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ABSTRACT

Recommender (RS) and Advertising/Marketing Systems (AS) play the key roles
in E-commerce companies like Amazon and Alibaba. RS needs to generate thou-
sands of item candidates for each user (u2i), while AS needs to identify thousands
or even millions of high-potential users for given items so that the merchant can
advertise these items efficiently with limited budget (i2u). This paper proposes
an elegant bidirectional candidates generation framework that can serve both pur-
poses all together. Specifically, our framework finds its practical applications on
generating millions of users for a large number of items, and the marketing sce-
narios of small and medium enterprises (SMEs) with cloud-service. Besides, our
framework is also superior in these aspects: i). We theoretically show that our
modeling objective is equivalent to the modeling objectives of the SOTA algo-
rithms if measured by the metrics of u2i and i2u. ii). Our framework can easily
incorporate many DNN-architectures, and achieve SOTA results with the same
architecture. iii). We empirically show that our framework can diversify the gen-
erated candidates, and ensure fast convergence.

1 INTRODUCTION

In the Internet era, E-commerce companies usually act as a platform to connect both users and
merchants. They can collect huge amount of data of users’ behavior on merchants’ items, and
utilize the data to serve them better, for example, to build better search/recommender/advertising
systems.

When users browse the E-commerce websites/apps, they usually want to buy some desired items,
or find something interesting, and that’s what the search engine and recommender system (RS) are
built for. Besides, the merchant usually wants to mine the potential users of its items, and then starts
a campaign to prompt those users to buy the items. The advertising system has the functionality to
help the merchant, and we may call it the potential users mining system (PUMS).

In an industrial large-scale RS, there are usually two stages, the candidates generation (CG) stage
and the ranking stage (Covington et al., 2016). CG plays a very import role as it sets the upper bound
of the recommender. A single CG method usually lacks diversity, so the industrial CG system usually
consists of different subsystems to generate candidate items, for example, i). hot items, ii). items
similar to users (Covington et al., 2016; Li et al., 2019), iii). items similar to clicked items (Linden
et al., 2003), iv). items clicked by similar users (Wang et al., 2006).

The PUMS has been studied and applied in marketing community for many years (Bult & Wansbeek,
1995; Kim et al., 2005), and recently it is also introduced to social network to attract potential cus-
tomers of companies (Pennacchiotti & Popescu, 2011; Pang et al., 2013). Similarly in E-commerce
companies, it can be used to discover potential customers for merchants, brands and etc. Although
it is widely used, people usually treat it as a simple binary classification problem, i.e., to predict
whether a given user is the potential user or not. Models like LR, SVM, XGBoost and etc. (Hos-
mer Jr et al., 2013; Chang & Lin, 2011; Chen & Guestrin, 2016) are usually employed.
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In this paper, we unify the two systems in our TotalRecall (TR) framework, and apply it in both
large-scale PUMS and marketing scenarios of SMEs with the cloud-service. Our main contributions
are listed below:

• Bidirectional Candidates Generation: TR can be trained once and then used to gener-
ate candidate items (u2i) and users (i2u) all together without any additional operations.
Theoretically we show that it is due to the modeling of joint probability of u and i.

• Achieving SOTA results in both RS and PUMS: We compare to two different algorithms,
i.e., Matrix Factorization (MF) with Bernoulli distribution and sequential modeling and
MF with Multinomial distribution, and achieve comparable or better results than previous
SOTA.

• Equivalence of the algorithms based on Bernoulli and Multinomial distributions: To
the best of our knowledge, we are the first to show that modeling the user-item interaction
with Bernoulli and Multinomial distributions are equivalent.

• Fast Convergence, and Diversified Candidates: TR converges much faster compared to
MF models, up to 16× times. Our experiments show that TR can increase the diversity of
the generated candidates.

2 RELATED WORK

2.1 RECOMMENDER SYSTEM (RS)

RS has been studied for many years, and in the early years, Collaborative Filtering (CF) and its vari-
ants (Su & Khoshgoftaar, 2009) are widely adopted. Later its descendant MF (Funk) is proposed
to solve the problem more elegantly with higher accuracy, and Probabilistic Matrix Factorization
(PMF) (Mnih & Salakhutdinov, 2008) builds a solid theoretic foundation for MF based on proba-
bility theory.

Although MF performs very well in many datasets (Rendle et al., 2020), it is usually not adopted in
industry. The modern industrial RS can involve up to billions of users and hundreds of millions of
items, and consist of multiple stages, e.g., CG and ranking stages (Covington et al., 2016).

Various deep neural networks are adopted to tackle the complicated system, for example, in the CG
stage, the problem is formulated as the multi-class classification, and users’ and items’ representa-
tions are detached with the two-tower architecture to balance the efficiency and accuracy in online
serving (Covington et al., 2016; Li et al., 2019; Cen et al., 2020).

In the ranking stage, the problem is formulated as the binary classification, and various models
has been developed: wide & deep model (Cheng et al., 2016) captures explicit and implicit feature
crossing, Deep Interest Network (Zhou et al., 2018) and Deep User Perception Network (Ni et al.,
2018) utilize attention mechanism (Bahdanau et al. (2014)) to capture users’ short-term interests.

2.2 POTENTIAL USERS MINING SYSTEM (PUMS)

PUMS mines the potential users for given items. The ‘item’ could be anything that users can interact
with, for example, an insurance product (Kim & Street, 2004), a company/business (Pennacchiotti
& Popescu, 2011; Pang et al., 2013; Lo et al., 2016), a specific information (e.g., tweet) in social
medias (Tang et al., 2015; Gui et al., 2019) and even another user (Guy, 2018). These problems
are usually treated as binary classification and solved with tools like SVM, LR and etc. for each
individual item independently (Hosmer Jr et al., 2013; Chang & Lin, 2011; Chen & Guestrin, 2016).

In the E-commerce company like Amazon, the ‘item’ could be a product, a brand, a product category,
a merchant and etc, and the number of the ‘items’ range from thousands to hundreds of millions. It
will be impractical to model each item individually, so we usually model the items all together using
binary classification similar to Rendle et al. (2020), which will be stated in detail later in Sec. 5.
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2.3 SAMPLED-SOFTMAX AND INFONCE LOSS

In the CG stage of RS, sampled-softmax (SSM) loss (Jean et al., 2015) is widely used with differ-
ent background distributions, such as log-uniform distribution (Powers, 1998), empirical marginal
distribution (Yi et al., 2019) and mixed distribution (Yang et al., 2020).

