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Abstract001

Large Language Models (LLMs) often struggle002
with dynamically changing knowledge and han-003
dling unknown static information. Retrieval-004
Augmented Generation (RAG) is employed to005
tackle these challenges and has a significant006
impact on improving LLM performance. In007
fact, we find that not all questions need to trig-008
ger RAG. By retrieving parts of knowledge un-009
known to the LLM and allowing the LLM to010
answer the rest, we can effectively reduce both011
time and computational costs. In our work, we012
propose a Knowledge Boundary Model (KBM)013
to express the known/unknown of a given ques-014
tion, and to determine whether a RAG needs015
to be triggered. Experiments conducted on016
11 English and Chinese datasets illustrate that017
the KBM effectively delineates the knowledge018
boundary, significantly decreasing the propor-019
tion of retrievals required for optimal end-to-020
end performance. Furthermore, we evaluate the021
effectiveness of KBM in three complex scenar-022
ios: dynamic knowledge, long-tail static knowl-023
edge, and multi-hop problems, as well as its024
functionality as an external LLM plug-in.025

1 Introduction026

As Large Language Models (LLMs) evolve, their027

real-world applications expand, yet they often028

struggle with dynamically changing and unknown029

static knowledge, leading to inaccuracies or halluci-030

nations (Rawte et al., 2023). Retrieval-Augmented031

Generation (RAG) effectively addresses challenges032

by retrieving relevant external information in real033

time, enhancing LLMs’ accuracy. However, it also034

incurs costs, such as increased retrieval requests035

and longer response times, leading to the crucial036

question: When is retrieval truly necessary?037

A natural criterion for determining the need for038

retrieval is the confidence level of the LLM. Specif-039

ically, the known knowledge of the model does not040

require retrieval, while uncertain parts can benefit041

from this process. As illustrated in Figure 1 (top),042
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Figure 1: Illustration of the impact of different RAG trig-
gering methods on LLM. Beneficial: RAG effectively
solves this question. Neutral: RAG has no effect on the
LLM. Harmful: RAG reduces the LLM’s effectiveness.

using RAG for all questions (All RAG) can result in 043

an overall impact that is neutral or even harmful, as 044

the increased retrieval calls may not justify the ben- 045

efits. In contrast, Figure 1 (bottom) demonstrates 046

that when focusing solely on the uncertain part 047

through RAG, the benefits are substantial, while re- 048

ducing the frequency of unnecessary retrieval calls. 049

The key to implementing this solution is how to 050

enable LLM express confidence. A simple and ef- 051

fective solution is to use prompts. Unfortunately, 052

over-/under-confidence will affect the expression 053

of confidence (Xiong et al., 2024). 054

Previous studies on whether RAG is required for 055

LLM can be divided mainly into two approaches. 056

The first focuses on the question itself, with meth- 057

ods like Self-RAG (Asai et al., 2023) instructing 058

models such as GPT-4 (Achiam et al., 2023) to as- 059

sess whether retrieving external documents (e.g., 060

Wikipedia) can produce better responses. Although 061

this approach can identify questions that require 062

real-time information, it remains model-agnostic 063

and struggles to determine whether an LLM has 064

mastered specific knowledge. The second approach 065

evaluates both questions and model responses to 066
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determine if an LLM can answer a question, gener-067

