REPAIR: A RULE-BASED PROCESS-ADAPTIVE REIN-FORCEMENT FOR LARGE LANGUAGE MODEL TRAIN-ING

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Although reinforcement learning (RL) has demonstrated promise in enhancing the reasoning capabilities of Large Language Models (LLMs), the difficulty of reward design has prohibited exploiting the full potential of RL. Previous methods mainly fall into two categories: training a reward model based on human preferences or designing verifiable outcome rewards. However, reward models often suffer from poor interpretability and require extensive annotation for effective training. Verifiable outcome rewards provide sparse signals only, which leads to an ambiguous credit assignment and low training efficiency in RL. These limitations necessitate rewards that provide more efficient, fine-grained supervision. In order to address these, we propose Rule-based Process-AdaptIve Reinforcement (RePAIR) that constructs adaptive verifiable process rewards through symbolic reasoning rules. These rules are automatically derived through the integration of common pattern mining and semantic summarization over the reasoning trajectories of LLMs. For stable training purposes, RePAIR defines a reward informativeness metric that dynamically adjusts the rule's weights based on policy updates. Extensive experiments across three reasoning tasks demonstrate that RePAIR achieves a 6.03% improvement on average and combines well with various advantage functions. Code and data will be available at https://anonymous.4open.science/r/RePAIR-8EFC.

1 Introduction

Reinforcement Learning (RL) has emerged as a promising paradigm for enhancing the reasoning capabilities of large language models (LLMs), particularly in tasks involving multi-step generation strategies Jaech et al. (2024); DeepSeek-AI et al. (2025) and alignment with human preferences Lin et al. (2025). Notably, the effectiveness of RL heavily depends on the reward design, which serves as the core feedback signal that guides model optimization Zhong et al. (2025). Different from traditional RL, where the environment is well-defined with clear structures and regularities, e.g., physical laws, and the consequences of agent's actions can be accurately evaluated Sutton & Barto (2018), when applying RL to LLMs, the conventional "simulatable environment" is replaced by a black-box generative system driven by an LLM Ouyang et al. (2022b). In this case, the state transition process is entirely driven by parameters within the LLM, which introduces a high degree of uncertainty and lacks clear structure or verifiable dynamic rules. As a result, designing effective reward functions becomes significantly more complex and challenging.

Most prevailing methods that apply RL paradigms for LLMs employ the black-box preference model Lin et al. (2025) or the outcome scoring model Bai et al. (2022); Wang et al. (2024) to construct reward signals. However, such reward models lack interpretability and fail to reveal the causality between the agent's action and the reward feedback, which are prone to policy drift and preference bias Gao et al. (2022); Lightman et al. (2023). Moreover, in order to collect adequate high-quality labels for reward model training, researchers either build complicated human annotation pipelines Lightman et al. (2023) or rely on estimation-based methods, which require approximate $10 \times$ more rollouts for each step than sampling the response-level trajectories only Wang et al. (2023b); Kazemnejad et al. (2024). In order to cope with these problems, very recently, verifiable reward has been proposed to provide clear binary feedback through a rule-based reward function Lambert et al. (2024); DeepSeek-AI et al. (2025), which avoids subjective human assessments and complex reward models

training. However, the verifiable outcome rewards employed by industry-leading models DeepSeek-AI et al. (2025) suffer from the challenges of reward sparsity and credit assignment Leike et al. (2018), which fail to capture long-term dependencies and uncertainties in intermediate steps within LLM-generated sequences Cui et al. (2025).

In order to tackle these challenges, a verifiable process reward is desired, where fine-grained interpretable feedback to intermediate reasoning steps Setlur et al. (2024) can be provided. However, it is not trivial to define verifiable process rewards for LLM tasks as follows: (1) Ambiguity of task goals: since the goals in LLM tasks are often ambiguous, the process reward criteria lack clear quantitative boundaries, which are highly dependent on human subjective judgment. (2) High-dimensional and unstructured action space: the output of LLMs is a high-dimensional sequence Ouyang et al. (2022b), and the action space is the entire vocabulary, up to tens of thousands or even hundreds of thousands of tokens, which implicitly encodes syntactic, semantic, and logical contextual information. As a result, verifying intermediate steps becomes extremely complex, which makes it hard to design reward functions that are both objective and consistent. In contrast, traditional RL tasks benefit from low-dimensional and discrete spaces, where such complexity does not arise. (3) Task-specific variability: different tasks have their own specific reasoning logic and semantic structure, which makes it hard to design a universal process reward function Chung et al. (2024). For each new task, it requires a costly and unscalable redesign by domain experts. (4) Adaptivity to model's update: an ideal reward must be dynamically adaptive, as a static reward eventually leads to overoptimization or reward hacking Gao et al. (2022) due to distribution shift. Moreover, the variability in LLM outputs further demands that rewards adapt to policy and environment shifts to ensure generalization and robustness

We propose a rule-based approach (RePAIR) to construct verifiable process rewards, which provides fine-grained, generalizable, and adaptive supervision for reinforcement learning in LLMs. RePAIR treats symbolic reasoning rules, extracted from reasoning trajectories, as the physical laws of the LLM-generated reasoning environment. These rules formalize reasoning patterns as computable logical expressions, thereby providing verifiable and structured constraints in the uncertain and high-dimensional generation space of LLMs. As for the automatic extraction of these rules, RePAIR first converts natural language reasoning trajectories into graphs, which facilitates the identification of common reasoning patterns. These patterns, combined with the semantic features of the reasoning trajectories, are then formalized into symbolic reasoning rules via an LLM. Moreover, for the purpose of efficient and stable policy learning, it dynamically adjusts rule weights during training. Meanwhile, our research focuses on smaller-parameter LLMs (e.g., 0.5B, 1.5B), which are particularly suitable for edge deployment, personalization, and privacy-preserving applications. Under limited computational budgets, these models offer an efficient balance between performance and resource consumption. Our main contributions are summarized as follows.

