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ABSTRACT

Vision encoders typically generate a large number of visual tokens, providing
information-rich representations but significantly increasing computational de-
mands. This raises the question of whether all generated tokens are equally valu-
able or if some of them can be discarded to reduce computational costs without
compromising quality. In this paper, we introduce a new method for determining
feature utility based on the idea that less valuable features can be reconstructed
from more valuable ones. We implement this concept by integrating an autoen-
coder with a Gumbel-Softmax selection mechanism, that allows identifying and
retaining only the most informative visual tokens. Experiments show that the
sampler can reduce effective tokens and inference FLOPs by up to 50% while
retaining 99-100% of the original performance on average. On challenging OCR-
centric benchmarks, it also surpasses prior SOTA. The sampler transfers to the
video setting as well: despite minor drops, zero-shot results remain strong without
video-specific training. Our results highlight a promising direction towards adap-
tive and efficient multimodal pruning that facilitates scalable and low-overhead
inference without compromising performance.

1 INTRODUCTION

Figure 1: Comparison of feature selection methods on Newton’s Principia text, in each pair of
images: random feature selection retaining 40% of tokens (left), and our proposed feature selector
retaining 40% of tokens (right).

In recent years, vision encoders have become important components for various downstream tasks,
providing universal representation of visual features. These encoders are trained to effectively com-
press raw pixel information into latent embeddings. Depending on their training objectives, vi-
sion encoders can encapsulate different types of information in their hidden states. However, it is
widely recognized that many of these encoded features contain redundant or irrelevant information
for downstream tasks (Raghu et al., 2022; Naseer et al., 2021; Tong et al., 2024). Therefore, reducing
the number of output features produced by vision encoders is an important and challenging task —
especially now, as encoders increasingly serve as fundamental mechanisms for visual understanding
in multimodal models (Li et al., 2024b; Chen et al., 2024c; Tong et al., 2024).

Multimodal models that process visual inputs typically condition on outputs of a Vision Trans-
former (ViT) (Dosovitskiy et al., 2021), appending a long vision-derived prefix to the input of a
Large Language Model (LLM) via a projection layer. Although this method gives promising re-
sults, handling large context length (especially when processing high-resolution images) remains a
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significant challenge. Moreover, previous studies have observed that not all ViT outputs equally
contribute to downstream task performance (Devoto et al., 2024); many tokens can be redundant,
noisy, or simply irrelevant (Yang et al., 2024a). Therefore, selectively identifying and retaining only
the most informative features can significantly decrease the number of tokens while maintaining
model performance.

To address this issue, we propose a novel method to select the most informative visual features
from the encoder output using an autoencoder-based approach implemented with Gumbel-Softmax
sampling. Our method identifies features that are essential to preserve crucial visual information,
allowing us to accurately reconstruct the original feature set. We show that this training procedure
not only efficiently identifies valuable features, but also provides interpretable results, highlighting
informative features that clearly correspond to specific parts of the image in the pixel space. Further-
more, we illustrate how our approach can be seamlessly integrated during inference in multimodal
models, significantly reducing the visual prefix length without compromising performance.

In experiments conducted with the LLaVA-NeXT (Li et al., 2024b) with various large language
models (LLMs) backbones and InternVL (Chen et al., 2024c) series of models, we demonstrate
that features selected using the the proposed approach contain essential information for the model
to provide the correct answer to most of the analyzed tasks. Notably, our method reduces visual
context length by up to 50% with minimal performance degradation in most benchmarks. Besides,
our method significantly outperforms the current SOTA approaches on the OCR-based tasks, such
as document and chart question answering.

The contributions of our paper can be summarized as follows:

• We propose a novel method for selecting the most informative features from vision en-
coders.

• We demonstrate how our approach serves as an effective in-place feature reduction method
for existing multimodal models without requiring further fine-tuning.

• We empirically confirm that retaining as little as 50% of the original visual features can be
sufficient to maintain near-baseline performance on multiple multimodal benchmarks.

