Under review as a conference paper at ICLR 2026

REPAIR: A RULE-BASED PROCESS-ADAPTIVE REIN-
FORCEMENT FOR LARGE LANGUAGE MODEL TRAIN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Although reinforcement learning (RL) has demonstrated promise in enhancing the
reasoning capabilities of Large Language Models (LLMs), the difficulty of reward
design has prohibited exploiting the full potential of RL. Previous methods mainly
fall into two categories: training a reward model based on human preferences or
designing verifiable outcome rewards. However, reward models often suffer from
poor interpretability and require extensive annotation for effective training. Veri-
fiable outcome rewards provide sparse signals only, which leads to an ambiguous
credit assignment and low training efficiency in RL. These limitations necessitate
rewards that provide more efficient, fine-grained supervision. In order to address
these, we propose Rule-based Process-Adaptlve Reinforcement (RePAIR) that
constructs adaptive verifiable process rewards through symbolic reasoning rules.
These rules are automatically derived through the integration of common pattern
mining and semantic summarization over the reasoning trajectories of LLMs. For
stable training purposes, RePAIR defines a reward informativeness metric that
dynamically adjusts the rule’s weights based on policy updates. Extensive experi-
ments across three reasoning tasks demonstrate that RePAIR achieves a 6.03% im-
provement on average and combines well with various advantage functions. Code
and data will be available at https://anonymous.4open.science/r/RePAIR-8EFC.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a promising paradigm for enhancing the reasoning
capabilities of large language models (LLMs), particularly in tasks involving multi-step generation
strategies Jaech et al.| (2024); DeepSeek-Al et al.| (2025) and alignment with human preferences
Lin et al.| (2025). Notably, the effectiveness of RL heavily depends on the reward design, which
serves as the core feedback signal that guides model optimization |[Zhong et al.[ (2025). Different
from traditional RL, where the environment is well-defined with clear structures and regularities,
e.g., physical laws, and the consequences of agent’s actions can be accurately evaluated |Sutton &
Barto| (2018])), when applying RL to LLMs, the conventional “simulatable environment” is replaced
by a black-box generative system driven by an LLM |Ouyang et al.|(2022b)). In this case, the state
transition process is entirely driven by parameters within the LLM, which introduces a high degree
of uncertainty and lacks clear structure or verifiable dynamic rules. As a result, designing effective
reward functions becomes significantly more complex and challenging.

Most prevailing methods that apply RL paradigms for LLMs employ the black-box preference model
Lin et al.| (2025)) or the outcome scoring model Bai et al.| (2022); 'Wang et al.| (2024) to construct re-
ward signals. However, such reward models lack interpretability and fail to reveal the causality be-
tween the agent’s action and the reward feedback, which are prone to policy drift and preference bias
Gao et al.|(2022); Lightman et al.|(2023). Moreover, in order to collect adequate high-quality labels
for reward model training, researchers either build complicated human annotation pipelines |Light-
man et al.|(2023)) or rely on estimation-based methods, which require approximate 10x more rollouts
for each step than sampling the response-level trajectories only [Wang et al.| (2023b); Kazemnejad
et al.| (2024). In order to cope with these problems, very recently, verifiable reward has been pro-
posed to provide clear binary feedback through a rule-based reward function Lambert et al.| (2024);
DeepSeek-Al et al.|(2025)), which avoids subjective human assessments and complex reward models



Under review as a conference paper at ICLR 2026

training. However, the verifiable outcome rewards employed by industry-leading models DeepSeek-
Al et al.| (2025) suffer from the challenges of reward sparsity and credit assignment |Leike et al.
(2018), which fail to capture long-term dependencies and uncertainties in intermediate steps within
LLM-generated sequences |Cui et al.|(2025).

In order to tackle these challenges, a verifiable process reward is desired, where fine-grained inter-
pretable feedback to intermediate reasoning steps Setlur et al.|(2024)) can be provided. However, it is
not trivial to define verifiable process rewards for LLM tasks as follows: (1) Ambiguity of task goals:
since the goals in LLM tasks are often ambiguous, the process reward criteria lack clear quantita-
tive boundaries, which are highly dependent on human subjective judgment. (2) High-dimensional
and unstructured action space: the output of LLMs is a high-dimensional sequence |(Ouyang et al.
(2022b)), and the action space is the entire vocabulary, up to tens of thousands or even hundreds
of thousands of tokens, which implicitly encodes syntactic, semantic, and logical contextual in-
formation. As a result, verifying intermediate steps becomes extremely complex, which makes it
hard to design reward functions that are both objective and consistent. In contrast, traditional RL
tasks benefit from low-dimensional and discrete spaces, where such complexity does not arise. (3)
Task-specific variability: different tasks have their own specific reasoning logic and semantic struc-
ture, which makes it hard to design a universal process reward function (Chung et al.[ (2024). For
each new task, it requires a costly and unscalable redesign by domain experts. (4) Adaptivity to
model’s update: an ideal reward must be dynamically adaptive, as a static reward eventually leads
to overoptimization or reward hacking |Gao et al.| (2022) due to distribution shift. Moreover, the
variability in LLM outputs further demands that rewards adapt to policy and environment shifts to
ensure generalization and robustness

We propose a rule-based approach (RePAIR) to construct verifiable process rewards, which pro-
vides fine-grained, generalizable, and adaptive supervision for reinforcement learning in LLMs.
RePAIR treats symbolic reasoning rules, extracted from reasoning trajectories, as the physical laws
of the LLM-generated reasoning environment. These rules formalize reasoning patterns as com-
putable logical expressions, thereby providing verifiable and structured constraints in the uncertain
and high-dimensional generation space of LLMs. As for the automatic extraction of these rules,
RePAIR first converts natural language reasoning trajectories into graphs, which facilitates the iden-
tification of common reasoning patterns. These patterns, combined with the semantic features of
the reasoning trajectories, are then formalized into symbolic reasoning rules via an LLM. Moreover,
for the purpose of efficient and stable policy learning, it dynamically adjusts rule weights during
training. Meanwhile, our research focuses on smaller-parameter LLMs (e.g., 0.5B, 1.5B), which
are particularly suitable for edge deployment, personalization, and privacy-preserving applications.
Under limited computational budgets, these models offer an efficient balance between performance
and resource consumption. Our main contributions are summarized as follows.