- **Symbolic reasoning rules.** We automatically extract symbolic reasoning rules from LLM-generated trajectories, which formalize common reasoning patterns as a computable function to provide a verifiable and interpretable basis for process supervision.
- Adaptive and verifiable process rewards. We transform symbolic reasoning rules into verifiable scalar signals and dynamically adjust rules' weights based on a reward informativeness metric, which enables adaptive and fine-grained reward shaping during learning.
- Experimental results. Extensive experiments on three tasks demonstrate the following: (1) RePAIR achieves a 6.03% performance improvement on average; (2) RePAIR is an algorithm-agnostic and universally applicable enhancement module for almost any RL algorithm in LLM training and removes the need for task-specific reward design; and (3) RePAIR enhances the model's ability to generalize beyond the training distribution.

2 RELATED WORK

2.1 RL FOR LLM REASONING

Reinforcement Learning plays a critical role in enhancing the instruction-following capabilities of LLMs through three representative paradigms: (1) *Reinforcement Learning from Human Feedback (RLHF)*: RLHF employs human-annotated preferences to train a reward model, which then guides policy optimization Ouyang et al. (2022a); Wang et al. (2024). Despite its effectiveness in alignment,

Figure 1: Overview of the RePAIR framework.

RLHF is constrained by annotation cost and the lack of interpretability. (2) *Reinforcement Learning from AI Feedback (RLAIF)*: RLAIF replaces human annotators with LLMs to automate feedback collection Kim et al. (2023) with more scalability. However, AI-generated preferences often reflect model biases and lack verifiability, which potentially reinforces errors during fine-tuning. (3) *Reinforcement Learning with Verifiable Rewards (RLVR)*: RLVR, inspired by DeepSeek Math/R1 DeepSeek-AI et al. (2025); Shao et al. (2024), is formally introduced in TÜLU 3 Lambert et al. (2024) as a framework that uses verifiable reward functions to automatically evaluate the correctness of a model's outputs via deterministic rules and provides binary reward signals. However, it relies on high-quality, verifiable datasets with ground-truth, which limits its applicability. Our method advances the RLVR paradigm beyond its original scope: instead of relying on manually designed reward functions grounded in expert-verified labels, we automatically extract symbolic rules from LLM-generated reasoning trajectories and integrate them into the reinforcement learning process as verifiable process rewards.

2.2 REWARD MODELS FOR LLM TRAINING

From the perspective of reward design, there are two main approaches distinguished by their granularity: Outcome Reward Models (ORM) DeepSeek-AI et al. (2025); Shao et al. (2024) and Process Reward Models (PRM) Luo et al. (2024); Zhang et al. (2024). ORM assigns rewards based on the final output labels, which suffers from delayed feedback and the credit assignment problem Yang et al. (2024b); Liu et al. (2024). In contrast, PRM evaluates intermediate reasoning steps to provide more fine-grained supervision. One of the most critical challenges in PRM is reward hacking, where models exploit superficial signals rather than truly following the intended reasoning trajectory Wang et al. (2023a). Furthermore, training PRM requires expensive human annotation Uesato et al. (2022), which makes large-scale implementation impractical. Different from previous methods, we leverage rules to provide process supervision without the requirement of extensive annotation and extra reward model training cost. In addition, our rule-based rewards adapt dynamically during training to better align LLM behavior with target reasoning patterns and mitigate reward hacking.

3 PRELIMINARIES

Reinforcement Learning aims to learn an optimal policy π_{θ} that maximizes the expected cumulative reward, namely return, when interacting with an environment. In the context of autoregressive language modeling, the state at step t is the concatenation of input \mathbf{x} and current response $\mathbf{y}_{< t}$, and the action is the t-th token or step y_t . As a fundamental algorithm that optimizes the learning objective, policy gradient method focuses on the advantage function A_t which quantifies how much better an action is compared to alternatives in a given state:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}, \mathbf{y} \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(y_{t} | \mathbf{x}, \mathbf{y}_{< t}) A_{t} \right], \tag{1}$$

where (\mathbf{x}, \mathbf{y}) represents a pair of input and output. In practice, the advantage function is implemented as cumulative discounted rewards subtracting a baseline $A_t = \sum_{s=t}^T \gamma^{s-t} r(y_s) - b$, where $\gamma \in [0, 1]$

is a discount factor that optionally decays future rewards, and $r(y_s)$ is the reward provided by the environment at time step s with \mathbf{x} and $\mathbf{y}_{< s}$ omitted in conditions.

4 REPAIR FRAMEWORK

In this section, we introduce the RePAIR framework, as shown in Figure 1, which consists of two stages: (1) automatic rule extraction from LLM-generated reasoning trajectories and (2) reinforcement learning with adaptive, verifiable process rewards constructed by these rules.

4.1 AUTOMATIC RULE EXTRACTION

The goal of automatic rule extraction is to derive symbolic reasoning rules from LLM-generated trajectories by identifying common reasoning patterns and abstracting their semantic features. It consists of the following two steps.

4.1.1 Frequent Subgraph Mining

In the first step, we model the reasoning trajectories \mathcal{T} as graphs to capture underlying reasoning patterns. Specifically, for each task, we collect multiple reasoning trajectories and divide them into successful and failed trajectories based on their correctness. Each trajectory set is then modeled as a graph G=(V,E), where nodes V represent intermediate reasoning steps and edges E denote dependencies among these steps. In order to identify common reasoning patterns, we transform each reasoning step into a vector-based semantic representation. Specifically, given some problems and their solutions, we prompt an LLM to summarize key semantic features, which are then encoded into a structured feature vector. Each reasoning step in the trajectory is thus mapped into an embedding space where semantically similar steps share aligned representations. These vector-based labels serve as semantic labels in the reasoning graph. An illustrative example is shown in Figure 2. Based on these labeled graphs, we apply the frequent subgraph mining method, GRAMI Elseidy et al. (2014), to extract a set of subgraphs $\mathcal S$ that appear at least σ times.

Figure 2: Example of semantic feature extraction and vector label construction on Game of 24 task.

