction as follows:

(r̂iψ)(r1, r2, · · · , rN ) = riψ(r1, r2, · · · , rN ), (17)

(p̂iψ)(r1, r2, · · · , rN ) = −iℏ
∂ψ

∂ri
(r1, r2, · · · , rN ), (18)

where i is the imaginary unit (i2 = −1) and ℏ is the reduced Planck constant. We denote as p̂2i
2mi

the
kinetic energy operator of the i-th particle, where mi is the mass, and as V (r̂i − r̂j) the interaction
potential between the i-th and j-th particles. Assuming that some of these interaction potentials are
harmonic potential operator, V (r̂i − r̂j) = 1

2kij (r̂i − r̂j)
2, where kij is the spring constant, the

Hamiltonian of the system is given by:

ĤQHO =

N∑
i=1

p̂2i
2mi

+
∑

untrainable (i,j)

V (r̂i − r̂j) +
1

2

∑
trainable (i,j)

kij (r̂i − r̂j)
2
, (19)

where the kij’s are viewed as trainable weights.

We view this system as a ‘learning machine’ as follows. A subset of the particles represent ‘input
particles’ whose positions are fixed to (classical) input values. Another subset of the particles
represent ‘output particles’ whose position operators r̂outi are used as output observables, and whose
measurement outcomes must match target outputs yi. We use the squared error cost operator

Ĉ(y) =

K∑
i=1

(
r̂outi − yiÎ

)2

, (20)

where K is the number of output particles and Î is the identity operator (Î|ψ⟩ = |ψ⟩ for any |ψ⟩).
The expectation value of this cost operator is non-negative, and it is zero if and only if the state is
an eigenstate of r̂outi with eigenvalue yi, i.e. if and only if a measurement of r̂outi gives outcome
yi with certainty. The term (r̂outi − yiÎ)

2 represents a harmonic potential around yi, where the
i-th output particle experiences a restoring force that pulls it toward yi. To implement the nudging
Hamiltonian βĈ(y) corresponding to this cost operator, we use K springs with spring constants
kouti = β, connecting the K output particles to K ‘target particles’ placed at positions y1, . . . , yK .

Finally, the QEP learning rule requires the partial derivatives of the Hamiltonian with respect to the
spring constants. These are given by:

∂ĤQHO

∂kij
=

1

2
(r̂i − r̂j)

2
. (21)

Since the r̂i operators commute with one another, all Hamiltonian derivatives can be measured
simultaneously to obtain the gradients of the cost function. This example also illustrates that the
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details of untrainable interactions need not be known: specifically, we do not require analytical
knowledge of the Hamiltonian term

Ĥuntrainable =

N∑
i=1

p̂2i
2mi

+
∑

untrainable (i,j)

V (r̂i − r̂j) . (22)

4 Discussion

Equilibrium Propagation (EP) has been studied in various classical physical systems, including
classical Ising networks and elastic networks. We have derived Quantum Equilibrium Propagation
(QEP), a quantum extension of EP, and have illustrated it in quantum versions of these network
models. The key conceptual bridge between EP and QEP is the variational principle of quantum
mechanics, which states that the ground state of a Hamiltonian minimizes its expectation value (or
more generally, its eigenstates extremize its expectation value).

QEP inherits from key features of EP. Notably, it is partially agnostic to the system’s Hamiltonian,
requiring only analytical knowledge of trainable interactions. Additionally, QEP employs a local
learning rule. These features suggest potential benefits for developing specialized quantum computing
devices that are tolerant to device variations, and where the trainable weights would be located
near the location where the Hamiltonian derivatives are measured (thereby reducing the classical
computational overhead). QEP thus fundamentally departs from hybrid quantum-classical approaches,
where a classical computer optimizes the parameters of a parameterized quantum circuit, typically
necessitating full knowledge of the circuit [Cerezo et al., 2021]. QEP is also significantly more
efficient than methods that estimate partial derivatives of the loss function sequentially by perturbing
each trainable weight individually [Schuld et al., 2019].

