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Abstract
Recent theoretical and empirical successes in deep
learning, including the celebrated neural scaling
laws, are punctuated by the observation that many
objects of interest tend to exhibit some form of
heavy-tailed or power law behavior. In particular,
the prevalence of heavy-tailed spectral densities in
Jacobians, Hessians, and weight matrices has led
to the introduction of the concept of heavy-tailed
mechanistic universality (HT-MU). Multiple lines
of empirical evidence suggest a robust correlation
between heavy-tailed metrics and model perfor-
mance, indicating that HT-MU may be a funda-
mental aspect of deep learning efficacy. Here,
we propose a general family of random matrix
models—the high-temperature Marchenko-Pastur
(HTMP) ensemble—to explore attributes that give
rise to heavy-tailed behavior in trained neural
networks. Under this model, spectral densities
with power laws on (upper and lower) tails arise
through a combination of three independent fac-
tors (complex correlation structures in the data; re-
duced temperatures during training; and reduced
eigenvector entropy), appearing as an implicit bias
in the model structure, and they can be controlled
with an “eigenvalue repulsion” parameter. Im-
plications of our model on other appearances of
heavy tails, including neural scaling laws, opti-
mizer trajectories, and the five-plus-one phases of
neural network training, are discussed.

1. Introduction
Recent years have witnessed remarkable efforts directed to-
ward providing a theoretical underpinning to “explain” the
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success of deep learning. Prominent examples include de-
velopments in overparameterized models (Jacot et al., 2018;
Soltanolkotabi et al., 2018; Belkin et al., 2019; Nakkiran
et al., 2021; Bartlett et al., 2021), nonvacuous generalization
bounds (Bartlett et al., 2017; Dziugaite & Roy, 2017; Cao &
Gu, 2019; Lotfi et al., 2022), statistical mechanics of learn-
ing (Martin & Mahoney, 2017; 2021b; Goldt et al., 2019;
Bordelon et al., 2024a), random matrix theory (RMT) (Pen-
nington & Worah, 2017; Liao et al., 2020; Mei & Montanari,
2022; Hu & Lu, 2022; Wei et al., 2022; Arous et al., 2024;
Wang et al., 2024; Atanasov et al., 2025), and robust metrics
to assess model quality (Jiang et al., 2020; Martin et al.,
2021; Martin & Mahoney, 2021a). In general, however,
most “predictions” for model performance provided by the-
ory still tend to be ad hoc, providing limited practical utility
beyond heuristics. As part of the effort to develop effective
theoretical explanations, it is important to recognize, char-
acterize, and explain empirical properties of deep learning
models that are not shared by classical statistical models.

One of the more prominent and ubiquitous of such prop-
erties is the frequent appearance of heavy-tailed distribu-
tions for various objects of interest. This includes gradient
norms (Simsekli et al., 2019) and loss curves (Hestness et al.,
2017; Kaplan et al., 2020; Hoffmann et al., 2022). It also
includes the singular values (eigenvalues of the product of a
matrix with its conjugate transpose) of various matrices, in-
cluding data covariance (Sorscher et al., 2022; Zhang et al.,
2023), activation (conjugate kernel) (Pillaud-Vivien et al.,
2018; Agrawal et al., 2022; Wang et al., 2023), Hessian (Xie
et al., 2023), Jacobian (Wang et al., 2023), and weight matri-
ces (Martin & Mahoney, 2021b). In classical settings, these
objects typically exhibit (or are assumed to exhibit) Gaus-
sian universality (Tao & Vu, 2011; Lu & Yau, 2022; Dandi
et al., 2023). Indeed, much of classical statistical theory
is built around the concentration associated with Gaussian
universality. Our objective is to identify a new class of RMT
models to describe heavy-tailed spectral behavior in each of
these objects. Summarizing our contributions:

• Modeling Framework. We propose a general modeling
framework for probabilistic analyses of trained neural
network feature matrices, including the derivation of their
spectral densities.

• Beyond the Marchenko–Pastur Law. We examine the
High-Temperature Marchenko-Pastur (HTMP) distribu-
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tion (Dung & Duy, 2021), a recently-introduced RMT
distribution that generalizes the Marchenko-Pastur (MP)
law, and we propose its consideration in the origins of HT-
MU. We argue that HTMP arises in the spectral density
of feature matrices with non-trivial structure, influenc-
ing eigenvalue spacings according to a new parameter κ.
As more structure is imposed, κ decreases, resulting in
heavier-tailed spectra. This phenomenon occurs indepen-
dently of the behavior of matrix elements—the elements
of HTMP models need not have heavy-tailed behavior.