4.1.2 Rule formalization

In the second step, we formalize the discovered frequent subgraphs $\mathcal S$ into symbolic reasoning rules by prompting an LLM with structured descriptions of the nodes in each subgraph. Specifically, we construct a prompt $\pi = \texttt{Prompt}(\mathcal S, \mathsf{desc}(v) \mid v \in V)$, where $\mathsf{desc}(v)$ includes both the semantic interpretation of the node label and its topological context. The semantic interpretation is obtained from the statistical distribution of attribute values. Based on this prompt π , the LLM is instructed to generate specific, executable rules. We refer to them as symbolic reasoning rules expressed in **first-order logic expressions**:

$$r: X \to A$$

where X is a conjunction of predicates that describe the state of the reasoning step, and A is a predicate that represents the corresponding action the model should take in this step. Each predicate is a Boolean function defined over the semantic attributes of the reasoning steps. We refer to X as the precondition of r and A as the consequence of r. Note that A can be an empty set, which means the rule encodes only state constraints without prescribing a specific action.

Definition 1 (Rule Matching) Given a reasoning step instance y_s and a rule $r: X \to A$, we say that y_s matches r, denoted as $y_s \vDash r$, if y_s simultaneously satisfies the rule's precondition X and consequence A. More generally, we write $y_s \vDash X$ if y_s satisfies only the precondition part X.

Based on Definition 1, we introduce each rule's support and confidence over reasoning trajectories \mathcal{T} Agrawal et al. (1993). For a rule $r: X \to A$, its support $\varphi(r)$ and confidence $\gamma(r)$ is defined as:

$$\varphi(r) = \frac{|\{T_i \mid y_s \vDash X \land A, y_s \in T_i\}|}{|\mathcal{T}|}, \quad \gamma(r) = \frac{|\{T_i \mid y_s \vDash X \land A, y_s \in T_i\}|}{|\{T_i \mid y_s \vDash X, y_s \in T_i\}|}$$

where $T_i \in \mathcal{T}$. Support measures the coverage of a rule across the reasoning trajectories, while confidence reflects the reliability of the rule's conclusion given that its precondition holds. For each symbolic reasoning rule generated by the LLM, we evaluate these metrics to verify its validity and robustness, ensuring that they capture genuine reasoning patterns rather than spurious correlations or hallucinations produced by the LLM. Only rules with sufficiently high support and confidence over \mathcal{T} are retained for downstream use. The verification outcomes, including φ , γ , and examples of satisfied instances and violated instances, are subsequently incorporated into the next prompt to guide the LLM towards improved rule formalization.

Example 1 The following are examples of symbolic reasoning rules in the Game of 24 task.

- $r_1: IsSmall(x,y) \land IsClose(x,y) \rightarrow Operation(x,y,+)$. This rule suggests applying addition to x and y if they are relatively small and numerically close.
- r_2 : IsFactor $(z,24) \rightarrow \phi$. It means that if the result z is a factor of 24, it is allowed regardless of the action.
- r_3 : IsFactor $(x, y, 24) \rightarrow Operation(x, y, <math>\times)$. It suggests applying multiplication to x and y when they are the factors of 24.

Remark: Although we employ the LLMs for node labeling and rule formalization, our approach differs from the uncontrollable method that directly generates rules from reasoning trajectories using LLMs. By grounding rules in explicit matching criteria, we achieve greater consistency, interpretability, and reliability. Rule extraction is performed offline, and although frequent subgraph mining is theoretically NP-hard, the reasoning graphs in practice are sufficiently small to make the process tractable. Moreover, LLM calls during rule formalization are restricted to only a few subgraphs (typically fewer than ten), rendering the overall cost of rule mining negligible in comparison with online reinforcement learning.

4.2 REINFORCEMENT LEARNING FOR LLMS

4.2.1 Rule-based reward construction

Given a set of verifiable symbolic reasoning rules $\mathcal{R} = \{r_1, r_2, \dots, r_K\}$ from the reasoning trajectories, we integrate them as supervision signals into the reinforcement learning to guide policy optimization. Each rule $r_i \in \mathcal{R}$ is served as a reward function $r_{\phi}(y_s, r_i)$, which assigns scalar feedback to each reasoning step y_s in a generated trajectory $\mathbf{y} = \{y_1, y_2, \dots, y_T\}$ based on whether y_s satisfies the rule. Specifically, we define:

$$r_{\phi}(y_s, r_i) = \begin{cases} \rho, & \text{if } y_s \vDash r_i \\ 0, & \text{otherwise} \end{cases}$$
 (2)

where ρ is a predefined reward value, which is set 1 in the positive rules extracted from successful trajectories, or -1 in the negative rules extracted from failed trajectories.

In order to compute the rule-based process reward, we aggregate scalar feedback from relevant rules. Rather than averaging over the entire rule set \mathcal{R} , we restrict computation to the subset of activated rules $\mathcal{R}_u = \{r_i : X \to A \mid y_s \models X\}$, where y_s satisfies the precondition of each rule. This avoids diluting the supervision with unrelated rules, especially when \mathcal{R} is large. Accordingly, we define the rule-based process reward as:

$$r_{\phi}(y_s, \mathcal{R}) = \frac{1}{|\mathcal{R}_u|} \sum_{i=1}^K \omega_i r_{\phi}(y_s, r_i), \tag{3}$$

where K is the number of rules in \mathcal{R} and ω_i is a rule weight.

 Example 2 Consider a reasoning trajectory consisting in Game of 24 task with three steps: $y_1: 1+5=6, left: \{6,6,10\}, \ y_2: 10-6=4, left: \{4,6\}, \ and \ y_3: 6\times 4=24, left: \{24\}.$ We analyze each reasoning step to identify the sets of rules it satisfies and activates, respectively, as illustrated in Example 1. Assuming $\rho=1$ and $\omega_i=1$ to each activated rule, the process reward is computed as follows: (1) for $y_1: y_1 \models r_1, y_1 \models r_2$; and $\mathcal{R}_u=\{r_1,r_2\}$. Thus $r_\phi(y_1,\mathcal{R})=\frac{1}{2}\times(1+1)=1$; (2) for $y_2: y_2 \models r_2$; and $\mathcal{R}_u=\{r_1,r_2\}$. Thus $r_\phi(y_2,\mathcal{R})=\frac{1}{2}\times1=\frac{1}{2}$; and for $y_3: y_3 \models r_2, y_3 \models r_3$; and $\mathcal{R}_u=\{r_1,r_2,r_3\}$. Thus $r_\phi(y_3,\mathcal{R})=\frac{1}{3}\times(1+1)=\frac{2}{3}$.

