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Abstract
Fluorescence microscopy is ubiquitously used in
cell biology research to characterize the cellular
role of a protein. To help elucidate the relation-
ship between the amino acid sequence of a protein
and its cellular function, we introduce CELL-Diff,
a unified diffusion model facilitating bidirectional
transformations between protein sequences and
their corresponding microscopy images. Utilizing
reference cell morphology images and a protein
sequence, CELL-Diff efficiently generates cor-
responding protein images. Conversely, given
a protein image, the model outputs protein se-
quences. CELL-Diff integrates continuous and
diffusion models within a unified framework and
is implemented using a transformer-based net-
work. We train CELL-Diff on the Human Protein
Atlas (HPA) dataset and fine-tune it on the Open-
Cell dataset. Experimental results demonstrate
that CELL-Diff outperforms existing methods in
generating high-fidelity protein images, making it
a practical tool for investigating subcellular pro-
tein localization and interactions.

1. Introduction
Protein sequences inherently encode their functions, and
predicting these functions solely from sequence information
has become a critical area of research. With the develop-
ment of artificial intelligence, learning-based methods are
increasingly employed to predict a wide range of protein
properties, including structural conformation (Jumper et al.,
2021; Baek et al., 2021), interaction partners (Evans et al.,
2021), and subcellular localization (Almagro Armenteros
et al., 2017; Khwaja et al., 2024b). Concurrently, the rapid
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development of generative models has enabled researchers
to design functional proteins (Madani et al., 2023; Dau-
paras et al., 2022) and drug-like molecules (Isigkeit et al.,
2024). These computational methods allow for large-scale
virtual screening, significantly reducing the costs and re-
sources associated with experimental validation. The advent
of those technologies presents significant opportunities for
biomedical research, potentially accelerating advancements
in therapeutic target identification, drug discovery, and the
investigation of biochemical pathways (Palma et al., 2012).

In this work, we focus on the relationship between protein
sequences and their cellular functions as characterized by
microscopy images. Specifically, we focus on fluorescence
microscopy, which is ubiquitously used in nearly all cell
biology research. Fluorescence microscopy images provide
extremely rich information for proteins of interest in the
cellular context, such as their expression level, subcellular
distribution, and molecular interactions as can be measured
by spatial colocalization. Such information characterizes
protein functional activities as well as the physiological and
pathological state of cells. Disease-causing genetic muta-
tions can alter the amino acid sequence of proteins, resulting
in changes in image phenotypes by modifying gene expres-
sion patterns, reshaping molecular interaction profiles, or
globally perturbing cellular states. As a first step towards
building a model that connects the sequence of proteins
and their cellular images, recently, Khwaja et al. (2024b)
proposed CELL-E, a text-to-image transformer that predicts
fluorescence protein images from sequence input and cell
morphology condition. Furthermore, CELL-E2 (Khwaja
et al., 2024a) was developed to enhance the image genera-
tion speed of CELL-E by utilizing the idea of masked token
prediction (Chang et al., 2022). Additionally, CELL-E2 fa-
cilitates the bidirectional transformation between sequences
and images. However, their image model only allowed out-
puts of highly blurred images lacking fine details to discern
any of the subcellular structures other than the most promi-
nent one (i.e., the nucleus), restricting their applicability
only to the study of a very limited set of sequence features
(i.e., the nuclear localization signal).

To expand the application of sequence-to-cell-image gener-
ative models, we introduce CELL-Diff, a unified diffusion
model that enables bidirectional transformation between
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Figure 1. Given cell morphology images as conditional input,
CELL-Diff facilitates bidirectional generation between protein
sequences and images.

protein sequences and their corresponding microscopy im-
ages. Specifically, by utilizing cell morphology images
including the nucleus and cytoplasmic markers such as en-
doplasmic reticulum (ER) and microtubules as conditional
input, CELL-Diff can generate detailed protein images from
given protein sequences. Conversely, it can also output
protein sequences when provided with microscopy images,
as shown in Figure 1. To enable this bidirectional trans-
formation, CELL-Diff employs the continuous diffusion
model for generating microscopy images and the discrete
diffusion model for redesigning protein sequences, which
can be integrated within a unified framework. Specifi-
cally, we design a transformer-based U-Net model (Ron-
neberger et al., 2015; Peebles & Xie, 2023) enhanced with
the cross-attention mechanism from Stable Diffusion (Rom-
bach et al., 2022). This model processes sequences and
images as inputs, simultaneously modeling the conditional
distributions for image-to-sequence and sequence-to-image
transformations. The final objective function comprises the
noise prediction loss for the continuous diffusion model and
the masked value prediction loss for the discrete diffusion
model. We evaluate CELL-Diff on HPA dataset (Digre &
Lindskog, 2021), which provides cellular microscopy im-
ages of human proteins based on fixed immunofluorescence
staining. Subsequently, we fine-tune the model on the Open-
Cell dataset (Cho et al., 2022), which offers live microscopy
images of different human cell lines, each tagged with a
single protein via CRISPR/Cas9 gene editing.

• We present CELL-Diff, a diffusion-based generative
model that enables conditional bidirectional genera-
tion of protein sequences and their corresponding mi-
croscopy images. By integrating the continuous dif-
fusion and discrete diffusion models, CELL-Diff can
be trained within a unified framework. We propose
a transformer-based U-Net model for implementing
CELL-Diff, which effectively integrates information
from images and sequences.

• We train CELL-Diff on the HPA dataset using different
conditional cell images and fine-tune it on the Open-

Cell dataset. Experimental results show that our model
generates more detailed and sharper protein images
than previous methods.