• Connections with Existing Heavy-Tailed Properties.
We apply the HTMP model to derive neural scaling laws
(Kaplan et al., 2020), explain the mysterious appearance
of lower power laws in optimizer trajectories (Hodgkin-
son et al., 2022), and explain the five-plus-one phases of
training of Martin & Mahoney (2019).

We begin in Section 2 with a brief overview of current ap-
proaches to heavy-tailed spectral behavior and, in particular,
heavy-tailed mechanistic universality (HT-MU). We intro-
duce our modeling framework in Section 3, proposing that
trained feature matrices can be modeled by a density of the
inverse-Wishart type. Then, in Section 4, we derive the cor-
responding limiting spectral density, identifying three inde-
pendent influences on heavy-tailed spectral behavior. Given
these results, in Section 5, we apply our model to broader
consequences of heavy tails in machine learning (ML). In
Section 6, we provide a brief conclusion. Additional mate-
rial, including proofs, may be found in appendices.

2. Heavy-Tailed Mechanistic Universality
Heavy-tailed distributions refer to a broad range of dis-
tributions (Resnick, 2007; Nair et al., 2022), most often
with densities that decay slower than exponential, but the
phrase is often (informally) used interchangeably with the
prescription of power laws, which decay at a polynomial
rate, f(x) ∼ cx−α as x → ∞.1 Importantly, as an em-
pirical matter, many other densities also exist that can ex-
hibit tails that are empirically indistinguishable from power
laws (Clauset et al., 2009). These include log-normals (e.g.,
in layer norms (Hanin & Nica, 2020)) and exponentially-
truncated power laws of the form f(x) ∼ cx−αe−βx for
small β > 0 (which can provide more informative fits for
the spectra of weight matrices (Yang et al., 2023)).

In statistical physics (Sornette, 2006; Bouchaud & Potters,
2003) and the statistical physics of learning (Seung et al.,
1992; Watkin et al., 1993; Engel & den Broeck, 2001), the
presence of power laws is particularly special, suggesting an
underlying universal mechanism driving their appearance.

1Power laws can also occur at the bottom part of the density,
taking the form f(x) ∼ cxα as x→ 0+, e.g., for gradient norms,
as in Hodgkinson et al. (2022), and this will be relevant for us.

Consequently, the frequency of heavy-tailed distributions ap-
pearing in modern ML suggests a new Heavy-Tailed Mech-
anistic Universality (HT-MU), a term coined in Martin &
Mahoney (2020). Universality in this context describes sys-
tems near critical points, whose observables exhibit heavy-
tailed, power-law behavior with shared exponents. We build
our HT-MU models upon the work of Martin & Mahoney
(2020); Martin et al. (2021); Martin & Mahoney (2021b),
who identified heavy-tailed spectral distributions in pre-
trained weight matrices, and posed the question: what con-
stitutes universality in neural network weights? In RMT,
universality denotes the emergence of system-independent
properties derivable from a few global parameters defining
an ensemble (Edelman & Rao, 2005; Edelman & Wang,
2013). In statistical physics, on the other hand, universality
arises in systems with very strong correlations, at or near a
critical point or phase transition; and it is characterized by
measuring experimentally certain “observables” that display
heavy-tailed behavior, with common—or universal—power
law exponents. Although trained weight matrices are not
truly random, but rather strongly correlated through training,
RMT nonetheless provides a useful descriptive framework.

