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Abstract

There has been growing interest in generalization performance of large multilayer1

neural networks that can be trained to achieve zero training error, while generalizing2

well on test data. This regime is known as ‘second descent’ and it appears to3

contradict conventional view that optimal model complexity should reflect optimal4

balance between underfitting and overfitting, aka the bias-variance trade-off. This5

paper presents VC-theoretical analysis of double descent and shows that it can be6

fully explained by classical VC generalization bounds. We illustrate an application7

of analytic VC-bounds for modeling double descent for classification problems,8

using empirical results for several learning methods, such as SVM, Least Squares,9

and Multilayer Perceptron classifiers. In addition, we discuss several possible10

reasons for misinterpretation of VC-theoretical results in the machine learning11

community.12

1 Introduction13

There have been many recent successful applications of Deep Learning (DL). However, at present time,14

various DL methods are driven mainly by heuristic improvements, while theoretical and conceptual15

understanding of this technology remains limited. For example, large neural networks can be trained16

to fit available data (achieving zero training error) and still achieve good generalization for test data.17

This contradicts conventional statistical wisdom that overfitting leads to poor generalization. This18

phenomenon has been systematically described by Belkin, et al. [1] who introduced the appropriate19

terminology (‘double descent’) and pointed out the difference between the classical regime (first20

descent) and the modern one (second descent). This disagreement between the classical statistical21

view and modern machine learning practice provides motivation for new theoretical explanations of22

the generalization ability of DL networks and other over-parameterized estimators. Several different23

explanations include: special properties of multilayer network parameterization [2], choosing proper24

inductive bias during second descent [1], effect of Stochastic Gradient Descent (SGD) training25

[3, 4, 5], the effect of various heuristics (used for training) on generalization [6], and the effect of26

margin on generalization [7]. The current consensus view on the ‘generalization paradox’ in DL27

networks is summarized below:28

– Existing indices for model complexity (or capacity), such as VC-dimension, cannot explain29

generalization performance of DL networks.30

– ‘Classical’ theories developed in ML and statistics cannot explain generalization performance31

of DL networks. In particular, classical VC generalization bounds cannot be used to explain32

double descent. Specifically, the ability of large DL networks to achieve zero training error33

(during second descent mode) effectively ‘rules out all of the VC-dimension arguments as a34

possible explanation for the generalization performance of state-of-the-art neural networks’35

[3].36
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This paper demonstrates that these assertions are incorrect, and that classical VC-theoretical results37

can fully explain generalization performance of DL networks, including ‘double descent’, for classifi-38

cation problems. In particular, we show that proper application of VC-bounds using correct estimates39

of VC-dimension provides accurate modeling of double descent curves, for various classifiers trained40

using stochastic gradient descent (SGD), least squares loss and standard SVM loss. The proposed41

VC-theoretical explanation provides many additional insights on generalization performance during42

first descent vs. second descent, and on the effect of statistical properties of the data on the shape of43

double descent curves.44

Next, we briefly review VC-theoretical concepts and results necessary for understanding generaliza-45

tion performance of all learning methods based on minimization of training error [8, 9, 10, 11]:46

1. Finite VC dimension provides necessary and sufficient conditions for good generalization.47

2. VC theory provides analytic bounds on (unknown) test error, as a function of training error,48

VC dimension and the number of training samples.49

Clearly, these VC-theoretic results contradict an existing consensus view that VC-theory cannot50

account for generalization performance of large DL networks. This disagreement results from51

misinterpretation of basic VC-theoretical concepts in DL research. These are a few examples of such52

misunderstanding:53

– A common view that VC-dimension grows with the number of parameters (weights), and54

therefore, ‘traditional measures of model complexity struggle to explain the generalization55

ability of large artificial neural networks’ [3]. In fact, it is well known that VC-dimension56

can be equal, or larger, or smaller, than the number of parameters [8, 11].57

– Another common view is that ‘VC dimension depends only on the model family and data58

distribution, and not on the training procedure used to find models’ [12]. In fact, VC59

dimension does not depend on data distribution [8, 11, 13]. Furthermore, VC dimension60

certainly depends on SGD algorithm [8, 11].61

For classification problems, VC theory provides analytic generalization bounds for (unknown)62

Prediction Risk (or test error), as a function of Empirical Risk (or training error) and VC-dimension63

(h) of a set of admissible models, aka approximating functions. That is, for a given training data set64

(of size n), VC generalization bound has the following form [8, 9, 10, 11]:65
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ε
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This VC bound (1) holds with probability 1 − η (aka confidence level) for all possible models67