* Symbolic reasoning rules. We automatically extract symbolic reasoning rules from LLM-
generated trajectories, which formalize common reasoning patterns as a computable func-
tion to provide a verifiable and interpretable basis for process supervision.

» Adaptive and verifiable process rewards. We transform symbolic reasoning rules into
verifiable scalar signals and dynamically adjust rules’ weights based on a reward informa-
tiveness metric, which enables adaptive and fine-grained reward shaping during learning.

* Experimental results. Extensive experiments on three tasks demonstrate the following:
(1) RePAIR achieves a 6.03% performance improvement on average; (2) RePAIR is an
algorithm-agnostic and universally applicable enhancement module for almost any RL al-
gorithm in LLM training and removes the need for task-specific reward design; and (3)
RePAIR enhances the model’s ability to generalize beyond the training distribution.

2 RELATED WORK

2.1 RL FOR LLM REASONING

Reinforcement Learning plays a critical role in enhancing the instruction-following capabilities of
LLMs through three representative paradigms: (1) Reinforcement Learning from Human Feedback
(RLHF): RLHF employs human-annotated preferences to train a reward model, which then guides
policy optimization|Ouyang et al.[(2022a));|Wang et al.|(2024). Despite its effectiveness in alignment,



Under review as a conference paper at ICLR 2026

@ Reasoning Trajectories PO -
<think> 8 ) /@ Reinforcement Learning for LLMs Poli Model@ \
First, | divide 2 by 2, and that gives 1. At this point, what's left are the result of this cy

division (1), 13, and the other 2. ...... Now we have the expression (2 * (13 - (2/2))) = Process Reward
24. We've reached 24!
</think>

e @

@ Automatic Rule Extraction;

Reasoning step'y;

K
70 R) = lRiulkZﬂwLm(ys,m e EEe |

§  Reasoning step y,

e

prompt Updateg support p(r) ! Adaptive rule weighting Reasoning step...

& . tc%’:\?lezgical < éhconfidence y() I | (o Reward . D l:‘ D D D
Frequentl « semantic i r — :

Subgraph

i Reasoning step ¥,
interpretation Verify

=== Il ]

Mining

@ Formalize | Symbolic
Reasoning Rules  :
{ X rX-A i

Figure 1: Overview of the RePAIR framework.

Rule-based Reward

N ifys 75
TpOem) = {0, otherwise

RLHF is constrained by annotation cost and the lack of interpretability. (2) Reinforcement Learning
from Al Feedback (RLAIF): RLAIF replaces human annotators with LLMs to automate feedback
collection [Kim et al.| (2023) with more scalability. However, Al-generated preferences often re-
flect model biases and lack verifiability, which potentially reinforces errors during fine-tuning. (3)
Reinforcement Learning with Verifiable Rewards (RLVR): RLVR, inspired by DeepSeek Math/R1
DeepSeek-Al et al.| (2025); [Shao et al.| (2024), is formally introduced in TULU 3 [Lambert et al.
(2024) as a framework that uses verifiable reward functions to automatically evaluate the correctness
of a model’s outputs via deterministic rules and provides binary reward signals. However, it relies
on high-quality, verifiable datasets with ground-truth, which limits its applicability. Our method
advances the RLVR paradigm beyond its original scope: instead of relying on manually designed
reward functions grounded in expert-verified labels, we automatically extract symbolic rules from
LLM-generated reasoning trajectories and integrate them into the reinforcement learning process as
verifiable process rewards.

2.2 REWARD MODELS FOR LLM TRAINING

From the perspective of reward design, there are two main approaches distinguished by their granu-
larity: Outcome Reward Models (ORM) DeepSeek-Al et al.| (2025)); Shao et al.| (2024} and Process
Reward Models (PRM) |Luo et al.| (2024); |Zhang et al.| (2024). ORM assigns rewards based on the
final output labels, which suffers from delayed feedback and the credit assignment problem [Yang
et al.| (2024b); |Liu et al.| (2024). In contrast, PRM evaluates intermediate reasoning steps to provide
more fine-grained supervision. One of the most critical challenges in PRM is reward hacking, where
models exploit superficial signals rather than truly following the intended reasoning trajectory Wang
et al.|(2023a). Furthermore, training PRM requires expensive human annotation Uesato et al.| (2022),
which makes large-scale implementation impractical. Different from previous methods, we lever-
age rules to provide process supervision without the requirement of extensive annotation and extra
reward model training cost. In addition, our rule-based rewards adapt dynamically during training
to better align LLM behavior with target reasoning patterns and mitigate reward hacking.

3 PRELIMINARIES

Reinforcement Learning aims to learn an optimal policy 7y that maximizes the expected cumulative
reward, namely return, when interacting with an environment. In the context of autoregressive
language modeling, the state at step ¢ is the concatenation of input x and current response y_,,
and the action is the ¢-th token or step y;. As a fundamental algorithm that optimizes the learning
objective, policy gradient method focuses on the advantage function A; which quantifies how much
better an action is compared to alternatives in a given state:

T

Vo J(0) = Bxpyomy | Y Vologmo(yex,yo)Ar | , )
t=0

where (X, y) represents a pair of input and output. In practice, the advantage function is implemented
as cumulative discounted rewards subtracting a baseline A; = ZST:t v tr(ys) —b, where vy € [0, 1]



Under review as a conference paper at ICLR 2026

is a discount factor that optionally decays future rewards, and r(ys) is the reward provided by the
environment at time step s with x and y; omitted in conditions.

4 REPAIR FRAMEWORK

In this section, we introduce the RePAIR framework, as shown in Figure |1} which consists of two
stages: (1) automatic rule extraction from LLM-generated reasoning trajectories and (2) reinforce-
ment learning with adaptive, verifiable process rewards constructed by these rules.

