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ABSTRACT

Although reinforcement learning (RL) has demonstrated promise in enhancing the
reasoning capabilities of Large Language Models (LLMs), the difficulty of reward
design has prohibited exploiting the full potential of RL. Previous methods mainly
fall into two categories: training a reward model based on human preferences or
designing verifiable outcome rewards. However, reward models often suffer from
poor interpretability and require extensive annotation for effective training. Veri-
fiable outcome rewards provide sparse signals only, which leads to an ambiguous
credit assignment and low training efficiency in RL. These limitations necessitate
rewards that provide more efficient, fine-grained supervision. In order to address
these, we propose Rule-based Process-AdaptIve Reinforcement (RePAIR) that
constructs adaptive verifiable process rewards through symbolic reasoning rules.
These rules are automatically derived through the integration of common pattern
mining and semantic summarization over the reasoning trajectories of LLMs. For
stable training purposes, RePAIR defines a reward informativeness metric that
dynamically adjusts the rule’s weights based on policy updates. Extensive experi-
ments across three reasoning tasks demonstrate that RePAIR achieves a 6.03% im-
provement on average and combines well with various advantage functions. Code
and data will be available at https://anonymous.4open.science/r/RePAIR-8EFC.

1 INTRODUCTION

Reinforcement Learning (RL) has emerged as a promising paradigm for enhancing the reasoning
capabilities of large language models (LLMs), particularly in tasks involving multi-step generation
strategies Jaech et al. (2024); DeepSeek-AI et al. (2025) and alignment with human preferences
Lin et al. (2025). Notably, the effectiveness of RL heavily depends on the reward design, which
serves as the core feedback signal that guides model optimization Zhong et al. (2025). Different
from traditional RL, where the environment is well-defined with clear structures and regularities,
e.g., physical laws, and the consequences of agent’s actions can be accurately evaluated Sutton &
Barto (2018), when applying RL to LLMs, the conventional “simulatable environment” is replaced
by a black-box generative system driven by an LLM Ouyang et al. (2022b). In this case, the state
transition process is entirely driven by parameters within the LLM, which introduces a high degree
of uncertainty and lacks clear structure or verifiable dynamic rules. As a result, designing effective
reward functions becomes significantly more complex and challenging.

Most prevailing methods that apply RL paradigms for LLMs employ the black-box preference model
Lin et al. (2025) or the outcome scoring model Bai et al. (2022); Wang et al. (2024) to construct re-
ward signals. However, such reward models lack interpretability and fail to reveal the causality be-
tween the agent’s action and the reward feedback, which are prone to policy drift and preference bias
Gao et al. (2022); Lightman et al. (2023). Moreover, in order to collect adequate high-quality labels
for reward model training, researchers either build complicated human annotation pipelines Light-
man et al. (2023) or rely on estimation-based methods, which require approximate 10×more rollouts
for each step than sampling the response-level trajectories only Wang et al. (2023b); Kazemnejad
et al. (2024). In order to cope with these problems, very recently, verifiable reward has been pro-
posed to provide clear binary feedback through a rule-based reward function Lambert et al. (2024);
DeepSeek-AI et al. (2025), which avoids subjective human assessments and complex reward models
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training. However, the verifiable outcome rewards employed by industry-leading models DeepSeek-
AI et al. (2025) suffer from the challenges of reward sparsity and credit assignment Leike et al.
(2018), which fail to capture long-term dependencies and uncertainties in intermediate steps within
LLM-generated sequences Cui et al. (2025).

In order to tackle these challenges, a verifiable process reward is desired, where fine-grained inter-
pretable feedback to intermediate reasoning steps Setlur et al. (2024) can be provided. However, it is
not trivial to define verifiable process rewards for LLM tasks as follows: (1) Ambiguity of task goals:
since the goals in LLM tasks are often ambiguous, the process reward criteria lack clear quantita-
tive boundaries, which are highly dependent on human subjective judgment. (2) High-dimensional
and unstructured action space: the output of LLMs is a high-dimensional sequence Ouyang et al.
(2022b), and the action space is the entire vocabulary, up to tens of thousands or even hundreds
of thousands of tokens, which implicitly encodes syntactic, semantic, and logical contextual in-
formation. As a result, verifying intermediate steps becomes extremely complex, which makes it
hard to design reward functions that are both objective and consistent. In contrast, traditional RL
tasks benefit from low-dimensional and discrete spaces, where such complexity does not arise. (3)
Task-specific variability: different tasks have their own specific reasoning logic and semantic struc-
ture, which makes it hard to design a universal process reward function Chung et al. (2024). For
each new task, it requires a costly and unscalable redesign by domain experts. (4) Adaptivity to
model’s update: an ideal reward must be dynamically adaptive, as a static reward eventually leads
to overoptimization or reward hacking Gao et al. (2022) due to distribution shift. Moreover, the
variability in LLM outputs further demands that rewards adapt to policy and environment shifts to
ensure generalization and robustness

We propose a rule-based approach (RePAIR) to construct verifiable process rewards, which pro-
vides fine-grained, generalizable, and adaptive supervision for reinforcement learning in LLMs.
RePAIR treats symbolic reasoning rules, extracted from reasoning trajectories, as the physical laws
of the LLM-generated reasoning environment. These rules formalize reasoning patterns as com-
putable logical expressions, thereby providing verifiable and structured constraints in the uncertain
and high-dimensional generation space of LLMs. As for the automatic extraction of these rules,
RePAIR first converts natural language reasoning trajectories into graphs, which facilitates the iden-
tification of common reasoning patterns. These patterns, combined with the semantic features of
the reasoning trajectories, are then formalized into symbolic reasoning rules via an LLM. Moreover,
for the purpose of efficient and stable policy learning, it dynamically adjusts rule weights during
training. Meanwhile, our research focuses on smaller-parameter LLMs (e.g., 0.5B, 1.5B), which
are particularly suitable for edge deployment, personalization, and privacy-preserving applications.
Under limited computational budgets, these models offer an efficient balance between performance
and resource consumption. Our main contributions are summarized as follows.

• Symbolic reasoning rules. We automatically extract symbolic reasoning rules from LLM-
generated trajectories, which formalize common reasoning patterns as a computable func-
tion to provide a verifiable and interpretable basis for process supervision.

• Adaptive and verifiable process rewards. We transform symbolic reasoning rules into
verifiable scalar signals and dynamically adjust rules’ weights based on a reward informa-
tiveness metric, which enables adaptive and fine-grained reward shaping during learning.

• Experimental results. Extensive experiments on three tasks demonstrate the following:
(1) RePAIR achieves a 6.03% performance improvement on average; (2) RePAIR is an
algorithm-agnostic and universally applicable enhancement module for almost any RL al-
gorithm in LLM training and removes the need for task-specific reward design; and (3)
RePAIR enhances the model’s ability to generalize beyond the training distribution.