• Our method outperforms most existing baselines on the complex OCR-based benchmarks.

2 RELATED WORK

Recently, several approaches for reducing context in multimodal models have been proposed, oper-
ating either at the vision-encoder level or within LLM layers and thus shortening context at different
points in the stack.

2.1 TOKEN PRUNING

Pruning removes irrelevant/low–value Vision Transformer tokens while retaining salient informa-
tion. Many methods use attention scores for selection (Tang et al., 2023), and some promote di-
versity to preserve broader coverage (Long et al., 2023). High-quality embeddings are especially
critical for detection/segmentation (Liu et al., 2024). Task-specific variants exist; e.g., Kinfu & Vi-
dal (2023) propose three pose-estimation pruners guided by a lightweight pose head or learnable
joint tokens. The common goal is to keep tokens most informative for the downstream task.

2.2 TOKEN GENERATION AND MERGING

A complementary line compacts representations by generating/merging tokens. Token-
Learner (Ryoo et al., 2021) produces a small set of learned tokens; Token Merging (Feng & Zhang,
2023) forms “meta-tokens” by adaptively merging similar ones; (Lee & Hong, 2024) uses learnable
decoupled embeddings for end-to-end merging; Resizable-ViT (Zhou & Zhu, 2023) predicts token-
length labels to keep informative tokens. Hierarchical backbones such as PVT (Wang et al., 2021)
downsample tokens stage-wise (static, content-agnostic), reducing cost for high-res inputs; Li et al.
(2023b) further examine tokenization choices.

2
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While effective on classic CV tasks (classification, detection, segmentation), most pruning/merging
techniques are tailored to single-modal vision settings and transfer poorly to vision-language models
(VLMs), which must preserve visually relevant evidence aligned with text.

2.3 VISION CONTEXT REDUCTION IN MULTIMODAL MODELS

Reducing visual context is crucial in multimodal models because visual tokens can dominate the
LLM’s sequence length; yet, their utility is query dependent. Existing strategies operate at different
points in the stack. Interpolation–style methods downsample features while attempting to preserve
salient content (e.g., LLaVA-OneVision (Li et al., 2024a)); the InternVL family (Chen et al., 2025)
leverages pixel-unshuffle for high-resolution inputs; and trainable token compressors or learnable
queries (e.g., Perceiver IO (Jaegle et al., 2022), BLIP-2 (Li et al., 2023c)) are built into the architec-
ture and typically require joint training.

A more plug-and-play line prunes tokens post-hoc. FASTV (Chen et al., 2024a) prunes vision tokens
in selected LLM layers using attention scores from earlier layers; PyramidDrop (Xing et al., 2025)
ranks image tokens with a lightweight attention module and drops a fixed fraction at multiple depths.
Methods such as HIRED (Arif et al., 2024) and VISIONZIP (Yang et al., 2024b) select tokens using
attention scores from the [CLS] token of the vision encoder. However, these scores degrade as
pruning ratios increase (Guo et al., 2024), leading to underperformance on high-resolution, detail-
dense images (e.g., text-heavy/OCR tasks). Diversity-based selectors — DivPrune (Alvar et al.,
2025), PACT (Dhouib et al., 2025), and HiPrune (Liu et al., 2025) — promote coverage by clustering
or maximizing token diversity and keeping the most representative tokens; some are training-free,
others require light finetuning for the best performance.

The proposed method does not depend on the LLM during selection. Instead, it scores tokens by how
well they preserve core visual information in the encoder’s representation. Because it is training-
free relative to the VLM, it can be applied directly in both purely visual (vision encoder level) and
multimodal pipelines (as vision context compressor).

3 USEFUL FEATURE SELECTION

The Transformer architecture has been successfully used as a backbone for vision encoders (Doso-
vitskiy et al., 2021), providing hidden representations suitable for a wide range of vision tasks.
However, due to the inherent design of the self-attention mechanism in Transformers, neighboring
tokens naturally contain information about each other. Consequently, we assume that information
may be duplicated redundantly in different regions of the output feature tensor. In particular, some
visual representations could potentially be composed entirely of information already present in other
tokens. If such redundant representations exist, they can be identified and removed without causing
significant performance degradation in vision-related tasks.