2. Related works
Multi-modal generative modeling can be formalized as
learning the conditional or joint distribution between modal-
ities. Representative applications include text-to-image gen-
eration (Ramesh et al., 2021; Ding et al., 2021; Nichol
et al., 2022), image-to-text generation (image caption-
ing) (Mokady et al., 2021; Chen et al., 2023), text-to-video
generation (Ho et al., 2022), and text-to-speech (Chen et al.,
2021; Popov et al., 2021). Most of these approaches rely on
diffusion models or auto-regressive models for the gener-
ation and typically focus on unidirectional transformation.
However, our goal is to achieve bidirectional generation,
which requires learning joint distributions. To achieve this,
Hu et al. (2023) proposed a discrete diffusion-based model
for learning the joint distribution between images and text,
though its scalability remains unexplored. Bao et al. (2023)
introduced Unidiffuser, a unified diffusion model capable
of unconditional, conditional, and joint generation. The
key observation of Unidiffuser is that the learning objective
of the diffusion score function can be unified in a general
framework with multiple diffusion time steps. Furthermore,
Zhou et al. (2024) developed Transfusion, which integrates
auto-regressive and diffusion models for both single and
cross-modality generation. Transfusion combines the auto-
regressive loss with diffusion, training a single transformer
model using an extended causal mask. These methods gen-
erally depend on large pre-trained encoders for images and
text, such as CLIP (Radford et al., 2021) and VQGAN (Esser
et al., 2021). However, for microscopy images, the variabil-
ity in equipment and experimental conditions limits the
availability of such robust image encoders, making the di-
rect application of these models challenging. Indeed, the
two previous protein-sequence-to-microscopy generators,
CELL-E (Khwaja et al., 2024b) and CELL-E2 (Khwaja
et al., 2024a), which both used VQGAN, only produce
coarse-grain images that have too much blur to distinguish
fine-scale subcellular structures such as the cytoskeleton. As
for CELL-Diff, we combine continuous and discrete diffu-
sion to enable bidirectional transformation between protein
images and sequences, which achieves high-fidelity image
generation while preserving the ability to resolve detailed
subcellular structures.

3. Technical background
Before delving into our unified diffusion model, we briefly
introduce the background of diffusion models applicable
to continuous and discrete state spaces. Specifically, we
employ the continuous and discrete diffusion models for
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generating microscopy images and protein sequences, re-
spectively.

3.1. Diffusion model for continuous state spaces

Let I0 be a continuous random variable in Rd, where d de-
notes the dimension, and let I1:T = {It}Tt=1 be a sequence
of latent variables, with t as the index for diffusion steps.
The diffusion model involves two processes: the forward
process and the reverse process. In the forward process, the
diffusion model progressively injects noise into the initial
data I0, transforming it into a Gaussian random variable
IT . In the reverse process, the model learns to invert the
diffusion process through a denoising model and generate
new data by gradually eliminating the noise.

Forward process. The forward process involves inject-
ing noise into the initial data. Given a variance schedule
{βt}Tt=1, the forward process is defined as:

q(It|It−1) = N (
√
1− βtIt−1, βtId), t = 1, . . . , T.

(1)
Let αt = 1− βt and ᾱt =

∏t
i=1 αi. Then, for any arbitrary

time step t, it holds that q(It|I0) = N (
√
ᾱtI0, (1− ᾱt)Id).

Consequently, for a sufficiently large T , this process will
transform I0 into an isotropic Gaussian variable.

Reverse process. The goal of the reverse process is to
generate new samples from p(I0) starting from a Gaussian
random variable IT ∼ N (0, Id). The reverse process is
defined by a Markov Chain with trainable transitions:

pθ(It−1|It) = N (µθ(It, t), σ
2
t Id), t = 1, . . . , T. (2)

Here, µθ represents parameterized neural networks designed
to estimate the means from the current state, and σ2

t denotes
the variance.

Training objective. The training objective function can be
derived using variational inference. Instead of optimizing
the intractable log-likelihood function log p(I0), the diffu-
sion model maximize its ELBO:

Eq

[
log pθ(I0|I1)−DKL(q(IT |I0)∥pθ(IT ))

−
T∑

t=2

DKL (q(It−1|It, I0)∥pθ(It−1|It))
]
,

(3)

where q(It−1|It, I0) has an formulation as N (
√
ᾱt−1βt

1−ᾱt
I0 +

√
αt(1−ᾱt−1)

1−ᾱt
It, (1−ᾱt−1)βt

1−ᾱt
Id). Combining with (2), the KL

divergence of two Gaussian distributions has a closed-form
formulation.

To further simplify the computation, Ho et al. (2020) pro-
posed a training objective based on a variant of the ELBO
in (3) as

LDDPM = EI0,t,ϵ∥ϵθ(
√
ᾱtI0 +

√
1− ᾱtϵ, t)− ϵ∥22, (4)

where ϵ ∼ N (0, Id) and ϵθ is a noise prediction network.
In this formulation, µθ can be parameterized by ϵθ, enabling
the generation of new samples through the reverse process.

3.2. Diffusion model for discrete state spaces

Several distinct diffusion models are designed for discrete
data (Austin et al., 2021; Hoogeboom et al., 2021). This sec-
tion focuses on the order-agnostic Autoregressive Diffusion
Models (OA-ARDM) (Hoogeboom et al., 2022).