Verifiability: Each symbolic reasoning rule has a well-defined precondition and consequence, and the matching relation $y_s \models r$ is binary and computable, which ensures safe and verifiable reward assignment. Since the rules are extracted directly from both successful and failed trajectories, the resulting reward signals are inherently grounded in empirical evidence, while support and confidence metrics further establish their reliability across trajectories. As a result, the rule-based reward function is fully computable, transparent, and auditable, which enables reproducible reward computation beyond the reach of opaque or purely learned models.

4.2.2 Adaptive rule weighting

However, the extracted rules exhibit obvious variations in both generality and predictive reliability. Broad rules $(e.g., r_1)$ are frequently activated across reasoning steps but offer weaker signals for task success, whereas specific rules $(e.g., r_3)$ occur less but provide more reliable indicators of correct reasoning. The uniform treatment of all rules fails to capture these distinctions, which results in suboptimal reward shaping and overoptimization. This issue is exacerbated during training, as the evolving policy alters the distribution of reasoning trajectories.

In order to address this limitation, we define a reward informativeness metric that quantifies the utility of each rule under the current policy. This metric enables dynamic adjustment of rule weights, thereby allowing the reward function to prioritize more informative rules during training. Specifically, the informativeness of rule r_i at the τ -th policy update iteration is defined as a weighted sum of its hit rate Hit_R and success rate Succ_R :

$$\mathcal{I}^{(\tau)}(r_{i}) = \alpha \cdot \underbrace{\frac{1}{|\mathcal{T}^{(\tau)}|} \sum_{y_{s} \in \mathcal{T}^{(\tau)}} \mathbb{I}\{y_{s} \models r_{i}\} + \beta \cdot \underbrace{\frac{\sum_{y_{s} \in \mathcal{T}^{(\tau)}} \mathbb{I}\{y_{s} \models r_{i}\} \cdot Succ(y_{s})}{\sum_{y_{s} \in \mathcal{T}^{(\tau)}} \mathbb{I}\{y_{s} \models r_{i}\}}}_{\text{success rate Succ}_{R}}$$
(4)

where $|\mathcal{T}^{(\tau)}|$ denotes the set of reasoning steps sampled under the current policy, $\mathbb{I}\{y_s \models r_i\}$ is an indicator function that equals 1 if step y_s satisfies rule r_i , and 0 otherwise, and $Succ(y_s) \in \{0,1\}$ indicates whether step y_s eventually leads to the correct answer. We then adaptively update the rule weight based on the informativeness gain between iterations: $\omega_i^{(\tau+1)} = \omega_i^{(\tau)} + \eta \cdot \Delta \mathcal{I}^{(\tau)}(r_i)$, where $\Delta \mathcal{I}^{(\tau)}(r_i) = \mathcal{I}^{(\tau)}(r_i) - \mathcal{I}^{(\tau-1)}(r_i)$ and η is a learning rate.

4.2.3 ADVANTAGE ESTIMATION AND POLICY UPDATE

After obtaining step-level process rewards, we estimate the advantage using Monte-Carlo (MC) estimators, a simple yet widely adopted approach shown to produce stable results in practice Shao et al. (2024); Hu et al. (2025). For each sampled reasoning trajectory, the return at each step is computed by accumulating process rewards. In order to mitigate variance and improve optimization stability, these returns are typically normalized. When an outcome reward is available, its return is computed separately, since directly mixing their values may lead to numerical instability Shao et al. (2024). The final advantage function is defined as the sum of normalized process and outcome returns. Following the normalization scheme used in GRPO Shao et al. (2024), the advantage at t-th step in trajectory \mathbf{y}^i is given by:

$$A_{t}^{i} = \sum_{s=t}^{|\mathbf{y}^{i}|} \underbrace{\begin{bmatrix} r_{\phi}(y_{s}^{i}, \mathcal{R}) - \operatorname{mean}\left(\frac{r_{\phi}(\mathbf{y}^{j}, \mathcal{R})}{|\mathbf{y}^{j}|}\right) \\ \operatorname{std}\left(\frac{r_{\phi}(\mathbf{y}^{j}, \mathcal{R})}{|\mathbf{y}^{j}|}\right) \end{bmatrix}}_{\text{Outcome rewards}} + \underbrace{\frac{r_{o}(\mathbf{y}^{i}) - \operatorname{mean}(r_{o}(\mathbf{y}^{j}))}{\operatorname{std}(r_{o}(\mathbf{y}^{j}))}}_{\text{Outcome rewards}},$$
(5)

where $r_o(\mathbf{y}^i)$ is an outcome verifier that equals 1 if the outcome label is correct, and 0 otherwise. This advantage estimate is then used in the clipped surrogate loss of GRPO for updating the policy.

5 EXPERIMENTS

Table 1: Performance comparison of different methods. RePAIR is our proposed rule-based method, while RePAIR⁻ is a variant without adaptive rule weighting. "*" indicates results after SFT.