This hypothesis naturally raises two critical questions: how can one quantitatively measure whether
one set of features contains more information than another, and how can one select the optimal
subset of features?

3.1 FEATURE SUBSET COMPARISON

For any image I , the corresponding feature set F has dimensions (L,C), where L is the number
of vision tokens, and C is the corresponding dimension of each vision token. Tokens identified for
potential exclusion have the characteristic property that they can be reconstructed from the remaining
visual tokens in the set. Thus, if there exists an optimal reconstruction function R, which takes a
pruned subset of features as input F pr (where the superscript pr denotes pruned) with dimensions
(Lpr, C) and returns a reconstructed set F rec with dimensions (L,C), and if a proximity function
dist is defined between two tensors, then one subset is considered superior to the other if it allows
for a more accurate reconstruction of the discarded visual tokens.

Formally, subset F pr1 is superior to subset F pr2 if:

dist (R(F pr1 ), F ) < dist (R(F pr2 ), F ) . (1)

3
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3.2 HOW TO SELECT THE OPTIMAL SET?

To select the most informative features, we aim to find a function S, referred to as the optimal
selector, which takes F as input and returns a pruned subset F pr. We train this selector in a way
similar to the autoencoder:

min
θ,ψ

dist
(
Rψ(Sθ(F )), F

)
+ Lpr. (2)

In this formulation, the first term provides a high-quality reconstruction of the original feature set
from the pruned subset. The additional term Lpr penalizes the selector Sθ if it trivially selects all
tokens (acting as an identity function), thereby encouraging a more concise but informative subset.

4 METHOD

4.1 IMPLEMENTATION DETAILS

In this section, we present the implementation details of the approach described in Section 3, which
consists of two main components: Feature Selector and Reconstructor.

4.1.1 FEATURE SELECTOR ARCHITECTURE

Feature Selector S consists of four Transformer layers and a Gumbel-Softmax-based (Jang et al.,
2017) head. The head creates a binary mask, as shown in Figure 2 (left), where zeros indicate visual
tokens to be removed and ones indicate tokens to be retained.

During training, feature embeddings corresponding to zeros in the binary mask are replaced by a
shared learnable embedding Emasked, (this embedding will be reconstructed later by the component
described in 4.2). During inference, embeddings corresponding to zeros are simply discarded, while
those corresponding to ones are kept for downstream task. For example, they can be used as image
representations in Vision-Language models, as shown in our experiments in Section 5.

For more flexibility during inference, one can choose to use logits from the linear layer instead of a
hard binary mask. Based on these logits, the user can select a fixed number of the most informative
features. This is exactly the approach that is used in our experiments, which we describe in Section 5.

4.2 RECONSTRUCTOR ARCHITECTURE

The Reconstructor is divided into two parts: a Feature Reconstructor Rf and an Image Reconstructor
Rim.

Feature Reconstructor Rf consists of four Transformer layers and Image Reconstructor Rim consists
of two Transformer layers and upsampling layers in interleaved with residual blocks to restore the
spatial resolution. The primary objective of Rf is to restore the tokens that were replaced by the
learned embedding Emasked, after which Rim should recover the image as shown in Figure 2 (left).

4.3 LOSS FUNCTION

As described in Section 3.2, the optimization objective is formulated as the sum of two terms: (1)
a reconstruction loss and (2) a regularization term that aims to minimize the amount of information
required for reconstruction.

We decompose the reconstruction term into two parts:

dist(F rec, F ) + dist(Irec, I), (3)

where F rec is reconstruction of features and Irec is reconstruction of image.