2 RELATED WORK

2.1 RL FOR LLM REASONING

Reinforcement Learning plays a critical role in enhancing the instruction-following capabilities of
LLMs through three representative paradigms: (1) Reinforcement Learning from Human Feedback
(RLHF): RLHF employs human-annotated preferences to train a reward model, which then guides
policy optimization Ouyang et al. (2022a); Wang et al. (2024). Despite its effectiveness in alignment,
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Figure 1: Overview of the RePAIR framework.

RLHF is constrained by annotation cost and the lack of interpretability. (2) Reinforcement Learning
from AI Feedback (RLAIF): RLAIF replaces human annotators with LLMs to automate feedback
collection Kim et al. (2023) with more scalability. However, AI-generated preferences often re-
flect model biases and lack verifiability, which potentially reinforces errors during fine-tuning. (3)
Reinforcement Learning with Verifiable Rewards (RLVR): RLVR, inspired by DeepSeek Math/R1
DeepSeek-AI et al. (2025); Shao et al. (2024), is formally introduced in TÜLU 3 Lambert et al.
(2024) as a framework that uses verifiable reward functions to automatically evaluate the correctness
of a model’s outputs via deterministic rules and provides binary reward signals. However, it relies
on high-quality, verifiable datasets with ground-truth, which limits its applicability. Our method
advances the RLVR paradigm beyond its original scope: instead of relying on manually designed
reward functions grounded in expert-verified labels, we automatically extract symbolic rules from
LLM-generated reasoning trajectories and integrate them into the reinforcement learning process as
verifiable process rewards.

2.2 REWARD MODELS FOR LLM TRAINING

From the perspective of reward design, there are two main approaches distinguished by their granu-
larity: Outcome Reward Models (ORM) DeepSeek-AI et al. (2025); Shao et al. (2024) and Process
Reward Models (PRM) Luo et al. (2024); Zhang et al. (2024). ORM assigns rewards based on the
final output labels, which suffers from delayed feedback and the credit assignment problem Yang
et al. (2024b); Liu et al. (2024). In contrast, PRM evaluates intermediate reasoning steps to provide
more fine-grained supervision. One of the most critical challenges in PRM is reward hacking, where
models exploit superficial signals rather than truly following the intended reasoning trajectory Wang
et al. (2023a). Furthermore, training PRM requires expensive human annotation Uesato et al. (2022),
which makes large-scale implementation impractical. Different from previous methods, we lever-
age rules to provide process supervision without the requirement of extensive annotation and extra
reward model training cost. In addition, our rule-based rewards adapt dynamically during training
to better align LLM behavior with target reasoning patterns and mitigate reward hacking.

3 PRELIMINARIES

Reinforcement Learning aims to learn an optimal policy πθ that maximizes the expected cumulative
reward, namely return, when interacting with an environment. In the context of autoregressive
language modeling, the state at step t is the concatenation of input x and current response o<t,
and the action is the t-th token or step yt. As a fundamental algorithm that optimizes the learning
objective, policy gradient method focuses on the advantage function At which quantifies how much
better an action is compared to alternatives in a given state:

∇θJ(θ) = Ex∼D,o∼πθ

⌊
T∑

t=0

∇θ log πθ(yt|x, o<t)At

⌋
, (1)

where (x, o) represents a pair of input and output. In practice, the advantage function is implemented
as cumulative discounted rewards subtracting a baseline At =

∑T
s=t γ

s−tr(ys)−b, where γ ∈ [0, 1]

3
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is a discount factor that optionally decays future rewards, and r(ys) is the reward provided by the
environment at time step s with x and o<s omitted in conditions.

4 REPAIR FRAMEWORK

In this section, we introduce the RePAIR framework, as shown in Figure 1, which consists of two
stages: (1) automatic rule extraction from LLM-generated reasoning trajectories and (2) reinforce-
ment learning with adaptive, verifiable process rewards constructed by these rules.

4.1 AUTOMATIC RULE EXTRACTION

The goal of automatic rule extraction is to derive symbolic reasoning rules from LLM-generated
trajectories by identifying common reasoning patterns and abstracting their semantic features. It
consists of the following two steps.

Frequent subgraph mining (FSM) is a graph-pattern discovery technique that extracts substructures
which recur across a collection of graphs above a minimum-support threshold.

4.1.1 FREQUENT SUBGRAPH MINING

In the first step, we perform frequent subgraph mining (FSM) on the reasoning trajectories T to
capture latent reasoning patterns. FSM is a widely used graph-based data mining method Khan et al.
(2010); Yan & Han (2003) that aims to extract substructures which recur across a set of graphs above
a minimum-support threshold. Specifically, for each task, we collect multiple reasoning trajectories
and divide them into successful and failed trajectories based on their correctness. Each trajectory set
is then modeled as a graph G = (V,E), where nodes V represent intermediate reasoning steps and
edges E denote dependencies among these steps. In order to identify common reasoning patterns,
we transform each reasoning step into a vector-based semantic representation. Specifically, given
some problems and their solutions, we prompt an LLM to summarize key semantic features, which
are then encoded into a structured feature vector. Each reasoning step in the trajectory is thus
mapped into an embedding space where semantically similar steps share aligned representations.
These vector-based labels serve as semantic labels in the reasoning graph. An illustrative example is
shown in Figure 2. Based on these labeled graphs, we apply the frequent subgraph mining method,
GRAMI Elseidy et al. (2014), to extract a set of subgraphs S that appear at least σ times.

Answer

(2) * (3) = 6
…

Question

2 3 1 3

322 0

*

2

6

2

2<3

3

<10

0

Node: (2) * (3) = 6

A: <think>
First, I divide 2 by 2, and that gives 1. At this point, 
what's left are the result of …… Now we have the 
expression (2 * (13 - (2/2))) = 24. We've reached 24! 
</think>

Example of question and answer

Semantic Feature

Extract 

Q: Given four numbers: 1, 3, 6, 7, how do you get 
24 by adding, subtracting, multiplying and dividing?

Feature Encode

Figure 2: Example of semantic feature extraction and vector label construction on Game of 24 task.

4.1.2 RULE FORMALIZATION

In the second step, we formalize the discovered frequent subgraphs S into symbolic reasoning rules
by prompting an LLM with structured descriptions of the nodes in each subgraph. Specifically, we
construct a prompt π = Prompt(S, desc(v) | v ∈ V ), where desc(v) includes both the semantic
interpretation of the node label and its topological context. The semantic interpretation is obtained
from the statistical distribution of attribute values. Based on this prompt π, the LLM is instructed
to generate specific, executable rules. We refer to them as symbolic reasoning rules expressed in
first-order logic expressions:

r : X → A, (2)

where X is a conjunction of predicates that describe the state of the reasoning step, and A is a
predicate that represents the corresponding action the model should take in this step. Each predicate
is a Boolean function defined over the semantic attributes of the reasoning steps. We refer to X as
the precondition of r and A as the consequence of r. Note that A can be an empty set, which means
the rule encodes only state constraints without prescribing a specific action.
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Definition 1 (Rule Matching) Given a reasoning step instance ys and a rule r : X → A, we say
that ys matches r, denoted as ys ⊨ r, if ys simultaneously satisfies the rule’s precondition X and
consequence A. More generally, we write ys ⊨ X if ys satisfies only the precondition part X .