HT-MU has several important practical consequences. Most
famously, spectral power laws in the activation matrices of
deep neural networks give rise to neural scaling laws that
are obeyed by the test loss with respect to both the number
of parameters and training time (Bahri et al., 2024; Maloney
et al., 2022). These laws reveal powerful selection criteria
for designing compute-optimal models under a given budget
(Kaplan et al., 2020; Hoffmann et al., 2022; Muennighoff
et al., 2023; Paquette et al., 2024). In the absence of signifi-
cant compute or the associated training/testing data, power
laws encountered in the eigenspectra of weight matrices
(and in the reciprocal of gradient norms; see Hodgkinson
et al. (2022)) have been found to be unusually strong in-
dicators of model quality. In particular, HT-MU underlies
Heavy-Tailed Self-Regularization (HT-SR) Theory (Martin
& Mahoney, 2021b), providing a framework for predict-
ing trends in the quality of state-of-the-art neural network
models—without access to training or testing data (Martin
et al., 2021; Yang et al., 2023). Following these principles,
practitioners can diagnose and improve—with very modest
amounts of compute—underperforming models down to the
level of individual layers (Zhou et al., 2023; Lu et al., 2024).

Approaches to HT-MU. Physical explanations for HT-
MU range from the phase boundary of spin glasses, to di-
rected percolation (Bouchaud & Potters, 2003), to self orga-
nized criticality (SOC) at the edge of chaos (Bertschinger
et al., 2004; Cohen et al., 2021), to jamming transitions
crossing from underparameterized to overparameterized
models (Geiger et al., 2019; Spigler et al., 2019). It is chal-
lenging to translate these into a rigorous statistical model.
On the other hand, RMT practitioners tend to examine the
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Power Law Inverse
Mechanism Elements Spectrum Gamma

iid Heavy-Tailed Elements X X ×
Kesten Phenomenon X X X/×
Population Covariance X/× X X/×
Structured Matrices (Thm. 4.1) × X X

Empirical Observations (Features) × X X
Empirical Observations (Weights) × X ×

Table 1. Comparison of various mechanisms, and their capacity
to yield power laws, in feature matrix elements and feature matrix
spectral densities, as well as their capacity to yield an inverse
Gamma law for the spectral density in a neighborhood of zero.
Empirical observations on feature matrices appear in Figure 1.
Empirical observations on weight matrices appear in Martin et al.
(2021); Martin & Mahoney (2021b).

interactions of individual models (Li & Sompolinsky, 2021;
Wang et al., 2023), even under heavy-tailed data (Maloney
et al., 2022; Bordelon et al., 2024b). Such analyses directly
consider the effects of certain model architecture choices
(e.g., depth) but they often do not apply to trained models,
appear intractable for complex architectures, and obscure
the underlying “reasons” for HT-MU we seek to identify.

To develop models of HT-MU, and to account for the broad
range of objects in deep learning that exhibit heavy-tailed
behavior, we focus on a class of feature matrices, encom-
passing activation, neural tangent kernel (NTK), and Hes-
sian matrices. These are fundamental theoretical objects
upon which other secondary (“observable”) objects, includ-
ing weight matrices, gradient norms, and loss curves, all
depend. As in Martin & Mahoney (2021b), we use the ma-
chinery of RMT as a “stand-in” for a generative model of
these feature matrices in state-of-the-art neural networks.

Our search for theories to underpin HT-MU revealed three
primary categories of observable phenomena, which we
outline and compare below and in Table 1. Most promi-
nently, we consider the weight matrices of trained neural
networks: such weight matrices are well-known to have
spectral distributions that are strongly heavy-tailed, while
having elements that are not heavy-tailed (Martin et al.,
2021; Martin & Mahoney, 2021b). We also identify (in the
right-most column of Table 1) a further universal property
we observe in the spectra of NTK feature matrices: the left
edge displays an inverse Gamma law.2 See Figure 1 for a
representative summary of the results. Additional details
are provided in Appendix A.

• Independent Heavy-Tailed Elements. It is known that
independent matrix elements exhibiting power laws with
small tail exponents give rise to heavy-tailed spectral den-
sities (Arous & Guionnet, 2008). This is less relevant for
our discussion for two reasons: first, the elements of real
2The reciprocal of the exponentially truncated power law is the

inverse Gamma law: f(x) ∼ cxαe−β/x as x→ 0+.

feature matrices are not independent (indeed, that was the
original motivation for HT-SR theory and the introduc-
tion of HT-MU); and second, empirical results demon-
strate that, while eigenvalues of weight matrices modern
state-of-the-art models are heavy-tailed, elements are
not (Martin et al., 2021; Martin & Mahoney, 2021b).