ating data by sampling multiple model responses068

and using manual labels for evaluation (Ren et al.,069

2024; Yin et al., 2023; Kadavath et al., 2022). How-070

ever, this method is labor intensive and relies heav-071

ily on manual labeling, which can create biases and072

lead to increased training costs. Additionally, the073

LLM’s "unknown" expression has not been inte-074

grated with RAG triggering to assess its impact on075

end-to-end performance and retrieval ratio.076

In this work, we propose the Knowledge Bound-077

ary Model (KBM) and two solutions for SFT based078

on accuracy and certainty in generating soft labels.079

The first method evaluates sampled QA accuracy080

and sets a threshold to classify questions as known081

or unknown. The second approach is based on cer-082

tainty, focusing on modeling the entropy values083

of multiple sampled responses to establish thresh-084

olds, distinguishing between known and unknown085

responses through consistency, without requiring a086

golden answer. By defining different accuracy and087

certainty thresholds, we can generate data with soft088

labels, which is then used to fine-tune the KBM to089

determine whether the LLM considers a question090

unknown, thus indicating if retrieval is necessary.091

We evaluate 11 English and Chinese QA092

datasets, demonstrating that KBM effectively mea-093

sures knowledge mastery in LLMs. On average in094

these datasets, the certainty-based approach also re-095

duces the number of retrievals by 13. 5% compared096

with ALL RAG, resulting in a slightly higher per-097

formance of 0.1%. Similarly, the accuracy-based098

approach reduces retrievals by 32.5% on average,099

with only a 0.39% performance drop. MFurther100

analysis confirms the effectiveness of KBM in open101

domains, including dynamic knowledge, long-tail102

static knowledge, and multi-hop scenarios.103

Our contributions are summarized as follows:104

• To our knowledge, KBM is the first study to re-105

duce the RAG trigger ratio while maintaining106

LLM performance, thereby enhancing RAG’s107

efficiency in QA tasks and reducing costs.108

• For the technique contribution, we propose109

two methods for generating soft labels based110

on accuracy and certainty, allowing LLMs to111

express "unknown" or "known".112

• KBM is validated on 11 datasets, demonstrat-113

ing comparable effectiveness with All RAG114

and a reduced retrieval ratio, and it performs115

well in three complex scenarios.116

2 Preliminaries: LLM Knowledge 117

Boundary and RAG Analysis 118

This section examines the impact of RAG on LLM 119

performance. We evaluate the knowledge bound- 120

aries of LLMs with different parameter sizes and 121

analyze RAG’s effects on QA tasks, categorizing 122

questions into three types based on its influence 123

on LLM responses. Lastly, we introduce sampling 124

methods based on LLM accuracy and certainty to 125

further simulate knowledge boundary. 126

2.1 How does RAG Affect the Accuracy of 127

LLM Response? 128

We evaluate how RAG affects the performance of 129

LLMs with different parameter sizes. Our results 130

show that while LLMs vary in their QA abilities 131

and knowledge limits, their use of retrieved infor- 132

mation is fairly consistent. We use three configu- 133

rations: LLM Only generates responses from the 134

LLM alone; ALL RAG enhances Naive RAG by 135

adding the top 10 blocks retrieved from Google 136

as context; and MASK RAG substitutes the cor- 137

rect answers in RAG with MASK, providing this 138

altered data as context for the LLM. 139

We focus on the Qwen1.5 models (4B, 7B, 14B, 140

32B) (Bai et al., 2023) alongside the Qwen2.0 72B 141

model (Yang et al., 2024), using evaluation datasets 142

for short question answering and reading compre- 143

hension tasks, including WebQA (Chang et al., 144

2022), SogouQA1, and SQuAD1.5-zh2. Our results 145

show that LLM performance improves with larger 146

parameter sizes across all three datasets, leading to 147

a gradual differentiation in their QA capabilities. 148

Notably, with Naive RAG, all models, especially 149

those with 14B-72B parameters, effectively utilize 150

contextual information. RAG has a more signifi- 151

cant impact on smaller LLMs, but the maximum 152

performance gain is similar across different model 153

sizes. For example, on the WebQA dataset, the 154

accuracy difference between the 7B and 72B mod- 155

els using RAG is just 3.05%, compared to 28.87% 156

without RAG. Interestingly, MASK RAG seems to 157

reduce the benefits of RAG, potentially harming 158

performance on simpler datasets, as noisy informa- 159

tion negatively affects smaller models more. For 160

detailed results, see Appendix §A Figure 9. 161

These findings suggest that different LLMs pos- 162

sess varying knowledge boundary in question an- 163

swering and demonstrate distinct retrieval strate- 164

1https://github.com/sherlcok314159/ChineseMRC-Data
2https://github.com/pluto-junzeng/ChineseSquad
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gies. Although all models exhibit strong capabil-165

ities in leveraging context, they show varying de-166

grees of resilience to noise interference.167

2.2 Three Impacts of RAG on LLM168

To accurately assess the impact of RAG on LLMs,169

we categorize its effects into three aspects:170

• Beneficial: RAG effectively solves this question.171

• Neutral: RAG has no effect on the LLM.172

• Harmful: RAG reduces the LLM’s effectiveness.173

To isolate the impact of other modules, we use a174

simplified RAG pipeline for analysis, retrieving the175

top 10 blocks from Google Open Search to input176

into the LLM. To improve robustness, we sample177

each question 30 times. Inspired by Kadavath et al.178

(2022), we generate I = 30 answer samples at179

temperature T = 1. For a given question Q, if the180

model samples 20 correct answers and 10 incorrect181

ones, we construct an average accuracy of knowl-182

edge for that question based on these samples, re-183

sulting in a single data point (Q,Mpred = 20
30). Un-184

like the approach in (Kadavath et al., 2022), which185

includes 20 copies of (Q, M=1) and 10 copies of186

(Q, M=0) our method accurately represents the187

model’s understanding and misconceptions while188

significantly reducing the size of the training and189

test datasets by a factor of I . Thus, we approximate190

the model’s soft labels for knowledge using hard191

labels derived from a diverse set of QA data points.192

However, this method becomes challenging in193

the absence of gold-standard answers. To address194

this issue, we simulate the effect based on the cer-195

tainty of the generated responses. Specifically,196

we compute the entropy distribution of words and197

phrases from the 30 generated answers to estab-198

lish the model’s level of certainty. Let k represent199

the number of distinct answer types, denoted as200

K1,K2, ...,Kk. The probability of each answer201

type occurring is represented as P1, P2, ..., Pk, sat-202

isfying the normalization condition:
∑k

i=1 Pi = 1.203

Using this probability distribution, we quantify the204

model’s certainty through entropy. First, we define205

entropy H as:206

H = −
k∑

i=1

Pi log2(Pi), (1)207

and the maximum possible entropy Hmax =208

log2(k). The model’s certainty C(Q) is calculated209
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Figure 2: Category distribution across various indica-
tors: (a) Accuracy and (b) Certainty intervals.