Let S = (S1, . . . ,SD) be a multivariate random vari-
able, where D denotes the maximum sequence length,
∀t ∈ {1, . . . , D}, St ∈ {1, . . . ,K} with K categories.
Denote SD as the set of all permutations of {1, . . . , D}, and
assume σ represents a random ordering in SD. Applying
Jensen’s inequality, we obtain:

log p(S) = logEσ∼U(SD)p(S|σ) ≥ Eσ∼U(SD) log p(S|σ),
(5)

where U(SD) denotes the uniform distribution over
SD. Following order σ, log p(S|σ) can be factor-
ized as

∑D
t=1 log p(Sσ(t)|Sσ(<t)), where Sσ(<t) =

(Sσ(1), . . . ,Sσ(t−1)). Combining this with (5), we have:

log p(S) ≥ Eσ∼U(SD)

D∑
t=1

log p(Sσ(t)|Sσ(<t))

= Eσ∼U(SD)

D∑
t=1

∑
k∈σ(≥t) log p(Sk|Sσ(<t))

D − t+ 1
.

(6)

Therefore, denote fθ as the neural network, C as the categor-
ical distribution, the loss function for OA-ARDM is

LOA-ARDM = ES,t,σ

∑
k∈σ(≥t)− log C(Sk|fθ(Sσ(<t)))

D − t+ 1
,

(7)
where σ ∼ U(SD) and t ∼ U(1, . . . , D).

The objective function of OA-ARDM corresponds to the
“Masked Language Modeling” training objective proposed
in BERT (Kenton & Toutanova, 2019) with a reweighting
term. At each training step, we first sample a time step t
from U(1, . . . , D), followed by a random ordering σ from
U(SD). We then feed Sσ(<t) into the model, which predicts
the remaining values Sσ(≥t). In the generation step, we
first sample a random ordering and then generate the values
according to that order. These processes are facilitated
through a masking operation, see Appendix A for the details.

4. Methodology
In this section, we introduce our unified diffusion model
for generating microscopy images and protein sequences.
Let Iprot represent the protein image, Icell represent the cell
morphology image, and S represent the protein sequence.
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Figure 2. Training losses of CELL-Diff. During each training itera-
tion, the protein image Iprot and sequence S are transformed using
the forward processes of the continuous and discrete diffusion mod-
els, with randomly sampled time steps tI and tS, respectively. The
network model is tasked with predicting the noise in the protein
image and the masked values from the protein sequence, corre-
sponding to the noise prediction loss LI and the masked value
prediction loss LS.

The task of protein image prediction involves sampling from
the conditional distribution p(Iprot|S, Icell), while the task of
sequence generation involves sampling from p(S|Iprot, Icell).
To achieve these goals within a unified diffusion model, we
simultaneously model these two conditional distributions,
which involves modeling a continuous variable Iprot and a
discrete variable S.

4.1. Proposed method

To simultaneously model p(Iprot|S, Icell) and p(S|Iprot, Icell),
we aim to maximize the conditional log-likelihoods
log p(Iprot|S, Icell) and log p(S|Iprot, Icell).

For log p(Iprot|S, Icell), based on the continuous diffusion
model assumption described in Section 3.1, we introduce
latent variables I1:T = {It}Tt=1. Following the training
objective of continuous diffusion (3), the conditional ELBO
for log p(Iprot|S, Icell) is expressed as:

Eq

[
log pθ(I

prot|I1,S, Icell)−DKL(q(IT |I0)∥pθ(IT ))

−
T∑

tI=2

DKL

(
q(ItI−1|ItI , Iprot)∥pθ(ItI−1|ItI ,S, Icell)

) ]
,

(8)

For log p(S|Iprot, Icell), we follow the discrete diffusion
model approach described in Section 3.2, introducing a
random ordering σ for the decomposition of the sequence S.
Based on (6), the conditional ELBO for log p(S|Iprot, Icell)

is formulated as:

Eσ

D∑
tS=1

1

D − tS + 1

∑
k∈σ(≥tS)

log p(Sk|Sσ(<t), I
prot, Icell),

(9)
where σ ∼ U(SD).

Using the same parametrization technique as shown in (4)
and (7), let fθ represents the neural network. The training
objective for protein images is defined as:

LI = EIprot,Icell,S,tI,ϵ∥fθ(S, ItI , tI, I
cell))− ϵ∥22. (10)

where ItI =
√
ᾱtII

prot +
√
1− ᾱtIϵ. The training objective

for protein sequences is defined as:

LS = EIprot,Icell,S,tS,σ

∑
k∈σ(≥tS)

− log C(Sk|Φ)

D − tS + 1
, (11)

where Φ = fθ(Sσ(<tS), I
prot, 0, Icell).

Finally, by combining (10) and (11), and introducing a bal-
ancing coefficient λ, the total loss for the proposed CELL-
Diff model is given by:

LCELL-Diff = LI + λLS. (12)

The training strategy is illustrated in Figure 2. During the
training phase, the protein image loss LI is computed by
applying the forward diffusion process to the image, where
Gaussian noise is incrementally added. The model then
takes the corrupted image and the corresponding protein
sequence as inputs to predict the noise introduced into the
protein image. Similarly, the sequence loss LS is computed
by partially masking the sequence using a randomly gen-
erated mask. The model uses the masked sequence and
microscopy images as inputs to predict the masked values
within the sequence.