4.1 AUTOMATIC RULE EXTRACTION

The goal of automatic rule extraction is to derive symbolic reasoning rules from LLM-generated
trajectories by identifying common reasoning patterns and abstracting their semantic features. It
consists of the following two steps.

4.1.1 FREQUENT SUBGRAPH MINING

In the first step, we model the reasoning trajectories 7 as graphs to capture underlying reasoning
patterns. Specifically, for each task, we collect multiple reasoning trajectories and divide them into
successful and failed trajectories based on their correctness. Each trajectory set is then modeled
as a graph G = (V, E), where nodes V represent intermediate reasoning steps and edges F denote
dependencies among these steps. In order to identify common reasoning patterns, we transform each
reasoning step into a vector-based semantic representation. Specifically, given some problems and
their solutions, we prompt an LLM to summarize key semantic features, which are then encoded into
a structured feature vector. Each reasoning step in the trajectory is thus mapped into an embedding
space where semantically similar steps share aligned representations. These vector-based labels
serve as semantic labels in the reasoning graph. An illustrative example is shown in Figure[2] Based
on these labeled graphs, we apply the frequent subgraph mining method, GRAMI [Elseidy et al.
(2014), to extract a set of subgraphs S that appear at least o times.

Example of question and answer Feature Encode

Extract

Q: Given four numbers: 1, 3, 6, 7, how do you get Semantic Feature EE@
24 by adding, subtracting, multiplying and dividing? ﬁ

. Operator type (addition, subtraction, multiplication, division) 2 2 3 0
A: <think> :> . Result attribute (integer, decimal, multiple of 24, other) :> 1 Iy Iy 3
Fist, | divide 2 by 2, and that gives 1. At this poin, . Operands relative <cale (naximum, large, nediun, snall) s ) W
what's left are the result of ...... Now we have the

. Operands absolute range (small [1-10], large [>18]) P

Node: (2) * (3)=6

expression (2 * (13 - (2/2))) = 24. We've reached 24!
</think>

Figure 2: Example of semantic feature extraction and vector label construction on Game of 24 task.

4.1.2 RULE FORMALIZATION

In the second step, we formalize the discovered frequent subgraphs S into symbolic reasoning rules
by prompting an LLM with structured descriptions of the nodes in each subgraph. Specifically, we
construct a prompt 7 = Prompt(S,desc(v) | v € V'), where desc(v) includes both the semantic
interpretation of the node label and its topological context. The semantic interpretation is obtained
from the statistical distribution of attribute values. Based on this prompt 7, the LLM is instructed
to generate specific, executable rules. We refer to them as symbolic reasoning rules expressed in
first-order logic expressions:

r: X — A,

where X is a conjunction of predicates that describe the state of the reasoning step, and A is a
predicate that represents the corresponding action the model should take in this step. Each predicate
is a Boolean function defined over the semantic attributes of the reasoning steps. We refer to X as
the precondition of r and A as the consequence of r. Note that A can be an empty set, which means
the rule encodes only state constraints without prescribing a specific action.

Definition 1 (Rule Matching) Given a reasoning step instance ys and a rule v : X — A, we say
that ys matches r, denoted as ys F r, if ys simultaneously satisfies the rule’s precondition X and
consequence A. More generally, we write ys = X if y, satisfies only the precondition part X.



Under review as a conference paper at ICLR 2026

Based on Definition [T] we introduce each rule’s support and confidence over reasoning trajectories
T |Agrawal et al.| (1993). For arule r : X — A, its support ¢(r) and confidence ~y(r) is defined as:

HT: | ys F X NA ys € Ti}| {T: | ys E X NA, ys € T3}
o(r) = » W) = T e Y T
Tl HTi | ys F X, ys € T3}

where T; € T. Support measures the coverage of a rule across the reasoning trajectories, while
confidence reflects the reliability of the rule’s conclusion given that its precondition holds. For each
symbolic reasoning rule generated by the LLM, we evaluate these metrics to verify its validity and
robustness, ensuring that they capture genuine reasoning patterns rather than spurious correlations
or hallucinations produced by the LLM. Only rules with sufficiently high support and confidence
over 7T are retained for downstream use. The verification outcomes, including ¢, v, and examples
of satisfied instances and violated instances, are subsequently incorporated into the next prompt to
guide the LLM towards improved rule formalization.

Example 1 The following are examples of symbolic reasoning rules in the Game of 24 task.

*ry : IsSmall(x,y) A IsClose(x,y) — Operation (z,y, +). This rule suggests
applying addition to x and y if they are relatively small and numerically close.

e 1y : IsFactor(z,24) — ¢. It means that if the result z is a factor of 24, it is allowed
regardless of the action.

e r3: IsFactor(x,y,24) — Operation(x,y, X). It suggests applying multiplication to
x and y when they are the factors of 24.

Remark: Although we employ the LLMs for node labeling and rule formalization, our approach
differs from the uncontrollable method that directly generates rules from reasoning trajectories us-
ing LLMs. By grounding rules in explicit matching criteria, we achieve greater consistency, in-
terpretability, and reliability. Rule extraction is performed offline, and although frequent subgraph
mining is theoretically NP-hard, the reasoning graphs in practice are sufficiently small to make the
process tractable. Moreover, LLM calls during rule formalization are restricted to only a few sub-
graphs (typically fewer than ten), rendering the overall cost of rule mining negligible in comparison
with online reinforcement learning.

4.2 REINFORCEMENT LEARNING FOR LLMSs
4.2.1 RULE-BASED REWARD CONSTRUCTION

Given a set of verifiable symbolic reasoning rules R = {r1,72,...,7rx } from the reasoning tra-
jectories, we integrate them as supervision signals into the reinforcement learning to guide policy
optimization. Each rule r; € R is served as a reward function r4(ys, 7;), which assigns scalar feed-
back to each reasoning step ys in a generated trajectory y = {y1, y2, . . . , y7 } based on whether y,
satisfies the rule. Specifically, we define:

ifys E ri

ro(ys, i) = {g @

otherwise ’

where p is a predefined reward value, which is set 1 in the positive rules extracted from successful
trajectories, or —1 in the negative rules extracted from failed trajectories.