by normalizing the entropy: 210

C(Q) = 1− H

Hmax
, (2) 211

where H/Hmax ∈ [0, 1] is the normalized entropy. 212

We classify the effects of RAG based on the three 213

categories and two indicators as follows: an ef- 214

fect is deemed Beneficial if the indicator increases 215

after incorporating RAG compared to the LLM 216

Only scenario; Neutral if the indicator remains un- 217

changed and aligns with the value from the LLM 218

Only condition; and Harmful if the indicator de- 219

creases following the addition of RAG, falling be- 220

low the value observed in the LLM Only scenario. 221

Using these categories, we analyze the class distri- 222

bution of LLMs across accuracy intervals on the 223

WebQA dataset, as shown in Figure 2(a). The fig- 224

ure indicates that the [0-0.8) interval has the highest 225

proportion of Beneficial cases, while Neutral and 226

Harmful cases peak in the [0.8-1.0] range. This sug- 227

gests a cost-benefit relationship: higher accuracy 228

reflects greater confidence in answers, reducing 229

the advantages of RAG, especially in the [0.8-1.0] 230

range, where harmful cases also concentrate. High 231

certainty reflects high confidence, while low cer- 232
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C: Concatenated Chunk

RetrieverPrompt +
Question: In Greek mythology who is the messenger god? 
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Prompt +
Question: In Greek mythology who is the messenger god? 
Resp.: Jane Seymour | Jane Seymour | Jane Seymour |…
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Answer: 
The girl in the "21 Guns" music video 
by Green Day is Lisa Stelly. 

The video takes place with the band and the
album's two protagonists Christian (Josh
Boswell) and Gloria (Lisa Stelly) taking refuge
in a white room after robbing a bank…
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Figure 3: Illustration of the workflow for data generation, model training, and inference processes.

tainty indicates doubt. The certainty metric consid-233

ers factors such as chance and model uncertainty234

(Hu et al., 2023). We find a Pearson correlation235

coefficient of 0.64 between accuracy and certainty,236

as shown in Figure 2. Certainty also has a simi-237

lar category distribution to accuracy, indicating a238

positive correlation.239

In the high accuracy range (above 0.8), we first240

note that many neutral examples unnecessarily trig-241

ger RAG. Additionally, harmful examples can lead242

to a sharp accuracy drop, potentially from 1.0 to243

0.0, while beneficial examples typically increase244

accuracy from 0.8 to a maximum of 1.0. This leads245

us to propose a threshold to differentiate between246

known and unknown data. Data below this thresh-247

old is marked as unknown and triggers RAG, while248

data above it is considered known, allowing the249

LLM to respond independently.250

3 Can LLM Express Know/Unknown?251

In this section, we generate known and unknown252

soft labels based on accuracy and certainty for train-253

ing the KBM, and we introduce the baselines and254

datasets used for evaluation.255

3.1 Methods256

To construct training data for the KBM, we gener-257

ate soft labels using the sampling method detailed258

in Section §2.2. As shown in Figure 3, each query259

is assessed under two configurations: LLM Only260

and LLM + RAG, providing scores for accuracy261

and certainty. A threshold of τ = 0.9 is set to clas-262

sify data as known or unknown. The data is then263

formatted into QA pairs for fine-tuning the Qwen2-264

7B model. For additional setup details, refer to 265

Appendix §B. 266

During the inference phase of the KBM, the pro- 267

cess unfolds in three steps: At step 1, after the 268

user enters a query, the system packages this query 269

through a prompt and sends it to the KBM to as- 270

sess accuracy and certainty. At step 2, if the KBM 271

judges the query as known, it forwards the origi- 272

nal query directly to the answer generation model 273

(Qwen2-7B instruct) to generate a response. If the 274

query is judged as unknown, the process proceeds 275

to step 3. At step 3, the system performs an open- 276

domain retrieval using Google, based on the user’s 277

original query. The retrieved chunks of information 278

are then spliced together. The original query and 279

the connected chunks are combined using RAG 280

prompt and subsequently fed into the answer gen- 281

eration model to produce the final response. 282

3.2 Experiment Setting 283

Metrics: For the English test data, we use Ex- 284

act Match (EM) as the metric, while Accuracy is 285

applied to the other datasets, represented as A/E. 286

Additionally, we consider the retrieval ratio (Rat.) 287

as a crucial metric. 288

Baselines: We establish a baseline using the 289

following methods: (1) Prompt: we use prompts 290

from Qwen2-7B (Yang et al., 2024), Llama3-70B 291

(AI@Meta, 2024), Qwen2-72B (Yang et al., 2024), 292

and GPT-4o (OpenAI et al., 2024) to determine 293

whether the current query requires retrieval. Each 294

model is presented with the same retrieval query. 295

(2) Random: This method serves as a dynamic 296

benchmark. By analyzing the ratio of each baseline 297
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NQ TriQA OBQA MMLU SQD MLEC WebQA SogQA zh_SQD CMMLU CSQA Avg.