(functions) including the one minimizing the training error (Rtrn). The second additive term in (1),68

called the confidence interval, aka excess risk, depends on both the empirical risk (training error)69

and VC dimension (h). This bound describes the relationship between training error, test error and70

VC-dimension, and it is often used for conceptual understanding of model complexity control, i.e.71

understanding the effect of VC-dimension on test error. Application of this bound for accurate72

modeling of double descent curves requires:73

– Selecting proper values of positive constants a1 and a2. The worst-case values a1 = 4 and74

a2 = 2, provided in VC-theory [8, 9] result in VC-bounds that are too loose for real-life75

data sets [11]. For classification problems, we suggest using the values a1 = a2 = 1, used76

for all empirical results presented in this paper.77

– Analytic estimate of VC-dimension. For many learning methods, including DL, analytic78

estimate of VC-dimension are not known. For example, for SGD style algorithms, the effect79

of various heuristics (e.g., initialization of weights, etc.) on VC-dimension is difficult (or80

impossible?) to quantify analytically.81

Note that VC bound (1) provides conceptual explanation of both first and second descent. That is, first82

descent corresponds to minimizing this bound when training error is non-zero [8, 9, 11]. Whereas83
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second descent corresponds to minimizing this bound when training error is kept at zero, using a set84

of models having small VC-dimension. This can be shown by setting the training error in bound (1)85

to zero, resulting in the following simplified bound for test error during the second descent:86

Rtst ≤ ε, where ε =
h

n

(
ln
(n
h

)
+ 1
)

(2)

More formally, since VC bound (1) depends only on two factors, training error and VC-dimension,87

there are two different strategies for minimizing this bound [11]:88

– For a set of functions (models) with fixed VC-dimension, reduce the training error. This89

strategy leads to well-known classical bias-variance trade-off aka ‘first descent’;90

– For small (fixed) training error, minimize the VC-dimension. This strategy corresponds to91

second descent, when training error is zero.92

These two strategies correspond to different methods for controlling VC-dimension, that have been93

known long before DL. For example, the second strategy corresponds to margin maximization in94

SVM. Traditional learning methods typically implement a single strategy, whereas practitioners in95

DL observed the effect of both strategies when varying a single hyper parameter, such as network96

size or the number of epochs.97

The main technical reason for misapplication of VC-theory, besides misinterpretation of VC-98

dimension, is that VC bound (1) remains virtually unknown in the DL community. That is, all99

technical arguments suggesting that VC-theory is unable to explain double descent, are based on100

analysis of uniform convergence bounds [1, 3, 14, 15, 16, 17]. In such bounds, the confidence interval101

term, aka the excess error, is of the order O
(√

h/n
)

, i.e. it does not depend on empirical risk102

(training error). However, VC-theory also provides more accurate uniform relative convergence103

bounds, such as VC-bound (1), presented in [8, 9, 10, 11], where the confidence interval term also104

depends on the training error. So, whereas it is true that uniform convergence bounds cannot explain105

double descent, it can be fully explained by uniform relative convergence bounds.106

Training of DL networks is based on stochastic gradient descent (SGD), which incorporates several107

heuristic rules to ensure that the norm of weights remains small. These rules include: initialization of108

weights to small random values and re-normalization during training. Consequently, for large DL109

networks, the model complexity is determined by the norm of weights, rather than the number of110

weights (parameters). Further, this dependence of VC-dimension on the training algorithm helps111

explain why theoretical estimates of VC-dimension based only on network topology have found little112

practical use [11].113

2 Application of VC Bounds for Modeling Double Descent114

This section presents a VC-theoretical explanation of double descent for classification, for a single-115

layer network shown in Figure 1. The same network setting was used for analysis of double descent116

in recent papers [1, 18, 19, 20]. In this network, a classifier is estimated in two steps:117

– First, input vector x is encoded using N nonlinear features. Commonly, random features118

(weak features) are used, such as random ReLU or Random Fourier Features (RFF);119

– Second, a linear model is estimated in this N-dimensional feature space.120

This simplified setting enables VC theoretical analysis of double descent, because the analytic121

estimates of VC-dimension are known. That is, since the network output is formed as a linear122

combination of N features, analytic estimate of VC-dimension for linear hyperplanes f(z,w) =123

(wz) + b is known [8, 9, 10]:124

h ≤ min
(
||w||2, N

)
+ 1 (3)

This bound holds under the assumption that all training samples are enclosed within a sphere of125

radius 1, in Z-space. In summary, VC-dimension can be bounded by the input dimensionality (N), or126

by the norm of weights. These are two different mechanisms for controlling VC-dimension.127
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Figure 1: Single hidden layer network estimating a linear classifier in nonlinear feature space
(Z-space).