In principle, we would expect the reconstruction loss to approach zero while the regularization
term converges to the fraction of useful visual tokens. However, in practice we did not observe the
expected behavior. We found that the optimizer is more likely to converge to a local minimum where
the regularization term drops to zero, thereby avoiding the token utilization penalty.
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Figure 2: Left: Illustration of the Feature Selector in training mode. It uses four Transformer layers
and a Gumbel-Softmax head to generate a binary mask where zeros mark tokens for removal and
ones for retention. During training, the masked embeddings are replaced by a shared learnable em-
bedding. During inference, the masked embeddings are discarded, while the retained ones are used
for downstream tasks, such as image representations in Vision-Language models. Right: Illustra-
tion of Feature Reconstructor’s functionality. Its primary objective is to restore the tokens that were
replaced with a learned representation and then reconstruct the full image.

To resolve this issue, we modify the regularization term as follows.

Lpr → max(Lpr, p)−min(Lpr, q), (4)
where p and q specify the range of values within which the average proportion of selected tokens
should fluctuate.

In other words, whenever Lpr falls within the interval (q, p), the regularization penalty is effectively
disabled. Empirically, we observe that Lpr first decreases to p and then fluctuates around it for the
remainder of the training period, while the reconstruction loss continues to decrease.

4.4 TRAINING

As shown in Figure 2, our approach is similar to VQ-VAE (van den Oord et al., 2018), except that
we use a set of input features instead of a learned dictionary, and the latent representation may vary
in size.

We train Rfψ , Rimξ and Sθ following the framework introduced in 3.2. Specifically, we choose the l2
norm for the distance function dist and compute Lpr using the mask generated by Sθ.

Feature Selector. The feature selector Sθ processes the original feature tensor F and outputs a
subset of selected features F pr along with a binary mask M , referred to as the “Gumbel mask” as
illustrated in Figure 2 (right). Formally, this can be expressed as:

F pr, M = Sθ(F ), (5)

where the mask M specifies which spatial locations of the input tensor F are retained (marked as
ones) and which are discarded (marked as zeros). The output F pr, labeled as “Selected features” in
Figure 2 (left), is formed by replacing the discarded feature vectors with a shared learnable repre-
sentation (shown as blue hatched vectors).

Feature Reconstructor. The reconstructor is defined by:

F rec = Rfψ(F
pr) and Irec = Rimξ (F rec), (6)

with F rec denoting the “Reconstructed tensor” shown in Figure 2 and Irec denoting the image in
the same figure.

5
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Regularization Term. Regularization term is computed directly from the mask:

Lpr =

H,W∑
h=0,w=0

Mh,w

HW
. (7)

Overall Objective. Incorporating the modified regularization from 4.3, the overall optimization
problem can be defined as follows:

min
ψ,ξ,θ

(∥∥F rec − F
∥∥
2
+
∥∥Irec − I

∥∥
2

)
+ α1 · max

(
Lpr, p

)
− α2 · min

(
Lpr, q

)
. (8)

In our experiments p = 0.6, q = 0.1 and α1 = α2 = 0.1. All components are fully differentiable,
and we optimize them using gradient descent.

4.5 DATASET

For our training dataset, we sampled 115K images from the COCO dataset (Lin et al., 2015), 9k
images from DocVQA train set (Mathew et al., 2021c) and 9k images from ChartQA train set (Masry
et al., 2022b). Each image was pre-processed with a specific vision encoder for which the selector
was trained. The resulting feature representations were used as training data.

4.6 TRAINING HYPERPARAMETERS

During training, we set loss weights to p=0.6, q=0.1, and α1=α2=0.1. Optimization uses Adam
with a cosine schedule and 5% warmup. We use a batch size of 32 and train for 100 epochs in three
stages (60+20+20 epochs). Learning rates are 5×10−6 for InternVL-like models and 1×10−5 for
LLaVA-like models. These settings were fixed empirically and not exhaustively tuned.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our feature selector by integrating it with the vision encoders that serve as backbones
in several multimodal model families: LLaVA/LLaVA-NeXT, LLaVA-Video (Zhang et al., 2025)
(CLIP-based visual encoder (Radford et al., 2021)), and the InternVL (InternViT encoder (Chen
et al., 2024b)) series. The method is plug-and-play: once trained for a given vision encoder, the
selector can be attached to a vision — language model without any additional fine-tuning. Further-
more, a selector trained for a specific encoder can be reused across VLMs that employ that encoder,
even when the encoder has been further fine-tuned during VLM training.