Naive (Qwen2-7B-Instruct based + Google)

LLM A/E 35.58 50.79 82.72 66.45 34.02 74.25 70.06 52.53 22.72 74.23 24.13 53.41
RAG A/E 61.63 84.60 81.48 70.80 89.83 68.40 92.54 83.01 83.66 77.05 77.80 79.16

Qwen2-7B-Instruct based + Google

Prompt
A/E 59.92 79.08 81.96 67.30 78.55 72.80 89.75 78.13 78.74 77.97 75.41 76.33
Rnd. 57.91 75.62 82.12 67.70 75.30 72.01 87.01 76.75 77.82 72.15 75.14 74.50
Rat. 86.0% 73.6% 27.8% 27.2% 75.6% 44.7% 77.5% 78.9% 90.3% 49.7% 94.1% 65.9%

Self-RAG (Llama-2 based + Google)

- 7B
A/E 31.07 69.82 74.80 47.93 62.92 29.48 52.96 39.83 29.47 33.94 18.03 44.57
Rnd. 35.79 69.49 76.40 49.38 62.27 30.72 54.02 39.83 30.33 34.63 19.17 45.64
Rat. 22.7% 55.9% 10.8% 29.9% 77.0% 10.4% 28.3% 28.5% 37.0% 3.4% 23.2% 29.7%

KBM (Qwen2-7B-Instruct based + Google)

- Acc.
A/E 60.09 81.39 82.64 70.00 89.13 73.28 90.84 81.59 82.66 78.32 76.57 78.77
Rnd. 51.20 74.42 81.92 68.59 83.14 72.66 81.19 74.17 81.29 77.73 74.87 74.65
Rat. 86.2% 70.3% 26.2% 70.0% 87.2% 30.2% 56.8% 75.2% 96.0% 50.0% 94.3% 67.5%

- Cer.
A/E 61.27 83.32 82.32 70.45 89.38 71.69 92.12 82.89 83.45 77.12 77.38 79.22
Rnd. 55.16 80.66 82.88 69.14 88.61 69.46 90.71 81.06 83.31 77.06 76.85 77.72
Rat. 97.5% 87.7% 57.8% 65.3% 97.3% 69.0% 89.7% 94.6% 99.3% 95.3% 97.8% 86.5%

Table 1: Comparison of performance and trigger ratio (Rat. %) metrics between KBM and baseline models. The
English dataset utilizes EM as the performance metric, while the Chinese dataset employs accuracy as the evaluation
metric. Each method is compared with the random RAG trigger score (Rnd.) at the same trigger ratio.

method that triggers RAG, a query from the test298

set is randomly selected to initiate the RAG evalu-299

ation. This approach effectively assesses whether300

the model has genuinely identified the unknown301

query or merely "guessed" it. Among related ap-302

proaches, we select Self-RAG (Llama-2 7B based)303

(Asai et al., 2023) as baselines for our analysis.304

We use Google as the retriever for all methods,305

selecting the first 10 snippets as contextual infor-306

mation. The experiment focuses on end-to-end307

effectiveness, the reduction in retrieval ratio, and308

the differences between the baseline methods and309

the random approach.310

Datasets: KBM’s training and test data encom-311

pass a variety of task types, including short answer312

questions, multiple choice questions, reading com-313

prehension, and multi-hop questions. We utilize314

TriviaQA (TriQA) (Joshi et al., 2017), WebQA315

(Chang et al., 2022), and a combination of MMLU316

(Hendrycks et al., 2021), MLEC (Li et al., 2021),317

and XieZhi (Gu et al., 2024) training sets to train318

the KBM model. We categorize the test sets into319

two groups: In-Domain, which includes TriviaQA320

(Joshi et al., 2017), WebQA (Chang et al., 2022),321

MLEC (Li et al., 2021), and MMLU (Hendrycks322

et al., 2021), and Out-Of-Domain, which com-323

prises NaturalQA(NQ) (Kwiatkowski et al., 2019),324

Open BookQA (OBQA) (Mihaylov et al., 2018),325

SQuAD (SQD) (Rajpurkar et al., 2018), FreshQA326

(Vu et al., 2023), SogouQA (SogQA) 3, the Chinese327

SQuAD (zh_SQD) 4, CMMLU (Li et al., 2024a),328

3https://github.com/sherlcok314159/ChineseMRC-Data
4https://github.com/pluto-junzeng/ChineseSquad
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and Chinese SimpleQA (CSQA) (He et al., 2024). 329

For details on the datasets, see the Appendix §B.2. 330

4 Experiments 331

In this section, we design extensive experiments to 332

verify the effectiveness of KBM. 333

4.1 End-to-End Evaluation 334

We evaluate the end-to-end performance of KBM 335

across 11 test sets, showing that both accuracy and 336

certainty reduce the RAG trigger ratio while en- 337

hancing the LLM’s ability to answer questions. The 338

results are presented in Table 1. On average, the 339

KBM accuracy-based method outperformed the 340

LLM Only method by 25.4%, narrowing the gap 341

with All RAG to 0.4%, while decreasing the RAG 342

triggering ratio by 32.5%, which is 4.1% higher 343

than the Random method, indicating a greater ben- 344
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Figure 5: Illustration of the KBM method’s effects:
the top shows a decrease in harmful counts, while the
bottom indicates an increase in beneficial counts.