4.2. Model details

Latent diffusion model. To reduce computational costs,
we employ the latent diffusion model (Rombach et al.,
2022; Peebles & Xie, 2023) for modeling microscopy im-
ages. Specifically, we first train a Variational Autoencoder
(VAE) (Kingma, 2013) to compress microscopy images into
lower-dimensional spatial representations. After training,
the VAE model is fixed, and the CELL-Diff model is trained
using the latent representations of microscopy images pro-
duced by the VAE encoder. During image generation, a
latent representation is sampled from the diffusion model
and subsequently decoded into a full-resolution image using
the learned VAE decoder.

Inference. After training, we can generate samples
from two conditional distributions: p(Iprot|S, Icell) and
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Figure 3. Network architecture of CELL-Diff. Microscopy images
are embedded into a latent sequence through residual and attention
blocks. The protein sequences are embedded using a pre-trained
ESM2 model (Lin et al., 2022). These embeddings are concate-
nated and processed by a bidirectional transformer. The U-Net
architecture (Ronneberger et al., 2015) is employed to output the
noise in the protein image, while a linear projection is utilized to
predict the masked values in the protein sequence. Cross-attention
mechanisms are implemented to enhance information integration
from images and sequences.

p(S|Iprot, Icell). Specifically, to generate the protein im-
age Iprot, we utilize the conventional reverse diffusion pro-
cess as shown in (2), conditioning on the unmasked pro-
tein sequence S and the cell image Icell. The network
model employed for generation is fθ(S, ·, tI, Icell), where
tI = 1, . . . , T . For the generation of the protein se-
quence S, we utilize the reverse process of discrete dif-
fusion OA-ARDM (Hoogeboom et al., 2022). We first sam-
ple a random ordering σ, and then generate sequence from
p(Sσ(tS)|Sσ(<tS), I

prot, Icell), where tS = 1, . . . , D. The
network model in this scenario is fθ(·, Iprot, 0, Icell). The
sampling algorithm for OA-ARDM is shown in Algorithm 2.

Network architecture. As shown in (10) and (11), the net-
work model fθ takes four inputs: the protein sequence S,
the protein image Iprot, the cell image Icell, and the diffusion
time step tI. To process the protein and cell images, we first
concatenate them and then apply the commonly used U-Net
architecture (Ronneberger et al., 2015). The concatenated
images are fed into a series of downsampling blocks, trans-
forming into image embeddings. The protein sequences
are embedded using a pre-trained ESM2 model (Lin et al.,
2022), with its parameters held fixed during training. Then,
the image and protein embeddings are concatenated and
processed using a bidirectional transformer. After passing
through the transformer module, the concatenated feature

tensors are split into image and sequence feature tensors.
The image feature tensors are then upsampled and com-
bined with the downsampling features to output the noise
from the protein image. The sequence feature tensor is pro-
cessed using a linear projector to predict the masked values.
The upsampling and downsampling blocks in the U-Net
consist of residual and attention blocks. To enhance the
integration of sequence information within the image pro-
cessing component, we utilize cross-attention mechanisms
with the attention blocks from Stable Diffusion (Rombach
et al., 2022). Furthermore, we employ the adaptive layer
norm zero (adaLN-Zero) conditioning method (Peebles &
Xie, 2023) for incorporating the diffusion time step tI. The
network architecture is illustrated in Figure 3.

5. Experiments
5.1. Datasets

Human Protein Atlas. The Human Protein Atlas (HPA)
dataset (Digre & Lindskog, 2021) includes immunofluo-
rescence images across various human cell lines with the
proteins of interest stained by antibodies. It provides cel-
lular images for 12,833 proteins and corresponding cell
morphology images consisting of staining for the nucleus,
ER, and microtubules. For each protein, the dataset includes
multiple microscopy images from different cell lines. The
corresponding protein sequences can be accessed from the
UniProt dataset (UniProt Consortium, 2018). In total, we
have collected 88,483 data points, each containing a protein
sequence, a protein image, a nucleus image, an ER image,
and a microtubule image.

OpenCell. The OpenCell (Cho et al., 2022) dataset pro-
vides a library of 1,311 CRISPR-edited HEK293T human
cell lines, each with a target protein fluorescently tagged us-
ing the split-mNeonGreen2 system. For each target protein,
OpenCell provides 4–5 confocal images along with a refer-
ence nucleus image. The cells were imaged live, offering a
more accurate representation of protein distribution than the
immunofluorescence images from HPA. Notably, 1,102 pro-
teins are common between the HPA and OpenCell datasets.
In total, we collected 6,301 data points, each containing a
protein sequence, a protein image, and a nucleus image.

Given the size limitations of the HPA and OpenCell datasets,
particularly in the diversity of protein sequences, we ran-
domly selected 100 proteins from the shared subset between
the two datasets as the test set, leaving the remainder for
training. The test set for HPA and OpenCell contains 714
and 473 data points, respectively.

5.2. Implementation details

We begin by training a VAE with the same network architec-
ture from Stable Diffusion on the training sets of the HPA
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Figure 4. Visual results of protein image generation on HPA dataset.

Table 1. Comparison of protein image generation performance on HPA and OpenCell datasets. ”Nucl” denotes the nucleus image, ”ER”
denotes the endoplasmic reticulum image, and ”MT” denotes the microtubule image. ”FID-T” indicates the FID computed using the
thresholded protein image, and ”FID-O” indicates the FID computed using the original protein image.