Despite these potential advantages, QEP also comes with its requirements and challenges. First,
similar to classical EP, the cost operator Ĉ(y) must be implementable as an interaction Hamiltonian,
with its interaction strength controllable through the nudging parameter β ∈ R (see, however, Wanjura
and Marquardt [2024b], where a more generic linearized nudging method is employed). Second,
QEP relies on equilibration steps. While reaching the ground state of a complex Hamiltonian remains
a challenging problem, QEP only necessitates reaching an eigenstate, which provides significantly
more flexibility and may mitigate some of the practical difficulties associated with full ground-state
preparation.
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A Equilibrium Propagation

In this appendix, we review the Equilibrium Propagation (EP) training framework [Scellier and
Bengio, 2017] and the classical Ising network and elastic network where it has been used.

EP applies in systems governed by dynamics that drive their state s towards the minimum of an
energy function E(s). These systems contain trainable weights w = (w1, w2, . . . , wM ) and can
take an input x = (x1, x2, . . . , xP ) supplied as a boundary condition. We denote the corresponding
energy function as E(w, x, s). During inference, given an input x, the system evolves towards its
equilibrium or steady state, characterized by

s(w, x) = argmin
s

E(w, x, s). (23)

The system thus implements a function x 7→ s(w, x). Training the system consists in adjusting the
weights w so that s(w, ·) matches a desired input-output function. Mathematically, we use a cost
function C(s(w, x), y) which, given an input x and its associated desired output y, measures the
accuracy of the prediction s(w, x) by comparing it with y. Training the system can be formulated as
a bilevel optimization problem [Zucchet and Sacramento, 2022]:

minimize J (w) = E(x,y) [C(s(w, x), y)] , (24)

subject to s(w, x) = argmin
s

E(w, x, s), (25)

where E(x,y) represents the expectation value over input-output pairs (x, y) from the training data.
The conventional method to solve this problem is gradient descent on the upper-level cost function:
at each step of training, an input-output pair (x, y) is picked from the training data, and the trainable
weights are adjusted in proportion to the gradient of the cost function: ∆w = −η∇wC(s(w, x), y),
where η > 0 is a learning rate. The remaining task is to obtain or estimate the weight gradients,
∇wC(s(w, x), y), using the system’s physics. This is what EP enables us to do. The central idea of
EP is to view the cost function C(s, y) as the energy of an interaction between the state variables (s)
and desired outputs (y), which can be incorporated into the system’s energy function to form the
‘total energy function’,

Eβ(w, x, s, y) = E(w, x, s) + βC(s, y), (26)

where β ∈ R is a parameter termed the ‘nudging parameter’ that controls the strength of this new
interaction. EP proceeds in three steps:

1. Set β = 0 and let the system settle to an equilibrium state s0⋆, called the ‘free state’,
characterized by

s0⋆ = argmin
s

E0(w, x, s, y) = s(w, x). (27)

For each k = 1, 2, . . . ,M , measure ∂E0

∂wk
(w1, . . . , wM , x, s

0
⋆, y), i.e. the partial derivative

of the energy function with respect to wk.

2. Set β > 0 and let the system reach a new equilibrium state sβ⋆ , called the ‘nudge state’,
characterized by

sβ⋆ = argmin
s

Eβ(w, x, s, y). (28)

Measure again the partial derivative ∂Eβ

∂wk
(w1, . . . , wM , x, s

β
⋆ , y) for each k = 1, 2, . . . ,M .

3. Update the trainable weights w1, w2, . . . , wM as

∆wk =
η

β

[
∂E0

∂wk
(w, x, s0⋆, y)−

∂Eβ

∂wk
(w, x, sβ⋆ , y)

]
, (29)

where η > 0 is the learning rate.

The main theoretical result of EP is that the above contrastive learning rule (29) approximates one
step of gradient descent on the cost function.
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Theorem 2 (Equilibrium Propagation). The gradient of the cost function with respect to the trainable
weights can be approximated as

∇wC(s(w, x), y) =
d

dβ

∂Eβ

∂w
(w, x, sβ⋆ , y)

∣∣∣∣
β=0

(30)

≈ 1

β

[
∂Eβ

∂w
(w, x, sβ⋆ , y)−

∂E0

∂w
(w, x, s0⋆, y)

]
. (31)

Theorem 2 is proved in Scellier and Bengio [2017]. One difference with traditional machine learning
methods which use automatic differentiation (i.e. backpropagation) is that EP does not perform
exact gradient descent on the cost function, but rather approximates it. Improved versions of EP
that mitigate this problem have been proposed [Laborieux et al., 2021, Laborieux and Zenke, 2022,
Scellier et al., 2024]. Next, we discuss some important features of EP.