eficial density. Similarly, the KBM certainty-based345

method improved performance by 25.8% compared346

to the LLM Only method, achieving a performance347

that is 0.1% higher than All RAG, and reduced348

the retrieval ratio by 13.5%. Compared with the349

Prompt and Self-RAG methods, KBM effectively350

reduces the RAG triggering proportion while main-351

taining high performance.352

Specifically, our analysis reveals that for short353

answer and QA test sets (e.g., NQ, TriviaQA, We-354

bQA, SogouQA, and CSQA), both methods outper-355

form the random baseline, with accuracy achiev-356

ing particularly notable results. In reading com-357

prehension tasks like SQA and zh_SQD, where358

background information is essential for accurate359

answers, KBM exhibits a higher trigger ratio. All360

methods demonstrate strong performance and a361

high trigger ratio on FreshQA, indicating that KBM362

and LLM effectively capture queries with tempo-363

ral features. However, in the context of multiple-364

choice questions found in CMMLU, MMLU, and365

OBQA, our method shows only marginal improve-366

ments over the random baseline. We guess that this367

limited enhancement arises from the challenges of368

sourcing relevant information for multiple-choice369

formats. Moreover, the diversity of training data370

formats, in relation to data type and task domain,371

is crucial for the effectiveness of KBM.372

Known/Unknown Expression Analysis. KBM373

enables the model to effectively distinguish be-374

tween known and unknown information, thereby375

optimizing performance and reducing costs. We376

fast-changing slow-changing never-changing
Ratio Acc. Ratio Acc. Ratio Acc.

Naive (Qwen2-7B-Instruct based + Google)

LLM 0% 29.7 0% 29.8 0% 40.2
RAG 100% 50.4 100% 60.2 100% 66.6
Prompt 93.8% 51.5 86.8% 57.8 81.8% 64.1

Self-RAG(7B) 56.2% 37.4 56.3% 49.4 55.1% 56.0
KBM-Acc. 94.6% 51.6 92.3% 59.0 75.9% 62.7
KBM-Cer. 98.5% 52.0 95.6% 60.2 89.4% 64.6

Table 2: Results of triggering RAG with various levels
of dynamic knowledge.

analyze the mean scores across all test sets cat- 377

egorized as known or unknown, as illustrated in 378

Figure 4. The results show that the mean answer 379

score of the LLM is higher when a question is clas- 380

sified as known, while it decreases for unknown 381

question. This aligns with our expectations. In 382

contrast, the prompt-based method can differenti- 383

ate between known and unknown information, its 384

effectiveness is comparatively lower. For improve- 385

ments in accuracy and certainty at finer intervals, 386

see the Appendix §A.1. 387

Impact Analysis of KBM on RAG. In Section 388

§2 Figure 2, we discuss the three impacts of RAG 389

on LLM. To investigate the changes in the number 390

of harmful and beneficial questions, we employ 391

KBM instead of RAG and find that KBM reduces 392

the number of harmful questions while increas- 393

ing the number of beneficial ones. Specifically, 394

as shown in Figures 5(a) and 5(b), using WebQA 395

as an example, we find that compared with RAG, 396

the KBM-based approach decreases the number of 397

harmful questions across all five intervals. This re- 398

duction is particularly evident in the high accuracy 399

interval, indicating that we mitigate the harmful 400

impact associated with RAG in areas close to what 401

is known. Similarly, as illustrated in Figures 5(c) 402

and 5(d), KBM increases the number of beneficial 403

questions in each interval, showing that it enhances 404

system performance by effectively triggering RAG. 405

4.2 Analysis of Complex Scenarios 406

Dynamic Knowledge. We demonstrate that KBM 407

effectively identifies questions with answers that 408

change over time. Specifically, we classify the tem- 409

poral changes in answers found in the FreshQA 410

dataset into three distinct categories: fast-changing, 411

slow-changing, and never-changing, based on the 412

frequency of these changes. In open domains, vari- 413

ations in answers often indicate the need for knowl- 414

edge updates, necessitating the integration of exter- 415

nal information into the LLM. As shown in Table 2, 416
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en-FreshQA(≥2hop) HotpotQA
Ratio Acc. Ratio Acc.

LLM 0% 26.1 100% 30.5
RAG 100% 48.7 100% 51.7
Prompt 91.3% 48.3 93.7% 51.2
Self-RAG(7B) 64.3% 47.5 65.0% 38.6
KBM-Acc. 96.5% 48.9 91.2% 50.9
KBM-Cer. 99.1% 48.7 94.3% 51.4

Table 3: Results of multi-hop triggering RAG.