Based on Definition 1, we introduce each rule’s support and confidence over reasoning trajectories
T Agrawal et al. (1993). For a rule r : X → A, its support φ(r) and confidence γ(r) is defined as:

φ(r) =
|{Ti | ys ⊨ X ∧A, ys ∈ Ti}|

|T | , γ(r) =
|{Ti | ys ⊨ X ∧A, ys ∈ Ti}|
|{Ti | ys ⊨ X , ys ∈ Ti}|

(3)

where Ti ∈ T . Support measures the coverage of a rule across the reasoning trajectories, while
confidence reflects the reliability of the rule’s conclusion given that its precondition holds. For each
symbolic reasoning rule generated by the LLM, we evaluate these metrics to verify its validity and
robustness, ensuring that they capture genuine reasoning patterns rather than spurious correlations
or hallucinations produced by the LLM. Only rules with sufficiently high support and confidence
over T are retained for downstream use. The verification outcomes, including φ, γ, and examples
of satisfied instances and violated instances, are subsequently incorporated into the next prompt to
guide the LLM towards improved rule formalization.

Example 1 The following are examples of symbolic reasoning rules in the Game of 24 task.

• r1 : IsSmall(x, y) ∧ IsClose(x, y) → Operation (x, y, +). This rule suggests
applying addition to x and y if they are relatively small and numerically close.

• r2 : IsFactor(z, 24) → ϕ. It means that if the result z is a factor of 24, it is allowed
regardless of the action.

• r3 : IsFactor(x, y, 24)→ Operation(x, y,×). It suggests applying multiplication to
x and y when they are the factors of 24.

Analysis: Although we employ the LLMs for node labeling and rule formalization, our approach
differs from the uncontrollable method that directly generates rules from reasoning trajectories us-
ing LLMs. By grounding rules in explicit matching criteria, we achieve greater consistency, in-
terpretability, and reliability. Rule extraction is performed offline, and although frequent subgraph
mining is theoretically NP-hard, the reasoning graphs in practice are sufficiently small to make the
process tractable. Moreover, LLM calls during rule formalization are restricted to only a few sub-
graphs (typically fewer than ten), rendering the overall cost of rule mining negligible in comparison
with online reinforcement learning.

4.2 REINFORCEMENT LEARNING FOR LLMS

4.2.1 RULE-BASED REWARD CONSTRUCTION

Given a set of verifiable symbolic reasoning rules R = {r1, r2, . . . , rK} from the reasoning tra-
jectories, we integrate them as supervision signals into the reinforcement learning to guide policy
optimization. Each rule ri ∈ R is served as a reward function rϕ(ys, ri), which assigns scalar feed-
back to each reasoning step ys in a generated trajectory o = {y1, y2, . . . , yT } based on whether ys
satisfies the rule. Specifically, we define:

rϕ(ys, ri) =

{
ρ, if ys ⊨ ri
0, otherwise

, (4)

where ρ is a predefined reward value, which is set 1 in the positive rules extracted from successful
trajectories, or −1 in the negative rules extracted from failed trajectories.

In order to compute the rule-based process reward, we aggregate scalar feedback from relevant rules.
Rather than averaging over the entire rule set R, we restrict computation to the subset of activated
rules Ru = {ri : X → A | ys ⊨ X}, where ys satisfies the precondition of each rule. This avoids
diluting the supervision with unrelated rules, especially when R is large. Accordingly, we define
the rule-based process reward as:

rϕ(ys,R) =
1

|Ru|

K∑
i=1

ωirϕ(ys, ri), (5)

where K is the number of rules inR and ωi is a rule weight.

5
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Example 2 Consider a reasoning trajectory consisting in Game of 24 task with three steps: y1 :
1 + 5 = 6, left : {6, 6, 10}, y2 : 10 − 6 = 4, left : {4, 6}, and y3 : 6 × 4 = 24, left : {24}.
We analyze each reasoning step to identify the sets of rules it satisfies and activates, respectively, as
illustrated in Example 1. Assuming ρ = 1 and ωi = 1 to each activated rule, the process reward
is computed as follows: (1) for y1: y1 ⊨ r1, y1 ⊨ r2; and Ru = {r1, r2}. Thus rϕ(y1,R) =
1
2 × (1 + 1) = 1; (2) for y2: y2 ⊨ r2; and Ru = {r1, r2}. Thus rϕ(y2,R) = 1

2 × 1 = 1
2 ; and for

y3: y3 ⊨ r2, y3 ⊨ r3; andRu = {r1, r2, r3}. Thus rϕ(y3,R) = 1
3 ×(1 + 1) = 2

3 .

Verifiability: Each symbolic reasoning rule has a well-defined precondition and consequence, and
the matching relation ys ⊨ r is binary and computable, which ensures safe and verifiable reward
assignment. Since the rules are extracted directly from both successful and failed trajectories, the
resulting reward signals are inherently grounded in empirical evidence, while support and confidence
metrics further establish their reliability across trajectories. As a result, the rule-based reward func-
tion is fully computable, transparent, and auditable, which enables reproducible reward computation
beyond the reach of opaque or purely learned models.

4.2.2 ADAPTIVE RULE WEIGHTING

However, the extracted rules exhibit obvious variations in both generality and predictive reliability.
Broad rules (e.g., r1) are frequently activated across reasoning steps but offer weaker signals for task
success, whereas specific rules (e.g., r3) occur less but provide more reliable indicators of correct
reasoning. The uniform treatment of all rules fails to capture these distinctions, which results in
suboptimal reward shaping and overoptimization. This issue is exacerbated during training, as the
evolving policy alters the distribution of reasoning trajectories.

In order to address this limitation, we define a reward informativeness metric that quantifies the util-
ity of each rule under the current policy. This metric enables dynamic adjustment of rule weights,
thereby allowing the reward function to prioritize more informative rules during training. Specifi-
cally, the informativeness of rule ri at the τ -th policy update iteration is defined as a weighted sum
of its hit rate HitR and success rate SuccR:

I(τ)(ri) = α · 1

|T (τ)|
∑

ys∈T (τ)

I{ys |= ri}

︸ ︷︷ ︸
hit rate HitR

+β ·
∑

ys∈T (τ) I{ys |= ri} · Succ(ys)∑
ys∈T (τ) I{ys |= ri}︸ ︷︷ ︸

success rate SuccR

(6)

where |T (τ)| denotes the set of reasoning steps sampled under the current policy, I{ys |= ri} is an
indicator function that equals 1 if step ys satisfies rule ri, and 0 otherwise, and Succ(ys) ∈ {0, 1}
indicates whether step ys eventually leads to the correct answer.