In contrastive learning, InfoNCE loss is proposed in Oord et al. (2018) to learn representations
through self-supervision. Later it is widely adopted in CV (Chen et al. (2020)) and NLP (Gao et al.
(2021)) and performs very well.

InfoNCE and SSM losses are both trying to solve multi-class classification of very large vocabulary.
They both use negative sampling and can be written in the same analytical form:

l =
1

|D|
∑

(x,y)∈D

− log
exp(fϑ(x, y)− log pn(y|x))

exp(fϑ(x, y)− log pn(y|x)) +
∑

y′∈Yx
exp(fϑ(x, y′)− log pn(y′|x))

,

(1)
where (x, y) ∈ D is the training data, and usually x is the input features and y is the class, fϑ(x, y)
is the output of the neural network parametrized by ϑ, and Yx contains hundreds or thousands of
negative samples from background distribution pn(y|x). The main differences are that the pn(y|x)
in SSM can be arbitrarily chosen, while in InfoNCE it is the empirical marginal distribution p̂data(y).

Recently, InfoNCE loss is exploited in RS to optimize p(y|x)
p(y) instead of p(y|x) for the debiasing

purpose, and it can be easily implemented with in-batch negative sampling and features of y can be
fully utilized (Zhou et al., 2021).

3 METHOD

3.1 PROBLEM DEFINITION

In E-commerce companies, when a user u clicked an item i at time t, a record (u, i, t) was logged
as the implicit feedback.

Given the raw logs {(u, i, t)}, there are usually two ways to process the data: one is to directly create
a user-item interaction matrix Sui with the value su,i = 1 if the (u, i) pair appears in the log (Su
& Khoshgoftaar (2009)); the other is to formulate the problem as next-item prediction, i.e., from
the raw log we create a dataset D = {(xu,t, yu,t) : t ∈ {1, 2, ..., Tu}|u ∈ {1, 2, ..., N}}, where
xu,t = {yu,1:(t−1)} represents u’s clicks prior to t-th click yu,t and Tu is the number of clicks of
u (Covington et al. (2016)). We define the click sequence xu,t as the pseudo-user, so we can create a
pseudo-user-item interaction matrix from D, and all possible click sequences form the pseudo-user
set.

Therefore, they both deal with the 2D interaction matrix Sui, irrespective of whether the u is a real
user or pseudo-user or not. In the remaining of the paper, we will not distinguish between user and
pseudo-user, and only focus on solving the Sui.

Sui consists of all users as the row and all items as the column, and its entries are either 1 or
unknown. Let’s assume all users form the set U = {u1, u2, ..., uM}, and all items form the set
I = {i1, i2, ..., iK}. Given a user u ∈ U, we will generate candidate items from the item pool I (RS,
u2i), while given an item i ∈ I, we shall find out the potential users out of all users U (PUMS, i2u).

The candidates generation of RS and PUMS are of the opposite direction, and traditionally they are
solved separately. But essentially they are both trying to estimate some kind of probabilities of the
unknown entries in Sui, so we propose to model them jointly.

3.2 RECOMMENDER SYSTEM

In RS, there are usually two types of modeling objectives when dealing with Sui, and we briefly
introduce them in the following sections (See App. A.1 for more details).
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3.2.1 GAUSSIAN AND BERNOULLI DISTRIBUTION

The u-i interaction score su,i of Sui is treated as the random variable, and assumed to be
i.i.d. following a certain distribution, for example, Gaussian (Mnih & Salakhutdinov (2008)) or
Bernoulli (Johnson (2014); He et al. (2017); Rendle et al. (2020)) distributions.

3.2.2 MULTINOMIAL DISTRIBUTION

Here the modeling objective is the random variable su, defined as the interacting item of u. For
example, given the total number of interactions Nu =

∑
i∈I su,i of u, su is assumed to be sampled

from a multinomial distribution Mult(Nu,pu), where pu is a K-dimensional vector whose elements
are the probability and sum to 1 (Liang et al., 2018). Although not explicitly stated in many papers
(Covington et al., 2016; Yi et al., 2019; Li et al., 2019; Cen et al., 2020), the multinomial distribution
is actually assumed.

The modeling objectives in Sec. 3.2.1 and 3.2.2 are quite different, as the former is su,i and the
latter is su. In MF, we usually model su,i, while in the sequential modeling of the CG stage in
industry, we model su. Later in Sec. 3.5, we will show that modeling su and su,i can be theoretically
equivalent, and it is verified by the experiments in Sec. 4.1 and 5. However, modeling su can boost
the converging speed a lot.

3.3 POTENTIAL USERS MINING SYSTEM

The PUMS seems to be the twin system of RS, and similarly we could also define two modeling
objectives su,i and si, where si denotes the user who interacts with the item i. su,i and si are
assumed to follow Bernoulli and Multinomial distributions respectively. In Sec. 5 we will compare
the two methods.

3.4 TOTALRECALL: UNIFICATION OF RS AND PUMS

Motivated by Sec. 3.2 and 3.3, we propose to model the two systems jointly. Specifically, the opti-
mization objectives su and si in Sec. 3.2.2 and 3.3 are formulated in one framework and optimized
together. Later we show that by properly choosing the model architecture and loss function, we are
treating u and i equally and modeling the joint probability.

𝒖 ∈ ℝ! 𝒊 ∈ ℝ!

⋅
𝜙! 𝒖, 𝒊 =

1
𝜏

𝒖|𝒊
𝒖 " 𝒊 "

exp 𝜙! 𝒖, 𝒊 ∝ 𝑝 𝑢, 𝑖

log 𝑝 𝑢, 𝑖 = log 𝑝 𝑖|𝑢 + log 𝑝 𝑢

log 𝑝 𝑢, 𝑖 = log 𝑝 𝑢|𝑖 + log 𝑝 𝑖

RS: 𝑢2𝑖

PUMS: 𝑖2𝑢

Figure 1: Model architecture of TotalRecall. Our framework will make to dot product ϕθ(u, i)
converge to the logarithm of the joint probability p(u, i), and thus can be directly applied in RS to
emulate the conditional probability p(i|u), and also in PUMS to replace p(u|i).