the end-to-end performance without RAG for both417

fast-changing and slow-changing categories is sub-418

optimal, highlighting a reliance on external knowl-419

edge. The high RAG trigger rates of KBM for420

these categories suggest that it effectively captures421

evolving answers. Conversely, the lower retrieval422

rate for the never-changing category implies that423

some knowledge is effectively embedded within424

the LLM. This finding underscores KBM’s sensi-425

tivity in identifying questions with temporally cor-426

related answers and highlights its role in enhancing427

dynamic knowledge adaptation.428

Multi-Hop. A crucial aspect of our analysis is429

the ability of KBM to detect complex queries that430

necessitate multi-hop knowledge. Multi-hop ques-431

tions comprise intricate knowledge components, re-432

quiring adjustments to the LLM. In these scenarios,433

KBM identifies the complexity of the queries and434

effectively employs RAG. We tested queries involv-435

ing two or more hops from the FreshQA(≥2-hop)436

and HotpotQA test sets, with results presented in437

Table 6. KBM demonstrates higher retrieval rates438

for multi-hop questions, indicating that it reveals439

more unknowns when addressing these complexi-440

ties. As a result, the trigger ratio is higher than the441

average ratio for the task. While the overall end-to-442

end improvement is modest, this limitation stems443

from the need for further optimization of the RAG444

pipeline. We employ KBM to assess its ability to445

detect complex problems and trigger RAG, rather446

than to break them down and resolve them.447

Long-tail Static Knowledge. Long-tail knowl-448

edge has consistently posed challenges for the449

learning process of LLMs (Kandpal et al., 2023).450

We investigate the capacity of KBM to capture451

low-frequency long-tail knowledge across various452

question sets, confirming its effectiveness across453

all frequency ranges. Specifically, we combine test454

data from WebQA, SogQA, and zh_SQD. Utilizing455

the gold answers from these datasets, we conduct456

vector retrieval within our Chinese database to dif-457
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Figure 6: Comparison of performance changes under
different knowledge frequencies.

Gpt-4o Qwen2-72B Llama3-70B
WebQA NQ WebQA NQ WebQA NQ

LLM A/E 64.3 55.6 83.7 42.7 48.7 47.2
RAG A/E 90.0 60.1 91.9 59.4 90.9 60.2

Prompt
A/E 69.5 55.7 87.9 54.7 59.7 59.2
Rnd. 60.8 56.6 85.6 52.6 55.3 58.6
Rat. 14% 18% 22% 51% 16% 47%

Self-RAG
(7B)

A/E 72.6 56.7 86.5 45.7 60.9 49.6
Rnd. 71.6 57.1 86.0 42.7 48.7 47.2
Rat. 28% 23% 28% 23% 28% 23%

KBM-Acc.
A/E 85.7 60.6 91.4 58.5 77.9 59.6
Rnd. 78.5 60.4 88.2 56.5 72.6 58.6
Rat. 57% 86% 57% 86% 57% 86%

KBM-Cer.
A/E 89.5 60.7 91.8 59.3 88.2 60.2
Rnd. 87.8 60.5 91.3 58.9 86.7 59.7
Rat. 90% 98% 90% 98% 90% 98%

Table 4: End-to-end result with KBM as a plug-in for
various LLMs’ retrieval judgment modules.

ferentiate knowledge based on its frequency. As 458

illustrated in Figure 6, the LLM Only approach 459

demonstrates reduced accuracy for low-frequency 460

knowledge answers while performing better for 461

high-frequency knowledge. However, integrating 462

KBM with a prompt-based retrieval mechanism 463

significantly enhances the model’s performance for 464

long-tail low-frequency knowledge. Notably, the 465

certainty-based method yields the most substan- 466

tial improvement, followed by the accuracy-based 467

approach. These findings indicate that KBM effec- 468

tively detects low-frequency long-tail knowledge 469

and boosts overall performance by triggering RAG. 470

4.3 Use as a Plug-in 471

To assess the effectiveness of the KBM model in 472

triggering RAG, we apply it as a plug-in to GPT-4o, 473

Llama3-70B, and Qwen2-72B. We evaluate these 474

models using the WebQA and NQ test sets. The 475

results are summarized in Table 4. Our findings 476

indicate that KBM enhances the performance of 477
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these LLMs, although it does not achieve the com-478

