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Abstract

We study the problem of subgroup discovery with Cox regression models and
introduce a method for finding an interpretable subset of the data on which a Cox
model is highly accurate. Our method relies on two technical innovations: the
expected prediction entropy, a novel metric for evaluating survival models which
predict a hazard function; and the conditional rank distribution, a statistical object
which quantifies the deviation of an individual point to the distribution of survival
times in an existing subgroup. Because of the interpretability of the discovered
subgroups, in addition to improving the predictive accuracy of the model, they can
also form meaningful, data-driven patient cohorts for further study in a clinical
setting.

1 Introduction

Cox regression is a popular approach for survival analysis, where the goal is to model the distribution
of the time until a “unit” (e.g., patient) experiences a “failure” (an event of interest, e.g., death or onset
of a disease) conditional on relevant covariates. While the Cox model is appealing for its simplicity
and ease of interpretability, in practice, the modeling assumptions can be violated leading to inaccurate
predictions [13]. Neural network-based methods for survival analysis have gained popularity in the
machine learning community in recent years, and these methods are more flexible and capable of
modeling more complex relationships in the data than the Cox model [23, 19, 15]. However, due to
their black-box, uninterpretable nature, these methods have not been widely employed in practice. In
this paper, we address the problem of using interpretable methods to accurately model survival data.
Rather than trying to model the entire dataset simultaneously, we instead find a subset of the data
(referred to as a subgroup) on which an interpretable Cox model is highly accurate. The subgroup
itself is defined via easily interpretable criteria, namely, by thresholding the covariate values. Thus,
in addition to improving the predictive accuracy of our model, the discovered subgroups can also be
used to define meaningful patient cohorts for future clinical study.

Our Contributions In summary, this paper makes the following contributions:

1. We introduce an algorithm for finding an interpretable region of the feature space in which a
Cox model makes confident, accurate predictions. The region is defined by thresholding
covariate values, which aligns with common clinical research practice and makes the
discovered subgroups useful for further clinical study.

2. Our method relies primarily on two technical innovations. First, we introduce the expected
prediction entropy (EPE), a novel metric for evaluating survival models. The EPE gives a
more fine-grained evaluation of survival models by taking into account the confidence of
the model’s prediction. Second, we introduce the conditional rank distribution, a statistical
object which quantifies the deviation of an individual point to the distribution of survival
times in an existing subgroup.
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2 Related Work

Survival Analysis: Models The Cox model [6, 7] is a standard method for survival analysis, and it
has found widespread use in practice due to its ease of interpretation. Nevertheless, the interpretability
comes at the cost of strong modeling assumptions which may be violated in practice [13]. Within the
machine learning community, there has been a great deal of effort to apply modern ML techniques
to survival data and provide more powerful and flexible models. One class of approaches estimates
the risk or hazard function using flexible models like neural networks, [19, 15, 43, 3], trees [2],
Gaussian processes [21], or kernels [4]. Another common approach seeks to directly model the
survival distribution [23, 34]. The authors of [40] forego these standard modeling targets and instead
try to directly predict the failure order.

Survival Analysis: Evaluations In addition to improving modeling flexibility, there has been
a great deal of work on proper evaluation metrics for survival models. One of the most common
evaluation metrics is Harrell’s concordance index (C-index) [12], which evaluates a survival model
according to how well the predicted failure order of the units matches the data. [45] studied proper
scoring rules for survival analysis (i.e., metrics which are minimized by the true survival function) for
use both as loss functions for training models, and as evaluation metrics. [11] introduce D-calibration
as a calibration metric for models which predict a survival distribution, and which is similar in spirit
to the expected calibration error used to evaluate classification models. [33] proposed a method for
estimating the mean absolute error of a survival model with censored observations, which can then
be used as an evaluation metric.

Subgroup Discovery Our work sits at the intersection of two orthogonal topics, survival analysis
and subgroup discovery. At a high level, subgroup discovery refers to mining datasets for subsets or
regions in which the data distribution is in some sense “interesting,” usually quantified by a numerical
score function taking an extreme value when evaluated on the subgroup [10, 1, 24, 17, 44]. While
subgroup discovery is a general problem, it has found a great deal of applications in biostatistics
[28, 30]. Many methods have been proposed to study heterogeneous treatment effects in patient
populations, in particular to find patient groups which experience enhanced benefit from a treatment
[20, 27, 9, 26, 29, 36, 35, 25]; or for purposes of patient stratification [31, 5, 16]. [42] studied
the subgroup discovery problem for the Cox model but defined subgroups via the two sides of a
hyperplane rather than an axis-aligned box.

3 Problem Setup

Our high-level goal is to find an interpretable region R∗ of the feature space in which a Cox model
makes confident and accurate predictions.1 For the interpretability of the discovered region, we
follow the setting of [17] and restrict ourselves to axis-aligned boxes. Such regions correspond to
thresholding individual features. It remains to give a precise definition of “confident and accurate
predictions.”