First, in a wide range of physical systems, the contrastive learning rule of Eq. (29) is local for each
trainable weight. To see this, let w = (w1, w2, . . . , wM ) be the set of trainable weights, and assume
that the energy function is separable,

E = Euntrainable + E1 + E2 + · · ·+ EM , (32)

where each Ek (with 1 ≤ k ≤M ) is the energy term of an interaction parameterized by wk (and wk
only), while Euntrainable is an energy term that does not depend on any trainable weight. The energy
derivatives arising in the learning rule simplify as ∂E

∂wk
= ∂Ek

∂wk
. If the energy term Ek involves only

state variables spatially close to wk, the learning rule for wk is local in space. Below we illustrate
this property in the classical Ising model [Laydevant et al., 2024] and elastic network model [Stern
et al., 2021].

Second, the system’s energy function may be partially unknown. Specifically, in the above decom-
position, while knowledge of the energy derivatives ∂Ek

∂wk
is required, the untrainable energy term

Euntrainable need not be analytically known. Below we illustrate this property in the elastic network
model.

Last, the equilibrium states s(w, x) and sβ⋆ of Eq. (23) and Eq. (28) need not be stable (i.e. minima
of their repective energy functions) for Theorem 2 to hold. Theorem 2 is more generally valid when
s(w, x) and sβ⋆ are critical points (i.e. saddle points) of their respective energy functions, satisfying
the stationary conditions

∂E
∂s

(w, x, s(w, x)) = 0,
∂Eβ

∂s
(w, x, sβ⋆ , y) = 0. (33)

where sβ⋆ is obtained as a smooth deformation of s0⋆ as we gradually vary the nudging parameter
from 0 to β ̸= 0. See Scellier [2021, Chapter 2] for a brief discussion. So far, this feature of EP
hasn’t proved very useful in practice given that such equilibrium states are not stable for the system’s
dynamics. However, this feature may be useful in QEP (where the quantum system must reach any
eigenstate of the Hamiltonian, not necessarily the ground state).

Next, we review two examples of physical systems where EP has been studied.

A.1 Ising Network

The (classical) Ising model of coupled spins is a widely studied model that has been explored as a
computing platform for machine learning, and recently explored in the context of EP [Laydevant
et al., 2024]. The model consists of N classical spins, characterized by their state σk ∈ {+1,−1}
for 1 ≤ k ≤ N , representing “up” or “down” states. The state of the system is represented by
the N -dimensional vector of spin states, (σ1, σ2, . . . , σN ), so the state space is discrete and finite,
consisting of 2N possible configurations. The Ising energy function that the system seeks to minimize
is defined as

EIsing(σ1, σ2, . . . , σN ) = −
∑

1≤j<k≤N

Jjkσjσk −
N∑
k=1

hkσk, (34)

where Jjk represents the couplings between spins, and hk represents the bias fields applied to
individual spins. These parameters serve as trainable weights in the model. The partial derivatives of
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the energy function with respect to these trainable weights, given by

∂EIsing
∂Jjk

= −σjσk,
∂EIsing
∂hk

= −σk, (35)

involve only information that is locally available to Jjk and hk, respectively.

In terms of hardware demonstration, Laydevant et al. [2024] implemented an Ising network on the
D-Wave Ising machine, employing the quantum annealing procedure of D-Wave to reach the ground
state. They trained it to classify the MNIST handwritten digits using EP. They also emulated a small
convolutional Ising network, using the Chimera architecture of D-Wave’s chips to implement the
necessary convolutional operations.

A.2 Elastic Network

As a second example, we consider the elastic network model, studied by Stern et al. [2021] in the
context of Coupled Learning (CL), a variant of EP (see Scellier et al. [2024] for a comparison of CL
and EP). While Stern et al. [2021] considered networks of linear springs and used CL for training,
here we also treat the case of nonlinear springs and use EP.