Mathematically, the first term (hit rate Hit) penalizes overly specific rules that rarely trigger, prevent-
ing overfitting to sparse patterns, while the second term (success rate) penalizes broad rules that fail
to distinguish between correct and incorrect reasoning paths. The hyperparameters α and β control
the trade-off between rule generality and reliability.

We then adaptively update the rule weight based on the informativeness gain between iterations:
ω
(τ+1)
i = ω

(τ)
i + η · ∆I(τ)(ri), where ∆I(τ) (ri) = I(τ)(ri) − I(τ−1)(ri) and η is a learning

rate. This update rule functions as a momentum-based adjustment: positive ∆I(τ) implies that the
rule is becoming more aligned with the current policy’s successful trajectories, justifying a weight
increase to reinforce this behavior. Conversely, a negative ∆I(τ) signals that the rule is becoming
either irrelevant or misleading as the policy shifts, prompting a reduction in its influence.

4.2.3 ADVANTAGE ESTIMATION AND POLICY UPDATE

After obtaining rule-based rewards, we incorporate the rule-based reward into the conventional out-
come reward, yielding a rule-augmented outcome reward. Specifically, for each question, we sample
a set of reasoning trajectories {o1, o2, . . . , oG} from the old policy model πθold . The final reward ri
for each trajectory oi consists of two components:

ri = rϕ(oi,R) + ro(oi) (7)

6
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where ro(oi) is a scalar reward based on task outcomes. rϕ(oi,R) =
∑

rϕ(ys,R) is a rule-based
reward computed via explicit rules, ranging in [0,1], and can be efficiently obtained through a rule
engine or lightweight validation function. We then apply within-batch normalization to the com-
bined rewards r = {r1, . . . , rG} Shao et al. (2024) :

r̃i =
ri −mean(r)

std(r)
. (8)

Crucially, for advantage estimation in policy gradient updates (e.g., in PPO or REINFORCE-style
objectives), we adopt a trajectory-level credit assignment strategy consistent with prior RLHF work
Shao et al. (2024); Hu et al. (2025). Specifically, all tokens in trajectory oi share a uniform advantage
estimate equal to the normalized composite reward:

Âi,t = r̃i, ∀ t ∈ tokens(oi). (9)

This unified formulation (Eq. 8–9) ensures that the rule-based signal is seamlessly integrated into the
policy gradient without requiring a learned critic or value function, thereby preserving differentiabil-
ity, avoiding bias from value approximation error, and maintaining compatibility with off-the-shelf
RL pipelines Shao et al. (2024). The proof for unbiasedness of the advantage estimate in Appendix
A.10.

5 EXPERIMENTS

Table 1: Performance comparison of different methods. RePAIR is our proposed rule-based method,
while RePAIR− is a variant without adaptive rule weighting. “*” indicates results after SFT.

Method Game of 24 Blocksworld GSM8K Avg. ∆ (↑)

Qwen2.5-0.5B-Instruct

Base 33.00* 24.00* 25.26 27.42 -

GRPO 42.60 25.00 34.69 34.10 +6.68
GRPO w/ RePAIR− 43.00 25.40 35.01 34.47 +7.05
GRPO w/ RePAIR 45.00 26.00 35.01 35.34 +7.92

Dr.GRPO 47.00 25.00 33.82 35.27 +7.85
Dr.GRPO w/ RePAIR− 47.00 26.20 34.02 35.74 +8.32
Dr.GRPO w/ RePAIR 55.00 27.00 34.19 38.73 +11.31

REINFORCE++ 46.80 25.00 34.89 35.56 +8.14
REINFORCE++ w/ RePAIR− 48.00 25.60 33.75 35.78 +8.36
REINFORCE++ w/ RePAIR 51.00 26.00 35.48 37.49 +10.07

Qwen2.5-Math-1.5B

Base 35.00* 26.00* 75.58 45.53 -

GRPO 50.40 29.00 75.43 51.61 +6.08
GRPO w/ RePAIR− 52.80 30.00 76.04 52.95 +7.42
GRPO w/ RePAIR 56.60 30.00 76.34 54.31 +8.78

Dr.GRPO 56.60 29.00 75.51 53.70 +8.17
Dr.GRPO w/ RePAIR− 59.00 29.00 75.58 54.53 +9.00
Dr.GRPO w/ RePAIR 64.20 30.00 75.73 56.64 +11.11

REINFORCE++ 57.60 29.00 75.89 54.16 +8.63
REINFORCE++ w/ RePAIR− 58.80 29.40 76.04 54.75 +9.22
REINFORCE++ w/ RePAIR 59.80 30.00 76.04 55.28 +9.75

5.1 EXPERIMENTAL SETUPS

In order to comprehensively evaluate the effectiveness of our proposed method, we selected language
models of varying scales and several representative reinforcement learning algorithms as baselines.

Foundational Models: We apply it to two open-source models of different sizes to demonstrate
the scalability and model-agnostic nature of our approach: (1) Qwen2.5-0.5B-Instruct Yang et al.
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(2025), a lightweight, instruction-tuned model; (2) Qwen2.5-Math-1.5B Yang et al. (2024a), a model
specifically optimized for the mathematical domain. In resource-intensive reinforcement learning,
the smaller models reduce computational costs, enable faster iteration and large-scale experimenta-
tion, and provide a more controllable environment for validating reward modeling and rule-based.

Reinforcement Learning Algorithms: We benchmark our method against three reinforcement
learning algorithms to ensure a fair and thorough comparison, including GRPO Shao et al. (2024),
Dr.GRPO Liu et al. (2025), and REINFORCE++ Hu et al. (2025). Similarly to GRPO, we modify
only the advantage estimation functions in each RL algorithm.

Evaluation Benchmarks: We assess model performance on five reasoning benchmarks, including
mathematical games (Game of 24 Yao et al. (2023)), planning tasks (Blocksworld Valmeekam et al.
(2023)), and diverse mathematical problem sets (GSM8K Cobbe et al. (2021), AIME24 AI-MO
(2024a), AMC23 AI-MO (2024b)). We report the accuracy (%) on each benchmark.

Implementation Details: All experiments are conducted on a system equipped with 2 * NVIDIA
A100 (40G) GPUs. Each trained model is evaluated 5 times and reports the average results. Further
details on automatic rule extraction and reinforcement learning are provided in Appendix A.3.

5.2 MAIN RESULTS

We evaluated simple benchmarks on both 0.5B and 1.5B models, with the results summarized in Ta-
ble 1. For more challenging mathematical benchmarks, due to the limitations of the smaller models,
we conducted experiments only on the 1.5B model, and the corresponding results are presented in
Table 2. There are several key trends that can be observed from the results as follows:

Table 2: Performance comparison of different methods across com-
plex math reasoning benchmarks on Qwen2.5-Math-1.5B.