• Kesten Phenomenon. In natural systems, the ubiquity
of power laws is often attributed to the SOC hypothesis,
which asserts that dynamical systems in the neighbor-
hood of a critical point exhibit power law behavior (Bak
et al., 1987). In probability theory, this phenomenon
arises from a mechanism discovered by Kesten (1973),
where recursive systems on the edge of stability exhibit
heavy-tailed stationary fluctuations. Considered with
respect to gradient descent steps, Kesten’s mechanism
can explain the origins of heavy-tailed size fluctuations
in the stochastic optimizer (Hodgkinson & Mahoney,
2021; Gurbuzbalaban et al., 2021); and analyses treat-
ing the neural network architecture itself as recursive
reveal similar findings (Vladimirova et al., 2018; Hanin
& Nica, 2020; Zavatone-Veth & Pehlevan, 2021). Here,
too, though, theoretical results disagree with empirical
results: it is the distribution of eigenvalues that is heavy-
tailed, not the elements (Martin et al., 2021; Martin &
Mahoney, 2021b). Indeed, the Kesten phenomenon in
its currently-studied form primarily seems to occur for
chaotic training behavior (Yang et al., 2023). It is an
open question how to extend the results of Hodgkinson &
Mahoney (2021); Gurbuzbalaban et al. (2021) to perform
a Kesten-like iteration in the spectrum domain using free
probability (which is of interest since it may reveal heavy
tails in eigenvalues but not elements).

• Heavy-Tailed Population Covariance. A popular hy-
pothesis is that the complex correlations exist in the data,
are expressed as heavy-tailed spectra, and are passed
onto features during training. This shifts the origin of
HT-MU from the model to the data. Covariances of large
datasets often exhibit power law spectra, and analyses
centered around this approach have had predictive suc-
cess for simple models (Paquette et al., 2024; Li et al.,
2023). Correlations in the data clearly play a significant
role, but implicit model biases should also play a role.
Otherwise, different model architectures trained on the
same dataset should exhibit similar power laws (see Sec-
tion 4.3), which empirical results do not display (Martin
et al., 2021; Yang et al., 2023).

A New Approach using Structured Matrices. We pro-
pose an alternative approach, one which considers the effect
of implicit model bias exhibiting structure in the feature
matrices. Our claims regarding the observed tail behavior of
feature and weight matrices (as in Table 1) are summarized
in the following metatheorem.
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(a) Initialization: CIFAR-10 & VGG11 (b) Initialization: CIFAR-10 & ResNet9 (c) Initialization: CIFAR-10 & ResNet18

(d) Post-training: CIFAR-10 & VGG11 (e) Post-training: CIFAR-10 & ResNet9 (f) Post-training: CIFAR-10 & ResNet18

Figure 1. Distributions of spectral values (and inverse Gamma fits near zero) of the NTK matrix for VGG11, ResNet9, and ResNet18
models trained on 1000 randomly-sampled datapoints from the CIFAR-10 dataset, at initialization and post-training.

Metatheorem (Theorem 4.3 and Proposition 5.3).
• Spectral densities of trained feature matrices can be

modeled as the free multiplicative convolution of the
label covariance spectrum and the reciprocal of an
HTMP distribution, exhibiting both an inverse-Gamma
law at 0 and a power law at∞.

• Spectral densities of trained weight matrices can be
modeled with the HTMP distribution, exhibiting an
exponentially-truncated power law at∞.

3. Modeling Framework
Tracking the precise spectral evolution of neural networks
throughout training is generally challenging, both due to the-
oretical complexity and practical limitations (e.g., limited
access to large-scale training dynamics). Instead, we pro-
pose a general modeling approach grounded in an entropic
regularization perspective on stochastic optimization.

3.1. Entropic Regularization Setup
Let Θ be model coefficients with an initial density πΘ. To
allow for possible early stopping in the optimization, we
consider a stochastic optimizer that minimizes the loss by
monotonically reducing the Kullback-Leibler divergence
to a distribution of loss minimizers, representing “optimal”
behavior of stochastic gradient descent (Chaudhari & Soatto,
2018). Define the stochastic minimization operation for any
function f(Θ), sminπΘ,τ

Θ , with temperature τ > 0 as:

πΘ,τ

smin
Θ

f(Θ) := min
q∈P

[
Eq(Θ)f(Θ) + τdKL(q‖πΘ)

]
, (1)

where P is the set of probability densities on the support
of πΘ. We let argsminπΘ,τ

Θ denote the corresponding mini-
mizing distribution q(Θ), provided it exists and is unique.