We consider a network of N masses m1,m2, . . . ,mN interconnected by springs. We denote the
position of mass mi as r⃗i, and we write r⃗ij := r⃗i − r⃗j . We denote Eij(r⃗ij) the elastic potential
energy stored in the spring between masses mi and mj . We assume that some of the network springs
follow Hooke’s law, whose energy term is Eij(r⃗ij) = 1

2kij (∥r⃗ij∥ − ℓij)
2, where kij is the spring

constant and ℓj is the spring’s rest length. The state of the system is the vector of mass positions,
(r⃗1, r⃗2, . . . , r⃗N ), and the total elastic energy stored in the network is given by

Eelastic(r⃗1, r⃗2, . . . , r⃗N ) =
∑

untrainable (i,j)

Eij(r⃗i − r⃗j) +
∑

trainable (i,j)

1

2
kij (∥r⃗i − r⃗j∥ − ℓij)

2
, (36)

where we view the kij’s and ℓj’s as the system’s trainable weights.

This system can be used as a ‘learning machine’ as follows. A subset of the masses represent ‘input
masses’ whose positions are set to given input values, and another subset of the masses represent
‘output masses’. We use the squared error cost function:

C(rout, y) =
K∑
i=1

∥r⃗outi − y⃗i∥2, (37)

where K is the number of output masses, rout = (r⃗out1 , . . . , r⃗outK ) is the vector of their positions,
and y = (y⃗1, . . . , y⃗K) is the corresponding vector of desired outputs. The nudging term βC(rout, y)
corresponding to this cost function can be implemented using K springs with spring constant
kouti = β and rest length ℓi = 0, connecting the K output masses to K ‘desired output’ masses
placed at positions (y⃗1, . . . , y⃗K).

As in the Ising model, the energy function is separable, so the learning rule is local. Specifically, the
partial derivatives of the energy function with respect to these weights are given by

∂Eelastic
∂kij

=
1

2
(∥r⃗i − r⃗j∥ − ℓij)

2
,

∂Eelastic
∂ℓij

= kij (ℓij − ∥r⃗i − r⃗j∥) . (38)

This example also illustrates that EP is agnostic to the characteristics of untrained interactions:
specifically, the energy term

Euntrainable =
∑

untrainable (i,j)

Eij(r⃗i − r⃗j), (39)

need not be analytically known. For such untrainable interactions, the interacting force F⃗ij between
mi and mj may be any central force, of the form F⃗ij = −fij(∥r⃗ij∥) r⃗ij

∥r⃗ij∥ where fij(·) is an arbitrary

(linear or nonlinear) characteristic. The corresponding elastic energy is Eij(r⃗ij) =
∫ ∥r⃗ij∥
0

fij(u)du.
A difference with the Ising model is that the space of possible network configurations for the elastic
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network, R3N , is continuous and infinite (whereas the space of configurations of the Ising model is
discrete and finite).

An experimental realization of an elastic network that learns using CL was performed by Altman
et al. [2024]. In their implementation, they used the spring rest lengths ℓij as trainable weights, while
keeping the spring constants fixed (untrained).
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B Concepts of Quantum Mechanics

In this appendix, we present the basic concepts of quantum mechanics used in QEP. In particular, we
present the variational principle of quantum mechanics, which allows us to translate from EP to QEP
(Lemma 3).

The state vector of a quantum system, denoted |ψ⟩, belongs to a complex vector space H equipped
with an inner product ⟨·|·⟩ (specifically, a Hilbert space). For simplicity of presentation, we assume
here that H is finite-dimensional with dimension d. The system’s Hamiltonian, Ĥ , is a linear
operator acting on the Hilbert space, Ĥ : H → H, with the property of being self-adjoint. Due to Ĥ
being self-adjoint, its eigenvalues are real. We denote the eigenvectors of Ĥ as |ψ0⟩, |ψ1⟩, ..., |ψd−1⟩,
and the associated eigenvalues as E0 ≤ E1 ≤ . . . ≤ Ed−1, such that:

Ĥ|ψk⟩ = Ek|ψk⟩, 0 ≤ k ≤ d− 1. (40)
Eq. (40) is known as the time-independent Schrödinger equation. The eigenvectors |ψk⟩ are also
called the eigenstates of the Hamiltonian, and their associated eigenvalues Ek are the energy levels.
The eigenstate |ψ0⟩ with the lowest energy level is the ground state.