The Cox model is inherently relative in nature: because the baseline hazard function is not estimated,
the Cox model by itself does not provide information about the survival distribution of an individual
unit. Rather, given two (or more) units, the Cox model predicts the probability that one unit will fail
before another. This fact is the motivation behind one of the most common evaluation metrics for
Cox models, the C-index [12], which measures the fraction of pairs of units in the data for which the
predicted failure order matched the true failure order.

The problem with using the C-index as our accuracy measure is that it does not take model confidence
into account. If the model predicts a 99.9% chance that unit 1 fails before unit 2, but in fact unit 2
fails before unit 1, this is penalized equally as if the model had predicted a 50.1% chance of unit 1
failing before unit 2 when evaluating the C-index. For detecting more subtle deviations from the Cox
model, a more sensitive metric is needed.

A natural alternative to consider is the (log) partial likelihood, the quantity used as a loss function for
fitting the Cox model. While the partial likelihood does take model confidence into account, it is not

1For readers who are unfamiliar with survival analysis in general or the Cox model in particular, we provide
the necessary background information in Appendix A.
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suitable for comparing different groups of data. This is because the value of the partial likelihood
depends heavily on the size of the risk sets Ri. For instance, the first unit to fail out of 1000 units
was given a predicted 10% chance of being the first to fail by the model, this could reasonably be
considered a very confident and accurate prediction (a 100× improvement over a random guess). On
the other hand, if only two units were at risk and the model assigned a 10% chance of failure to the
unit which actually failed first, this would constitute a confident but inaccurate prediction. However,
these two scenarios contribute equally to the value of the partial likelihood.

The inadequacy of the existing metrics discussed above motivate definition of our accuracy metric,
the expected prediction entropy (EPE).

3.1 Expected Prediction Entropy

Let λ(t, x) be the true hazard function. Conditional on a failure occurring at time t among two units
with features x1 and x2, the probability that x1 experiences failure is

λ(t, x1)/(λ(t, x1) + λ(t, x2)). (1)

Given a survival model which predicts an instantaneous hazard rate λ̂(t, x), we can evaluate the
goodness of fit of our model to the data by measuring its ability to discriminate between which of
two units at risk will fail.
Definition 3.1 (Expected Prediction Entropy). Let P be a probability distributions over Rd × R≥0

which denotes the joint distribution of a (feature, survival time) pair. Let (X,T ), (X ′, T ′) ∼ P be
two i.i.d. draws from P , and define Y = 1{T ≤ T ′}. Let λ̂ be an estimate for the hazard function
which defines the distribution of T conditional on X , and let R ⊆ Rd be a sub-region of the feature
space. We define the expected prediction entropy (EPE) as EPE(λ̂, R) =

E

[
−Y log

λ̂(T,X)

λ̂(T,X) + λ̂(T,X ′)
− (1− Y ) log

λ̂(T ′, X ′)

λ̂(T ′, X) + λ̂(T ′, X ′)

∣∣∣∣∣X,X ′ ∈ R

]
. (2)

By equation (1), Y is a Bernoulli random variable with parameter p = λ(T,X1)/(λ(T,X) +
λ(T,X ′)). Since the cross entropy loss is a proper scoring rule, it follows that the minimum of (2)
occurs when ratio of the estimated hazard functions equals its true value, i.e., when

λ̂(T,X)

λ̂(T,X) + λ̂(T,X ′)
=

λ(T,X)

λ(T,X) + λ(T,X ′)
.

In particular, the true hazard function λ (along with any positive scalar multiple of λ) minimizes this
loss function. In general, a lower EPE indicates a more accurate survival model.

Estimating EPE Empirically Let {(xi, ti, δi)}ni=1 ⊆ Rd×R≥0×{0, 1} be a survival dataset with
features xi, event times ti, and censoring indicators δi. An empirical estimate of the EPE is given by

− 1

N

∑
i : δi=1

∑
j∈Ri

log
λ̂(ti, xi)

λ̂(ti, xi) + λ̂(ti, xj)
, (3)

where Ri = {j : tj > ti} is the risk set at time ti (minus the i-th datapoint itself) and N =∑
i : δi=1 |Rj | is the total number of comparable event times. In the case that there is no censoring

(i.e., δi = 1 for all i), (3) gives an unbiased estimate for (2). In the presence of censoring, the fact that
we can only compare two datapoints when the first event time was uncensored may introduce a bias.

Specialization to the Cox Model The EPE has a particularly interesting interpretation when λ̂ is
given by a Cox model, i.e., λ̂(t, x) = λ0(t)e

β⊤x. In this case, (2) reduces to

E
[
−Y log

1

1 + e−β⊤(X−X′)
− (1− Y ) log

1

1 + eβ⊤(X−X′)

∣∣∣∣X,X ′ ∈ R

]
. (4)

Observe that this is the standard cross entropy loss for a logistic model trained to predict the label Y
from the feature differences X1 −X2.
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We remark that the expression (4) appeared in [38] as a lower bound for the C-index. The authors
use this lower bound directly to train a Cox model, instead of the standard partial likelihood. [22]
used the same expression as an approximation to the partial likelihood, using a risk set of size 1 to
avoid memory constraints during model training. [40] also explored this expression in the context of
ranking losses, which are again used to train relative risk models. To the best of our knowledge, we
are the first to explore the usefulness and properties of the EPE as an evaluation metric, not merely as
a loss function.