Stochastic optimization models of the form (1) have been
considered previously (Mandt et al., 2016), and they have
strong links to Bayesian inference (see Germain et al. (2016)
and Appendix B), which itself has strong links to the statis-
tical physics of generalization (Mezard & Montanari, 2009).
In particular, applying (1) to the training loss optimizes a
PAC-Bayes bound on the test error (see Appendix B). Equa-
tion (1) generalizes the approach of Xie et al. (2023), is
equivalent to early-stopped graph heat-kernel diffusion (Ma-
honey & Orecchia, 2011), and (in ridge regression) co-
incides with known regularizers for early stopping with
stochastic gradient descent (Sonthalia et al., 2024). As τ de-
creases during training, an optimizer following (1) smoothly
interpolates between πΘ and the final “optimal” density.

Since the features are of primary interest in our study, we
split an arbitrary learning task into a subproblem of finding
optimal model coefficients for a prescribed set of features,
and a main problem of identifying those features. For ex-
ample, as in Golub & Pereyra (1973), a neural network can
be separated into its final layer and its final activations (rep-
resenting trained features). Let L be a loss function that
depends on a collection of model coefficients Θ and features
Φ with initial densities, πΘ and πΦ, respectively, where πΘ

can depend conditionally on Φ. In general, the optimally-
trained features satisfy Φ∗ = argminΦ minΘ L(Θ,Φ), if
a unique minimizer of L in Θ exists for each Φ. Replac-
ing deterministic minimization in this expression with our
stochastic optimizer (1), the probability density of “optimal
features” Φ∗ for L(Θ,Φ) is computed in Proposition 3.1.
We present its proof in Appendix C.1.

Proposition 3.1 (OPTIMAL FEATURE DENSITY). De-
note the minimizer of the feature density as q(Φ) :=
argsminπΦ,η

Φ sminπΘ,τ
Θ L(Θ,Φ), where smin is defined by
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(1) and τ, η are the temperature parameters for Θ and Φ,
respectively. The probability density function q(Φ) satisfies

q(Φ) ∝ Zτ (Φ)τ/ηπΦ(Φ),

where Zτ (Φ) is marginal (Gibbs) likelihood with prior πΘ:

Zτ (Φ) = EΘ∼πΘ
exp (−L(Θ,Φ)/τ) .

Proposition 3.1 suggests that a stochastic optimizer concen-
trates on regions with high marginal likelihood (also called
model evidence), with the degree of concentration deter-
mined by the ratio τ/η. Importantly, in this result, feature
learning (controlled by η) is allowed to occur at a different
rate than coefficient learning (controlled by τ ).

3.2. Master Model
We now apply Proposition 3.1 to reveal densities for three
popular types of feature matrices: activation matrices; NTK
matrices; and Hessian matrices. Of particular interest are the
late stages of training, where τ, η → 0+, and we will also
assume that τ/η → ρ > 0. In each case we present below,
we observe that the trained feature matrix generally follows
an inverse-Wishart-type density (Mardia et al., 2024, §3.8),
of the form (2). Hence, we propose a Master Model Ansatz
for the probability densities of trained feature matrices, with
some parameters α, β > 0 and initial density π:

Master Model Ansatz. For feature matrices M ,

q(M) ∝ (detM)−αe−β·tr(ΣM
−1)π(M). (2)

• Activation Matrices. Following Golub & Pereyra
(1973); Pillaud-Vivien et al. (2018), consider a multilayer
neural network with m outputs, f : X → Y ⊂ Rm,
which is parameterized in terms of its final linear layer,
W = (wjk) ∈ Rd×m, and a feature vector ϕ : X → Rd
of the last hidden layer. That is, the k-th output of f is
defined by fk(x) =

∑d
j=1 wjkϕj(x) for k ∈ [m]. For a

dataset D = {(xi, yi)}ni=1 ⊂ X × Y , we can investigate
the ridge regression problem of minimizing L(W,Φ) =
‖ΦW − Y ‖2F + µ‖W‖2F , where µ > 0, Φij = ϕj(xi)
and Y = (yi)

n
i=1 ∈ Rn×m. For πΘ = N (0, σ2I) and

σ̃2 = σ2

1+ 2µσ2

τ

, the marginal likelihood takes the form

Zτ (Φ) ∝
exp

(
− 1

2 tr(Y >(σ̃2ΦΦ> + τ
2 I)−1Y )