prehensive improvements provided by ALL RAG.479

This is consistent with our previous analysis show-480

ing that each LLM has a unique knowledge bound-481

ary, complicating the representation of knowledge482

boundary across all LLMs with a single model. The483

varying knowledge boundary of LLMs significantly484

influence the enhancement effects observed with485

knowledge boundary models (KBM). For exam-486

ple, the KBM-certainty judgment method shows487

that Qwen2-72B improves its performance from488

83.7% to 91.8%, resulting in an increase of 8.1%,489

while Llama3-70B experiences a much larger gain,490

rising from 48.7% to 88.2%, equating to a 39.5%491

improvement. This illustrates that the initial knowl-492

edge capacity and boundary of an LLM can lead to493

divergent levels of enhancement, when interfacing494

with KBMs.495

Additionally, RAG effectively enhances the re-496

sponse quality of LLMs, leading to a relatively497

stable upper limit for improvements across mod-498

els. However, the performance gains differ due to499

the varying distributions of known and unknown500

knowledge in KBMs versus general models. For501

instance, although Llama3-70B demonstrates a no-502

table retrieval rate of 90%, its upper limit is lower503

than that of Qwen2-72B, which struggles to reach504

the ALL RAG score despite the same retrieval per-505

formance in the WebQA dataset. These trends are506

echoed in English QA tests, where significant per-507

formance improvements are observed when the508

English proficiency of the KBM ontology model509

inferior to that of the generative LLM. This sug-510

gests that aligning the knowledge boundary with511

the capabilities of the LLM is essential for optimiz-512

ing performance.513

5 Related Work514

Large Language Model Knowledge Exploration.515

The exploration of knowledge boundary in LLMs516

attracts significant attention. Kadavath et al. (2022)517

examines the self-evaluation capabilities of LLMs,518

showing that larger models enhance their calibra-519

tion by initially proposing answers and then eval-520

uating their validity. Ren et al. (2024) studies521

LLMs’ perception of factual knowledge boundary522

and finds that they often display blind confidence523

in their abilities. Yin et al. (2023) focuses on self-524

awareness, demonstrating that while LLMs can525

identify some unanswered questions, substantial526

discrepancies still exist, affecting their uncertainty527

detection. Chen et al. (2024) introduces COKE, 528

an unsupervised method for teaching models to 529

articulate their knowledge limits through internal 530

signals, yielding improved outcomes across various 531

datasets. Kang et al. (2024) points out that LLMs 532

often default to examples in training data when 533

facing unfamiliar queries. Li et al. (2024b) ex- 534

plores hallucinations related to insufficient prompt 535

context, showing that models frequently fail to rec- 536

ognize inadequate information. 537

Retrieval-Augmented Generation. RAG en- 538

hances LLMs by integrating retrieved text passages, 539

significantly improving performance in knowledge- 540

intensive tasks. A key focus is optimizing the tim- 541

ing and strategy of retrieval. Asai et al. (2023) 542

introduce SELF-RAG, a method that trains LLMs 543

to retrieve information, generate content, and eval- 544

uate their outputs using reflection tokens. This 545

method enables the customization of model be- 546

havior, demonstrating significant performance im- 547

provements over standard RAG approaches. Jeong 548

et al. (2024) proposes Adaptive-RAG, which ad- 549

justs query handling based on complexity. Wu 550

et al. (2024) explores how LLMs process erro- 551

neous retrieved content. By creating a dataset to 552

assess model responses to incorrect information, 553

the study reveals insights into how models correct 554

their outputs or may perpetuate errors. Cuconasu 555

et al. (2024) conducts a comprehensive study on 556

the retriever’s function in RAG. 557

6 Conclusion 558

In this paper, we propose KBM to address the 559

limitations of LLMs in managing dynamic knowl- 560

edge and unknown static information. KBM judges 561

whether to trigger RAG by indicating the known 562

and unknown of a question, preserving RAG’s ad- 563

vantages while reducing computational costs. Val- 564

idated on 11 datasets, KBM matches the perfor- 565

mance of All RAG while reducing the retrieval 566

ratio, enhancing efficiency in QA tasks without 567

compromising other instruction fine-tuning perfor- 568

mance. We also confirm KBM’s robustness in 569

complex scenarios, such as dynamic and long-tail 570

knowledge and multi-hop problems, highlighting 571

its effectiveness as an external LLM plug-in. Our 572

contributions include methods for generating soft 573

labels based on accuracy and certainty, enabling 574

LLMs to better express their knowledge status. 575
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Limitations576

Our work is the first attempt to explore how to577

reduce the proportion of retrievals that trigger RAG578

while maintaining high performance. Despite the579

reduction in the proportion of triggers, our study580

has some limitations that may guide future efforts.581

First, we propose a method based on accuracy582

and certainty sampling to generate soft labels for583

training KBM, demonstrating that LLMs learn to584

express unknowns in different tasks without requir-585

ing a large amount of data. However, in real-world586

scenarios, it is essential to include more diverse QA587

format data for better generalization, such as rea-588

soning and content generation. Additionally, con-589

verting data from various question-answer formats590

into the format of QA pairs enhances the perfor-591

mance of KBM.592

Secondly, while we enable LLMs to express un-593

knowns and trigger RAG, there remains a relatively594

low probability that an unknown question posed by595

LLM can be resolved by RAG, particularly when596

considering post-retrieval operations such as chang-597

ing the retriever, sorting, and denoising.598
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Note : LLM Response to Unknown Question

There seems to be a misunderstanding as there is no town named "Shitlingthorpe" in any English county.

In music, an axe is a slang term for which instrument.

According to a popular Christmas song, who was a jolly happy soul?

[Unknown] 「RAG」Shitlingthorpe is located in the English county of Yorkshire.

[Known]「LLM Only」In music, the term "axe" is a slang word that refers to a guitar. 

In which English county is there a town called Shitlingthorpe

[Unknown] 「RAG」According to the popular Christmas song "Frosty the Snowman," Frosty 
was the jolly happy soul.

Note : LLM Only's reply contains hallucinations

The answer is Santa Claus. The popular Christmas song "Santa Claus Is Coming to Town" mentions that Santa Claus 
is a "jolly old soul."

中国的副省级市有哪些

[Known]「LLM Only」中国目前有15个副省级市： 哈尔滨、长春、沈阳、济南、青岛、南京、宁波、杭州、
广州、深圳、武汉、成都、西安、大连、厦门。

Note : LLM Only's reply contains hallucinations

下面是一首以太行山为主题的古诗，供您欣赏。古诗：《登太行》【唐】王维
单车欲问边，属国过居延。征蓬出汉塞，归雁入胡天。大漠孤烟直，长河落日圆。萧关逢候骑，都护在燕然。

[Unknown] 「RAG」《苦寒行》- 曹操 北上太行山，艰哉何巍巍！羊肠坂诘屈，车轮为之摧。树木何萧瑟！北
风声正悲。…《行路难·其一》 - 李白 欲渡黄河冰塞川，将登太行雪满山。…

关于太行山的诗

(1)

(2)

(3)

(4)

(5)

Figure 7: Case study of the KBM and effects of combining KBM with SFT data in a QA scenario.