3.2 Mathematical Problem Statement

The EPE allows us to quantify when our model is making confident and accurate predictions. Thus,
we can state the precise goal for our method as follows. Let A be the set of all axis-aligned boxes in
the feature space of the data. DefineREPE = argminR∈A EPE(R) to be the set of all axis-aligned
boxes which minimize the conditional EPE. Finally, let Rmax

EPE = argmaxR∈REPE
vol(R) be the

regions of maximal volume which minimize the EPE. Our goal is to find (or approximate) a region
R∗ ∈ Rmax

EPE. Equivalently:

Find the largest possible region which minimizes the conditional EPE.

4 Method

We follow the general algorithmic framework used by [17]. Namely, we first find a small “core”
group of points which we are confident belong to the desired region R∗, and we use these points to fit
a coarse model (Section 4.1). After the core group is selected, we examine each other point in the
dataset and “reject” points which could not feasibly follow the same model as the points in the core
group (Section 4.2). In the final step, we select a region which is as large as possible but contains no
rejected points. For this final step, we use the same “growing box” procedure as [17].

4.1 Core Group Selection: Minimize EPE

We select a core group which minimizes the training EPE. Specifically, for each point in the dataset,
we consider all points that lie within a small ℓ∞ ball centered at that point and fit a Cox model to
this group. We then compute the empirical EPE via (3), where λ̂ is given by the Cox model fit to the
points in this group. The core group is chosen to be whichever group had minimal empirical EPE.

4.2 Rejection Criterion: Conditional Rank Statistics

We restrict our attention to the case of uncensored data for now. For the Cox model with unconstrained
baseline hazard function, all of the information is contained in the order of failures. Thus, we
examine the probability of the rank statistics of the observed points, conditional on the estimated Cox
coefficients and the observed failure order of the core group.

Specifically, let β be the fitted model coefficients and x1, . . . , xn be the feature vectors in the core
group, labeled such that t1 < t2 < · · · < tn. For a “test” point with features x∗ and failure time
t∗, we wish to compute the probability that the rank of x∗ is at least as extreme (high or low) as its
observed value, conditional on the other observed failure times and assuming that x∗ follows the
same Cox model as the core group. To do this, we work with the conditional rank distribution of x∗,
defined as:

rck(x
∗) = P(tk−1 < t∗ < tk | x∗, x1, . . . , xn; t1 < · · · < tn), (5)

where the probability is computed assuming each pair (x, t) follows the same Cox model with fixed
(unknown) baseline hazard function λ0(t) and Cox coefficients β. It will also be convenient to define
the unconditional rank probabilities of x∗ as

rk(x
∗) = P(t1 < · · · < tk−1 < t∗ < tk < · · · < tn | x∗, x1, . . . , xn). (6)

By Bayes’ rule, we have that rck(x
∗) = rk(x

∗)/(
∑n

j=1 rj(x
∗)). It thus suffices to compute the

unconditional rank probabilities of x∗. When the data are generated according to the Cox model, we
have

rk(x
∗) =

n+1∏
i=1

exp(β⊤x
(k)
i )∑n+1

j=i exp(β⊤x
(k)
j )

, (7)
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where we have defined x
(k)
i = xi if i < k, x(k)

i = x∗ if i = k, and x
(k)
i = xi−1 if i > k (i.e., the i-th

feature vector when x∗ has been “inserted” in the k-th position). Using the expression from Bayes’
rule, we can then compute the conditional rank distribution for x∗.

Finally, let rank(x∗) denote the random variable whose value is the rank of the “test” unit with
features x∗, and let k∗ be its observed value (i.e., the rank of t∗ among t1, . . . , tn). We define the
rank tail probability

τ∗ = min

{
k∗∑
k=1

rck(x
∗),

n+1∑
k=k∗

rck(x
∗)

}
and check whether τ∗ < α/2.

Generalization to Censored Data The conditional rank distribution has a straightforward gener-
alization to the partial likelihood and censored data. We again consider the distribution of possible
failure times for x∗ among all of the events (failure or censoring) experienced by the other points. If
we know the actual rank of x∗ (i.e., if it failed), then we can conduct a two-tailed test after computing
the distribution. If x∗ was censored, then we can only form a test based on its right tail.

Let y1 < · · · < yn be the event times for the points with features x1, . . . , xn in the core group, and
let δi be the corresponding failure indicators (δi = 1{xi failed (was not censored) at time yi}). The
partial likelihood that x∗ fails with event rank k is

rk(x
∗) =

n+1∏
i=1

(
exp(β⊤x

(k)
i )∑n+1

j=i exp(β⊤x
(k)
j )

)δi

=
∏

i : δi=1

(
exp(β⊤x

(k)
i )∑n+1

j=i exp(β⊤x
(k)
j )

)
, (8)

where x
(k)
i are defined as before. Note that this is simply the standard Cox partial likelihood if x∗

fails as the k-th event. The conditional failure “likelihoods” rck(x
∗) are then defined analogously to

equation (5), though we note that these are no longer actually probabilities or proper likelihoods in
the presence of censoring.