Method	Game of 24	Blocksworld	GSM8K	Avg.	Δ (\uparrow)
Qwen2.5-0.5B-Instruct					
Base	33.00*	24.00*	25.26	27.42	-
GRPO	42.60	25.00	34.69	34.10	+6.68
GRPO w/ RePAIR ⁻	43.00	25.40	35.01	34.47	+7.05
GRPO w/ RePAIR	45.00	26.00	35.01	35.34	+7.92
Dr.GRPO	47.00	25.00	33.82	35.27	+7.85
Dr.GRPO w/ RePAIR -	47.00	26.20	34.02	35.74	+8.32
Dr.GRPO w/ RePAIR	55.00	27.00	34.19	38.73	+11.31
REINFORCE++	46.80	25.00	34.89	35.56	+8.14
REINFORCE++ w/ RePAIR -	48.00	25.60	33.75	35.78	+8.36
REINFORCE++ w/ RePAIR	51.00	26.00	35.48	37.49	+10.07
Qwen2.5-Math-1.5B					
Base	35.00*	26.00*	75.58	45.53	-
GRPO	50.40	29.00	75.43	51.61	+6.08
GRPO w/ RePAIR ⁻	52.80	30.00	76.04	52.95	+7.42
GRPO w/ RePAIR	56.60	30.00	76.34	54.31	+8.78
Dr.GRPO	56.60	29.00	75.51	53.70	+8.17
Dr.GRPO w/ RePAIR -	59.00	29.00	75.58	54.53	+9.00
Dr.GRPO w/ RePAIR	64.20	30.00	75.73	56.64	+11.11
REINFORCE++	57.60	29.00	75.89	54.16	+8.63
REINFORCE++ w/ RePAIR -	58.80	29.40	76.04	54.75	+9.22
REINFORCE++ w/ RePAIR	59.80	30.00	76.04	55.28	+9.75

5.1 EXPERIMENTAL SETUPS

In order to comprehensively evaluate the effectiveness of our proposed method, we selected language models of varying scales and several representative reinforcement learning algorithms as baselines.

Foundational Models: We apply it to two open-source models of different sizes to demonstrate the scalability and model-agnostic nature of our approach: (1) Qwen2.5-0.5B-Instruct Yang et al. (2025), a lightweight, instruction-tuned model; (2) Qwen2.5-Math-1.5B Yang et al. (2024a), a model specifically optimized for the mathematical domain. In resource-intensive reinforcement learning, the smaller models reduce computational costs, enable faster iteration and large-scale experimentation, and provide a more controllable environment for validating reward modeling and rule-based.

Reinforcement Learning Algorithms: We benchmark our method against three reinforcement learning algorithms to ensure a fair and thorough comparison, including GRPO Shao et al. (2024), Dr.GRPO Liu et al. (2025), and REINFORCE++ Hu et al. (2025). Similarly to GRPO, we modify only the advantage estimation functions in each RL algorithm.

Evaluation Benchmarks: We assess model performance on five reasoning benchmarks, including mathematical games (Game of 24 Yao et al. (2023)), planning tasks (Blocksworld Valmeekam et al. (2023)), and diverse mathematical problem sets (GSM8K Cobbe et al. (2021), AIME24 AI-MO (2024a), AMC23 AI-MO (2024b)). We report the accuracy (%) on each benchmark.

Implementation Details: All experiments are conducted on a system equipped with 2 * NVIDIA A100 (40G) GPUs. Each trained model is evaluated 5 times and reports the average results. Further details on automatic rule extraction and reinforcement learning are provided in Appendix A.3.

5.2 Main results

We evaluated simple benchmarks on both 0.5B and 1.5B models, with the results summarized in Table 1. For more challenging mathematical benchmarks, due to the limitations of the smaller models, we conducted experiments only on the 1.5B model, and the corresponding results are presented in Table 2. There are several key trends that can be observed from the results as follows:

RePAIR surpasses all competing methods across most evaluated tasks. Specifically, RePAIR delivers substantial performance gains of 9.83% for the base models and 2.23% for other competitive RL algorithms without rules on average, highlighting its effectiveness and scalability. Even on the challenging AIME24 benchmark, RePAIR brings notable im-

Table 2: Performance comparison of different methods across complex math reasoning benchmarks on Qwen2.5-Math-1.5B.

Method	AIME24	AMC23	Avg.	Δ (\uparrow)
Base	10.20	56.71	33.46	-
GRPO	13.33	57.50	35.42	+1.96
GRPO w/ RePAIR	13.33	58.75	36.04	+2.58
Dr.GRPO	11.11	57.08	34.10	+0.64
Dr.GRPO w/ RePAIR	14.44	58.75	36.60	+3.14
REINFORCE++	13.33	57.08	35.21	+1.75
REINFORCE++ w/ RePAIR	14.44	58.54	36.49	+3.03

provements, such as a 3.33 gain within the Dr.GRPO framework.

Adaptive rule weighting is more effective than fixed weights. As shown in Table 1, the RePAIR yields substantially greater performance gains compared to RePAIR⁻, a variant without adaptive rule weighting. This suggests that dynamically adjusting rule weight provides more effective reward shaping, leading to improved policy optimization.

RePAIR is an algorithm-agnostic and universally applicable enhancement module. RePAIR contributes consistently regardless of the policy update method and model size, which indicates that RePAIR is a general plug-in for almost any RL algorithm for any LLM.

RePAIR generalizes across tasks without handcrafted rewards. RePAIR demonstrates robust performance across diverse reasoning tasks without relying on task-specific reward engineering, as its rules are automatically extracted from model behaviors.

RePAIR performs better in highly structured yet reward-sparse tasks. In the combinatorial and reward-sparse Game of 24 task, RePAIR achieves the largest performance gain among competitive RL algorithms, with an improvement of 5.1%, demonstrating its effectiveness in guiding exploration and handling sparse rewards.

5.3 Analysis

Comparison of Different Rules: To validate the quality of rules generated by Re-PAIR, we compare its performance against a baseline RULE that uses naively extracted, unfiltered rules. As shown in Table 3, the validated rules from RePAIR consistently outperform the unverified rules from RULE. Notably, when applied to Dr.GRPO, RePAIR achieves a substantial improve-

Table 3: Comparison of model performance on Game of 24 task using unverified rules (RULE) versus our curated rules (RePAIR) with Qwen2.5-Math-1.5B.