We test models augmented with our selector under multiple pruning ratios and compare them against
the strongest recent pruning methods, including HiPrune (Liu et al., 2025), PACT (Dhouib et al.,
2025), PDrop (Xing et al., 2025), FastV (Chen et al., 2024a), and DivPrune (Alvar et al., 2025).
As a baseline, we also, evaluated random feature selection at matched ratios across all the tasks, to
estimate whether the evaluated tasks suffer from random pruning the multimodal context.

5.2 BENCHMARK

We evaluate on a diverse suite of multimodal benchmarks. For general and academic-domain VQA,
we use AI2D (Hiippala et al., 2020), MMMU (Yue et al., 2024), and ScienceQA (Lu et al., 2022).
For OCR-centric tasks with high-resolution images — where preserving reading-relevant tokens
is critical — we include DocVQA (Mathew et al., 2021b), ChartQA (Masry et al., 2022a), In-
foVQA (Mathew et al., 2021a), and TextVQA (Singh et al., 2019). To assess hallucination sen-
sitivity under pruned context, we additionally report results on VizWiz (Gurari et al., 2018) and
POPE (Li et al., 2023d). For the video evaluation, we used 5 benchmarks ActivityNet-QA (Yu
et al., 2019), SeedBench (Li et al., 2023a), NextQA (Xiao et al., 2021), EgoSchema (Mangalam
et al., 2023), and LongVideoBench (Wu et al., 2024).
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Table 1: Comparison of pruning approaches on Open-LLaVA-Next (Vicuna-7B). All methods are
training-free. Bold denotes the best result with a margin of ≥2 percentage points (pp) over the
runner-up; underline denotes results within < 2 pp of the best.

Model DocVQA ChartQA InfoVQA TextVQA SQA img VizWiz MMMU Avg
2880 Tokens (100%, ≈ 21 TFLOPs)

Original 70.5 64.1 33.1 67.3 70.4 61.8 38.1 100%
160 Tokens (5.6%, ≈ 1 TFLOP)

HiPrune 20.8 32.7 20.1 40.6 67.7 54.6 36.9 64.3%
Ours 32.0 27.4 20.5 54.4 68.0 54.8 36.0 69.4%

320 Tokens (11.1%, ≈ 2 TFLOPs)
DivPrune 39.7 37.9 22.1 59.6 67.4 58.7 38.1 76.9%
HiPrune 41.2 42.2 23.4 55.8 68.2 58.8 37.7 78.3%
Ours 46.6 42.2 24.1 61.2 68.2 57.1 35.0 80.8%

640 Tokens (22.2%, ≈ 4 TFLOPs)
DivPrune 50.7 46.6 23.7 61.7 68.5 59.5 37.1 83.6%
HiPrune 58.3 47.7 26.8 60.8 69.4 60.4 38.2 87.5%
Ours 61.9 57.8 28.1 65.7 69.0 59.4 37.0 92.4%

1152 Tokens (40%, ≈ 8 TFLOPs)
DivPrune 58.1 51.0 25.8 63.3 68.9 60.0 36.7 88.2%
HiPrune 65.6 51.6 28.7 62.3 69.4 61.1 37.3 91.7%
PDrop 64.4 58.6 32.2 65.7 69.4 61.6 38.1 95.5%
Ours 68.3 63.3 31.0 67.2 69.9 60.7 37.4 97.8%

1440 Tokens (50%, ≈ 10 TFLOPs)
DivPrune 62.4 52.6 27.0 64.4 68.9 59.8 37.1 90.4%
HiPrune 67.2 53.0 29.0 62.4 69.2 61.2 37.3 92.6%
Ours 69.6 64.2 32.3 67.2 70.5 60.7 37.1 99.1%