Fast Implementation Computing the conditional rank probabilities naively is inefficient on large
datasets, scaling as Ω(n3). Using some recursive relationships between the unconditional rank
probabilities, we can drastically reduce this runtime down to O(n) which also led to marked practical
efficiency gains. Details can be found in Appendix B.

4.3 Determining the Final Region

Once we have determined a core group and rejected points which cannot feasibly follow the same
model as the core group, we can directly apply the “growing box” procedure in Algorithm 2 of [17].
Intuitively, starting from the average of the features in the core group, we allow each side of the
region to expand (potentially at different speeds) until it collides with a rejected point. This procedure
continues until all sides of the region have collided with a rejected point or reached a predetermined
maximum value.

5 Theoretical Results

In this section, we will show theoretically that in a well-specified setting, our method recovers the
correct region. Our proof relies on several assumptions and simplifications:

1. The hazard function for the entire dataset has the form λ(t;x) = λ0(t)e
h(x) for some

unknown risk function h.

2. There is no censoring in the data.

3. There is a unique largest region R∗ which minimizes the EPE, and R∗ is an axis-aligned
box. Conditional on x ∈ R∗, we have h(x) = β⊤x for some β, i.e., the Cox model is
well-specified.

4. The core group selection procedure (Section 4.1) finds a group of points which belong to
R∗, and the Cox model fit to these points recovers the true parameters β.
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5. The conditional rank distribution converges to its expected value. We use this limiting
distribution for the analysis, rather than the finite sample version described in Section 4.2.

Under these assumptions, our main theorem shows that our method can approximately recover the
ground truth region R∗ with high probability, given a large enough effect size. The full proof of this
theorem can be found in Appendix C.

Theorem 5.1. Let R̂N be the region output by our method on a dataset of N i.i.d. points satisfying
the above assumptions. For any constant ε > 0, there is a constant Cε (depending on ε) such that if
|h(x)− β⊤x| ≥ Cε outside of R∗, then with probability at least 0.99, we have that R∗ ⊆ R̂N and
vol(R̂N \R∗) ≤ C ′ε for another constant C ′ as N →∞.

6 Experiments

We compared our method against three baselines: the vanilla Cox model, i.e. fitting a Cox model
to the entire dataset; random, in which we construct the bounding boxes of random subsets of the
training data and select the box with the best validation EPE; and an ablation of our own method
without the growing box procedure (no expansion). Full descriptions are given in Appendix D.1.

We evaluate each method according to several metrics. Our primary goal is to minimize the expected
prediction entropy (EPE). We report the empirical estimate of EPE(R) on the test set for the region
R discovered by each method. When R∗ is known, we can also compute the F1 score of an estimated
region by defining Precision = vol(R̂ ∩R∗)/vol(R̂) and Recall = vol(R̂ ∩R∗)/vol(R∗).

We created two synthetic datasets to test our method’s ability to recover a ground truth region R∗

(Synth 1 & Synth 2). A full description of their construction is given in Appendix D.2. We also
test our method on several standard, publicly available survival analysis benchmarks included in the
sksurv package [32]. These include Breast Cancer [8], GBSG2 [37], Lung Cancer [18], and AIDS
[14].

Figure 1 shows the results of the two components of the method on synthetic data. Figure 1a shows
the results of the core group finding procedure. The green points belong to R∗, the blue points are
outside R∗, and the red points constitute the core group. The method correctly identifies a core
group belonging to R∗, as desired. Figure 1b shows the F1 score for the estimated region vs. the
threshold set for the hyperparameter τ∗ in Section 4.2. When the rejection threshold is set properly, it
is possible for the method to exactly recover R∗ (which is equivalent to reaching an F1 score of 1).

(a) Core group selection results. By choosing the
core group with minimum EPE, we successfully
obtain a subset of R∗.

(b) Rejection/growing box results. When tuned
correctly, the method can correctly recover the
ground truth R∗.

Figure 1: Recovering the ground truth region R∗ on synthetic data.

Table 1 shows the EPE of the regions discovered by each method. The results are averaged over 10
training/test splits, and the best test EPE for each method is selected in each run. On 4/6 datasets,
our method finds the best region among all of the methods, and on 5/6 datasets, it reduced the EPE
significantly as compared to the procedure of fitting the Cox model to the entire dataset. This indicates
that meaningful subgroups may exist in real survival data.
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Synth 1 Synth 2 Lung Cancer Breast Cancer GBSG2 AIDS
Cox 0.70 0.70 0.52 0.67 0.59 0.44
Random 0.70 0.70 0.52 0.67 0.58 0.44
No Expansion 0.68 0.47 0.69 0.23 0.23 0.01
Full Method 0.35 0.29 0.56 0.18 0.14 0.15

Table 1: Mean EPE results on synthetic and real data averaged over 10 training/test splits (lower is
better). The best test EPE is selected for each method in each run.