A Additional Experimental Analysis767

A.1 Analysis of KBM in Sub-intervals768

We divided the accuracy interval into steps of 0.2769

on the Chinese WebQA test set to investigate the770

improvements of KBM compared to RAG. As il-771

lustrated in Figure 8, our findings indicate that the772

KBM method, based on Accuracy and Certainty,773

demonstrates significant enhancements across sev-774

eral intervals, particularly in the lower accuracy775

ranges. For instance, when the LLM-only accu-776

racy is at 0.0, KBM-Certainty shows an increase777

of 79.4%, while KBM-Accuracy exhibits a rise778

of 74.2%. Notably, when compared to All RAG,779

KBM achieves performance levels that are com-780

parable to RAG in multiple intervals, especially781

within the Certainty-based approach.782

A.2 Case Study783

As illustrated in Figure 7, we showcase how KBM784

functions within a QA context. For questions (1)785

and (4), if KBM determines that the answer is786

Known, the LLM can provide the correct response787

directly, eliminating the need to search for exter-788

nal resources. In the case of question (2), which789
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Figure 8: Illustration of the relative improvement of
KBM for different accuracy ranges of LLM Only.

the LLM cannot answer or chooses not to address, 790

KBM can preemptively classify it as unknown. 791

This classification enables subsequent actions to 792

penalize the search tool, prompting it to retrieve rel- 793

evant textual materials that can then be provided to 794

the LLM as context to aid in formulating an answer. 795

For questions (3) and (5), direct use of the LLM to 796

respond may lead to hallucinations, resulting in the 797

output of incorrect information. In these instances, 798

KBM can classify the question as unknown and 799

activate RAG to produce a more reliable answer. 800
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Figure 9: Illustration of the impact of RAG on LLM
performance.

B Implementation Details801

B.1 Parameter Settings802

We employ four Nvidia A100 GPUs, each with803

80GB of memory, to train our KBM models. To804

maintain high end-to-end performance, we set the805

threshold for both Accuracy and Certainty at 0.9.806

Each model undergoes training for three epochs,807

utilizing a batch size of four. The peak learning808

rate is set to 1e-5, with a warmup ratio of 2% and809

cosine decay for the learning rate. To accommo-810

date memory limitations, we restrict the maximum811

token length to 1580 for the 7B model and 1524 for812

the 13B model. For multi-GPU distributed training,813

we utilize Deepspeed stage 2 (Rajbhandari et al.,814

2020) while enabling Bfloat16 precision. Inference815

on the trained models is conducted using a single816

Nvidia Tesla V100 GPU with 32GB of memory.817

B.2 Datasets818

English Datasets. NaturalQA (Kwiatkowski et al.,819

2019): This QA dataset, curated by Google, con-820

sists of real-world questions derived from natural821

retrieval queries. TriviaQA (Joshi et al., 2017):822

This dataset is based on encyclopedic content and823

features complex questions and answers, primarily824

sourced from competitions and quizzes. MMLU825

(Hendrycks et al., 2021): This dataset comprises826

multiple-choice questions across various fields, as-827

sessing the model’s knowledge mastery in aca-828

demic and professional domains. OpenBookQA829

(Mihaylov et al., 2018): Focusing on scientific830

inquiries, this dataset requires reasoning rooted831

in principles and common sense. en-SQuAD-832

en2.0 (Rajpurkar et al., 2018): This dataset fea-833

tures question-answer pairs and evaluates read-834

ing comprehension skills. FreshQA-en (Vu et al.,835

2023): This dataset presents various question and836

answer types, offering a comprehensive assess-837

ment of QA capabilities. HotpotQA (Yang et al.,838

2018): This dataset consists of 113,000 Wikipedia 839

based QA pairs that necessitate complex reasoning 840

across multiple supporting documents and include 841

sentence-level supporting facts. 842

Chinese Datasets. For the Chinese dataset, we 843

utilize the following resources: WebQA (Chang 844

et al., 2022): This open-domain QA dataset is 845

collected via web crawlers, covering a wide ar- 846

ray of topics and evaluating the performance of 847

QA systems. SogouQA 5: Provided by Sogou, 848

this dataset features user-generated questions and 849

system-generated answers, assessing accuracy and 850

robustness. MLEC (Li et al., 2021): This dataset 851

is designed to test the comprehension capabilities 852

of models in various contexts. Xiezhi (Gu et al., 853

2024): A set of 249,587 Chinese/English ques- 854

tions covering 516 subjects for evaluating LLMs. 855

SQuAD-zh 6: The Chinese version of the English 856

SQuAD (Rajpurkar et al., 2018) dataset serves to 857

train and evaluate machine reading comprehension 858

and QA systems. Chinese SimpleQA(CSQA) (He 859

et al., 2024): A benchmark for evaluating the factu- 860

ality of LLMs in short Chinese QA across diverse 861

topics. CMMLU (Li et al., 2024a):This compre- 862

hensive benchmark assesses the knowledge and 863

reasoning capabilities of language models across 864

67 topics, from basic to advanced. 865

5https://github.com/sherlcok314159/ChineseMRC-Data
6https://github.com/pluto-junzeng/ChineseSquad
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