The double descent phenomenon can be observed for various learning methods used to estimate128

weights w for the network structure in Figure 1. Next, we present empirical results showing the129

application of VC bounds (1) and (3) for modeling double descent when network weights are130

estimated using SVM or Least-Squares (LS) classifiers. For large networks trained using LS, when131

N is larger than sample size (n), minimization of squared error is performed using pseudo-inverse,132

which finds a solution corresponding to the minimization of the norm squared ||w||2.133

In all experimental results in this section, double descent is observed when the network size (N) is134

gradually increased. Specifically, according to analytic bound (3):135

– When network size (N) is small, the VC-dimension initially grows linearly with N. This136

corresponds to the first descent, or traditional bias-variance trade-off.137

– For overparameterized networks (large N), VC-dimension is controlled by the norm squared138

of weights, leading to second descent.139

We use two types of random nonlinear features [1, 21], ReLU and RFF. Random ReLU features are140

formed as:141

Zi = max (〈vi,X〉, 0) , i = 1, ..., N

where random vectors v1, . . . ,vN are sampled uniformly from the range [-1,1]. Random Fourier142

Features (RFF) are formed as:143

Zi = exp
(√
−1〈vi,X〉

)
, i = 1, ..., N

Where random v1, . . . ,vN are sampled from Gaussian distribution with standard deviation σ = 0.05.144

In all experiments, input (x) values were pre-scaled to [0, 1] range, for both training and test data.145

Following the nonlinear mapping X→ Z, all z-values are re-scaled to [-1, 1] range. Such re-scaling146

is performed to satisfy the condition for bound (3), stating that all training samples in Z-space should147

be enclosed within a sphere of radius 1.148

Training samples (z, y) are used to estimate a decision boundary in Z-space. Two different methods149

(LS and SVM classifiers) are used for estimating linear decision function f(z,w) = (wz) + b from150

training data, in order to show double descent curves for two different loss functions, LS and SVM151

loss. For SVM modeling, the regularization parameter C is set to 64 in all experiments. Empirical152

test error is estimated using an independent test set.153

Most empirical results in this paper were obtained for MNIST digits adapted for binary classification154

(digit 5 vs 8), where digits are grey-scale images of size 28x28. The training set size n = 800, and test155

set size is 2,000. We have also used other data sets for modeling and observed similar results. See156

Appendix for additional results.157
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Figure 2: Application of VC-bounds for MNIST digit 5 vs 8 data set using random ReLU features.

Figure 3: Application of VC-bounds for MNIST digit 5 vs 8 data set using RFF.

Empirical results in Figures 2 and 3 show application of VC bounds to modeling MNIST data. They158

show:159

– Empirical training and test error curves, as a function of N ( the number of nonlinear160

features), along with VC-theoretical estimate of test error obtained via bounds (1) and (3).161

These curves show that analytic VC-bounds can explain (and predict) double descent;162
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– The ‘norm squared’ of estimated linear model, as a function of the number of features N;163

– For SVM, we also show the number of support vectors for trained SVM model.164

Modeling results for random ReLU and RFF features are similar, so we only comment on results in165

Figure 2:166

– For small N, VC-dimension grows linearly with N for SVM method. Empirical results show167

that first descent error curves can be explained by VC-bound (1), because the minimum of168

VC-bound closely corresponds to the minimum of test error. This can be clearly seen for LS169

classifier, and less obvious for SVM.170

– For large N, VC-dimension is controlled by the norm squared, according to bound (3). These171

results show that second descent can be explained by VC-bound (1), for both SVM and LS172

learning methods.173

Whereas empirical results for both SVM and LS in Figure 2 are qualitatively similar, their double174

descent curves show different values of interpolation threshold N* (where the training error reaches175

zero). For SVM, the value N* ≈ 100 is achieved when the number of features equals the number of176

support vectors. For LS classifier, the interpolation point N* ≈ 800 is achieved when the number of177

features equals the number of training samples.178

The dependence of test error on the norm of weights in large networks has been known to practitioners,179

and some limited theoretical explanation is provided in [1, 22, 23]. For example, [1, 22] suggest180

that minimum norm provides inductive bias by favoring models with higher degree of smoothness.181