7 Conclusion

In this work, we introduced subgroup discovery method which finds interpretable subsets of the
feature space in which a Cox model makes confident and accurate predictions. Our method relies on
two components: the expected prediction entropy (EPE), which quantifies the ability of a survival
model to discriminate between the relative risk of failure for two units; and the conditional rank
distribution, a statistical object which can be used to measure the deviation of an individual datapoint
to the distribution of survival times in an existing subgroup. We gave asymptotic convergence
guarantees for our method in a well-specified setting and confirmed its effectiveness empirically on
synthetic and real datasets.

Limitations & Future Work While the convergence of the conditional rank distribution to its
population-level analog is intuitive and supported empirically, it remains to provide a rigorous proof.
It also remains to prove that the core group selection procedure correctly selects a subset of R∗.
Expanding our understanding of the CRD in the presence of censoring is also of interest.

The EPE may be useful more broadly as an evaluation metric for survival models which predict a
hazard function. However, as the EPE depends not only on the accuracy of the model, but also on the
distribution of patient covariates and the intrinsic difficulty of distinguishing between units, a more
complete and quantitative understanding of these factors is necessary for it to be maximally useful as
an evaluation tool.

Lastly, the experiments we conducted serve as an initial proof of concept for the efficacy of our
method. Moving forward, more extensive empirical evaluation should be undertaken. It is especially
interesting to undertake case studies where an interpretable modeling outcome is desired, but where
the Cox model is known to give a poor fit to all of the data (e.g., in the scenario discussed by [13]).
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A Background on Survival Analysis and the Cox Model

A survival time is a non-negative random variable T which describes the amount of time until an
event of interest. Examples of commonly modeled events include the onset of a disease, the death of a
patient, the time at which a customer stops using a product or platform, or the failure of a mechanical
component. The arbitrary event to be modeled is referred to as a failure. Unlike more typical
regression tasks in machine learning where the goal is to give a point estimate of a continuous-valued
target, the goal of survival analysis is usually to model the distribution of T conditional on some
associated covariates X ∈ Rd.

Natural modeling targets for describing the distribution of T include standard probabilistic quantities
such as the probability density function (pdf) or cumulative distribution function (cdf) of T , condi-
tional on the features X , and indeed some survival analysis methods take this approach. A more
common target, however, is the hazard function, defined as

λ(t;x) = lim
dt→0

P(t ≤ T ≤ t+ dt | T ≥ t,X = x)

dt
. (9)

The hazard function can be thought of as an instantaneous rate of failure in the infinitesimal time
interval [t, t + dt), conditional on surviving up to time t and on the features X = x. The hazard
function is related to more standard quantities like the pdf or cdf. Specifically, letting F (t, x) =
P(T ≥ t | X = x) be the cdf and f(t, x) the associated pdf (assuming one exists), we have the
following identities:

S(t, x) := 1− F (t, x) = exp

{
−
∫ t

0

λ(u, x) du

}
, f(t, x) = λ(t, x)S(t, x).

The complement S(t, x) of the cdf is referred to as the survival function. The existence of these
formulas shows that determining the hazard function completely specifies the distribution of T |X ,
as it completely specifies the pdf or cdf. In a biomedical context, the hazard function has several
advantageous properties which make it a natural modeling target, including but not limited to
interpretability. For instance, a patient in remission from cancer would naturally be more interested
in knowing the conditional probability of a recurrence given that they have not experienced one yet,
rather than an absolute probability which is more easily described by the cdf [39].

The Cox model posits a particular semiparametric form for the hazard function which implies that a
unit change in each covariate has a multiplicative effect on the hazard function, i.e.,

λ(t; z) = λ0(t) exp(β
⊤z) (10)

for some coefficients β.

A.1 Fitting the Cox Model with the Partial Likelihood

This subsection follows the derivation of [41]. Suppose that the failure times are given by t1 < · · · <
tm. Let Li denote the index of the individual who fails at time ti. Let Tℓ denote the random failure
time for the ℓ-th individual, and define R(t) to be the risk set at time t, i.e. the set of individuals
R(t) = {ℓ : Tℓ ≥ t} who have not failed before time t.