Method	GRPO	Dr. GRPO	REINFORCE++
RULE	56.2	60.2	59.2
RePAIR (ours)	56.6	64.2	59.8
$\Delta (\uparrow)$	+0.40	+4.00	+0.60

ment of 4%. These results highlight that **our rule validation provides higher-quality training signals and leads to more effective policy optimization**. Meanwhile, we observe that increasing the number of rules does not necessarily lead to better learning performance. This suggests that reinforcement learning struggles to exploit all available rules, whereas a smaller subset of high-quality rules offers more stable and clearer learning signals.

Model Generalization: In order to assess the out-of-distribution (OOD) generalization capabilities of RePAIR, we train the Qwen2.5-Math-1.5B on the GSM8K and evaluate it on three unseen reasoning benchmarks: AIME24 Li et al. (2024), AMC23 Li et al. (2024), and Math500 Hendrycks et al. (2021). As illustrated in Figure 3, our method consistently outperforms all baseline approaches on these tasks, demonstrating that **RePAIR does not rely on overfitting and exhibits effective generalization beyond the training distribution**. More experiments are provided in Appendix A.4.

Figure 3: Out-of-distribution performance across different methods.

Effects of RePAIR on Training Process: We compare the test accuracy of different methods across different gradient steps to analyze the effects of rule-based process rewards on the training process. As shown in Figure 4, RePAIR leads to better performance as the training step increases, which indicates that the

Figure 4: Comparison of performance of accuracy on the training process with Qwen2.5-Math-1.5B.

model trained by RePAIR effectively learns to align with injected rules.

Effects of RePAIR on Reasoning Behavior: We evaluate the reasoning trajectories generated by LLMs trained with the baseline and RePAIR to assess the impact of symbolic rule supervision on model behavior. For each rule, we compute its support, confidence, and success rate on these reasoning trajectories. Table 5 shows the average results for all rules based on GRPO, which reveals that RePAIR

Table 4: Evaluation of reasoning trajectories under three rule-based metrics on the Game of 24 task with Qwen2.5-Math-1.5B.

Method	Support	Confidence	$Succ_R$
GRPO	0.39	0.51	0.44
GRPO w/ RePAIR	0.40	0.53	0.54
$\Delta (\uparrow)$	+0.01	+0.02	+0.10

does not increase the number of rule activations, as the support remains similar. However, RePAIR substantially improves the $Succ_R$, indicating that **RePAIR teaches the model to apply rules more accurately and contextually instead of creating new rules**. This reveals that RePAIR improves the semantic alignment between symbolic rules and the model's decision-making process, leading to more reliable reasoning trajectories. More detailed experiments are provided in Appendix A.5.

Efficiency of automatic rule extraction: Table 5 reports the number of extracted rules and runtime across different benchmarks. As discussed in Section 4.1.2, the frequent subgraph mining operates on relatively small-scale data, resulting in a limited number of subgraphs (*i.e.*, candidate rules), while most of the runtime is consumed by LLM calls for rule formalization. After validation, the retained rules are compact yet high-quality, which reduces computational overhead and improves the effectiveness of reinforcement learning.

Table 5: Rule extraction statistics and runtime across benchmarks.

Benchmark	Rules[#]	Time[sec]
Game of 24	9	36.3
Blocksworld	5	25.2
GSM8K	4	12.2
AIME24	4	27.4
AMC23	4	14.6

6 CONCLUSION

We proposed RePAIR, a rule-based process-adaptive reinforcement learning framework, which automatically extracts symbolic reasoning rules from LLM-generated reasoning trajectories, enabling fine-grained and interpretable supervision. Extensive experiments across multiple tasks demonstrate that RePAIR yields significant improvements and serves as a general plug-in compatible with a wide range of RL algorithms and LLMs. By introducing symbolic rules, we enhance reinforcement learning for LLMs, making it more robust, interpretable, and scalable. This also opens new directions in automated reward design and symbolic process supervision for complex generative environments.

REFERENCES

- Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets of items in large databases. *Proceedings of the 1993 ACM SIGMOD international conference on Management of data*, 1993.
- AI-MO. Aime 2024, 2024a. URL https://huggingface.co/datasets/AI-MO/aimo-validation-aime.
- AI-MO. Amc 2023, 2024b. URL https://huggingface.co/datasets/AI-MO/aimo-validation-amc.
 - Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn Drain, Stanislav Fort, Deep Ganguli, T. J. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *ArXiv*, abs/2204.05862, 2022.
 - Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, et al. Scaling instruction-finetuned language models. *J. Mach. Learn. Res.*, 25:70:1–70:53, 2024.
 - Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021. URL https://arxiv.org/abs/2110.14168.
 - Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning Ding. Process reinforcement through implicit rewards. *ArXiv*, abs/2502.01456, 2025.
 - DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *ArXiv*, abs/2501.12948, 2025.
 - Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. GRAMI: frequent subgraph and pattern mining in a single large graph. *Proc. VLDB Endow.*, 7(7):517–528, 2014.
 - Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *International Conference on Machine Learning*, 2022.
 - Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xiaodong Song, and Jacob Steinhardt. Numinamath: The largest public dataset in ai4maths with 860k pairs of competition math problems and solutions. *ArXiv*, abs/2103.03874, 2021.
 - Jian Hu, Jason Klein Liu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with robustness to both prompt and reward models, 2025. URL https://arxiv.org/abs/2501.03262.
 - OpenAI Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, et al. Gpt-4o system card. *ArXiv*, abs/2410.21276, 2024.
- Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, et al. Openai o1 system card. *CoRR*, abs/2412.16720, 2024.
- Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy, Aaron C. Courville, and Nicolas Le Roux. Vineppo: Unlocking RL potential for LLM reasoning through refined credit assignment. *CoRR*, abs/2410.01679, 2024.
- Sungdong Kim, Sanghwan Bae, Jamin Shin, Soyoung Kang, Donghyun Kwak, Kang Min Yoo, and Minjoon Seo. Aligning large language models through synthetic feedback. *ArXiv*, abs/2305.13735, 2023. URL https://api.semanticscholar.org/CorpusID: 258841835.

- Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, et al. Tülu 3: Pushing frontiers in open language model post-training. *ArXiv*, abs/2411.15124, 2024.
- Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable agent alignment via reward modeling: a research direction. *ArXiv*, abs/1811.07871, 2018. URL https://api.semanticscholar.org/CorpusID:53745764.
- Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul, Longhui Yu, Albert Q. Jiang, Ziju Shen, et al. Numinamath: The Largest Public Dataset in AI4Maths with 860k Pairs of Competition Math Problems and Solutions, 2024.
- Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *ArXiv*, abs/2305.20050, 2023.
- Qi Lin, Hengtong Lu, Caixia Yuan, Xiaojie Wang, Huixing Jiang, and Wei Chen. Data with high and consistent preference difference are better for reward model. In AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 March 4, 2025, Philadelphia, PA, USA, pp. 27482–27490. AAAI Press, 2025.
- Chris Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *ArXiv*, abs/2410.18451, 2024.
- Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.org/abs/2503.20783.
- Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language models by automated process supervision. *ArXiv*, abs/2406.06592, 2024.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback. *ArXiv*, abs/2203.02155, 2022a.
- Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, et al. Training language models to follow instructions with human feedback. *ArXiv*, abs/2203.02155, 2022b.
- Amrith Rajagopal Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated process verifiers for llm reasoning. *ArXiv*, abs/2410.08146, 2024.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li, Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *ArXiv*, abs/2402.03300, 2024.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement learning an introduction, 2nd Edition.* MIT Press, 2018.
- Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, L. Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process- and outcome-based feedback. *ArXiv*, abs/2211.14275, 2022.
- Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning abilities of large language models A critical investigation. In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023*, 2023.
- Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. *ArXiv*, abs/2305.17926, 2023a.

- Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Y.Wu, and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *ArXiv*, abs/2312.08935, 2023b.
- Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy Zhang, Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset for training top-performing reward models. *ArXiv*, abs/2406.08673, 2024.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, et al. Qwen2 technical report, 2024a. URL https://arxiv.org/abs/2407.10671.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, et al. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.
- Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states enables learning generalizable reward model for llms. *ArXiv*, abs/2406.10216, 2024b.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 16, 2023, 2023.
- Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm self-training via process reward guided tree search. *ArXiv*, abs/2406.03816, 2024.
- Jialun Zhong, Wei Shen, Yanzeng Li, Songyang Gao, Hua Lu, Yicheng Chen, Yang Zhang, Wei Zhou, Jinjie Gu, and Lei Zou. A comprehensive survey of reward models: Taxonomy, applications, challenges, and future. *ArXiv*, abs/2504.12328, 2025.

A APPENDIX

A.1 REINFORCEMENT LEARNING FOR LLMS

Algorithm 1 outlines the Reinforcement Learning Stage, where the policy is iteratively optimized using both outcome and process-level rewards. At each iteration, responses are sampled from the current policy, and corresponding rewards are computed based on a predefined rule set R. Rule weights are adaptively updated according to their informativeness and impact on learning. The final policy is refined via a GRPO-based objective, enabling efficient reward shaping and stable policy improvement.

A.2 EVALUATION BENCHMARK

- Game of 24 Yao et al. (2023): A numerical reasoning task that requires generating an arithmetic expression using four given numbers to reach 24.
- Blocksworld Valmeekam et al. (2023): An embodied planning benchmark where an agent must reach a specific block stacking arrangement from an initial state through moving operations such as PickUp and Stack.
- GSM8k Cobbe et al. (2021): A math word problem dataset that emphasizes multi-step numerical reasoning and arithmetic comprehension.
- AIME24 AI-MO (2024a): The AIME24 dataset is a collection of challenging problems from the 2024 American Invitational Mathematics Examination (AIME).
- AMC23 AI-MO (2024b): The AMC23 dataset is a benchmark derived from the American Mathematics Competitions, designed to evaluate and enhance the reasoning abilities of AI models on complex mathematical problems.

Algorithm 1 Reinforcement Learning

```
Input: Large Language model \pi_{\theta_{\text{mit}}}, outcome reward verifier r_o, rule set \mathcal{R}, sample number K,
weight update rate \eta, total iteration N
Output: Optimized policy \pi_{\theta}
 1: Initialize policy \pi_{\theta} \leftarrow \pi_{\theta_{\text{init}}}
 2: Initialize rule weights \omega_i=1 for all r_i\in\mathcal{R}
 3: for each iteration \tau=1,2,\ldots,N do
         Sample K trajectories: \{\mathbf{y}^1, \dots, \mathbf{y}_{-}^K\} \sim \pi_{\theta}
 4:
         Compute outcome rewards: r_o(\mathbf{y}^{1:K})
 5:
 6:
         Compute process rewards: r_{\phi}(y_s, \mathcal{R}) with Eq. 3
 7:
         for each rule r_i \in \mathcal{R} do
            Compute informativeness \mathcal{I}^{(	au)}(r_i) with Eq. 4
 8:
            Update rule weight: \omega_i^{\tau+1} \leftarrow \omega_i^{\tau} + \eta \cdot \Delta \mathcal{I}^{(\tau)}(r_i)
 9:
10:
         end for
11:
         Estimate advantage A with Eq. 5
12:
         Update policy: \pi_{\theta} \leftarrow \arg \max_{\theta} \mathcal{J}_{GRPO}(\theta)
13: end for
14: return optimized policy \pi_{\theta}
```

A.3 IMPLEMENTATION DETAILS

For automatic rule extraction, we use Deepseek-R1 DeepSeek-AI et al. (2025) to generate 100 reasoning trajectories on each task and utilize GPT-40 Hurst et al. (2024) to formalize symbolic reasoning rules that have been validated to meet support $\varphi>0.2$ and confidence $\gamma>0.6$. We employ a task-specific training strategy. Due to the strict output format requirements of the Game of 24 and Blocksworld tasks, we first perform Supervised Fine-Tuning (SFT) on the models for these tasks before reinforcement learning. In contrast, for the GSM8K task, models are trained directly with reinforcement learning without preliminary SFT. In order to ensure a fair comparison across all methods, we maintain a consistent configuration for the RL training process. For each training prompt, 8 responses (rollouts) are sampled. We use a batch size of 32 for all RL experiments. Hyperparameters are set as $\alpha=0.5$, $\beta=0.5$, and $\eta=0.1$. All experiments are conducted on a system equipped with 2 * NVIDIA A100 (40G) GPUs. Each trained model is evaluated 5 times and reports the average results.