Dataset Method Cell image MSFR (nm) ↓ IoU ↑ FID-T ↓ FID-O ↓

HPA CELL-E2 Nucl 1824 0.462 77.6 166.4
CELL-Diff Nucl 641 0.484 60.1 51.1

HPA CELL-Diff
Nucl, ER 642 0.580 55.9 60.0
Nucl, MT 644 0.616 51.0 47.6

Nucl, ER, MT 644 0.635 50.4 45.6

OpenCell CELL-E2 Nucl 1165 0.466 77.0 245.8
CELL-Diff Nucl 529 0.492 62.4 68.9

and OpenCell datasets for compressing microscopy images
into a latent representation. For the HPA dataset, images
are randomly cropped to a size of 1024 and then resized to
256, while images from the OpenCell dataset are directly
cropped to 256 pixels. Data augmentation is applied using
random flips and rotations. The latent representation has
dimensions of 4× 64× 64. The KL loss coefficient is set
to 1× 10−5. The learning rate is initialized using a linear
warm-up strategy, increasing from 0 to 3 × 10−4 over the
first 1,000 iterations, followed by a linear decay to zero. The
batch size is set to 192. The VAE is trained for a total of
50,000 steps on the HPA dataset and fine-tuned for 20,000
steps on the OpenCell dataset.

Next, we fix the VAE model and train the latent diffusion
model. CELL-Diff is pre-trained on the HPA dataset and
fine-tune on the OpenCell dataset. Both pre-training and
fine-tuning are conducted for 50,000 iterations using the
Adam optimizer (Kingma & Ba, 2014). The learning rate is
initialized using a linear warm-up strategy, increasing from
0 to 1 × 10−4 over the first 1,000 iterations, followed by
a linear decay to zero. The batch size is set to 64. The
sequence embedding dimension is 1280, and the bidirec-
tional transformer module consists of 8 layers with 8-head

attention. CELL-Diff is trained with 200 diffusion steps
using the cosine noise schedules (Peebles & Xie, 2023), and
use DDIM (Song et al., 2020) with 100 steps to accelerate
the sampling speed. The weighting coefficient λ in (12) is
set to 1, and the maximum protein sequence length is 2,048.
All models are trained using two Nvidia H200 GPUs.

5.3. Protein image generation

We evaluate the protein image generation performance of
CELL-Diff. Given that the protein image prediction prob-
lem is relatively new, we compare CELL-Diff with the most
closely related method, CELL-E2 (Khwaja et al., 2024a).
The outputs for CELL-E2 are a heat map that indicates the
localization distribution and a binary protein image, see
Figure 4.

To provide a quantitative comparison, we introduce the
Maximum Spatial Frequency Resolvability (MSFR) for mi-
croscopy images to measure its capability to discern fine
structural details. Given a microscopy image I, we de-
fine the Fourier Ring Power Spectral Density (FRPSD) as
FRPSD(r) =

∑
ri∈r |Î(ri)|2, where Î denotes the Fourier

transform of I and ri denotes the pixel element at radius r.
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Figure 5. Virtual staining using HPA data. From identical cell images, CELL-Diff generates staining results for various proteins.

The MSFR is then defined as:

MSFR =
1

f
, f =

i

Image Size× Pixel Size
, (13)

where i is defined as the first frequency index that satisfies:{
FRPSD(r) > 10−3, r < i

FRPSD(r) < 10−3, r = i
. (14)

We also employ the Intersection over Union (IoU) metric,
which measures the similarity between two masks and is
commonly used in image segmentation tasks. To calculate
IoU, we apply median value thresholding to the original
protein images to generate binary masks, while for CELL-
E2, we use the predicted binary image. Additionally, we
compute the Fréchet Inception Distance (FID) (Heusel et al.,
2017) score to evaluate the similarity between the real and
predicted images. FID is a learning-based metric that eval-
uates the quality of images generated by generative mod-
els. It measures the similarity between the generated and
real images regarding their feature distributions. Lower
FID scores indicate that the generated images are more
similar to the real images. To compute FID, we concate-
nate the protein and nucleus images as input. In practice,
we compute FID-T and FID-O, representing the FID score
based on thresholding and original protein images, respec-
tively. The results are shown in Table 1. The results show
that CELL-Diff generated images exhibit better MSFR than
CELL-E2. In particular, the MSFR for the original HPA
and OpenCell data are 640 nm and 463 nm, respectively.
The results from CELL-Diff are approaching the resolv-
ability of the original training data, allowing us to discern
finer details in protein distribution, such as various cytoplas-
mic organelles. Regarding the prediction accuracy metric
IoU, CELL-Diff outperform CELL-E2 when using only
the nucleus image as the conditional cell image, which can
be largely improved by incorporating additional cell mor-
phology images, such as those of the ER and microtubules.

NLS
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NES

Predicted 
images

IoO

Figure 6. Protein localization signal screening. Test sequences are
tagged to the C-terminus of the protein BLVRA. The ratio ”IoO”
represents the median protein intensity inside the nucleus relative
to that outside the nucleus.

Regarding the learning-based metric FID, CELL-Diff sig-
nificantly outperforms CELL-E2, further demonstrating the
superiority of the proposed method. Visual results are illus-
trated in Figure 4. From the figure, we find that CELL-Diff
accurately predicts protein images from unseen protein se-
quences. Compared with CELL-E2, CELL-Diff generates
more resolvable images, enabling the extraction of more de-
tailed information from the generated images. More results
are provided in Appendix B.

6. Discussions
6.1. Ablation on cross attention module

We employ the cross-attention mechanism to more effec-
tively integrate information from sequences to images. To
evaluate its efficiency, we conduct an ablation analysis of

7
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Table 2. Ablation analysis of cross attention module on HPA
dataset. The nucleus image is used as the cell morphology image.