3.4.1 MODEL ARCHITECTURE

We choose the classical two-tower architecture (Huang et al., 2013; Covington et al., 2016; Rendle
et al., 2020) for two reasons: one is that users and items can be treated equivalently, and the other is
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that no feature crossing occurs before the final logits (See Fig. 1). So users’ and items’ embeddings
can be inferred separately, and then approximate nearest neighbor (ANN) (Liu et al., 2004) search
algorithm can be applied in online serving.

The output of two towers are d-dimensional vectors u = fθ(u) ∈ Rd and i = gθ(i) ∈ Rd, where θ
is the model parameter. The dot product ⟨u|i⟩, or the function of it is used as the sufficient statistics
of the probability distributions defined in Sec. 3.2 and 3.3 (Check App. A.1 for details). We find that
l2-normalizing u and i and then rescaling the dot product by the temperature τ will lead to better
and robust results:

ϕθ(u, i) =
1

τ

⟨u|i⟩
||u||2||i||2

. (2)

3.4.2 LOSS FUNCTION

We propose the Bi-InfoNCE loss:

l =
1

|Su,i|
∑

u∈U,i∈I,su,i=1

− log
exp(ϕθ(u, i)− log q(i))

exp(ϕθ(u, i)− log q(i)) +
∑

i′∈Iu exp(ϕθ(u, i′)− log q(i′))

− log
exp(ϕθ(u, i)− log q̂(u))

exp(ϕθ(u, i)− log q̂(u)) +
∑

u′∈Ui
exp(ϕθ(u′, i)− log q̂(u′))

,

(3)

where Iu ⊂ I and Ui ⊂ U contain hundreds or thousands of in-batch negative samples, and q(i) and
q̂(u) are empirical marginal distribution calculated using the training data Sui. It can be shown that
optimizing this loss will make ϕθ(u, i) converge to log p̂data(u, i) (See App. A.3 for details.).

If we only optimize the first part of Eq. 3, ϕθ(u, i) will converge to log p̂data(i|u), and optimizing
only the second part will let ϕθ(u, i) converge to log p̂data(u|i). We refer to the two cases as Uni-
InfoNCE losses.

3.5 EQUIVALENCE BETWEEN MODELING WITH BERNOULLI AND MULTINOMIAL
DISTRIBUTIONS

As discussed in the previous sections, we can use both Bernoulli and Multinomial distributions to
model the same user-item interaction matrix Sui, and usually their results are comparable in both
RS and PUMS (See Sec. 4.1 and 5).

The apparent connection between the two algorithms motivates us to explore their relations, and we
prove that they are theoretically equivalent on modeling the user-item interaction matrix. Specifi-
cally, different negative sampling methods of Bernoulli distribution correspond to different objec-
tives modeled with Multinomial distributions.

For example, in MF with Bernoulli distribution (MFb), we could have 5 different negative sampling
methods, i.e., for a given positive (u, i) pair, we sample the negative pairs in these ways: 1). ‘MFb

[0:8]’1, we randomly sample 8 is from the item set I, and construct 8 negative pairs with the given
u; 2). ‘MFb [8:0]’, we sample 8 us from the user set U, and construct 8 negative pairs with the given
i; 3). ‘MFb [4:4]’, we sample 4 us and 4 is, and construct 8 negative pairs with the given i and u
respectively; 4). similar to 3), but the negative samples are doubled; 5). ‘MFb [8]’, we sample 8
(u, i) pairs uniformly from the M ×K pairs with i ∈ I and u ∈ U as the negative pairs.

We prove that 1) is equivalent to modeling p(i|u), 2) to p(u|i), 3) and 4) to p(u,i)
p(u)p(i) , and 5) to

p(u, i). The details can be found in App. A.4.

3.6 MOTIVATION AND PRACTICAL APPLICATIONS OF TR

TR is developed to solve two practical problems: one is the large-scale potential users mining, and
the other is the marketing in SMEs.

1This sampling method is actually used in MFb in RS by Rendle et al. (2020)
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Table 1: Baselines from Dacrema et al. (2021) and Rendle et al. (2020) and our results. The best
results are highlighted in bold, the second best result is underlined.

Movielens PinterestMethod HR@10 NDCG@10 HR@10 NDCG@10 Result from

Popularity 0.4533 0.2542 0.2740 0.1409 Dacrema et al. (2021)
SLIM 0.7162 0.4468 0.8679 0.5601 Dacrema et al. (2021)
iALS 0.7109 0.4382 0.8761 0.5590 Dacrema et al. (2021)
MLP+GMF 0.7093 0.4349 0.8777 0.5576 Dacrema et al. (2021)
MFb by Rendle 0.7294 0.4523 0.8895 0.5794 Rendle et al. (2020)
MFb (ours) 0.726 0.4505 0.8925 0.5838 -
TR (ours) 0.7281 0.4541 0.8936 0.5866 -

For example, we have 1 billion users and 10,000 items, and we need to mine the top 1 million users
for each of the items. This problem can be easily solved with TR: we infer the users’ and items’
embeddings with TR, and then apply the ANN search to find the top 10 items for each user. Now
we have 10 billion (u, i) pairs and their similarity scores, and we just pick the top 1 million for each
item based on the same scores. This method also indirectly ensures that each person will receive at
most 10 advertisement messages.

This can only be achieved if we model the joint probability p(u, i). We also list some alternative
methods to solve the problem in App. A.5, but they are either not good in terms of accuracy or not
practical in terms of computation and storage costs, efficiency, risk and maintainability. TR has been
deployed in our production environment to serve this purpose.

In the marketing scenario of SMEs, two strategies are widely adopted: i). SMEs pick some specific
groups of users, and then choose the top products for each user and send the personalized campaign
messages. This can be regarded as the RS. ii). SMEs have some new or special products and want
to find the target users. This is the PUMS.

The two marketing requirements can be completed either with two separate models or with the
unified model TR. Due to the limited computation and storage budgets, and the shortage of talents,
TR is the best choice for them. Actually, TR is already implemented in one of our cloud-service
products for SMEs.