In order to compute the rule-based process reward, we aggregate scalar feedback from relevant rules.
Rather than averaging over the entire rule set R, we restrict computation to the subset of activated
rules R, = {r; : X — A | ys F X}, where y, satisfies the precondition of each rule. This avoids
diluting the supervision with unrelated rules, especially when R is large. Accordingly, we define
the rule-based process reward as:

K

1

r¢(yS7R) = |R | E OJi?”qﬁ(ys,Ti), (3)
“li=1

where K is the number of rules in R and w; is a rule weight.



Under review as a conference paper at ICLR 2026

Example 2 Consider a reasoning trajectory consisting in Game of 24 task with three steps: y1 :
145 =6,left: {6,6,10}, y2 : 10 — 6 = 4,left : {4,6}, and y3 : 6 x 4 = 24,left : {24}.
We analyze each reasoning step to identify the sets of rules it satisfies and activates, respectively, as
illustrated in Example[I} Assuming p = 1 and w; = 1 to each activated rule, the process reward
is computed as follows: (1) for y1: y1 E r1, y1 E ro; and Ry, = {r1,r2}. Thus r4(y1,R) =
% x (1+1) =1;(2) forys: ys E ra; and Ry, = {r1,r2}. Thus r4(y2, R) = % x1= % ; and for
y3: Y3 Ero, ys Ers;and Ry = {ri,ro,r3}. Thus ry(ys, R) = % x(1+1)= %

Verifiability: Each symbolic reasoning rule has a well-defined precondition and consequence, and
the matching relation y, = r is binary and computable, which ensures safe and verifiable reward
assignment. Since the rules are extracted directly from both successful and failed trajectories, the
resulting reward signals are inherently grounded in empirical evidence, while support and confidence
metrics further establish their reliability across trajectories. As a result, the rule-based reward func-
tion is fully computable, transparent, and auditable, which enables reproducible reward computation
beyond the reach of opaque or purely learned models.

4.2.2 ADAPTIVE RULE WEIGHTING

However, the extracted rules exhibit obvious variations in both generality and predictive reliability.
Broad rules (e.g., r1) are frequently activated across reasoning steps but offer weaker signals for task
success, whereas specific rules (e.g., r3) occur less but provide more reliable indicators of correct
reasoning. The uniform treatment of all rules fails to capture these distinctions, which results in
suboptimal reward shaping and overoptimization. This issue is exacerbated during training, as the
evolving policy alters the distribution of reasoning trajectories.

In order to address this limitation, we define a reward informativeness metric that quantifies the util-
ity of each rule under the current policy. This metric enables dynamic adjustment of rule weights,
thereby allowing the reward function to prioritize more informative rules during training. Specifi-
cally, the informativeness of rule r; at the 7-th policy update iteration is defined as a weighted sum
of its hit rate Hitg and success rate Succg:

1 >oy.ern Hys =i} - Succ(ys)
I(T)(r-):a.i Z H{y-':T‘}+ﬂ~ ys€
’ ) s ETi .
7] ys€T(™ 2y e Hys Eri} @)
hit rate Hity success rate Succy

where |7(7)| denotes the set of reasoning steps sampled under the current policy, 1{y, = r;} is an
indicator function that equals 1 if step y, satisfies rule r;, and 0 otherwise, and Succ(ys) € {0,1}
indicates whether step ys eventually leads to the correct answer. We then adaptively update the rule

weight based on the informativeness gain between iterations: wET'H) = WZ(T) +n-AZ™) (r;), where
AT (1) =T (r;) — T~V (r;) and 1 is a learning rate.

4.2.3 ADVANTAGE ESTIMATION AND POLICY UPDATE

After obtaining step-level process rewards, we estimate the advantage using Monte-Carlo (MC)
estimators, a simple yet widely adopted approach shown to produce stable results in practice |Shao
et al.| (2024); |Hu et al| (2025). For each sampled reasoning trajectory, the return at each step is
computed by accumulating process rewards. In order to mitigate variance and improve optimization
stability, these returns are typically normalized. When an outcome reward is available, its return
is computed separately, since directly mixing their values may lead to numerical instability |Shao
et al.|(2024). The final advantage function is defined as the sum of normalized process and outcome
returns. Following the normalization scheme used in GRPO |Shao et al.| (2024), the advantage at ¢-th
step in trajectory y? is given by:

ly*] (yi,R) — mean (M(li;’\m) + ro(y") — mean(ro(y’)) ®)

. T¢
Al = i , ,
t sz:; std (T¢(|§;}R>> std(ro(y7))

Outcome rewards
Rule-based process rewards



Under review as a conference paper at ICLR 2026

where 7,(y?) is an outcome verifier that equals 1 if the outcome label is correct, and 0 otherwise.
This advantage estimate is then used in the clipped surrogate loss of GRPO for updating the policy.

5 EXPERIMENTS

Table 1: Performance comparison of different methods. RePAIR is our proposed rule-based method,
while RePAIR ™ is a variant without adaptive rule weighting. “*” indicates results after SFT.