We begin by computing the probability of an individual failure event, given the risk set at that time
and the parameters β. That is, we wish to compute

P(Li = ℓ | TLi = ti, R(ti) = Ri). (11)

When the failure times are continuous random variables, the probability that TLi = ti is zero. Thus
we will instead consider

P(Li = ℓ | TLi
∈ [ti, ti + dt), R(ti) = Ri) (12)
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and let dt→ 0. First, observe that we have

P(Li = ℓ, TLi ∈ [ti, ti + dt) |R(ti) = Ri)

= P(Tℓ ∈ [ti, ti + dt), Tk > Tℓ ∀k ∈ Ri \ {ℓ} |R(ti) = Ri)

= P(Tℓ ∈ [ti, ti + dt), Tk > ti + dt ∀k ∈ Ri \ {ℓ} |R(ti) = Ri) +O((dt)2)

= (λ(ti; zℓ)dt)
∏

k∈Ri\{ℓ}

(1− λ(ti; zk)dt) +O((dt)2)

= λ0(ti) exp(z
⊤
ℓ β)dt+O((dt)2). (13)

Using equation (13), we also have that

P(TLi ∈ [ti, ti + dt) |R(ti) = Ri) =
∑
j∈Ri

P(Li = j, TLi ∈ [ti, ti + dt) |R(ti) = Ri)

=
∑
j∈Ri

λ0(ti) exp(z
⊤
j β)dt+O((dt)2). (14)

Combining (13) and (14), we find that

P(Li = ℓ | TLi
= ti, R(ti) = Ri) =

exp(z⊤ℓ β)∑
j∈Ri

exp(z⊤j β)
. (15)

Given the failure times ti and associated risk sets Ri (which account for both previous failures and
censoring), [6] then proposed estimating β by maximizing the log partial likelihood

L(β) :=
m∑
i=1

z⊤ℓiβ −
m∑
i=1

log

∑
j∈Ri

exp(z⊤j β)

 , (16)

where ℓi is the index of the individual which failed at time ti. While each term (15) is a likelihood in
the traditional sense, [7] showed that exp(L(β)) is not a marginal or conditional likelihood (unless
one makes restrictive assumptions on the censoring patterns/failure times). Nevertheless, maximizing
(16) still enjoys many of the same properties as traditional MLE, such as asymptotic normality and
consistency [7].

B Runtime Improvements

A naive implementation of the conditional rank tail probability took over 20 seconds to evaluate
on a single point in some early experiments. Thus, a faster implementation is necessary. To avoid
cumbersome notation, we will use the abbreviation rk = rk(x

∗;X, δ, β).

First, we observe that the naive computation of a single rk from equation (7) will require Ω(n2) time.
This can easily be reduced to O(n) by updating the partial sum contained in the denominator as
each term in the product is computed, rather than recomputing it from scratch each time. With this
modification, we can compute r1 in O(n) time.

We can obtain another speedup by computing the remaining rk recursively, rather than repeatedly
using the procedure above from scratch for each rk. A direct calculation using the formula (8) shows
that

rk+1 =
(1− δk)e

β⊤x∗
+ Sk

eβ⊤x∗ − eβ⊤xk + Sk

· rk, (17)

where we have defined Sk =
∑n

i=k e
β⊤xi . Again using the running partial sum trick to quickly

compute Sk (rather than computing from scratch each time), we can compute the next rk+1 in
constant time using the previous one. This means that r1, . . . , rn+1 can all be computed using only
O(n) time total.
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The pseudocode for the resulting procedure is given in Algorithm 1. We have replaced the rank
probabilities rk with the logarithms since when working with large datasets, working directly with
the product of many probabilities (even when each is individually of “reasonable” size) can lead
to numerical issues. Given the set of log rk, the conditional probability distribution rc can then be
computed by taking a softmax.

Algorithm 1 Fast computation of the log rank probabilities with censoring

S ←
∑n

i=1 e
β⊤xi

log_prod← β⊤x∗ − log(S + eβ
⊤x∗

)
for i = 1, . . . , n do

log_prod← log_prod + δi(β
⊤xi − logS)

S ← S − eβ
⊤xi

end for
log r1 ← log_prod

S ←
∑n

i=1 e
β⊤xi

for k = 1, . . . , n do
log rk+1 ← log rk + log(S + (1− δk)e

β⊤x∗
)− log(S + eβ

⊤x∗ − eβ
⊤xk)

S ← S − eβ
⊤xk

end for

return log r1, . . . , log rn+1

C Proof of Theorem 5.1

In this section, we provide the proof of Theorem 5.1. We first restate our assumptions and give more
precise conditions when needed, as well as define the notation used in the proof.

Assumption C.1. We assume that the hazard function has the form λ(t;x) = λ0(t)e
h(x) where

λ0(t) > 0 for all t. Conditional on x ∈ R∗, we have h(x) = β⊤x for some fixed β, i.e., the Cox
model is well-specified in R∗.

We define the following quantities:

• T (r) denotes a random survival time with hazard function λ0(t)e
r, i.e. the survival time of

a unit where the log relative hazard h(x) = r. In particular, the data are generated according
to T (h(X)), where X is sampled from the feature distribution.

• G(t) denotes the marginal CDF for survival times sampled from points belonging to R∗.
That is, G(t) = P(T (h(X)) ≤ t |X ∈ R∗), where the probability is computed with respect
to both the randomness in X ∈ R∗ and T (h(X)).

• G−1 : [0, 1)→ R≥0 denotes the inverse CDF.