4 EXPERIMENTS: RS

As stated in Sec. 3.2, two types of modeling objective are well studied in literature, and usually they
use different datasets and baselines. So we compare our results with them separately using different
datasets. The details of the datasets and processing methods can be found in App. A.6.

4.1 MF WITH BERNOULLI DISTRIBUTION

We compare TR to MFb in Rendle et al. (2020), as described in Sec. 3.2.1. Our implementation of
MFb is a bit different from Rendle et al. (2020): we implement it using tensorflow (Abadi et al.,
2016) with Adam optimizer (Kingma & Ba, 2014).

We tried L2 regularization but failed to obtain the results reported by Rendle et al. (2020). We
also tried dropout (Srivastava et al., 2014), but it was unstable and need to be re-tuned for differ-
ent dimensions d. Finally we find that the ϕθ(u, i) defined in Eq. 2 can actually act as a kind of
regularization, so we use it rather than the one defined by Eq. (2) in Rendle et al. (2020).

We use Movielens-1m and Pinterest datasets, and the evaluation metrics are HiteRate@10 and
NDCG@10. MFb and TR have the same two-tower architecture and same number of parameters,
and the key differences are the training data and the optimizing objectives: MFb uses explicit neg-
ative sampling, i.e., MFb [0:8], and optimize the binary cross-entropy loss, and TR uses implicit
in-batch negative sampling and Bi-InfoNCE loss.
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Table 2: For Amazon books data, we use τ = 0.1, batch-size = 128. For Taobao data, we use
τ = 0.067, batch-size = 2048. ComiRec-SA and ComiRec-DR are two multi-interest models
proposed in Cen et al. (2020). The best results are highlighted in bold, the second best result is
underlined.

Amazon Books Taobao
Metrics@50 Metrics@50

Recall Hit Rate Recall Hit Rate
Popular 2.400 5.226 0.735 9.309
YouTube [SSM w/o l2-norm] 7.312 15.894 6.172 39.108
ComiRec-SA 8.467 17.202 9.462 51.064
ComiRec-DR 8.106 17.583 9.818 52.418
Youtube [SSM with l2-norm] 9.37 (+28%) 19.25 (+21%) 6.9 (+12%) 42.87 (+10%)
TR-Youtube [Uni-InfoNCE u2i] 10.34 (+41%) 21.15 (+33%) 7.15 (+16%) 43.79 (+12%)
TR-Youtube [Bi-InfoNCE] 10.12 (+38%) 20.554 (+29%) 7.14 (+16%) 43.57 (+11%)
TR-Youtube [next-7-prediction] 11.571 (+58%) 23.221 (+46%) - -

The results are shown in Tab. 1. In general, MFb and TR are comparable, and this is consistent with
our theory in Sec. 3.5, because they are both modeling p(i|u) or p(u, i) ultimately. Besides, the
diversity of TR is also larger than MFb as shown in Fig. 3. (Check App. A.6.1 for more details.)

When measuring the training efficiency, TR converges to the optima up 16× times faster than MFb

(See Fig. 3 in Appendix). We attribute it to two reasons: i). For MFb [0:8] used here, 9 processed
samples will consist of only 1 positive samples on average. While in Bi-InfoNCE (or Uni-InfoNCE
/ SSM), 9 processed samples are all positive samples. ii). For MFb, each sample is either positive or
negative, and the binary-cross-entropy loss allows it to compare with itself only. In TR, Bi-InfoNCE
(or Uni-InfoNCE / SSM) loss will compare each sample with all the other samples in the batch.

Bearing in mind that MFb and Bi/Uni-InfoNCE can theoretically converge to the same optimum, the
qualitative explanation can provide some intuitive understandings of the fast convergence. The fast
converging speed makes it more practical to use TR in industrial applications with huge amount of
data.

4.2 SEQUENTIAL MODELING WITH MULTINOMIAL DISTRIBUTION

We compare TR to the sequential modeling with Multinomial distribution, as described in Sec. 3.2.2.
This modeling method is usually used in the CG stage of industrial large-scale RS, because it can
deal with huge amount of data very efficiently, and yield good results.

For simplicity, we use the popular Youtube DNN (Covington et al., 2016) implemented by Cen
et al. (2020) as the backbone architecture of TR. Other complicated architectures can be easily
incorporated into TR framework.

We use the same datasets as Cen et al. (2020) for a fair comparison, i.e., Amazon books data 2 and
Taobao click data in Tianchi competition 3. The data is split into train, validation and test data.
The training data is usually processed as next-item prediction as in Sec. 3.1, and we extend it into
next-n-item prediction, i.e., instead of predicting only the next item, we predict all the next n items.
The results are shown in Tab. 2. More results are shown in Fig. 4 and 5 in Appendix.

Our experiments show that proper regularization using l2-normalization and the scaling parameter τ
can greatly improve the results, as it confines ϕθ(u, i) inside [−1/τ, 1/τ ]. Better training data due to
next-n-prediction can also improve the results, because it alters the distribution of the training data
so that it gets close to the test data (See Fig. 6 in Appendix).

Besides, we have three observations. i). Comparable results: TR’s result is comparable to the
SOTA results from SSM and Uin-InfoNCE. This shows that the modeling objectives p(u, i) and

2http://jmcauley.ucsd.edu/data/amazon/index.html
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=649&userId=1
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p(i|u) perform similarly if measured by the metrics for u2i candidate generation. ii). Improved
diversity: We try SSM with different background distributions, and compare with Uni-InfoNCE
and Bi-InfoNCE, and find that Bi-InfoNCE gives better overall diversity as measured by the related
metrics (See Fig. 4 in Appendix). We don’t have a rigorous explanation and would like to leave
it for the future study. iii). Faster convergence: Compared to SSM or Uni-InfoNCE without l2-
normalization, adding l2-normalization or using Bi-InfoNCE will make the models learn faster (See
Fig. 4 in Appendix). This is because l2-normalization will restrict the vector space that u and i
could explore, and Bi-InfoNCE utilizes the data more efficiently compared to Uni-InfoNCE, i.e., the
utilization rate is doubled.

5 EXPERIMENTS: PUMS

In E-commerce, there are usually two practical scenarios of i2u candidates generation: one is to
mine the potential users for a single item, and the other is to find users for a group of similar items.
Because the marketing staff or some merchants regularly pick a group of similar items, and set the
specific campaigns to advertise them.