Method Game of 24  Blocksworld GSMS8K  Avg. A (1)
QOwen2.5-0.5B-Instruct

Base 33.00* 24.00* 25.26 27.42 -
GRPO 42.60 25.00 34.69 34.10 +6.68
GRPO w/ RePAIR™ 43.00 25.40 35.01 3447  +7.05
GRPO w/ RePAIR 45.00 26.00 35.01 3534 +7.92
Dr.GRPO 47.00 25.00 33.82 3527 +7.85
Dr.GRPO w/ RePAIR™ 47.00 26.20 34.02 3574  +8.32
Dr.GRPO w/ RePAIR 55.00 27.00 34.19 38.73 +11.31
REINFORCE++ 46.80 25.00 34.89 35.56 +8.14
REINFORCE++ w/ RePAIR™ 48.00 25.60 33.75 3578  +8.36
REINFORCE++ w/ RePAIR 51.00 26.00 35.48 3749 +10.07
QOwen2.5-Math-1.5B

Base 35.00* 26.00* 75.58 45.53 -
GRPO 50.40 29.00 75.43 51.61  +6.08
GRPO w/ RePAIR™ 52.80 30.00 76.04 5295 +7.42
GRPO w/ RePAIR 56.60 30.00 76.34 5431 +8.78
Dr.GRPO 56.60 29.00 75.51 53.70  +8.17
Dr.GRPO w/ RePAIR™ 59.00 29.00 75.58 54.53  +9.00
Dr.GRPO w/ RePAIR 64.20 30.00 75.73 56.64 +11.11
REINFORCE++ 57.60 29.00 75.89 54.16  +8.63
REINFORCE++ w/ RePAIR™ 58.80 29.40 76.04 5475 +9.22
REINFORCE++ w/ RePAIR 59.80 30.00 76.04 55.28 +9.75

5.1 EXPERIMENTAL SETUPS

In order to comprehensively evaluate the effectiveness of our proposed method, we selected language
models of varying scales and several representative reinforcement learning algorithms as baselines.

Foundational Models: We apply it to two open-source models of different sizes to demonstrate
the scalability and model-agnostic nature of our approach: (1) Qwen2.5-0.5B-Instruct [Yang et al.
(2025), a lightweight, instruction-tuned model; (2) Qwen2.5-Math-1.5B|Yang et al.|(2024a)), a model
specifically optimized for the mathematical domain. In resource-intensive reinforcement learning,
the smaller models reduce computational costs, enable faster iteration and large-scale experimenta-
tion, and provide a more controllable environment for validating reward modeling and rule-based.

Reinforcement Learning Algorithms: We benchmark our method against three reinforcement
learning algorithms to ensure a fair and thorough comparison, including GRPO |Shao et al.| (2024),
Dr.GRPO [Liu et al.|(2025), and REINFORCE++ Hu et al.| (2025). Similarly to GRPO, we modify
only the advantage estimation functions in each RL algorithm.

Evaluation Benchmarks: We assess model performance on five reasoning benchmarks, including
mathematical games (Game of 24 |Yao et al.[(2023)), planning tasks (Blocksworld Valmeekam et al.
(2023))), and diverse mathematical problem sets (GSMS8K |Cobbe et al.| (2021), AIME24 AI-MO
(2024a), AMC23 |AI-MO)| (2024b)). We report the accuracy (%) on each benchmark.

Implementation Details: All experiments are conducted on a system equipped with 2 * NVIDIA
A100 (40G) GPUs. Each trained model is evaluated 5 times and reports the average results. Further
details on automatic rule extraction and reinforcement learning are provided in Appendix[A.3]

7



Under review as a conference paper at ICLR 2026

5.2 MAIN RESULTS

We evaluated simple benchmarks on both 0.5B and 1.5B models, with the results summarized in Ta-
blem For more challenging mathematical benchmarks, due to the limitations of the smaller models,
we conducted experiments only on the 1.5B model, and the corresponding results are presented in
Table 2| There are several key trends that can be observed from the results as follows:

RePAIR surpasses all com-
peting methods across most
evaluated tasks. Specif-
ically, RePAIR delivers sub- Method AIME24 AMC23 Avg. A1)
stantial performance gains of g o 10.20 56.71  33.46 _

9.83% for the base models

Table 2: Performance comparison of different methods across com-
plex math reasoning benchmarks on Qwen2.5-Math-1.5B.

and 2.23% for other compet-  GRPO 13.33 5750 3542 +1.96
itive RL algorithms without GRPO w/ RePAIR 13.33 58.75 36.04 +2.58
rules on average, highlight-  Dr.GRPO 11.11 57.08  34.10 +0.64
ing its effectiveness and scal- Dr.GRPO w/ RePAIR 14.44 58.75 36.60 +3.14
ability. Even on the chal-  REINFORCE++ 13.33 57.08 3521 +1.75

lenging AIME24 benchmark, ~ REINFORCE++ w/ RePAIR  14.44 58.54 3649 +3.03
RePAIR brings notable im-

provements, such as a 3.33 gain within the Dr.GRPO framework.

Adaptive rule weighting is more effective than fixed weights. As shown in Table[I] the RePAIR
yields substantially greater performance gains compared to RePAIR™, a variant without adaptive
rule weighting. This suggests that dynamically adjusting rule weight provides more effective reward
shaping, leading to improved policy optimization.

RePAIR is an algorithm-agnostic and universally applicable enhancement module. RePAIR
contributes consistently regardless of the policy update method and model size, which indicates that
RePAIR is a general plug-in for almost any RL algorithm for any LLM.

RePAIR generalizes across tasks without handcrafted rewards. RePAIR demonstrates robust
performance across diverse reasoning tasks without relying on task-specific reward engineering, as
its rules are automatically extracted from model behaviors.

RePAIR performs better in highly structured yet reward-sparse tasks. In the combinatorial and
reward-sparse Game of 24 task, RePAIR achieves the largest performance gain among competitive
RL algorithms, with an improvement of 5.1%, demonstrating its effectiveness in guiding exploration
and handling sparse rewards.

5.3 ANALYSIS

gom[;arisonl.of Dfiffelr ent Rules: dFl;()) Vﬁli' Table 3: Comparison of model performance on Game
PZtIeRt ¢ quality of rules %enerate Y RE" of 24 task using unverified rules (RULE) versus our
» We compare its performance agaimnst . o0 ryles (RePAIR) with Qwen2.5-Math-1.5B.

a baseline RULE that uses naively ex-

tracted, unfiltered rules. As shown in Table = Method GRPO Dr. GRPO REINFORCE++
[Bl the validated rules from RePAIR consis- RULE 56.2 60.2 502
tently outperform the unverified rules from  RePAIR (ours)  56.6 64.2 59.8
RULE. Notably, when applied to Dr.GRPO, A (1) +0.40 +4.00 +0.60

RePAIR achieves a substantial improve-
ment of 4%. These results highlight that our rule validation provides higher-quality training
signals and leads to more effective policy optimization. Meanwhile, we observe that increasing
the number of rules does not necessarily lead to better learning performance. This suggests that re-
inforcement learning struggles to exploit all available rules, whereas a smaller subset of high-quality
rules offers more stable and clearer learning signals.