Metric w/o CA w CA

MSFR (nm) ↓ 687 641
IoU ↑ 0.434 0.484

FID-T ↓ 55.8 60.1
FID-O ↓ 41.3 51.1

this module on the HPA dataset, see Table 2. The results
show that incorporating this module significantly improves
the accuracy metric IoU, demonstrating the effectiveness of
the cross-attention mechanism.

6.2. Potential applications

In this section, we present three potential applications of
the proposed CELL-Diff method for biological discovery.
Given that validation relies on biological knowledge and the
dataset size is limited, we retrain all models using all the
protein sequences from the HPA and OpenCell datasets.

Virtual staining. Typical fluorescence microscopes can
only fit no more than four color channels in the visible
spectrum. Because of this physical limitation, both HPA
and OpenCell acquire the images of only one protein of
interest per sample, with the other color channels occupied
by morphological reference images. Consequently, it is
challenging to identify the intracellular spatial relationships
among multiple proteins of interest because their images
are from different cells. With CELL-Diff, we solve this
problem by generating images of these proteins conditioned
on the same morphology reference images. These virtual
staining images allow the subcellular distributions of an
arbitrary number of proteins to be directly compared and po-
tential molecular interactions identified from colocalization,
while entirely circumventing the color channel limitation
of fluorescence microscopy experiments. We demonstrate
using CELL-Diff to identify molecular interaction by virtu-
ally staining two microtubule components (TUBA1A and
TUBB4A) and two other proteins, KIF18A and EML4, from
the same morphology image. The overlaid image clearly
shows the association of KIF18A and EML4 with micro-
tubules in the cell, consistent with their known biological
function of microtubule binding, see Figure 5.

Virtual screening of protein localization signal. CELL-
Diff can be applied for the virtual screening of protein local-
ization signals, such as Nuclear Localization Signals (NLS)
and Nuclear Export Signals (NES). The NLS is a short
amino acid sequence that directs the import of proteins into
the nucleus, while the NES facilitates their export from the
nucleus. In this approach, the test peptide sequence is tagged
to the C-terminus of the protein BLVRA, which is uniformly

distributed both inside and outside the nucleus. CELL-Diff
is then employed to predict the images of the modified pro-
tein. The resulting predicted images are analyzed to identify
potential localization signals. As illustrated in Figure 6,
we compute the median fluorescence intensity inside the
nucleus relative to that outside the nucleus, referred to as the
IoO ratio. For the original BLVRA protein, the IoO ratio is
1.12. If the IoO ratio of the modified protein exceeds 1.12,
the test sequence is likely to function as an NLS, conversely,
if the ratio is lower, the sequence is more likely to act as
an NES. In Figure 6, we tested three NLSs and three NESs
known from the literature. CELL-Diff successfully recog-
nized these signals, proving its capability as a computational
tool for screening potential protein localization signals.

Localization signal generation. Using image-to-sequence
generation, CELL-Diff can be applied to generate novel
protein localization signals, such as NLS and NES. Given a
cell morphology image and a corresponding protein image,
CELL-Diff generates the protein sequences that should be
located at the position indicated by the protein image. Con-
ditioned on an image of either a nucleus-localized protein
or a nucleus-excluded protein (Figure 9), we generated 200
potential NLS and NES sequences, see Table 3 and Table 4,
respectively. For NLS generation, the results indicate that
the generated sequences exhibit key features of canonical
NLS motifs, particularly clusters of basic residues (e.g., K-
K/R-X-K/R). The sequences are enriched with lysine (K)
and arginine (R) residues, characteristic of functional NLS
motifs. Similarly, for the NES generation, the predicted se-
quences contain a high proportion of hydrophobic residues,
including L, I, F, M, and V, which are known to be criti-
cal for NES function. The results suggest that CELL-Diff
can effectively generate peptide sequences with potential
localization signals, offering a promising tool for studying
intracellular protein targeting.

7. Conclusion
This paper proposes CELL-Diff, a unified diffusion model
that facilitates the transformation between protein sequences
and microscopy images. Given cell morphology images as
conditional inputs, CELL-Diff generates protein images
from protein sequences. Conversely, it can generate protein
sequences based on microscopy images. The objective func-
tion of CELL-Diff is constructed by integrating continuous
and discrete diffusion models. Experimental results on the
HPA and OpenCell datasets demonstrate that CELL-Diff
produces more accurate results with higher resolvability
than previous methods. Potential applications, including vir-
tual screening of protein localization signals, virtual staining,
and protein localization signal generation, make CELL-Diff
a valuable tool for investigating subcellular protein localiza-
tion and interactions.
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Impact Statement
This paper introduces a generative model that bridges pro-
tein sequences with their corresponding microscopy images,
offering a novel tool for advancing biological research and
discovery. The proposed approach has the potential to en-
hance our understanding of protein sequences and their
subcellular localizations, paving the way for breakthroughs
in molecular and cellular biology.
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A. Implementation of Discrete Diffusion Model
The training and sampling process of the discrete diffusion model OA-ARDM (Hoogeboom et al., 2022) can be facilitated
through a masking operation. Denote C as the categorical distribution, the training and sampling algorithms are shown in
Algorithm 1 and Algorithm 2, respectively. For each training iteration, we first sample a time step t from U(1, . . . , D), and
a random ordering σ from U(SD). Subsequently, we generate a mask m based on the index i such that σ(i) < t. We then
apply the network fθ, which takes m⊙ S as input, and predicts the masked values (1−m)⊙ S.