Previously, the problem is usually formulated as the binary classification for each individual case,
but it is not generally applicable because the number of items or groups could be quite large, and it
is impractical to build so many models.

One solution is to merge all the binary classification models into one, just like MFb in Sec. 3.2.1
and 3.3. The other is our TR framework.

5.1 DATASET AND EVALUATION METRICS

We use Movielens-1m because it is also used in MFb of RS, and it can be used to mine the potential
users of both the single item and the group of similar items.

Movielens-1m records 6040 users and 3706 movies. The data is split into training, validation and
test data, and we use the validation data to select the proper model configurations. The final results
are reported on the test data.

We use precision@10 and recall@10 to evaluate the accuracy of different algorithms, i.e., we mine
the top 10 users for a single item or a group of items, and then evaluate the precision and recall.
We count the distinct users of the overall results to measure the diversity. (See App. A.7 for details
about the dataset and metrics.)

5.2 POTENTIAL USERS OF A SINGLE ITEM

We first select movies which have been watched by at least 50 users, and it results in 2514 movies.
For each of these movies, we randomly pick 1% of its users to form the valid and test datasets, with
half of the movies as the validation data and the other half as the test data (See App. A.7.). The
remaining data is used to train the model, and the validation data is for selecting the best hyper-
parameters, and the results are reported on the test data.

The results are shown in Tab. 3. ‘TR [Bi-InfoNCE]’ achieves the best results in terms of the accuracy
and diversity. High diversity implies that the advertisements can reach more users, even the non-
active users, thus alleviate the advertising fatigue.

Besides, TR uses the same training data and model configurations for both RS and PUMS, and
achieves comparable in both cases. The learned u/i representations can be applied to the two sys-
tems without any additional modifications. In contrast, MFb’s modeling objective (Eq. 4) seems to
treat u and i equally, but the outcomes depend highly on the negative sampling methods (See Tab. 3).
This is consistent with our theoretical analysis in Sec. 3.5.

Last but not least, TR learns 16× times faster than MFb (See Fig. 7 in Appendix). The reason is the
same as in Sec. 4.1.

Our study of mining potential users of a group of items can be found in App. A.7.2.
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Table 3: Overall performance of mining the potential users of a single item. The % is omitted for
precision and recall. The hyper-parameters of MFb are batch-size = 4096 and τ = 0.125, and for
TR they are batch-size = 512 and τ = 0.125. We use d = 96 for all models for a fair comparison.
The diversity values of models with very low accuracy are omitted.

model precision@10 recall@10 distinct users
MFb [0:8] 1.47 5.61 -
MFb [8:0] 4.44 12.82 2046
MFb [4:4] 3.12 9.28 -
MFb [8:8] 3.02 8.64 -
TR [Uni-InfoNCE u2i] 1.19 4.51 -
TR [Uni-InfoNCE i2u] 4.35 12.78 2064
TR [Bi-InfoNCE] 4.58 13.82 2202

6 CONCLUSION

In this paper, CF and the sequential modeling (i.e., next-item prediction) of RS, and PUMS are
abstracted into a unified u-i interaction matrix Sui, and thus are treated equivalently as deriving
some probabilities for the unknown entries from the known entries of Sui. We also show their
connections and differences based on probability theory.

We prove that modeling p(su,i = 0/1|u, i) with different sampling methods can be equivalent to
modeling p(i|u), p(u|i), p(u, i) and p(u,i)

p(u)p(i) .

We propose the TR framework to solve u2i and i2u CG all together. In TR, u and i are treated
equally, and the joint probability p(u, i) is actually derived, instead of the conditional probability
p(i|u) or p(u|i). Therefore, the learned representations of u and i in TR can be used in both u2i and
i2u CG.

Our extensive experiments show that TR can achieve comparable results in each domain measured
by the metrics for either u2i or i2u candidates generation. TR learns 16× times faster than MFb.
Besides, TR generates diversified candidates.

In the future, we plan to study the vector space of TR in depth, and try to unify different objects and
users into one space, for example, products, merchants, brands, categories of products. In such a
space, everything is linked, and candidates generation can be applied on any pair of objects.
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A APPENDIX

A.1 DISTRIBUTIONS

In Sec. 3.1 we define the interaction matrix Sui, and it has the known entries with value 1 and
unknown entries. Here we define a corresponding matrix P of the same shape, and its entries are
the probabilities estimated by a certain algorithm.

In Sec. 3.2.1, the corresponding probability matrix PMF is defined as follows:

pu,i := p(su,i = 1|u, i), (4)
where

∑
su,i∈{0,1} p(su,i|u, i) = 1.

Here we can assume su,i follows Gaussian distribution: su,i ∼ N(ϕ(u, i), σ̂2), or Bernoulli distri-
bution: su,i ∼ B(σ(ϕ(u, i))), where σ(·) is the sigmoid function.

In Sec. 3.2.2, for a given user u, su ∼ Mult(Nu,pu), where pu = (pu1, pu2, ..., puK)T is a K-
dimensional vector. The probability matrix Pu2i is defined with the same pui = p(i|u). pui is
modeled as

pui =
expϕθ(u, i)∑
j∈I expϕθ(u, j)

. (5)

In Sec. 3.3 of PUMS, we can define the specific PMF and Pi2u in a similar manner. For example,
we use si to denote the user who will interact with the item i, and si ∼ Mult(Ni,pi), where
pi = (p1i, p2i, ..., pMi)

T is a M -dimensional vector. Pi2u is defined with the same pui = p(u|i),
and it is modeled as

pui =
expϕθ(u, i)∑
v∈U expϕθ(v, i)

. (6)
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A.2 LOSS FUNCTIONS

In this paper, we focus on Bernoulli and Multinomial distributions, because they usually lead to
better results than Gaussian distribution (He et al. (2017); Rendle et al. (2020)). Following the
maximum likelihood estimation (MLE) principle, the loss for Bernoulli distribution is:

l = − 1

|D|
∑

u∈U,i∈I,(u,i)∈D

su,i log σ(ϕθ(u, i)) + (1− su,i) log(1− σ(ϕθ(u, i))), (7)

where su,i ∈ {0, 1}, and su,i = 1 are the positive entries in Sui, and su,i = 0 are negative samples
randomly sampled from the entries in Sui, and D is the training dataset consist of all the positive
and randomly sampled negative samples.