Model Generalization: In order to assess the out-of-distribution (OOD) generalization capabilities
of RePAIR, we train the Qwen2.5-Math-1.5B on the GSM8K and evaluate it on three unseen reason-
ing benchmarks: AIME24 Li et al.| (2024), AMC23 |Li et al.| (2024), and Math500 |[Hendrycks et al.
(2021). As illustrated in Figure[3| our method consistently outperforms all baseline approaches on
these tasks, demonstrating that RePAIR does not rely on overfitting and exhibits effective gener-
alization beyond the training distribution. More experiments are provided in Appendix



Under review as a conference paper at ICLR 2026

GSM8K — AIME24 GSM8K — AMC23 GSM8K — MATH500

58

57

Accuracy (%)
\ N\

Accuracy (%)
Accuracy (%)

o 56

i

9 72. —
GRPO Dr.GRPO REINFORCE++ GRPO Dr.GRPO REINFORCE++ GRPO Dr.GRPO REINFORCE++

—-: Base [N GRPO [EZZ GRPOw/RePAIR  [EEN DrGRPO [ Dr.GRPO w/RePAIR  EEEI REINFORCE++  [EZEl REINFORCE++ w/RePARR |

Figure 3: Out-of-distribution performance across different methods.

Effects of RePAIR on Training Pro-  °t— 0r
cess: We compare the test accuracy — °sf = """
of different methods across differ-
ent gradient steps to analyze the ef-
fects of rule-based process rewards
on the training process. As shown B g B gy
in Figure A RePAIR leads to bet-
ter performance as the training step
increases, which indicates that the
model trained by RePAIR effectively learns to align with injected rules.

Effects of RePAIR on Reasoning Behav- 1., 4. Eyajuation of reasoning trajectories under

for: We evaluate the .reasoni'ng trajectorj S three rule-based metrics on the Game of 24 task with
generated by LLMs trained with the baseline Qwen2.5-Math-1.5B

and RePAIR to assess the impact of symbolic

—— REINFORCE
—— REINFORCE w/ RePAIR

Accuracy
S
[
Accuracy
I3

°
=

°
@

Figure 4: Comparison of performance of accuracy on the
training process with Qwen2.5-Math-1.5B.

rule supervision on model behavior. For each ~ Method Support Confidence Succg
rule, we compute its support, confidence, and ~Grpo 0.39 051 0.44
success rate on these reasoning trajectories.  GRPO w/ RePAIR  0.40 0.53 0.54
Table[5]shows the average results for all rules A @M +0.01 +0.02 +0.10

based on GRPO, which reveals that RePAIR
does not increase the number of rule activations, as the support remains similar. However, RePAIR
substantially improves the Succg, indicating that RePAIR teaches the model to apply rules more
accurately and contextually instead of creating new rules. This reveals that RePAIR improves
the semantic alignment between symbolic rules and the model’s decision-making process, leading
to more reliable reasoning trajectories. More detailed experiments are provided in Appendix [A.3]

Efficiency of automatic rule extraction: Table [5]reports the
number of extracted rules and runtime across different bench-
marks. As discussed in Section [#.1.2} the frequent subgraph
mining operates on relatively small-scale data, resulting in ~ Benchmark Rules[#] Time[sec]
a limited number of subgraphs (i.e., candidate rules), while ~Game of 24

Table 5: Rule extraction statistics
and runtime across benchmarks.

most of the runtime is consumed by LLM calls for rule for-  pjocksworld g ggg
malization. After validation, the retained rules are compact GSMSK 4 12.2
yet high-quality, which reduces computational overhead and  AIME24 4 274
improves the effectiveness of reinforcement learning. AMC23 4 14.6

6 CONCLUSION

We proposed RePAIR, a rule-based process-adaptive reinforcement learning framework, which au-
tomatically extracts symbolic reasoning rules from LLM-generated reasoning trajectories, enabling
fine-grained and interpretable supervision. Extensive experiments across multiple tasks demonstrate
that RePAIR yields significant improvements and serves as a general plug-in compatible with a wide
range of RL algorithms and LLMs. By introducing symbolic rules, we enhance reinforcement learn-
ing for LLMs, making it more robust, interpretable, and scalable. This also opens new directions in
automated reward design and symbolic process supervision for complex generative environments.



Under review as a conference paper at ICLR 2026

REFERENCES

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets
of items in large databases. Proceedings of the 1993 ACM SIGMOD international conference on
Management of data, 1993.

AI-MO. Aime 2024, 2024a. URL https://huggingface.co/datasets/AI-MO/
aimo-validation—aime.

AI-MO. Amc 2023, 2024b. URL https://huggingface.co/datasets/AI-MO/
aimo-validation—amc.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, T. J. Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. ArXiv, abs/2204.05862, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, et al. Scaling instruction-finetuned language models. J. Mach. Learn.
Res., 25:70:1-70:53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards. ArXiv, abs/2502.01456, 2025.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, et al. Deepseek-rl: Incentivizing reasoning capability in llms via rein-
forcement learning. ArXiv, abs/2501.12948, 2025.

Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. GRAMI: frequent
subgraph and pattern mining in a single large graph. Proc. VLDB Endow., 7(7):517-528, 2014.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, 2022.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions. ArXiv, abs/2103.03874, 2021.

Jian Hu, Jason Klein Liu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness
to both prompt and reward models, 2025. URL https://arxiv.org/abs/2501.03262,

OpenAl Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, et al. Gpt-4o0 system card. ArXiv, abs/2410.21276, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, et al. Openai ol system card.
CoRR, abs/2412.16720, 2024.