Algorithm 1 Training OA-ARDM
Require: Network fθ, datapoint S.
Ensure: LOA-ARDM.

1: Sample t ∼ U(1, . . . , D).
2: Sample σ ∼ U(SD).
3: Compute m← (σ < t).
4: Compute l← −(1−m)⊙ log C(S|fθ(m⊙ S)).
5: LOA-ARDM ← 1

D−t+1 sum(l).

Algorithm 2 Sampling from OA-ARDM
Require: Network fθ.
Ensure: Sample S.

1: Initialize S = 0, sample σ ∼ U(SD).
2: for t = 0, 1, 2, . . . , D do
3: m← (σ < t) and n← (σ = t).
4: S′ ∼ C(S|fθ(m⊙ S)).
5: S← (1− n)⊙ S+ n⊙ S′.
6: end for

B. Protein image generation
We present more protein image generation results. The results on the HPA and OpenCell datasets are shown in Figure 7 and
Figure 8, respectively. From these results, we observe that CELL-Diff is capable of generating realistic protein images with
high accuracy, enabling the discernment of fine details. Compared to CELL-E2, CELL-Diff produces images with higher
resolvability, which provides better clarity of detailed localization structures.

C. Localization signal generation
We use CELL-Diff to generate protein localization signals. Specifically, we use the images in Figure 9 as the conditional
input for generating NLS and NES signals. Using the CELL-Diff model, we generate short amino acid sequences. A total of
100 potential sequences are generated for each signal type. Generated NLS and NES sequences are summarized in Table 3
and Table 4, respectively.
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Figure 7. Visual results of protein image generation on HPA dataset.
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Figure 8. Visual results of protein image generation on OpenCell dataset.
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Table 3. Generated NLS sequences.

Index Sequence Index Sequence

1 PERKK 51 PKRKAEGDAKGDKAK
2 PKGKK 52 SKRKAEGDAKGDKAKK
3 PKRSK 53 PKRKAEGDAKGDTAKK
4 PKRKK 54 PKRKAEGDAKGDKAKK
5 PEGKK 55 PKRKAPGDAKGDKAKKK
6 PKRKAE 56 PKRKAEGDAKGDKAKEK
7 PKGAKK 57 AKRKAKADAKGDTAKEK
8 PKRAKK 58 PKRKAEGDAKGDKAKKK
9 PKRAAK 59 SKRKAKNDAKGDKAKEKD
10 AKRKKK 60 PKRKAEGDAKGDKAKKKD
11 PKRKAK 61 PKRKKENDAKGDKAKKKD
12 PKRKAKK 62 PKRKAKADAKGETAKEKD
13 PKRKKKK 63 PKRKSPNDAKGPTTKKKD
14 PKGKAKK 64 PKRKKPADAKGAKAKKKD
15 PKRQAKK 65 PKRKAKNDAKGPTAKEKD
16 PKGKAKA 66 SKRKTPASAKGPKAKKKDG
17 PKRKAKAA 67 SKRKTVKDAKGDTAKKKDG
18 PKGKAKKA 68 SKRKTVASAKGPKAKKKDG
19 PKRKAKAD 69 SKRKAKADAKGETAKKKDG
20 PKRKAKGK 70 SKRKKEADAKGGDAKKKDG
21 PKRKAKGD 71 SKRKTPAPAKGEKAKKKDG
22 PKRKAKGA 72 PKRKTKAPAKGDKAKKKDE
23 PKRKAKEDA 73 PKRKTPAPAKGPTAKKKDG
24 PKRKAEKQA 74 SKRKTVASAKGPKAKKKDGP
25 PKRKAKADK 75 PKRKTKAPAKGEKTKKKDGP
26 PKRKAKRDA 76 KKRKPEADFKGDKAGKKDGPQ
27 PKRKAEADAK 77 PKRKAEADAKGDKAKKKDVPQ
28 PKRKAEASAK 78 SKRKAPADAKGDKAKKKDVPQ
29 PKRKKEAPAK 79 PKRKAPADAKGDKAKKKDEPQ
30 PKRKKPADAK 80 PKRKAEADAKGDKAKKKDVPQR
31 PKRKKEADAKG 81 PKRKAEKDAKGDKAKKKDEPQR
32 PKRKPEAPAKG 82 PKRKAPADAKGDKAKKKDVPQQ
33 PKRKKKAPAKG 83 PKRKAEADAKGDKAKKKDEPQR
34 PKRKSKASAKG 84 SKRKAPADAKGDKAKKKDVPQR
35 PKRKSEASAAGE 85 PKRKAEADKKGDKAKKKDEPQR
36 PKGKTEADAAGG 86 SKRKAPADAKGDKAKKKDMPQQ
37 PKRKAPAPAKGD 87 AKRKAEADAKGDKAKKKDEPQQR
38 PKRKKEAPAKGE 88 PKRKAEGDAKGDKAKKKDEPQRR
39 PKRKAPAPAAGD 89 PKRKAPADAKGDKAKKKDGPQQR
40 PKRKSKASAEGG 90 AKRKAERDAKGDKAKEKDEPQQAG
41 PKRKAEEDAKGAK 91 AKRKAERDAKGDKAKVKDEPQRAG
42 PKRKAEAAAKGAG 92 PKRKAERDAKGDKAKKKDEPQQAG
43 PKRKAEADAKGET 93 AKRKAERDAAGDKAKKKDEPQQAG
44 PKRKAEADAAGEK 94 AKPKAPRDAKGDKAKKKDEPQQAG
45 PKRKAEADAPGDG 95 AKRKAEADAKGDTAKEKDEPQQAGA
46 PKRKAEEDAKGDKA 96 PKRKPEADAKKDTAKEKDEPQQAGA
47 PKSKAEEDRKGPKA 97 AKPKAEKDAKKDKAKEKDEPQQAGA
48 PKRKAEEDAKGPKA 98 AKRKAERDAKGETAKEKDEPQQAGA
49 PKGKAEADAKGDKA 99 PKRKAERDAKGDTAKKKDEPQQAGA
50 PKRKAEEDAKGDKAK 100 SKRKAETDAKGDTAKEKDEPQQAGA
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Table 4. Generated NES sequences.