5.3 FLOPS CALCULATION

Following (Chen et al., 2024a; Xing et al., 2025), we count only FLOPs attributable to vision tokens,
including multi-head attention (MHA) and feed-forward (FFN). Let n be the number of vision tokens
(e.g., 2880 for LLaVA-Next with 1+4 crops), d the hidden size (e.g., 4096), m the FFN intermediate
size (e.g., 11008), and l the number of LLM layers (e.g., 32). The LLM contribution over a fraction
αn tokens is

FLOPsLLM =
(
4(αn)d2 + 2(αn)2d+ 2(αn)dm

)
l.

Our sampler adds a per-crop stage over nc tokens for each of C = n/nc crops. Using the same
MHA+FFN form, with ls sampler layers (we use ls = 4),

FLOPssampler =
n

nc

(
4ncd

2 + 2n2
cd+ 2ncdm

)
ls.

Thus, the reported total is FLOPstotal = FLOPsLLM + FLOPssampler.

5.4 EXPERIMENTAL RESULTS

The proposed sampler-based pruning method outperforms the current SOTA overall and on OCR-
centric tasks. Table 1 reports results on OPEN-LLAVA-NEXT (VICUNA-7B) (Chen & Xing, 2024).
Across moderate-high pruning ratios (11-50%), our sampler consistently surpasses prior methods
on DocVQA, ChartQA, and TextVQA; even at the most aggressive 5.6% setting, it still leads on
DocVQA and TextVQA. With 50% of tokens retained, it essentially matches the unpruned model
on OCR-based benchmarks.

Considering sampler overhead, the inference cost drops from ≈21 TFLOPs to ≈10 TFLOPs while
retaining 99.1% of the average performance.

7
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Table 2: Comparison of pruning approaches on LLaVA-1.6 (Mistral-7B).

Model DocVQA ChartQA InfoVQA SQA img MME MMMU AI2D Avg
2880 Tokens (100%)

Original 63.6 52.9 30.5 72.6 317.5 / 1504.4 35.2 67.4 100%
864 Tokens (30%)

PACT 54.9 44.5 28.5 72.9 312.1 / 1484.9 34.8 67.0 95.2%
Ours 59.8 50.8 28.4 73.4 327.1 / 1507.6 37.3 66.6 99.3%

1296 Tokens (45%)
PACT 62.5 51.7 30.0 73.2 307.1 / 1504.0 34.7 67.1 99.0%
Ours 62.8 53.1 29.6 73.1 321.8 / 1516.3 35.6 66.9 100%

Table 2 illustrates comparison of our method with the PACT model that was applied for LLaVA-
1.6 (Mistral-7B) model. At matched token budgets on LLaVA-1.6, our sampler outperforms PACT
across key tasks. At 30% tokens, it improves DocVQA, ChartQA, MMMU, MME, and SQA-img
and reaches 99.3% Avg (vs. 95.2% for PACT). At 45% tokens, it again leads on most benchmarks,
achieving 100% Avg (on par with the unpruned model) and even slightly exceeding the original on
several tasks.

5.4.1 VIDEO EXPERIMENTS

Table 3 reports video-benchmark results with several pruning methods on LLAVA-NEXT-VIDEO-
7B. Although our sampler is not trained specifically for video, it transfers well, delivering strong
zero-shot performance and trailing DIVPRUNE only slightly. We anticipate further improvements
with video-specific fine-tuning.

Table 3: Results on video benchmarks for LLaVA-Video-7B. All experiments use up to 8 frames per
video.