In quantum mechanics, a measurable physical quantity is represented by a self-adjoint operator,
Ô : H → H, called an observable. The set of possible outcomes of measuring Ô is the set of
eigenvalues of Ô, denoted o0, o1, ..., od−1, which are real due to the self-adjoint property. A peculiar
aspect of quantum mechanics is that measurement outcomes are inherently probabilistic. When the
system is in state |ψ⟩, the probability of obtaining outcome ok upon measuring Ô is given by the Born
rule, pk = |⟨ok|ψ⟩|2, where |ok⟩ is the eigenstate associated with ok, i.e. such that Ô|ok⟩ = ok|ok⟩.
The expectation value of a measurement of Ô when the system is in state |ψ⟩ is denoted ⟨Ô⟩ψ and
calculated as ⟨Ô⟩ψ =

∑d
k=1 pkok. Using the spectral theorem for self-adjoint operators, it can be

shown that this expectation value rewrites

⟨Ô⟩ψ = ⟨ψ|Ô|ψ⟩. (41)
In statistical terms, the expectation value represents the average result of a large number of measure-
ments of the observable Ô performed on the system in state |ψ⟩.

The Hamiltonian Ĥ is an example of an observable, with possible measurement outcomes being the
energy levels E0, E1, ..., Ed−1. The central result that allows us to transpose EP to quantum systems
is the following variational formulation of the Hamiltonian’s ground state (Lemma 3). It tells us that
the Hamiltonian’s expectation value and the ground state can be viewed as EP’s ‘energy function’
and ‘equilibrium state’, respectively.
Lemma 3. The ground state |ψ0⟩ achieves the minimum of the Hamiltonian’s expectation value:

|ψ0⟩ = argmin
ψ∈H,∥ψ∥=1

⟨ψ|Ĥ|ψ⟩. (42)

More generally, the eigenstates of the Hamiltonian Ĥ are the critical points of the Rayleigh quotient
ψ 7→ ⟨ψ|Ĥ|ψ⟩

⟨ψ|ψ⟩ .

Another peculiar aspect of quantum mechanics is that the act of measuring an observable usually
changes the system’s state. Specifically, upon measurement of an observable Ô, if the outcome is
ok, then the system’s state |ψ⟩ instantaneously “collapses” to the eigenstate |ok⟩ corresponding to
eigenvalue ok. This principle, known as state collapse, implies that measuring Ô a second time
immediately after the first measurement will yield the same outcome ok and leave the state |ψ⟩ = |ok⟩
unchanged, in accordance with the Born rule (pk = ⟨ψ|ok⟩ = ⟨ok|ok⟩ = 1). However, state collapse
has another consequence that does not exist in classical mechanics. Suppose we want to measure
two observables Ô and P̂ in state |ψ⟩, aiming to obtain (unbiased) estimates of both ⟨Ô⟩ψ and
⟨P̂ ⟩ψ. Since, in general, the system is no longer in state |ψ⟩ after measuring Ô, we must first reset
the system to state |ψ⟩ before measuring P̂ . Nonetheless, there is one notable case where it is
legitimate to measure Ô and P̂ successively without resetting the state of the system between the two
measurements: this is when the two observables commute, i.e.

ÔP̂ = P̂ Ô. (43)
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In this case, the two operators P̂ and Ô are simultaneous diagonalizable. Assuming for simplicity
that the eigenvalues of Ô are all distinct, this means that the eigenstates |o0⟩, ..., |od−1⟩ of Ô are also
eigenstates of P̂ . Therefore, the probability of collapsing to any eigenstate |ok⟩ is the same under
each observable (given by the Born rule, pk = |⟨ok|ψ⟩|2), and subsequent measurements of either Ô
or P̂ will leave the state unchanged. This allows for successive measurements of Ô and P̂ to obtain
unbiased estimates of their expectation values in the initial state |ψ⟩, without resetting the system
between the measurements.
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