The loss for Multinomial distribution is softmax-cross-entropy loss (Liang et al., 2018):

l =
1

|Su,i|
∑

u∈U,i∈I,su,i=1

− log
expϕθ(u, i)∑

i′∈I expϕθ(u, i′)
, (8)

where |Su,i| is the sum of the entries in Sui.

In practice, the vocabulary I can be very large so that calculating the partition function∑
i′∈I expϕθ(u, i

′) becomes impractical. SSM and InfoNCE loss can be used to solve this problem:

l =
1

|Su,i|
∑

u∈U,i∈I,su,i=1

− log
exp(ϕθ(u, i)− log pn(i|u))

exp(ϕθ(u, i)− log pn(i|u)) +
∑

i′∈Iu exp(ϕθ(u, i′)− log pn(i′|u))
,

(9)
where Iu ⊂ I contains hundreds or thousands of negative samples, and pn(i|u) is a predefined
background distribution. It has been shown that optimizing Eq. 9 will make ϕθ(u, i) converge to
log p̂data(i|u) (Jean et al., 2015; Oord et al., 2018).

A.3 BI-INFONCE LOSS

Here we prove that ϕθ(u, i) in Eq. 3 converges to log p̂data(u, i).

In Eq. 3, in the optimum of the first part, following the proof by Jean et al. (2015); Oord et al. (2018),
we have exp(ϕθ(u,i))

qi
∝ p̂data(i|u)

qi
, so we can assume:

ϕθ(u, i) = log p̂data(i|u) + f(u) = log p̂data(u, i)− log p̂data(u) + f(u)

for a given u and any i. Similarly, in the optimum of the second part, ϕθ(u, i) = log p̂data(u, i) −
log p̂data(i) + g(i) for a given i and any u.

Thus, for any u and i, this will always hold: − log p̂data(u) + f(u) ≡ − log p̂data(i) + g(i), so it
must be some constant. Then we have ϕθ(u, i) = log p̂data(u, i) + C, where C is some constant
that is independent of u and i. And when ϕθ(u, i) converges to log p̂data(u, i), both parts in Eq. 3
can reach their optima.

A.4 EQUIVALENCE BETWEEN BERNOULLI AND MULTINOMIAL DISTRIBUTIONS ON
MODELING THE USER-ITEM INTERACTION MATRIX

Here we show that by properly choosing the training data distribution, ϕθ(u, i) in Eq. 2 is actually
approaching the conditional distribution p(i|u) or p(u|i), or joint distribution p(u, i), or p(u,i)

p(u)p(i) .

Our derivation is inspired by Noise Contrastive Estimation (Gutmann & Hyvärinen, 2010).

In the modeling with Bernoulli distribution, we have two sets of samples, X and Y. X is the set of
positive samples and Y is the set of negative samples randomly sampled based on a certain distribu-
tion pn(·).
Assume X = {x1,x2, ...,xL} contains L samples, and Y = {y1,y2, ...,yT } contains T samples,
and Z = X∪Y = {z1, z2, ...,zL+T } contains all the L+T samples. Here xl := (u, i), yt := (u, i)
and zj := (u, i), where u ∈ U and i ∈ I. We assign each sample zj a binary class Cj : Cj = 1 if zj
comes from X, and Cj = 0 if zj is from Y.
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We assume the joint probability of positive samples in X is parameterized by θ is pmodel(u, i; θ) =
pmodel(z; θ). So we have the conditional probabilities:

p(z|C = 1; θ) = pmodel(z; θ) p(z|C = 0; θ) = pn(z). (10)

The posterior probabilities are:

p(C = 1|z; θ) = pmodel(z; θ)P (C = 1)

pmodel(z; θ)P (C = 1) + pn(z)P (C = 0)
=

1

1 + exp(−G(z; θ))
, (11)

where

G(z; θ) = log
pmodel(z; θ)P (C = 1)

pn(z)P (C = 0)
, (12)

and we also have
p(C = 0|z; θ) = 1

1 + exp(G(z; θ))
.

So the log-likelihood is:

l(θ) =

L+T∑
j=1

Cj logP (Cj = 1|zj ; θ) + (1− Cj) logP (Cj = 0|zj ; θ).

Through optimizing the binary classification using samples in Z and the corresponding binary
classes C, we are actually recovering the MF with Bernoulli distribution defined in Sec. 3.2.1.
The dot product ϕθ(u, i) will converge to G(z; θ) in Eq. 12:

ϕθ(u, i) → log
pmodel(z; θ)P (C = 1)

pn(z)P (C = 0)
. (13)

Different negative sampling strategies will lead to very different optimal ϕθ(u, i). For example, if
we randomly sample n items for each positive (u, i) pair to form negative samples with the u, then
we have pn(z) = pn(u, i) = p̂data(u) · 1/K, where p̂data(u) is the empirical marginal probability
of the positive samples. Substitute pn(z) into Eq. 13, we have

ϕθ(u, i) ≈ log
pmodel(u, i; θ)

p̂data(u)
+ C ≈ log pmodel(i|u; θ) + C.

Similarly, if we randomly sample n users for each positive (u, i) pair to form negative samples with
the i, then ϕθ(u, i) will converge to the conditional probability log pmodel(u|i; θ).
For each positive (u, i) pair, if we randomly sample n items to form negative samples with the u,
and also n users to form negative samples with the i, then ϕθ(u, i) will converge to the point-wise
mutual information log pmodel(u,i;θ)

pmodel(u;θ)pmodel(i;θ)
.

And if the negative samples are randomly sampled uniformly from all users and items globally, then
ϕθ(u, i) will converge to the joint probability log pmodel(u, i; θ).

Therefore, we show that MF with Bernoulli distribution and Multinomial distribution can be equiv-
alent if we choose the proper negative sampling methods.

A.5 MOTIVATION AND PRACTICAL APPLICATIONS OF TR

For the example of mining potential users given 1 billion users and 10,000 items, we list all the
alternative methods that we can think of:

1. For each item, we create the training sample, and then train a binary classification model,
and finally predict for the 1 billion users and pick the top 1 million. We need to repeat
10,000 times.