Method AIME24 AMC23 Avg. ∆ (↑)

Base 10.20 56.71 33.46 -

GRPO 13.33 57.50 35.42 +1.96
GRPO w/ RePAIR 13.33 58.75 36.04 +2.58

Dr.GRPO 11.11 57.08 34.10 +0.64
Dr.GRPO w/ RePAIR 14.44 58.75 36.60 +3.14

REINFORCE++ 13.33 57.08 35.21 +1.75
REINFORCE++ w/ RePAIR 14.44 58.54 36.49 +3.03

RePAIR surpasses all com-
peting methods across most
evaluated tasks. Specif-
ically, RePAIR delivers sub-
stantial performance gains of
9.83% for the base models
and 2.23% for other compet-
itive RL algorithms without
rules on average, highlight-
ing its effectiveness and scal-
ability. Even on the chal-
lenging AIME24 benchmark,
RePAIR brings notable im-
provements, such as a 3.33 gain within the Dr.GRPO framework.

Adaptive rule weighting is more effective than fixed weights. As shown in Table 1, the RePAIR
yields substantially greater performance gains compared to RePAIR−, a variant without adaptive
rule weighting. This suggests that dynamically adjusting rule weight provides more effective reward
shaping, leading to improved policy optimization.

RePAIR is an algorithm-agnostic and universally applicable enhancement module. RePAIR
contributes consistently regardless of the policy update method and model size, which indicates that
RePAIR is a general plug-in for almost any RL algorithm for any LLM.

Table 3: Comparison of model performance on Game
of 24 task using unverified rules (RULE) versus our
curated rules (RePAIR) with Qwen2.5-Math-1.5B.

Method GRPO Dr. GRPO REINFORCE++

RULE 56.2 60.2 59.2
RePAIR (ours) 56.6 64.2 59.8
∆ (↑) +0.40 +4.00 +0.60

RePAIR generalizes across tasks without
handcrafted rewards. RePAIR demon-
strates robust performance across diverse
reasoning tasks without relying on task-
specific reward engineering, as its rules are
automatically extracted from model behav-
iors.

RePAIR performs better in highly struc-
tured yet reward-sparse tasks. In the
combinatorial and reward-sparse Game of 24 task, RePAIR achieves the largest performance gain
among competitive RL algorithms, with an improvement of 5.1%, demonstrating its effectiveness in
guiding exploration and handling sparse rewards.
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Figure 3: Out-of-distribution performance across different methods.

5.3 ANALYSIS

Comparison of Different Rules: To validate the quality of rules generated by RePAIR, we compare
its performance against a baseline RULE that uses naively extracted, unfiltered rules. As shown in
Table 3, the validated rules from RePAIR consistently outperform the unverified rules from RULE.
Notably, when applied to Dr.GRPO, RePAIR achieves a substantial improvement of 4%. These
results highlight that our rule validation provides higher-quality training signals and leads to
more effective policy optimization. Meanwhile, we observe that increasing the number of rules
does not necessarily lead to better learning performance. This suggests that reinforcement learning
struggles to exploit all available rules, whereas a smaller subset of high-quality rules offers more
stable and clearer learning signals.

Model Generalization: In order to assess the out-of-distribution (OOD) generalization capabilities
of RePAIR, we train the Qwen2.5-Math-1.5B on the GSM8K and evaluate it on three unseen reason-
ing benchmarks: AIME24 Li et al. (2024), AMC23 Li et al. (2024), and Math500 Hendrycks et al.
(2021). As illustrated in Figure 3, our method consistently outperforms all baseline approaches on
these tasks, demonstrating that RePAIR does not rely on overfitting and exhibits effective gener-
alization beyond the training distribution. More experiments are provided in Appendix A.4.
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Figure 4: Comparison of performance of accuracy on the
training process with Qwen2.5-Math-1.5B.

Effects of RePAIR on Training Pro-
cess: We compare the test accuracy
of different methods across differ-
ent gradient steps to analyze the ef-
fects of rule-based process rewards
on the training process. As shown
in Figure 4, RePAIR leads to bet-
ter performance as the training step
increases, which indicates that the
model trained by RePAIR effec-
tively learns to align with injected rules.

Table 4: Evaluation of reasoning trajectories under
three rule-based metrics on the Game of 24 task with
Qwen2.5-Math-1.5B.

Method Support Confidence SuccR

GRPO 0.39 0.51 0.44
GRPO w/ RePAIR 0.40 0.53 0.54
∆ (↑) +0.01 +0.02 +0.10

Effects of RePAIR on Reasoning Behav-
ior: We evaluate the reasoning trajectories
generated by LLMs trained with the baseline
and RePAIR to assess the impact of symbolic
rule supervision on model behavior. For each
rule, we compute its support, confidence, and
success rate on these reasoning trajectories.
Table 5 shows the average results for all rules
based on GRPO, which reveals that RePAIR
does not increase the number of rule activations, as the support remains similar. However, RePAIR
substantially improves the SuccR, indicating that RePAIR teaches the model to apply rules more
accurately and contextually instead of creating new rules. This reveals that RePAIR improves
the semantic alignment between symbolic rules and the model’s decision-making process, leading
to more reliable reasoning trajectories. More detailed experiments are provided in Appendix A.5.
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Table 5: Rule extraction statistics
and runtime across benchmarks.

Benchmark Rules[#] Time[sec]

Game of 24 9 36.3
Blocksworld 5 25.2
GSM8K 4 12.2
AIME24 4 27.4
AMC23 4 14.6

Efficiency of automatic rule extraction: Table 5 reports the
number of extracted rules and runtime across different bench-
marks. As discussed in Section 4.1.2, the frequent subgraph
mining operates on relatively small-scale data, resulting in
a limited number of subgraphs (i.e., candidate rules), while
most of the runtime is consumed by LLM calls for rule for-
malization. After validation, the retained rules are compact
yet high-quality, which reduces computational overhead and
improves the effectiveness of reinforcement learning.

6 CONCLUSION

We proposed RePAIR, a rule-based process-adaptive reinforcement learning framework, which au-
tomatically extracts symbolic reasoning rules from LLM-generated reasoning trajectories, enabling
fine-grained and interpretable supervision. Extensive experiments across multiple tasks demonstrate
that RePAIR yields significant improvements and serves as a general plug-in compatible with a wide
range of RL algorithms and LLMs. By introducing symbolic rules, we enhance reinforcement learn-
ing for LLMs, making it more robust, interpretable, and scalable. This also opens new directions in
automated reward design and symbolic process supervision for complex generative environments.
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A APPENDIX

A.1 REINFORCEMENT LEARNING FOR LLMS

Algorithm 1 outlines the Reinforcement Learning Stage, where the policy is iteratively optimized
using both outcome and process-level rewards. At each iteration, responses are sampled from the
current policy, and corresponding rewards are computed based on a predefined rule set R. Rule
weights are adaptively updated according to their informativeness and impact on learning. The final
policy is refined via a GRPO-based objective, enabling efficient reward shaping and stable policy
improvement.