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron C. Courville, and Nicolas Le Roux. Vineppo: Unlocking RL potential for LLM reasoning
through refined credit assignment. CoRR, abs/2410.01679, 2024.

Sungdong Kim, Sanghwan Bae, Jamin Shin, Soyoung Kang, Donghyun Kwak, Kang Min Yoo,
and Minjoon Seo. Aligning large language models through synthetic feedback. ArXiv,
abs/2305.13735, 2023. URL https://api.semanticscholar.org/CorpusID:
258841835l

10


https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.03262
https://api.semanticscholar.org/CorpusID:258841835
https://api.semanticscholar.org/CorpusID:258841835

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, et al. Tiilu 3: Pushing frontiers in open language model post-training. ArXiv,
abs/2411.15124, 2024.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction. ArXiv, abs/1811.07871, 2018. URL
https://api.semanticscholar.org/CorpusID:53745764.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The Largest Public Dataset
in Al4Maths with 860k Pairs of Competition Math Problems and Solutions, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. ArXiv,
abs/2305.20050, 2023.

Qi Lin, Hengtong Lu, Caixia Yuan, Xiaojie Wang, Huixing Jiang, and Wei Chen. Data with high
and consistent preference difference are better for reward model. In AAAI-25, Sponsored by
the Association for the Advancement of Artificial Intelligence, February 25 - March 4, 2025,
Philadelphia, PA, USA, pp. 27482-27490. AAAI Press, 2025.

Chris Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and
Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. ArXiv, abs/2410.18451,
2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision. ArXiv, abs/2406.06592, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, abs/2203.02155, 2022a.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, et al. Training language
models to follow instructions with human feedback. ArXiv, abs/2203.02155, 2022b.

Amrith Rajagopal Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh
Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling
automated process verifiers for llm reasoning. ArXiv, abs/2410.08146, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. ArXiv, abs/2402.03300, 2024.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction, 2nd Edition.
MIT Press, 2018.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, L. Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and
outcome-based feedback. ArXiv, abs/2211.14275, 2022.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - A critical investigation. In Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Processing Systems
2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. ArXiv, abs/2305.17926, 2023a.

11


https://api.semanticscholar.org/CorpusID:53745764
https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Y.Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. ArXiv,
abs/2312.08935, 2023b.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training
top-performing reward models. ArXiv, abs/2406.08673, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, et al. Qwen?2 technical report, 2024a.
URL https://arxiv.org/abs/2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, et al. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
enables learning generalizable reward model for llms. ArXiv, abs/2406.10216, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-
training via process reward guided tree search. ArXiv, abs/2406.03816, 2024.

Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei
Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applica-
tions, challenges, and future. ArXiv, abs/2504.12328, 2025.

A APPENDIX

A.1 REINFORCEMENT LEARNING FOR LLMS

Algorithm [T] outlines the Reinforcement Learning Stage, where the policy is iteratively optimized
using both outcome and process-level rewards. At each iteration, responses are sampled from the
current policy, and corresponding rewards are computed based on a predefined rule set R. Rule
weights are adaptively updated according to their informativeness and impact on learning. The final
policy is refined via a GRPO-based objective, enabling efficient reward shaping and stable policy
improvement.

A.2 EVALUATION BENCHMARK

* Game of 24 |Yao et al.| (2023): A numerical reasoning task that requires generating an
arithmetic expression using four given numbers to reach 24.

* Blocksworld |[Valmeekam et al|(2023)): An embodied planning benchmark where an agent
must reach a specific block stacking arrangement from an initial state through moving
operations such as PickUp and Stack.

* GSMB8k |Cobbe et al.| (2021): A math word problem dataset that emphasizes multi-step
numerical reasoning and arithmetic comprehension.

* AIME24 |AI-MO) (2024a): The AIME24 dataset is a collection of challenging problems
from the 2024 American Invitational Mathematics Examination (AIME).

« AMC23 AI-MO| (2024b)): The AMC23 dataset is a benchmark derived from the American
Mathematics Competitions, designed to evaluate and enhance the reasoning abilities of Al
models on complex mathematical problems.

12


https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2412.15115

Under review as a conference paper at ICLR 2026

Algorithm 1 Reinforcement Learning

Input: Large Language model 7y, ,
weight update rate 7, total iteration N
Output: Optimized policy my
1: Initialize policy mg < g,
2: Initialize rule weights w; = 1 forall r; € R
3: for eachiteration 7 =1,2,..., N do
Sample K trajectories: {y',...,y5} ~mp
Compute outcome rewards: 7, (y '
Compute process rewards: 74 (ys, R) with Eq.
for each rule r; € R do
Compute informativeness Z(7) (r;) with Eq. EI
Update rule weight: w] ™ < w7 +n - AZ()(r;)
10:  end for
11:  Estimate advantage A with Eq. [3]
12:  Update policy: 7y < arg maxg Jarpo(0)
13: end for
14: return optimized policy g

outcome reward verifier r,, rule set R, sample number K,

A A

o

A.3 IMPLEMENTATION DETAILS

For automatic rule extraction, we use Deepseek-R1 |DeepSeek-Al et al.| (2025) to generate 100 rea-
soning trajectories on each task and utilize GPT-40 Hurst et al.| (2024) to formalize symbolic rea-
soning rules that have been validated to meet support ¢ > 0.2 and confidence v > 0.6. We employ
a task-specific training strategy. Due to the strict output format requirements of the Game of 24
and Blocksworld tasks, we first perform Supervised Fine-Tuning (SFT) on the models for these
tasks before reinforcement learning. In contrast, for the GSM8K task, models are trained directly
with reinforcement learning without preliminary SFT. In order to ensure a fair comparison across
all methods, we maintain a consistent configuration for the RL training process. For each training
prompt, 8 responses (rollouts) are sampled. We use a batch size of 32 for all RL experiments. Hy-
perparameters are set as & = 0.5, 8 = 0.5, and p = 0.1. All experiments are conducted on a system
equipped with 2 * NVIDIA A100 (40G) GPUs. Each trained model is evaluated 5 times and reports
the average results.