2. By emulating the RS, we model p(u|i) and obtain the embeddings of users and items, and
then apply the ANN search (e.g., Faiss) to find the top 1 million users for each item. This
method has a serious defect: ANN has high accuracy if we retrieve the top hundreds or
thousands of candidates, but its accuracy and efficiency drops dramatically if we extend the
range to millions. So, this method is not practical.
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3. Also, we model p(u|i) and obtain the embeddings of users and items, and then do a brute
force search: we calculate the similarity score of all the users and items, which is the
Cartesian product of 1 billion users and 10,000 items, i.e., 10 trillion, and then we pick
the top 1 million users for each item. It’s very inefficient and consume huge number of
resources.

4. We build two models for p(i|u) and p(u|i) respectively. Then we use the embeddings of
p(i|u) and apply the ANN search to find the top 10 items for each user. Now we have 10
billion u-i pairs, and we use the embeddings from p(u|i) to calculate the similarity score of
the u-i pairs, and finally pick the top 1 million for each item.

TR has just one less model than the last alternative and one less step, but in practice, it is problematic
to maintain two correlated models, especially when they are very large. Two models usually imply
that the calculation is doubled, the storage is doubled, and the risk and instability are doubled.

To conclude, TR is the best choice that can balance the accuracy, efficiency, risk and maintainability
in practice.

A.6 EXPERIMENT RESULTS: RS

A.6.1 MF WITH BERNOULLI DISTRIBUTION
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Figure 2: Comparison of results of MF given by Bernoulli distribution and Multinomial distribution.
‘MF by Rendle’ is from Rendle et al. (2020), ‘MF by us’ is our implementation. In general these
results are quite close and outperform Neural Collaborative Filtering by a large margin (Rendle et al.
(2020)).

We compare to MF in Rendle et al. (2020) using the same datasets: binarized Movielens-1m (Harper
& Konstan, 2015) and a dataset from Pinterest (Geng et al., 2015).

Train and Evaluation Configurations

For each user, the last item is held out as the test set, and the second last is held out as the validation
set, and the remaining as the training set. We use the validation set and training set to select the best
hyper-parameters, and then re-train the model using both training and validation sets.
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During evaluation, each user has his own candidates pool, and it consists of the withheld item (i.e.,
the ground-truth) and 99 sampled negative items. These methods will score the 100 items and rank
them by the score.
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Figure 3: Comparison of the converging speed and diversity of MF modeled with Bernoulli distri-
bution (MF) and Multinomial distribution (TR). The x-axis is the data throughput, i.e., the number
of records consumed by the model, and the y-axis is the metric measured on the test data. For
Movie-lens, TR is about 16× times faster, and for Pinterest it is about 10× times.

The hyper-parameters τ and batch-size are chosen using the validation data. For Movielens-1m, we
use τ = 0.125, batch-size = 4096 for MFb, and τ = 0.111, batch-size = 512 for TR. For Pinterest,
we use τ = 0.143, batch-size = 8192 for MFb, and τ = 0.167, batch-size = 8192 for TR. We have
d ∈ {16, 32, 64, 96, 128, 196} for a comprehensive comparison.

Evaluation Metrics

Two evaluation metrics are employed to measure the performance of top-N ranked items:

HitRate@N =
1

|U|
∑
u∈U

δ(|Îu,N ∩ Iu| > 0), (14)

where Îu,N denotes the top-N ranked items for u, Iu is the set of testing items, and δ(·) is the
indicator function.
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NDCG@N =
1

|U|
∑
u∈U

1

log(1 + ru)
, (15)

where ru is the rank of the withheld item in the top-N items for u.

Results

The performance of different methods is shown in Fig. 2. In general, MF with Bernoulli distribution
and Multinomial distribution are comparable, which is consistent with our theory in Sec. 3.5.

The comparison of the converging speeds is shown in Fig. 3. We can see that modeling with
Multinomial distribution is much better than Bernoulli distribution.

A.6.2 SEQUENTIAL MODELING WITH MULTINOMIAL DISTRIBUTION

We compare to the models implemented in ComiRec (Cen et al., 2020). ComiRec provides the
codes and two preprocessed datasets: Amazon books data (Ni et al., 2019) and Taobao click data
(Zhu et al., 2018). So we use the same datasets and evaluation metrics for a fair comparison.

Metrics and Comparing Methods

We use HitRate@N and Recall@N to measure the accuracy. HitRate@N is defined in Eq. 14, and
Recall@N is defined below:

Recall@N =
1

|U|
∑
u∈U

|Îu,N ∩ Iu|
|Iu|

. (16)

Metrics ‘Distinct items@N ’ counts the distinct items of all users’ top-N recommended list, and
‘Distinct cates@N ’ counts the distinct categories of these items. They measure the diversity of the
recommendation results.

The comparing methods include the following:

• MostPopular recommends the most popular items to all users.
• YouTube DNN (Covington et al., 2016) is a simple and very efficient neural network model

adopted in the CG stage of the large-scale industrial RS.
• ComiRec-SA & ComiRec-DR (Cen et al., 2020) use self-attention (Vaswani et al., 2017)

or dynamic routing (Sabour et al., 2017) to explicitly incorporate users’ diverse interests in
the model’s architecture to increase accuracy and diversity.

Results

The results evaluated by the above metrics can be found in Fig. 4. We can see that their HitRate and
Recall are comparable, and this is consistent with our theory in Sec. 3.5. The diversity of TR with
Bi-InfoNCE is much better than other methods.

The performance of next-n-prediction are shown in Fig. 5. We investigate the KL Divergence of the
marginal distributions of train and test data in Fig. 6, and show that the performance gain in Amazon
data may be due to the reduced discrepancy between the train and test data.

In Taobao data, the discrepancy gets larger when we increase n, and in experiments the accuracy
does not increase.

A.7 EXPERIMENT RESULTS: PUMS

There are different ways of creating the validation and test datasets, such as randomly picking 10
users for each chosen item or each group of items.