Index Sequence Index Sequence

1 AMFKALREMGG 51 AMFAARRLLGKAAQLDY
2 QDIIARIEQGK 52 VSFSARLLLGFMAQLDT
3 GMIRARRENGE 53 AMFAARLLLGEFAQRDY
4 QMIIVLREMKG 54 MMKIARLLLGKMAQLDT
5 AMIRVRIEMGE 55 AGFIARLLLGFFAQLDY
6 ADIIALREMGKA 56 AMFIARLLHGFMAQLDY
7 QKARAPEGELGA 57 AMIIARRELDFFAQLDTF
8 ADIIAAEEVGKA 58 AMIIARRELGKFAQYDTF
9 ADIIAAEEVIKA 59 AMFIARRSLGEFAQLDTF

10 ADIIAPRLHGKA 60 AMIIARRSLGKFAQYDTD
11 ADIIAPEEMGKE 61 AMFIARRSLGKFAQLDTF
12 GDIIAPEEYGKA 62 AMIIARRELQFFFQLDTF
13 ADIIAPRKVIKA 63 AMISARRENGKFAQKDTFL
14 ADIIARDEMGKA 64 AMIIARREHGFFFQKDRFC
15 ADIIAPEEVGKA 65 AMIIARIEHGFFAQLDLFQ
16 GDFLAARKKGGFF 66 AMIIARKLNGKFAVLDQFN
17 GDFLAPEKVGEFF 67 AMISARDENYVFAALDQFP
18 GDQLAPLKYGKFF 68 AMISARREHNKFAAIDTFF
19 CDIEAPEKLPRFF 69 AMISARREHQKFALIDTFC
20 GDDLAPLRVGKFF 70 AMISARRKYLKFAQIDTFF
21 CDIRAAEQVGKFE 71 AMIIARRELTGFGADDTFF
22 SDILAPRKHGEFF 72 AMISARREYDKFAQLDQFQ
23 PDKLAPLEVGGFFR 73 AMISALIEHGFFAVCDLKFR
24 KDKKAPRQVGGFFL 74 AMIIARKEHTVFAEIDQFFR
25 GDFIAPQLFGGFFR 75 ADIIALIKHTFFELIDLFQR
26 SDFLAPELFGGFFE 76 SMIIARRENGFFAQIDLFFR
27 PDFKAPQLVKGFFA 77 ALIIALIENQGFEVIDQKFR
28 PDFLVPLEFGEFFA 78 ALIIARKEHPFFAIIGLFFR
29 PDFLAPLLVPLFFA 79 ADISAVIEHKFFAVIDLFFL
30 PGFIAEQLKGLFAQE 80 AQIIALRENPVFAQSGLFFR
31 PDFEAPQLKLGFAEL 81 GLISALIEHPGFFALDQFFR
32 CDFLVDLLLVLFAAI 82 AQIIALIEHDGFATLDQDFR
33 PGKEAPQLLPKFAAI 83 GDIAALIKFQKFAVIGLNQRV
34 PGFEANQLFGEFFAY 84 SDFIALISFQGFAVLGLFQLV
35 PDFEAPQLQLGFATI 85 SDIRALLRNDGFAALGLKQPE
36 PDFEAELLKLLFAIE 86 SDIAALIRKGGFEAIGQFFRC
37 PGFLADLLHLLFQAV 87 ADIRALIKNKKFAILGQKQPE
38 PDFEAPQLFGKMAAK 88 GDKAALKEFGGFEQLGLFQPE
39 PDFEANQLKLGFAEV 89 SDIAALIEFPGFEALDLPQPV
40 VGFSARQLHGKFAQVI 90 GDIRALIKFQKFEVIGQKQPE
41 SGFSARQLKGKMAQLI 91 SDISALIRNHGVADLGQFQRC
42 AGFSAEQLLGKFAQEI 92 GDISALISNKGFAEIGQFQSC
43 AGFAADQLLGKMAQLI 93 CKKLALLSFVGFAVCDTKQSED
44 MGFSADQLLGKMAQLI 94 CKKRALDRNKFMAALLLKQAKD
45 SGFSARQLQGKFAEED 95 SDIRALKKFQKFAVLGLGQLFD
46 AGFSADQLLGKFAQLI 96 SKKRALDKFVGFAVLGLFLRVD
47 AGFLADQLLGKFAQVI 97 GMKRALDKFLGFAALGTFQPFD
48 AGFSADQLLGKMAQLI 98 AMKRALDSFQKFAASLLKQEED
49 PGFSAEELLGKKAQVI 99 AKKIALDSNKGFAALLLFQVED
50 MMFSARLLLQEFAQEDR 100 AKKRALDKFLGFSVLDLFQEED
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Conditional image for generating NLS Conditional image for generating NES

Figure 9. Conditional images for protein localization signal generation.
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