)
det(σ̃2ΦΦ> + τ

2 I)m/2
. (3)

See Appendix C.2 for a derivation of (3). We can now
apply Proposition 3.1 to this model to find the minimizing
density for Φ. Let Σ = Y Y >, and consider a change of
variables toM = (1+ 2µσ2

τ )−1ΦΦ>+ τ
2σ2 I . Then, given

the density of M before training as π, we can conclude
that the density of M after training is

q(M) ∝ (detM)−ρm/2 exp(− 1
2ρσ

2tr(ΣM−1))π(M).

This is in the form of the Master Model Ansatz, with
α = ρm/2 and β = ρσ2/2.

• Neural Tangent Kernel (NTK). Consider the NTK
Gram matrix J(Φ) ∈ Rmn×mn, where each m × m
block is given by J(Φ)ij = DfΘ,Φ(xi)

>DfΘ,Φ(xj),
where DfΘ,Φ ∈ Rd×m is the Jacobian of the model
fΘ,Φ : X → Y ⊂ Rm with parameters Θ ∈ Rd.
Coined by Jacot et al. (2018), the NTK is central to
the analyses of generalization performance in neural net-
works (Huang & Yau, 2020). The NTK approxima-
tion, treated in Rudner et al. (2023) and Wilson et al.
(2025), is the linearized model fΘ,Φ(x) ≈ fΘ∗,Φ(x) +
DfΘ∗,Φ(x) (Θ − Θ∗), under the loss

L(Θ,Φ) = ‖fΘ,Φ(X)− Y ‖2F . (4)

By the same arguments used to derive (3), if Ȳ = vec(Y −
fΘ∗,Φ(X)) ∈ Rmn, then

Zτ (Φ) ∝
exp(− 1

2 tr(Ȳ >(σ2J(Φ) + τ
2 I)−1Ȳ ))

det(σ2J(Φ) + τ
2 I)

.

Applying Proposition 3.1 for M = J(Φ), we obtain

q(M) ∝ (detM)−ρ/2 exp

(
− ρσ2

2
tr(ΣM−1)

)
π(M),

(5)
which is also in the form of the Master Model Ansatz,
with α = ρ/2 and β = ρσ2/2. Given that the Fisher in-
formation matrix possesses the same nonzero eigenvalues
as the corresponding NTK, we can derive a comparable
result for the Fisher information matrix as well; we omit
the details for brevity. The NTK approximation is known
to be effective for models in the late stages of training
(Fort et al., 2020). A question is: can we justify (5) with-
out appealing to a linear approximation? To answer this
affirmatively, consider the setting where d > mn, where
Hodgkinson et al. (2023) have developed asymptotic ap-
proximations to the marginal likelihood under the loss
(4) for very general models in the interpolating regime.
Their arguments lead to a similar finding to (5), when the
model is trained to implicitly regularize a lower bound on
its variance. See Appendix D for details.

• Hessian Matrix. For more general losses L(Θ,Φ), com-
puting the marginal likelihood becomes intractable, but
it can be well-estimated by Laplace approximation in the
regime where τ → 0+. Letting Φ denote appropriate
hyperparameters or architecture choices, Simon (2015,
Theorem 15.2.2) immediately gives

Zτ ∝ det(∇2
ΘL(Θ∗,Φ))−1/2e−

1
τ L(Θ∗,Φ)[1 +O(τ)].

Applying Proposition 3.1, up to an O(τ)-error term,

q(Φ) ∝ det(∇2
ΘL(Θ∗,Φ))−ρ/2e−

1
ηL(Θ∗,Φ)πΦ(Φ).
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This expression need not satisfy the Master Model
Ansatz. However, for losses of the form (D.1) (see
Appendix D), ∇2

ΘL(Θ∗,Φ) =
∑n
i=1Df(xi)Df(xi)

>

when L(Θ,Φ) = 0, so the spectrum of the Hessian is
equivalent (up to zeros) to that of the NTK. Thus, the
version of the Master Model Ansatz (5) (see Appendix D)
also applies for the Hessian for small training loss.