• F (q, r) denotes the probability that a unit with log-hazard r fails before the q-th quantile of
the marginal failure time distribution from R∗, i.e., F (q, r) = P(T (r) ≤ G−1(q)).

• pI denotes the type I error rate, i.e., the probability that a point which belongs to R∗ is
rejected.

• pII denotes the type II error rate, i.e., the probability that we fail to reject a point close to
each face of R∗.

• q denotes the q-th quantile of the limiting rank quantile distribution G.

• N denotes the total number of datapoints in the training dataset.

• m denotes the number of points which, if rejected, will constitute a satisfactory detection of
some face of R∗. (These correspond to points in Rε,j,± from [17].)

• n denotes the number of points which belong to R∗ and shouldn’t be rejected. We can
expect n = Ω(N).
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• We will use η to denote a small probability which needs to be lower bounded, and p to
denote a small probability which needs to be upper bounded.

Assumption C.2. No censoring occurs in the data.

Assumption C.3. The core group selected by the first stage of the algorithm belongs entirely to R∗.
Furthermore, the error in the Cox model fit to this core group is negligible, i.e. we have β̂ ≈ β where
β̂ are the Cox coefficients fit on the core group.

Assumption C.4. The conditional rank distribution for each point converges to its expectation, i.e.,
for each feature vector x in the dataset we have∑

k≤pn

rck(x;X,β) ≈ F (p, β⊤x).

We conjecture that Assumptions C.3 and C.4 can be proven to hold under reasonable assumptions on
the data generation process and for a sufficiently large sample size. Both assumptions hold empirically
on our synthetic datasets.

We now proceed with the proof of Theorem 5.1, which is broken down into five steps.

Step 1: It suffices to assume λ0(t) ≡ 1.

Consider the random variable T̃ =
∫ T

0
λ0(s) ds. Note that this is a monotonic change of variables

since λ0(s) > 0. In addition, note that the survival function S̃(t, x) of T̃ conditional on features
X = x is given by

S̃(t, x) = P(T̃ ≥ t |X = x)

= P

(∫ T

0

λ0(s) ds ≥ t |X = x

)
= P(T ≥ Λ−1

0 (t) |X = x)

= exp
(
−eh(x)Λ0(Λ

−1
0 (t))

)
= exp(−eh(x)t). (18)

This implies that T̃ has hazard function λ̃(t;x) = eh(x), which in particular means that the baseline
hazard function under this transformation is λ̃0(t) ≡ 1. Since the transformation is monotonic, all of
the ranks will be preserved, so all of the results which hold for T hold also for T̃ and vice-versa.

Step 2: How low does the individual false positive rate need to be to guarantee an overall FPR of at
most pI? Let the resulting maximum individual FPR be p.

Let p be an upper bound on the probability that an individual point in R∗ is rejected. A union bound
implies that the overall false positive rate is at most pn. In particular, if p ≤ pI/n then the overall
false positive rate is at most pI.

Step 3: How large can we make the lower rejection region for a point x, such that its individual FPR
is at most p from Step 2? That is, what is the quantile q(x) of the conditional quantile distribution
such that P(T (x) ≤ q(x)) ≤ p, conditional on T (x) following the same Cox model?

Given x, we wish to determine the maximum possible q such that

F (q, β⊤x) = P(T (x) ≤ G−1(q)) ≤ p ⇔ P(T (x) > G−1(q)) ≥ 1− p.

From Step 1, it suffices to consider the case where λ0(t) ≡ 1. In this case, T (x) is an exponential
random variable with rate eβ

⊤x and we can compute the tail probability explicitly. In particular, we
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have

P(T (x) > G−1(q)) = exp(−eβ
⊤xG−1(q)) ≥ 1− p (19)

⇔ − eβ
⊤xG−1(q) ≥ log(1− p) (20)

⇔ G−1(q) ≤ − log(1− p)e−β⊤x (21)

⇔ q ≤ G
(
− log(1− p)e−β⊤x

)
(22)

= PT∼Core

(
T ≤ − log(1− p)e−β⊤x

)
(23)

= EX∼Core

[
1− exp

(
−eβ

⊤X · (− log(1− p)e−β⊤x)
)]

(24)

= 1− EX∼Core

[
(1− p)e

β⊤(X−x)

]
. (25)

Thus we can take q(x) = 1− EX∼Core

[
(1− p)e

β⊤(X−x)

]
.

Step 4: How high does the individual true positive rate need to be to guarantee an overall false
negative rate of at most pII?

Let η be a lower bound on the individual TPR. Then the overall false negative rate is at most

(1− η)m ≤ pII ⇔ 1− η ≤ p
1/m
II ⇔ η ≥ 1− p

1/m
II .

Step 5: Lower bound the hazard rate for “good rejections” in terms of the type II error and
conditional quantile distribution. Equivalently, when is the hazard large enough for the individual
good failure probability to be at least what is required by Step 4?

WLOG we will focus on rejecting points with the lower tail of the conditional rank distribution. The
same argument works with the inequalities reversed for the upper tail.