Algorithm 1 Reinforcement Learning
Input: Large Language model πθinit , outcome reward verifier ro, rule set R, sample number K,
weight update rate η, total iteration N
Output: Optimized policy πθ

1: Initialize policy πθ ← πθinit

2: Initialize rule weights ωi = 1 for all ri ∈ R
3: for each iteration τ = 1, 2, . . . , N do
4: Sample K trajectories: {o1, . . . , oK} ∼ πθ

5: Compute outcome rewards: ro(o1:K)
6: Compute process rewards: rϕ(ys,R) with Eq. 5
7: for each rule ri ∈ R do
8: Compute informativeness I(τ)(ri) with Eq. 6
9: Update rule weight: ωτ+1

i ← ωτ
i + η ·∆I(τ)(ri)

10: end for
11: Estimate advantage A with Eq. 9
12: Update policy: πθ ← argmaxθ JGRPO(θ)
13: end for
14: return optimized policy πθ

A.2 EVALUATION BENCHMARK

• Game of 24 Yao et al. (2023): A numerical reasoning task that requires generating an
arithmetic expression using four given numbers to reach 24.

• Blocksworld Valmeekam et al. (2023): An embodied planning benchmark where an agent
must reach a specific block stacking arrangement from an initial state through moving
operations such as PickUp and Stack.

• GSM8k Cobbe et al. (2021): A math word problem dataset that emphasizes multi-step
numerical reasoning and arithmetic comprehension.

• AIME24 AI-MO (2024a): The AIME24 dataset is a collection of challenging problems
from the 2024 American Invitational Mathematics Examination (AIME).

• AMC23 AI-MO (2024b): The AMC23 dataset is a benchmark derived from the American
Mathematics Competitions, designed to evaluate and enhance the reasoning abilities of AI
models on complex mathematical problems.

A.3 IMPLEMENTATION DETAILS

For automatic rule extraction, we use Deepseek-R1 DeepSeek-AI et al. (2025) to generate 100 rea-
soning trajectories on each task and utilize GPT-4o Hurst et al. (2024) to formalize symbolic rea-
soning rules that have been validated to meet support φ > 0.2 and confidence γ > 0.6. We employ
a task-specific training strategy. Due to the strict output format requirements of the Game of 24
and Blocksworld tasks, we first perform Supervised Fine-Tuning (SFT) on the models for these
tasks before reinforcement learning. In contrast, for the GSM8K task, models are trained directly
with reinforcement learning without preliminary SFT. In order to ensure a fair comparison across
all methods, we maintain a consistent configuration for the RL training process. For each training
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prompt, 8 responses (rollouts) are sampled. We use a batch size of 32 for all RL experiments. Hy-
perparameters are set as α = 0.5, β = 0.5, and η = 0.1. All experiments are conducted on a system
equipped with 2 * NVIDIA A100 (40G) GPUs. Each trained model is evaluated 5 times and reports
the average results.

A.4 ANALYSIS OF MODEL GENERALIZATION

In order to further evaluate the generalization ability of the model, we constructed a more chal-
lenging task, full Blocksworld, to assess the model’s performance after training. By varying the
minimum number of steps needed for a solution, we create a set of test cases with varying difficulty
levels. As shown in Table 6, we observe that smaller models (e.g., with 0.5B and 1.5B parameters)
do not exhibit performance improvements with the injected symbolic reasoning rules; in some cases,
their performance may even deteriorate. This result suggests that small models tend to overfit the
rules present in the training data due to their limited capabilities. Instead of learning the underlying
principles behind the rules, these models memorize them as rigid templates. Consequently, when de-
ployed on out-of-distribution tasks, such templates not only fail to generalize but may even conflict
with the correct problem-solving logic. In contrast, when we apply larger trained models (e.g., with
3B parameters) on full Blocksworld, RePAIR performs better than the baseline. This indicates that
as the model’s capabilities improve, it can better learn the general principles introduced by the rules,
thereby enabling more robust generalization to unseen problems. The capabilities of RePAIR scale
as the base model becomes more powerful.

Table 6: Comparison of different models in full Blocksworld

Model Dr.GRPO Dr.GRPO w/ RePAIR ∆ (↑)

Qwen2.5-0.5B-Instruct 27.50 26.15 -1.35
Qwen2.5-Math-1.5B 38.40 38.40 +0.00
Qwen2.5-3B 46.92 47.69 +0.77

A.5 EFFECTS OF REPAIR ON REASONING BEHAVIOR

In order to investigate the effects of RePAIR on reasoning behavior, we compare reasoning trajecto-
ries across models in the Game of 24 task with six rules used in the training process. The detailed
results are shown in Table 7. Although RePAIR does not lead to a notable increase in the number of
rule activations, it yields a substantial gain in success rate. This indicates that the model learns to
selectively apply rules that are more effective, thereby prioritizing rule quality over mere frequency
of usage.

Table 7: Evaluation of reasoning trajectories on the Game of 24 task with Qwen2.5-Math-1.5B.

Method Acc.
Support Confidence SuccR

r1 r2 r3 r4 r5 Avg. r1 r2 r3 r4 r5 Avg. r1 r2 r3 r4 r5 Avg.

GRPO 0.50 0.82 0.26 0.29 0.19 0.39 0.39 0.82 0.31 0.29 0.49 0.65 0.51 0.50 0.47 0.45 0.34 0.45 0.44
GRPO w/ RePAIR 0.59 0.81 0.25 0.32 0.21 0.43 0.40 0.81 0.28 0.32 0.54 0.70 0.53 0.59 0.54 0.55 0.48 0.53 0.54
Dr.GRPO 0.57 0.81 0.25 0.31 0.21 0.43 0.40 0.81 0.29 0.31 0.50 0.69 0.52 0.57 0.52 0.52 0.41 0.52 0.51
Dr.GRPO w/ RePAIR 0.67 0.80 0.27 0.32 0.23 0.41 0.41 0.80 0.30 0.32 0.52 0.71 0.53 0.67 0.62 0.59 0.48 0.61 0.60
REINFORCE++ 0.56 0.82 0.27 0.29 0.20 0.42 0.40 0.82 0.31 0.29 0.51 0.68 0.52 0.56 0.51 0.49 0.39 0.51 0.49
REINFORCE++ w/ RePAIR 0.61 0.83 0.27 0.32 0.21 0.42 0.41 0.83 0.32 0.32 0.50 0.70 0.53 0.62 0.57 0.58 0.45 0.56 0.56

A.6 ADDITIONAL EXPERIMENTAL RESULTS WITH 3B MODELS

To demonstrate the scalability of our approach, we extended our evaluation to the larger Qwen2.5-
3B-Instruct model. As shown in Table 8, RePAIR consistently enhances performance across all
baseline methods. Notably, when integrated with GRPO, it achieves a significant improvement of
2.58%. These results, complementing our findings on smaller models, confirm that our method is
effective and scalable across models of varying sizes.
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Table 8: Performance comparison of different methods on Qwen2.5-3B-Instruct.