Model TFLOPs ActivityNet SeedBench NextQA EgoSch LongVideo
Bench

Original 7.8 2.49 / 49.7 43.6 27.2 40.3 43.5
FastV 1.1 1.95 / 33.9 33.0 22.5 29.1 –
DivPrune 1.1 2.45 / 48.5 41.07 26.1 40.0 42.4
Sampler (our, α =15%) 1.2 2.28 / 45.6 42.1 25.9 35.0 40.7
Sampler (our, α =10%) 0.8 2.23 / 44.7 40.8 25.5 34.3 40.1

5.5 ABLATION STUDY

Random-token pruning. As a control, we randomly mask a fixed fraction of vision tokens at
each compression rate and evaluate performance, comparing against our sampling-based selector.
We further demonstrate portability beyond LLaVA by training the sampler for INTERNVL3 with an
INTERNVIT encoder. Figure 3 summarizes INTERNVL3 results across compression rates.

Figure 3: Comparison of InternVL3 performance across several benchmarks with various compres-
sion rate.

Across all compression rates, our sampler markedly outperforms the random baseline, indicating
that these benchmarks are sensitive to vision — context pruning and that our method effectively

8
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removes irrelevant tokens from the visual input. Qualitative examples of the sampler are provided
in Appendix A (Figure 6).

Sampler architecture and training epochs. We ablate the sampler on InternVL, varying encoder
depth (1-4 layers) and training budget. Across the sweep, the 4-layer Transformer encoder consis-
tently performs best, and a 100-epoch budget is required to reach the strongest results. Figures 4
and 5 demonstrate INTERNVL3 performance as a function of sampler depth and training epochs,
respectively.

Figure 4: Sampler architecture ablation study for InternVL3 model.

Figure 5: Training epochs ablation study for InternVL3 model.

6 CONCLUSION

We introduced a sampler-based method for selecting informative features from visual encoders. The
sampler is implemented as a trainable VAE with a Gumbel–Softmax bottleneck integrated into a
ViT, and it reduces the number of output vision tokens while preserving the most salient ones. We
applied the method in a plug-and-play manner to modern VLMs (Open-LLaVA-Next with multiple
LLM backbones and InternVL). Experiments show that the sampler can reduce effective tokens and
inference FLOPs by up to 50% while retaining 99-100% of the original performance on average.
On challenging OCR-centric benchmarks, it also surpasses prior SOTA. The sampler transfers to the
video setting as well: despite minor drops, zero-shot results remain strong without video-specific
training.

However, we acknowledge certain limitations of the proposed method. For long videos, compres-
sion without text conditioning can underperform. In future work, we plan joint fine-tuning of the
selector and the language model, and a study of hybrid strategies that combine interpolation-style
compression with Gumbel-based selection to improve compatibility and robustness.

Overall, these results point to promising directions for extracting compact, informative visual rep-
resentations, enabling faster inference, lower memory footprint, and improved resilience to noisy
visual inputs.
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REPRODUCIBILITY STATEMENT

Section 4.4 describes the sampler’s training setup, covering datasets and hyperparameters. Repro-
ducibility code is provided in the supplementary materials. Please refer to the README file in the
supplementary materials to configure the environment and reproduce the sampler training.

ETHICS STATEMENT

This work introduces a method for reducing inference compute in multimodal models and does not
create new artifacts (e.g., datasets or benchmarks). All experiments use publicly available datasets
and open-source models widely adopted by the community.

In this work, LLM was used exclusively for editorial refinement. It did not affect the study design,
data, analysis, or outcomes.
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A APPENDIX

Figure 6 illustrates the effect of keeping only 20% of vision tokens. From left to right: original
image, tokens kept by random selection, and tokens kept by our sampler. Compared to random, the
sampler focuses on regions that contain the most informative content, which in turn improves the
model’s answer to the final question.
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Figure 6: Images from three benchmarks illustrating cases where the vision-language model gives
correct answers or makes errors. The first column shows the model’s responses using the full visual
context, the second column uses a randomly selected set of features, and the third column uses
the features selected by our selector. (1) DocVQA: to answer the question selecting the correct
features is crucial. (2) MMMU (math): to answer this question, both visual understanding and
logical reasoning are important, but the model fails to reason correctly. (3) MMstar: the image
details are less important, and the language model plays a dominant role.
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