Here we choose to holdout 1% users for the practical reason: usually we mine the potential users
based on the historical behaviors and then deliver advertisement to them in the future, and the im-
plicit assumption is that the distribution of the future is close to the past, i.e., popular items in the
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Figure 4: Comparison of accuracy and diversity metrics of different methods on Amazon books
and Taobao data. HitRate@50 and Recall@50 measure the accuracy, and Distinct items@50 and
Distinct cates@50 measure the diversity. ‘∗ temp’ means the users and items representations u and
i are l2-normalized, and then their dot product is rescaled with temperature τ = 0.067. By this
way, the model converges much faster to higher accuracy. As for diversity, Bi-InfoNCE surpass
Uni-InfoNCE and SSM by a large margin.
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Figure 5: Results of Next-n-prediction for Amazon data. The improvement of accuracy is substantial
when n <= 5.
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Figure 6: KL Divergence between two marginal distributions of items: p̂test(i) of test data and
p̂data(i) of next-n training data. Although they are not the full distributions of u and i, to a certain
extent they can reveal the discrepancy between the distributions of the training data and the test data.
In Amazon data, if we increase n, the discrepancy becomes smaller, and the accuracy also increases
(See Fig. 5). In Taobao data, the discrepancy gets larger when we increase n, and in experiments
the accuracy does not increase.
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Table 4: Statistics of the split Movielens datasets in PUMS experiments.

# records # movies # users
train (w/o negative samples) 990296 3076 6040

valid 5125 1257 2698
test 4788 1257 2547

past will be bought by more users in the future, and vice versa. So we holdout validation and test
datasets in accordance with the overall distribution to emulate the practical scenario.

A.7.1 POTENTIAL USERS OF A SINGLE ITEM

We create the training, validation and test data as described in Sec. 5.2. The statistics of the resulting
datasets is shown in Tab. 4.

The Metrics

Our evaluation metrics of accuracy are Precision@N and Recall@N :

Precision@N =
1

Itest

∑
i∈Itest

|Ûi,N ∩ Ui|
N

,

where Ûi,N denotes the top-N ranked users for i and Ui is the set of users for the testing item i.

Recall@N =
1

Itest

∑
i∈Itest

|Ûi,N ∩ Ui|
|Ui|

.

We count the distinct users of all the test items to measure the diversity.

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

512 1024 2048 4096 8192 16384 32768 65536 131072 262144

re
ca

ll@
10

data throughput (*10000)

Movie-lens

TR
MF

0.035

0.037

0.039

0.041

0.043

0.045

0.047

512 1024 2048 4096 8192 16384 32768 65536 131072 262144

pr
ec

isi
on

@
10

data throughput (*10000)

Movie-lens

TR
MF

Figure 7: Comparison of the converging speed between MF and TR. The x-axis is in log scale. We
can see that TR can obtain better results much faster.

Results of Converging Speed

The comparison of the converging speed can be found in Fig. 7. Similar to the results in Fig. 3 of
RS, TR is much faster than MF with Bernoulli distribution.

A.7.2 POTENTIAL USERS OF A GROUP OF ITEMS

For a given genre, we define the popularity of its movies in this way: we first rank the movies
based on the number of users who have watched them, and then we pick the top/middle/bottom 10%
movies as different groups. So we obtained 54 groups from 18 genres.

In practice, movies of different genres and different popularity will behave very differently, e.g., pre-
cision and recall of popular Action movies and unpopular Western movies will differ a lot. Movie-
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Table 5: Overall performance of mining the potential users of a group of items. The % is omitted
for precision and recall. The hyper-parameters of MFb are batch-size = 4096 and τ = 0.125, and
for TR batch-size = 512 and τ = 0.111. We use d = 96 for all models.

model precision@10 recall@10 distinct users
MFb [0:8] mean 5.93 1.52 -
MFb [8:0] sum 5.93 2.58 -
MFb [8:0] max 14.63 4.23 -
MFb [8:0] mean 17.04 4.57 246
MFb [4:4] mean 11.11 2.63 -
MFb [8:8] mean 12.78 3.05 -
TR [Uni-InfoNCE u2i] mean 4.63 1.38 -
TR [Uni-InfoNCE i2u] mean 16.85 7.25 262
TR [Bi-InfoNCE] sum 12.41 6.79 -
TR [Bi-InfoNCE] max 16.48 7.01 -
TR [Bi-InfoNCE] mean 20.56 7.58 258

lens have 18 genres, and we divide the movies of the same genre into 3 categories based on their
popularity, so we can split the chosen movies into 54 groups.

Given a group and its affined items, we define its potential users this way: if a user interacts with
one or more items in the group (excluding the items he has interacted previously), then he will be
the potential users of the group. For example, given the group G = {i1, i2, i3} and the user u1, if
u1 has interacted with i1 in the historical data, then we cannot pick him as the potential user; if in
the future data, u1 interact with i2 or i3, then he will be regarded as the potential user of G.

Different groups have different number of movies, e.g., the group ‘Drama-top10%’ contains 93
movies, while ‘Documentary top10%’ has only 3 movies, and their precision and recall will also
differ a lot. We report the averaged precision and recall over all groups in Tab. 5.

For small datasets like movie-lens-1m, the model generates the potential users of a group this way:
for each item in the group, we first calculate ϕθ(u, i) of Eq. 2, and then the score p̂TR(u, i) =
exp(ϕθ(u, i)) for TR and p̂MF(u, i) = σ(ϕθ(u, i))

4 for MFb, with respect to the candidate users.
Thus each candidate user will have several scores, and then we aggregate the scores to obtain a
match score between the user and the group, and finally pick the top-k users. The aggregation
methods could be max, mean or sum.

In Tab. 5, ‘MFb [0:8]’ and ‘TR [Uni-InfoNCE u2i]’ are specifically for u2i CG of RS, so they give
the worst results here. Models tailored for i2u (‘MFb [8:0]’ and ‘TR [Uni-InfoNCE i2u]’) and the
general model for bidirectional CG (‘TR [Bi-InfoNCE’) perform much better.

The aggregation methods also affect the accuracy, and mean > max > sum. If a user has scores
with many items of the group, the sum could be high even if individual scores are low, and this also
implies that the user has few interactions with the items of the group in the historical data. So it
would not be suitable that sum ranks this user high. In contrast, mean and max will not have this
problem, and mean considers more scores than just the max one and gives best results.

4σ(·) is the sigmoid function.
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