Method AMC23 Math500 Avg. ∆ (↑)

Base 41.67 62.07 51.87 -

GRPO 42.29 63.67 52.98 +1.11
GRPO w/ RePAIR 44.17 64.73 54.45 +2.58

Dr.GRPO 41.88 63.47 52.68 +0.81
Dr.GRPO w/ RePAIR 42.92 64.67 53.80 +1.93

REINFORCE++ 42.50 63.33 52.92 +1.05
REINFORCE++ w/ RePAIR 43.54 63.80 53.67 +1.80

A.7 COMPARISON WITH LLM-BASED PRMS

Table 9: Performance comparison between RePAIR and LLM-based Process Reward Models
(PRMs). * denotes the results from Cui et al. (2025).

Method Reward Model Size AIME 24 AMC 23 Avg.

PRIME*
Qwen2.5-3B 10.70 44.00 27.35
Qwen2.5-7B 13.20 42.90 28.05
Qwen2.5-14B 10.80 44.10 27.45

RePAIR (Ours) – 13.33 44.84 29.08

Recent studies have increasingly adopted Large Language Models (LLMs) as Process Reward Mod-
els (PRMs) to guide reasoning steps. To evaluate our approach against this paradigm, we conducted
a comparative experiment with PRIME(Cui et al., 2025), a method that employs LLMs of varying
sizes (Qwen2.5-3B, 7B, and 14B) as reward models.

The results, summarized in Table 1, demonstrate that RePAIR outperforms these PRM-based meth-
ods across all metrics. Notably, RePAIR achieves a higher average score (29.08) than PRIME even
when the latter utilizes a 14B parameter reward model. Crucially, unlike these approaches that
require maintaining and querying a separate, often computation-heavy LLM to serve as a reward
model, RePAIR operates without an auxiliary model during training. Consequently, our method
consumes significantly less computational power while achieving superior performance.

A.8 EXPERIMENTS ON LARGER MODELS

Table 10: Performance comparison of different methods on Qwen2.5-7B-Base.

Method AIME24 AMC23 Math500 Avg. ∆ (↑)

GRPO 10.00 34.37 52.20 32.19 -
GRPO w/ RePAIR 13.33 44.84 57.80 38.55 +6.36

Dr.GRPO 3.33 35.62 50.56 29.83 -
Dr.GRPO w/ RePAIR 6.66 42.50 56.00 35.05 +5.22

REINFORCE++ 6.66 35.24 51.96 31.28 -
REINFORCE++ w/ RePAIR 13.33 41.25 55.76 36.78 +5.50

To investigate whether the efficacy of our proposed method extends to larger-scale architectures, we
conducted additional experiments using the Qwen2.5-7B-Base model. This analysis aims to verify
if the performance gains observed in smaller models are consistent as model capacity increases.

The results, presented in Table 10, demonstrate that our method maintains its effectiveness on the
7B parameter scale. As shown, integrating RePAIR consistently yields significant performance im-
provements across all evaluated baselines. Most notably, when combined with GRPO, RePAIR
achieves an average improvement of 6.36 points across the AIME24, AMC23, and MATH500
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benchmarks. Similarly, substantial gains of 5.22 and 5.50 points are observed with Dr.GRPO and
REINFORCE++, respectively. These findings confirm that the benefits of our approach are robust
and scale effectively to larger language models.

A.9 SENSITIVITY ANALYSIS OF HYPERPARAMETERS α, β AND η

We conduct a comprehensive sensitivity analysis to examine the impact of the hyperparameters α,
β and η in our proposed informativeness metric (Eq. 6 ). The parameter α and β balance the
contribution of the hit rate and the success rate, while η controls the learning rate for the subsequent
rule weight updates.

We evaluated our model across a comprehensive grid of values for α ∈ {0.3, 0.5, 0.7}, η ∈
{0.05, 0.10, 0.15} on the game24, with all other experimental settings fixed. The results are sum-
marized in the table 11:

Table 11: Model performance (accuracy) for different (α, β, η) pairs.

α 0.3 0.3 0.3 0.5 0.5 0.5 0.7 0.7 0.7
β 0.7 0.7 0.7 0.5 0.5 0.5 0.3 0.3 0.3
η 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

Accuracy 0.536 0.526 0.516 0.500 0.550 0.542 0.502 0.504 0.510

Our analysis reveals two key findings:

(1) Robustness Across a Broad Range: The model performance is relatively stable across most pa-
rameter combinations, with mean accuracy consistently above 0.50. This indicates that our method
is not critically dependent on a finely-tuned (α, η) pair, which enhances its reproducibility and prac-
tical utility.

(2) An Optimal Balance at α = 0.5: The best and most stable performance is achieved when α =
0.5, paired with η = 0.1. We posit that this value strikes an effective balance in the informativeness
metric. A lower α may overemphasize the hit rate, leading to frequent updates for rules that are
triggered often but not necessarily correlated with success. Conversely, a higher α may overfit to the
immediate success rate of the current policy, potentially stifling the exploration of diverse reasoning
paths that could be beneficial in the long term. Therefore, α = 0.5 provides an effective trade-off
between encouraging rule diversity and leveraging successful trajectories.

A.10 UNBIASEDNESS OF THE ADVANTAGE ESTIMATE

To verify the mathematical soundness and unbiasedness of the proposed advantage term Âi,t = r̃i
(Eq. 9), we proceed as follows, leveraging insights from Dr. GRPO Liu et al. (2025) and classical
policy gradient theory.

A.10.1 DEFINITION OF UNBIASED ADVANTAGE ESTIMATION

An advantage term Âi,t is unbiased for policy gradient updates if, under the current policy πθ, the
conditional expectation of Âi,t given the state st = (q, oi,<<t) is zero:

Eoi∼πθ(·|q)

[
Âi,t | st

]
= 0. (10)

This condition ensures that the policy gradient estimates only capture the relative quality of trajec-
tories (not systematic biases) and converges to the true policy gradient.

A.10.2 PROOF OF UNBIASEDNESS

Unbiasedness of the Composite Reward The composite reward ri = rϕ(oi,R) + ro(oi) integrates
rule-based intrinsic rewards and outcome-based extrinsic rewards. Both components are computed
via explicit, parameter-free functions:
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• ro(oi) is a deterministic function of the trajectory’s final outcome (e.g., correct/incorrect
for math problems), thus unbiased.