However, these papers do not mention VC bounds that clearly relate the VC-dimension to the norm182

of weights, and explain generalization performance for linear classifiers.183

The dependence of interpolation threshold N* on training sample size for LS classifiers has also184

been observed in the DL literature. However, in the absence of sound theoretical framework for185

double descent, interpretation of this empirical dependency leads to convoluted explanations. For186

example, Nakkiran, et al. [12] investigated the effect of varying the number of training samples on187

test error, for a fixed-size DL network. In particular, they observed two double descent error curves188

for the same network trained using smaller and larger size training data, showing that during second189

descent, near interpolation threshold, the test error for a network trained with larger data set is worse190

than for the same network trained on smaller data set. This phenomenon was called ‘sample-wise191

non-monotonicity’, and a new theory was proposed for explaining regimes where ‘increasing the192

number of training samples actually hurts test performance’. However, this phenomenon has a simple193

VC-theoretical explanation, as explained next. Note that for LS classifiers during second descent the194

shape of the ‘norm squared’ closely follows the shape of test error, according to VC bound (2), as195

evident in Figures 2 and 3. Since for LS classifiers the interpolation threshold is given by training196

sample size, there is a region near interpolation threshold, where VC-dimension for a smaller training197

size is smaller than for a larger training size. According to VC-bound (2), in this region of second198

descent we can expect a smaller (better) test error for a smaller training size.199

VC theoretical framework can also help to understand the effect of statistical characteristics of training200

data on generalization curves. Next, we present empirical results demonstrating the effect on noisy201

data on the shape of double descent curves, along with their VC theoretical explanation. For these202

experiments, we use a single-layer network trained using SVM and LS classifier using random ReLU203

features. We use digits data with corrupted class labels. The training set size is 800 (400 per class),204

and the test set size is 2,000. Figure 4 shows the effect of noise level on the shape of double descent205

curves, for SVM and LS classifiers. Results for both SVM and LS models show double descent206

curves, but their shape is different. For the SVM model estimated using ‘clean’ data (0% label noise),207

there is no visible first descent at all, but for noisy data we observe both first and second descent.208

For the LS model, we clearly observe first and second descent for both clean and noisy training data.209

For LS curves, the interpolation threshold (≈ training size 800) is the same for different noise levels,210

but for SVM the value of interpolation threshold increases with noise level in the data. This can211

be explained by noting that for SVM, the interpolation threshold is reached when the training data212

becomes linearly separable (in nonlinear feature space, or Z-space in Figure 1). Therefore, for SVM213

the interpolation threshold is given by the number of support vectors needed to separate training214

data. For noisy data, a SVM model requires a larger number of support vectors, resulting in larger215

interpolation threshold.216
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Figure 4: Effect of noise on double descent for MNIST data, for SVM and LS classifiers using
random ReLU features.

The ability to generalize for noisy data can be explained by noting that during second descent VC217

bound (2) depends only on VC-dimension (the norm of weights). With increasing noise (in the data),218

the norm of weights increases, resulting in degradation of test error and flattening of second descent219

test error curve (as evident in Figure 4, for both SVM and LS).220

Empirical results in Figure 4 also show that for noisy data, generalization performance during second221

descent degrades, relative to optimal first descent model. This is contrary to the popular view that DL222

networks usually provide superior generalization performance during second descent [1, 3, 4, 12].223

We suspect that superior performance during second descent, reported in the DL community, can224

be explained by using large and ‘clean’ data sets (common in Big Data). For such training data sets225

(of size n), generalization performance during second descent is likely to be good, because the VC226

bound (2) on test error depends only on the ratio of VC-dimension to sample size (h/n).227

3 Modeling Double Descent for Fully Connected Multilayer Networks228

Empirical results for a simplified network setting in Section 2 provide insights for generalization229

performance of over-parameterized multilayer networks. Such general DL networks use SGD training230

that keeps the norm of weights small, so that the model complexity is determined by the norm of231

weights, rather than the number of weights (parameters). However, direct application of analytic232

VC bounds to modeling double descent may be tricky, because we need to address two challenging233

research issues:234

1. How to estimate VC-dimension for general DL networks, where analytic estimates do not235

exist;236

2. Understanding design choices for setting multiple ‘tuning’ parameters, such as network237

width, number of training epochs, weight initialization, etc. All of these hyperparameters238

can be used to control the VC dimension of DL networks. Double descent curves show239

dependence of training and test error on a single complexity parameter, when all other tuning240

parameters are preset to ‘good’ values.241
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Figure 5: Modeling results for second descent as a function of network width (N).

Figure 6: Second descent as a function of the number of epochs, for N = 10 and N = 100.