A.4 ANALYSIS OF MODEL GENERALIZATION

In order to further evaluate the generalization ability of the model, we constructed a more chal-
lenging task, full Blocksworld, to assess the model’s performance after training. By varying the
minimum number of steps needed for a solution, we create a set of test cases with varying difficulty
levels. As shown in Table[6] we observe that smaller models (e.g., with 0.5B and 1.5B parameters)
do not exhibit performance improvements with the injected symbolic reasoning rules; in some cases,
their performance may even deteriorate. This result suggests that small models tend to overfit the
rules present in the training data due to their limited capabilities. Instead of learning the underlying
principles behind the rules, these models memorize them as rigid templates. Consequently, when de-
ployed on out-of-distribution tasks, such templates not only fail to generalize but may even conflict
with the correct problem-solving logic. In contrast, when we apply larger trained models (e.g., with
3B parameters) on full Blocksworld, RePAIR performs better than the baseline. This indicates that
as the model’s capabilities improve, it can better learn the general principles introduced by the rules,
thereby enabling more robust generalization to unseen problems. The capabilities of RePAIR scale
as the base model becomes more powerful.

A.5 EFFECTS OF REPAIR ON REASONING BEHAVIOR

In order to investigate the effects of RePAIR on reasoning behavior, we compare reasoning trajecto-
ries across models in the Game of 24 task with six rules used in the training process. The detailed
results are shown in Table[7} Although RePAIR does not lead to a notable increase in the number of
rule activations, it yields a substantial gain in success rate. This indicates that the model learns to

13



Under review as a conference paper at ICLR 2026

Table 6: Comparison of different models in full Blocksworld

Model Dr.GRPO Dr.GRPO w/RePAIR A (1)
Qwen2.5-0.5B-Instruct 27.50 26.15 -1.35
Qwen2.5-Math-1.5B 38.40 38.40 +0.00
Qwen2.5-3B 46.92 47.69 +0.77

selectively apply rules that are more effective, thereby prioritizing rule quality over mere frequency
of usage.

Table 7: Evaluation of reasoning trajectories on the Game of 24 task with Qwen2.5-Math-1.5B.

Support Confidence Succr
Method Acc.
etho cc 1 T2 T3 Ty rs  Avg. r1 T2 T3 Ty rs  Avg. T T2 T3 Ty rs  Avg.
GRPO 050 082 026 029 019 039 039 082 031 029 049 065 051 050 047 045 034 045 044
GRPO w/ RePAIR 059 081 025 032 021 043 040 081 028 032 054 070 053 059 054 055 048 053 054
Dr.GRPO 057 081 025 031 021 043 040 081 029 031 050 069 052 057 052 052 041 052 051
Dr.GRPO w/ RePAIR 0.67 080 027 032 023 041 041 080 030 032 052 071 053 067 062 059 048 0.61 0.60
REINFORCE++ 056 082 027 029 020 042 040 082 031 029 051 068 052 056 051 049 039 051 049

REINFORCE++ w/RePAIR  0.61 0.83 0.27 032 021 042 041 083 032 032 050 070 053 062 057 058 045 056 0.56

A.6 ADDITIONAL EXPERIMENTAL RESULTS WITH 3B MODELS

Table 8: Performance comparison of different methods on Qwen2.5-3B-Instruct.

Method AMC23 Math500 Avg. A1)
Base 41.67 62.07 51.87 -

GRPO 42.29 63.67 52.98 +1.11
GRPO w/ RePAIR 44.17 64.73 5445 +2.58
Dr.GRPO 41.88 63.47 52.68 +0.81
Dr.GRPO w/ RePAIR 42.92 64.67 53.80 +1.93
REINFORCE++ 42.50 63.33 52.92  +1.05

REINFORCE++ w/ RePAIR 43.54 63.80 53.67 +1.80

To demonstrate the scalability of our approach, we extended our evaluation to the larger Qwen2.5-
3B-Instruct model. As shown in Table [6l RePAIR consistently enhances performance across all
baseline methods. Notably, when integrated with GRPO, it achieves a significant improvement of
2.58%. These results, complementing our findings on smaller models, confirm that our method is
effective and scalable across models of varying sizes.

A.7 REPRODUCIBILITY STATEMENT
We are committed to ensuring the reproducibility of our results. Accordingly, we provide the fol-

lowing information:

(1) Code Availability: All code for training, evaluation, and analysis is publicly available at:
[https://anonymous.4open.science/r/RePAIR-8EFC]. The repository includes detailed README in-
structions for installation, configuration, and usage.

(2) Datasets: All datasets used in this paper are publicly available. We provide links and preprocess-
ing scripts in the repository. No private or restricted-access data were used.

(3) Experimental Settings: The exact hyperparameters used in our experiments are listed in Ap-
pendix[A.3] Random seeds for training and evaluation are explicitly specified, and multiple runs are
reported to account for variance.

(4) Computational Resources: Experiments were conducted on 2 * NVIDIA A100 (40G) GPUs.

14



Under review as a conference paper at ICLR 2026

(5) Environment: The software environment (Python version, PyTorch/TensorFlow version, CUDA
version) is specified in the repository. A requirements.txt file is included for easy environment setup.

15



	Introduction
	Related Work
	RL for LLM Reasoning
	Reward Models for LLM Training

	Preliminaries
	RePAIR Framework
	Automatic Rule Extraction
	Frequent Subgraph Mining
	Rule formalization

	Reinforcement Learning for LLMs
	Rule-based reward construction
	Adaptive rule weighting
	Advantage estimation and policy update


	Experiments
	Experimental Setups
	Main results
	Analysis

	Conclusion
	Appendix
	REINFORCEMENT LEARNING FOR LLMS
	Evaluation Benchmark
	Implementation Details
	Analysis of Model Generalization
	Effects of RePAIR on Reasoning Behavior
	Additional Experimental Results with 3B Models
	Reproducibility Statement