• rϕ(oi,R) =
∑

rϕ(ys,R) is computed via a rule engine, directly quantifying intermediate
reasoning validity without approximation.

Let V (q) = Eoi∼πθ(·|q)[ri] denote the true state value of question q under policy πθ. Then:

Eoi∼πθ(·|q)[ri] = V (q), (11)

confirming ri is an unbiased estimate of V (q).

Unbiasedness of Normalized Reward The within-batch normalization (Eq. 8) computes r̃i =
ri−mean(r)

std(r) , where r = {r1, ..., rG} is the set of composite rewards for the batch. Since mean(r) =
1
G

∑G
j=1 rj is the sample mean of ri, it holds that:

Eoi∼πθ(·|q)[mean(r)] = V (q), (12)

(by linearity of expectation and Eq. 11). Substituting into the normalized reward:

Eoi∼πθ(·|q)[r̃i] =
E[ri]− E[mean(r)]

std(r)
=

V (q)− V (q)

std(r)
= 0. (13)

Unbiasedness of Trajectory-Level Advantage By Eq. 9, all tokens in trajectory oi share the same
advantage Âi,t = r̃i. Since r̃i is computed based on batch-level statistics (independent of the state
st = (q, oi,<<t)), the conditional expectation satisfies:

Eoi∼πθ(·|q)[Âi,t | st] = E[r̃i | st] = E[r̃i] = 0. (14)

The proposed advantage term Âi,t = r̃i satisfies the unbiasedness condition (Eq. 10) for policy
gradient updates.

A.11 OPTIMAL POLICY INVARIANCE

We show that, under the following assumptions, augmenting the outcome reward with the process
reward does not change the set of optimal policies with respect to the ground-truth outcome reward.

• Assumption 1: the task outcome is binary and the outcome reward for output oi is ro(oi) =
Succ(oi) ∈ {0, 1}. The performance measure of interest is the accuracy rate of model
inference under the current policy π, i.e., µ(π) = E[Succ(o)];

• Assumption 2.: at the converged weights ω∗, there exist constants µ1, µ0 ∈ R such that

µ1 ≜ E
[
rϕ(o;ω

∗) | Succ(o) = 1
]
, µ0 ≜ E

[
rϕ(o;ω

∗) | Succ(o) = 0
]
,

with µ1 ≥ µ0, and for any policy π,

Eo∼π

[
rϕ(o;ω

∗)
]
= µ1 Pr

o∼π
(Succ(o) = 1) + µ0 Pr

o∼π
(Succ(o) = 0).

In RePAIR, the adaptive weighting scheme leverages both the hit rate and the success rate to assign
larger weights to rules that occur more frequently on successful trajectories. Consequently, once
the rule weights have converged, successful trajectories receive at least as much process reward as
unsuccessful ones.

Theorem 1 Given the shaped reward r = ro + rϕ(·;ω∗), and assuming that assumptions 1 and 2
hold. Define the shaped-reward learning objective

Jr(π) ≜ Eo∼π

[
ro(o) + rϕ(o;ω

∗)
]
,

and recall the outcome-based learning objective and optimal policy set

Jo(π) ≜ Eo∼π

[
ro(o)

]
, Π∗ ≜ argmax

π
Jo(π)

Then the shaped-reward objective preserves the optimal policy set, i.e.,

argmax
π

Jr(π) = argmax
π

Jo(π) = Π∗.
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Proof 1 By definition, for any policy π,

µ(π) = E[Succ(o)] = Jo(π).

With assumption 2, the expected process reward under π satisfies

Eo∼π

[
rϕ(o;ω

∗)
]
= µ1 Pr(Succ(o) = 1) + µ0 Pr(Succ(o) = 0) = µ1µ(π) + µ0

(
1− µ(π)

)
.

Substituting this into the shaped objective Jr(π), we obtain

Jr(π) = µ(π) + E
[
Gp(τ ;ω

∗)
]

= µ(π) +
[
µ1µ(π) + µ0

(
1− µ(π)

)]
= µ(π) + µ0 + (µ1 − µ0)µ(π)

= µ0 +
[
1 + (µ1 − µ0)

]
µ(π).

The term µ0 is a constant independent of π. Since µ1 ≥ µ0, the coefficient

c ≜ 1 + (µ1 − µ0)

satisfies c ≥ 1 > 0. Therefore Jr(π) is a strictly increasing affine function of µ(π):

Jr(π) = const + c µ(π), c > 0.

Hence, for any two policies π, π′,

µ(π) > µ(π′) ⇐⇒ Jr(π) > Jr(π
′).

Maximizing Jr(π) over π is therefore equivalent to maximizing µ(π) over π, and we obtain

argmax
π

Jr(π) = argmax
π

µ(π) = Π∗.

Thus, the shaped reward r = ro + rϕ(·;ω∗) preserves the outcome-optimal policy set.

A.12 DISCUSSION ON METHOD GENERALIZATION

The RePAIR framework is not inherently constrained to tasks with binary final outcomes. The core
mechanism of our adaptive weighting relies on correlating rule application with a positive quality
signal, which can be derived from various intermediate feedback sources beyond final ground-truth
labels. We generalize the notion of ”success rate” to suit broader domains:

Code Generation: ”Success” can be defined via execution feedback (e.g., successful compilation,
passing unit tests, or no runtime errors). Rules leading to executable code are upweighted, serving
as a proxy for functional correctness.

Formal Reasoning: In theorem proving (e.g., Lean, Coq), we can utilize intermediate validity
checks. Rules generating logically valid transitions or state changes accepted by the solver receive
positive reinforcement.

Open-Ended Dialogue: For alignment tasks, feedback can stem from preference models or safety
filters. Rules consistently producing safe or high-reward responses (as measured by an external
Reward Model) are prioritized.

In essence, our method requires only a verifiable environmental signal—whether terminal or inter-
mediate—to guide rule adaptation, making it flexible for diverse reasoning and generation tasks.

A.13 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Accordingly, we provide the fol-
lowing information:

(1) Code Availability: All code for training, evaluation, and analysis is publicly available at:
[https://anonymous.4open.science/r/RePAIR-8EFC]. The repository includes detailed README in-
structions for installation, configuration, and usage.

(2) Datasets: All datasets used in this paper are publicly available. We provide links and preprocess-
ing scripts in the repository. No private or restricted-access data were used.
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(3) Experimental Settings: The exact hyperparameters used in our experiments are listed in Ap-
pendix A.3. Random seeds for training and evaluation are explicitly specified, and multiple runs are
reported to account for variance.

(4) Computational Resources: Experiments were conducted on 2 * NVIDIA A100 (40G) GPUs.

(5) Environment: The software environment (Python version, PyTorch/TensorFlow version, CUDA
version) is specified in the repository. A requirements.txt file is included for easy environment setup.
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