For these reasons, the application of analytic VC bounds to general DL networks is difficult (or242

impossible?). However, it can still be done for restricted and well-defined network settings. In this243

section, we consider a fully connected network with a single hidden layer, as in Figure 1, where the244

network weights in both layers are estimated during training via SGD. In this case, z-features are245

adaptively estimated from training data, in contrast to fixed random features used earlier in Section 2.246

Let us consider two factors (hyperparameters) controlling complexity of such networks trained247

via SGD: the number of hidden units (N), and the number of training epochs. Empirical results248

showing double descent curves as a function of these two factors have been extensively reported in249

DL literature [1, 12]. However, our purpose here is not to replicate such double descent curves, but to250

explain them using VC bounds (1) and (3). In order to make it possible, we have to specify network251

setting where VC-dimension can be approximately estimated. Therefore, we only consider modeling252

for second descent, where training error is kept very small (or zero), and test error is bounded by (2).253

This can be achieved when the number of hidden units N is large, or the number of training epochs is254
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large. So, our experiments intend to show application of VC bounds only in such restricted settings,255

where varying one complexity factor (for example, N) has an effect on VC-dimension and test error,256

according to bound (2).257

Further, in order to estimate VC dimension, we hypothesize that under such restricted settings, during258

second descent, the norm of weights in the output layer can be used to approximate the VC-dimension259

of a neural network. The reasoning (behind this hypothesis) is that for such restricted settings the260

training error is zero, so a linear decision boundary in Z-space should have a large separation margin,261

i.e. VC dimension is controlled mainly by the norm of weights in the output layer. This assertion262

appears to be supported by experiments for fully connected networks, trained on several different263

data sets.264

Next, we present empirical results for MNIST digits data, under the following experimental setting:265

– 200 training and 2,000 test examples (of digits 5 and 8);266

– Fully connected network using random ReLU activation function in hidden units [24];267

– Training using SGD with learning rate 0.001 and momentum 0.95. The learning rate is268

reduced by 10% for every 500 epochs. Batch normalization is used during training.269

– Weights initialized, prior to training, using Xavier uniform distribution, following [25].270

Our design choices for SGD implementation mainly follows earlier studies [1, 25].271

Figure 5 shows modeling results for second descent mode, as a function of the number of hidden units272

N (the number of epochs is set to 6000 in all experiments). The top part shows empirical training273

and test error curves, and the VC-bound on test error, that closely approximates empirical test error.274

The bottom part of the figure shows the VC-dimension, estimated as the norm squared of the output275

layer weights (for trained network). Figure 6 shows modeling results for second descent mode, as276

a function of the number of epochs (for networks with N = 10 and 100 hidden units). Note that277

VC-bound and VC-dimension can be reliably estimated only in second descent mode, when training278

error is close to zero. This region, where training error is smaller than 1%, is indicated by dotted279

vertical line. These results show that in the region where training error is very small, increasing280

the number of epochs results is a small increase in VC-dimension and a slight decrease of training281

error. This is a particular form of memorization-complexity trade-off, implicit in VC bound (1), when282

training error is very small (close to zero).283

These results demonstrate applicability of VC bounds for modeling second descent in fully connected284

multilayer networks. In addition, we can see the effect of each complexity parameter (network size285

N and the number of epochs) on VC-dimension. This can be used for ranking tuning parameters,286

according to their ability to control VC-dimension of DL networks during second descent.287

4 Summary288

This paper provides a VC-theoretical explanation of ‘double descent’ in multilayer networks. We289

show that for simplified network structures where VC-dimension can be analytically estimated, VC290

generalization bounds can be applied directly to the model and predict a double descent phenomenon.291

VC-theoretical framework is helpful for improved understanding of empirical results observed in DL,292

such as: the effect of various heuristics on generalization, relative performance of first and second293

descent, etc. Another important VC-theoretical insight is that during second descent VC-dimension294

depends on the norm of weights. According to VC-theoretical explanation, second descent occurs295

when zero training error is achieved using an estimator having small VC-dimension, i.e. small norm296

of weights. This phenomenon is general, and it does not depend on a particular training algorithm297

or on a chosen parameterization (such as multilayer network). Therefore, double descent can be298

observed for other learning methods, such as SVM estimators, and not only for DL networks trained299

by SGD algorithm.300

Empirical results presented in this paper contradict the consensus opinion that VC-theory cannot301

explain prediction performance of neural networks. Possible future work in this area may investigate302

VC theoretical modeling of double descent for low-dimensional data, and also for regression problems.303

Note that for regression problems VC-theoretical bounds have a different form [8, 9, 10, 11], and304

these bounds have not been previously used for modeling second descent.305
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