To obtain maximum power for the test at a fixed false positive rate, we will reject points with features
x falling below the quantile q(x) defined in Step 3. The question is equivalent to determining
conditions on h(x) such that

F (q(x), h(x)) = P(T (x) ≤ G−1(q(x))) ≥ η.

Again from Step 1, it suffices to consider λ0(t) ≡ 1 so that T (x) is exponential with rate eh(x). Let
q = q(x). Then we have

P(T (x) ≤G−1(q)) ≥ η ⇔ P(T (x) > G−1(q)) ≤ 1− η (26)

⇔ exp(−eh(x)G−1(q)) ≤ p
1/m
II (27)

⇔ − eh(x)G−1(q) ≤ 1

m
log pII (28)

⇔ h(x) ≥ log2 p−1
II − logm− logG−1(q). (29)

It remains to upper bound − logG−1(q), or equivalently to lower bound G−1(q). This is again
equivalent to finding a lower bound on t such that PT∼Core(T ≤ t) ≤ q. Using the expression for
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q = q(x) from Step 3, we have

PT∼Core(T ≤ t) ≤ q (30)

⇔ EX∼Core

[
1− exp(−eβ

⊤Xt)
]
≤ 1− EX∼Core

[
(1− p)e

β⊤(X−x)

]
(31)

⇔ EX∼Core

[
exp

(
log(1− p)e−β⊤xeβ

⊤X
)]
≤ EX∼Core

[
exp(−teβ

⊤X)
]
. (32)

As long as t ≤ − log(1− p)e−β⊤x, the integrand on the LHS of (32) is pointwise less than or equal
to the integrand on the RHS. In particular, we can take t equal to this upper bound, or equivalently

G−1(q) ≥ − log(1− p)e−β⊤x.

Plugging this into (29), we can sufficiently bound the false negative rate provided that

h(x) ≥ log2 p−1
II − logm− log2(1− p)−1 + β⊤x. (33)

Finally, substituting p = pI/n, we require that

h(x)− β⊤x ≥ log2 p−1
II − logm− log2(1− pI/n)

−1. (34)

Observe that
log log

1

1− pI/n
≥ log log(1 + pI/n) ≥ log

pI
2n

.

Thus, it suffices to have

h(x)− β⊤x ≥ log2
1

pII
+ log

2n

pI
− logm.

In order for vol(R̂N \R∗) ≤ ε, the m points must lie within an O(ε) distance of each of the faces of
R∗. With high probability, there will be at least Ω(εN) such points, so we may assume that m ≥ cεN
for some constant c > 0. Thus, the final inequality simplifies to

h(x)− β⊤x ≥ log2
1

pII
+ log

2

cpIε
.

Thus we can take the constant Cε to be equal to the RHS of this inequality.

To prove the desired result, we can now directly apply logic from the analogous proof in [17].
Specifically, since we have assumed that the core group lies within R∗ and we have shown that no
points in R∗ will be rejected (Step 2), the logic of [17] shows that R∗ ⊆ R̂N given correct settings
for the expansion speed s±j of each side of the box. Similarly, the choice of Cε implies that there will
be a rejected point within an O(ε) distance from each face of R∗ (Steps 4 & 5), meaning that each
face of R̂N will stop expanding within O(ε) distance of the corresponding face of R∗ and yielding
vol(R̂N \R∗) = O(ε). This completes the proof.

D Experiment Details

D.1 Baselines

Vanilla Cox model In some cases, subgroup discovery may not be necessary and fitting a single
model to the entire dataset (as is standard) may suffice. Thus, we include as a baseline a Cox model
fit to the whole dataset.

Random At its core, our method selects a group of points from the dataset and uses the resulting
bounding box for these points to define the region. Thus, the natural weakest baseline for comparison
would be to select several random groups of points from the dataset, form their bounding box, and
select the region with the best score on the validation set.

No Expansion We test the efficacy of the box expansion part of our procedure by comparing against
the results when we use the same computational budget to just select and validate a larger number of
core groups according to lowest training EPE.
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D.2 Synthetic Data

We created two synthetic datasets to test our method’s ability to recover a ground truth region R∗.
The features are drawn X ∼ Unif(B), where B = [−1, 1]d is a bounding box for the data. We set
the ground truth region R∗ = [−(1/6)1/d, (1/6)1/d]d so that it occupies 1/6 of the total area of the
feature space, regardless of the dimension. Conditional on X ∈ R∗, the survival time T is drawn
according to the Cox model with λ0(t) ≡ 1 and β = c1, where c is a scalar which varies the effect
size and 1 is the d-dimensional 1s vector. Note that in this case, the survival times are exponentially
distributed. Conditional on X ̸∈ R∗, we have two different settings. In one setting (Synth 1), we
draw T according to the Cox model with the same baseline hazard λ0(t) ≡ 1, but with different
Cox coefficients. This matches the setting of the theory. To test the case where our assumptions on
the data outside R∗ are not met, we also tried generated T ∼ Unif([0, τ ]) conditional on X ̸∈ R∗

(Synth 2).
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