A.4 ANALYSIS OF MODEL GENERALIZATION

In order to further evaluate the generalization ability of the model, we constructed a more challenging task, full Blocksworld, to assess the model's performance after training. By varying the minimum number of steps needed for a solution, we create a set of test cases with varying difficulty levels. As shown in Table 6, we observe that smaller models (*e.g.*, with 0.5B and 1.5B parameters) do not exhibit performance improvements with the injected symbolic reasoning rules; in some cases, their performance may even deteriorate. This result suggests that small models tend to overfit the rules present in the training data due to their limited capabilities. Instead of learning the underlying principles behind the rules, these models memorize them as rigid templates. Consequently, when deployed on out-of-distribution tasks, such templates not only fail to generalize but may even conflict with the correct problem-solving logic. In contrast, when we apply larger trained models (*e.g.*, with 3B parameters) on full Blocksworld, RePAIR performs better than the baseline. This indicates that as the model's capabilities improve, it can better learn the general principles introduced by the rules, thereby enabling more robust generalization to unseen problems. **The capabilities of RePAIR scale as the base model becomes more powerful.**

A.5 EFFECTS OF REPAIR ON REASONING BEHAVIOR

In order to investigate the effects of RePAIR on reasoning behavior, we compare reasoning trajectories across models in the Game of 24 task with six rules used in the training process. The detailed results are shown in Table 7. Although RePAIR does not lead to a notable increase in the number of rule activations, it yields a substantial gain in success rate. This indicates that the model learns to

Table 6: Comparison of different models in full Blocksworld

Model	Dr.GRPO	Dr.GRPO w/ RePAIR	$\Delta\left(\uparrow\right)$
Qwen2.5-0.5B-Instruct	27.50	26.15	-1.35
Qwen2.5-Math-1.5B	38.40	38.40	+0.00
Qwen2.5-3B	46.92	47.69	+0.77

selectively apply rules that are more effective, thereby prioritizing rule quality over mere frequency of usage.

Table 7: Evaluation of reasoning trajectories on the Game of 24 task with Qwen2.5-Math-1.5B.

Support				Confidence				Succ_R											
Method	Acc.	r_1	r_2	r_3	r_4	r_5	Avg.	r_1	r_2	r_3	r_4	r_5	Avg.	r_1	r_2	r_3	r_4	r_5	Avg.
GRPO	0.50	0.82	0.26	0.29	0.19	0.39	0.39	0.82	0.31	0.29	0.49	0.65	0.51	0.50	0.47	0.45	0.34	0.45	0.44
GRPO w/ RePAIR	0.59	0.81	0.25	0.32	0.21	0.43	0.40	0.81	0.28	0.32	0.54	0.70	0.53	0.59	0.54	0.55	0.48	0.53	0.54
Dr.GRPO	0.57	0.81	0.25	0.31	0.21	0.43	0.40	0.81	0.29	0.31	0.50	0.69	0.52	0.57	0.52	0.52	0.41	0.52	0.51
Dr.GRPO w/ RePAIR	0.67	0.80	0.27	0.32	0.23	0.41	0.41	0.80	0.30	0.32	0.52	0.71	0.53	0.67	0.62	0.59	0.48	0.61	0.60
REINFORCE++	0.56	0.82	0.27	0.29	0.20	0.42	0.40	0.82	0.31	0.29	0.51	0.68	0.52	0.56	0.51	0.49	0.39	0.51	0.49
REINFORCE++ w/ RePAIR	0.61	0.83	0.27	0.32	0.21	0.42	0.41	0.83	0.32	0.32	0.50	0.70	0.53	0.62	0.57	0.58	0.45	0.56	0.56

A.6 ADDITIONAL EXPERIMENTAL RESULTS WITH 3B MODELS

Table 8: Performance comparison of different methods on Qwen2.5-3B-Instruct.

Method	AMC23	Math500	Avg.	Δ (\uparrow)
Base	41.67	62.07	51.87	-
GRPO	42.29	63.67	52.98	+1.11
GRPO w/ RePAIR	44.17	64.73	54.45	+2.58
Dr.GRPO	41.88	63.47	52.68	+0.81
Dr.GRPO w/ RePAIR	42.92	64.67	53.80	+ 1.93
REINFORCE++ REINFORCE++ w/ RePAIR	42.50	63.33	52.92	+1.05
	43.54	63.80	53.67	+1.80

To demonstrate the scalability of our approach, we extended our evaluation to the larger Qwen2.5-3B-Instruct model. As shown in Table 6, RePAIR consistently enhances performance across all baseline methods. Notably, when integrated with GRPO, it achieves a significant improvement of 2.58%. These results, complementing our findings on smaller models, confirm that our method is effective and scalable across models of varying sizes.

A.7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Accordingly, we provide the following information:

- (1) Code Availability: All code for training, evaluation, and analysis is publicly available at: [https://anonymous.4open.science/r/RePAIR-8EFC]. The repository includes detailed README instructions for installation, configuration, and usage.
- (2) Datasets: All datasets used in this paper are publicly available. We provide links and preprocessing scripts in the repository. No private or restricted-access data were used.
- (3) Experimental Settings: The exact hyperparameters used in our experiments are listed in Appendix A.3. Random seeds for training and evaluation are explicitly specified, and multiple runs are reported to account for variance.
- (4) Computational Resources: Experiments were conducted on 2 * NVIDIA A100 (40G) GPUs.

(5) Environment: The software environment (Python version, PyTorch/TensorFlow version, CUDA version) is specified in the repository. A requirements.txt file is included for easy environment setup.