4. Heavy-Tailed Spectral Behavior
With the Master Model Ansatz (2) for trained feature matri-
ces in hand, we can explore potential theoretical explana-
tions for HT-MU that fit within this structure. We begin by
outlining a proposed family of random matrices that satis-
fies (2) and that exhibits spectral behavior (from Table 1)
reminiscent of observations of HT-MU.

4.1. The HTMP Spectral Density
Obtaining a spectral density from the Master Model Ansatz
(2) requires diagonalization: for M a symmetric matrix,
we can perform the change of variables M 7→ QΛQ>,
where Q is an orthogonal matrix of eigenvectors and Λ is
a diagonal matrix of eigenvalues. The covariance matrix
Σ can be removed from (2) by a change of variables, so
for now let Σ = I (we return to the general Σ scenario
later in Section 4.3). With the effect of Σ removed, only
the influence of the density π of feature matrices M at
initialization remains to be characterized, to completely
determine the spectral density from (2).

Although the joint density of eigenvalues can be compli-
cated, depending on π, we argue (see Section 4.2) that much
of the behavior is captured by the extent of the eigenvalue
repulsions. To isolate this effect, we consider the family of
beta-ensembles (Dumitriu & Edelman, 2002), parameter-
ized by 0 ≤ κ ≤ N , for the joint density of eigenvalues:

qκ(λ1, . . . , λN ) ∝
N∏
i=1

e−V (λi)
∏

i,j=1,...,N
i<j

|λi − λj |κ/N . (6)

For (6) to follow (2), we must take V (λ) = λ−αe−βλ
−1

.
Beta-ensembles are well-studied objects in RMT, but they
are typically considered theoretical curiosities, rather than
“physical” models of matrices (Dumitriu & Edelman, 2002;
Forrester, 2010). The 1/N “high temperature” scaling has
also been examined (Forrester & Mazzuca, 2021), but with-
out application. We argue (in Section 4.2) that κ determines
the “degree of randomness” in the matrix model, or con-
versely, the rigidity of the matrix structure.

Fortunately, Dung & Duy (2021) have derived the spec-
tral density for high-temperature beta-ensembles (6). We
use their result to introduce a novel RMT class of high-
temperature Marchenko-Pastur (HTMP) densities, param-
eterized by an aspect ratio γ and a structure parameter κ,
in Theorem 4.1. The HTMP class of densities is defined

explicitly and examined in greater detail in Appendix E. The
proof of this theorem is deferred to Appendix E.2.

Theorem 4.1 (HTMP). Consider a sequence of matrices
MN obeying the high-temperature inverse-Wishart ensem-
ble (6) with κ = κ(N). Assume γ(N) := κ/2

α−κ/2−1 → γ

for some constant γ ∈ (0, 1) as N → ∞. The empirical
spectral distributions of 2γ(N)β

κ M−1
N converge to:

(a) MPγ (Marchenko-Pastur) if κ(N)→∞; or

(b) HTMPγ,κ (high-temperature Marchenko-Pastur) if
κ(N)→ κ.

HTMP densities generalize the celebrated MP law, with an
additional shape parameter, κ, that permits interpolation
between heavy-tailed spectra (κ → 0+) and MP spectra
(κ→∞). We highlight the visual differences between MP
and HTMP densities in Figure 2, with the key discrepancy
lying in the tail behavior: HTMP spectral densities exhibit
heavier tail behavior and have infinite support (even though
the elements of HTMP need not have heavy-tailed behavior).

4.2. Structured Feature Matrices
Our next objective is to investigate the nature of the param-
eter κ in the HTMP distribution and motivate the use of
the high-temperature beta-ensemble (6) in the context of
the Master Model (2). To do so, we shall first consider the
joint density of eigenvalues when π is uniform over different
structured matrix classes. Our motivating feature matrix is
the NTK matrix, defined as an N ×N matrix comprised of
n×n blocks, each of sizem×m, soN = mn. We consider
cases where π is uniform over: (a) Diagonal matrices; (b)
Commuting block-diagonal matrices, where each m ×m
block on the diagonal commutes with each other, and all
other blocks are zero; (c) Symmetric block-diagonal matri-
ces, where each m×m block on the diagonal is an arbitrary
symmetric positive-definite matrix, and all other blocks are
zero; (d) Kronecker-like matrices, where the eigenvector ma-
trixQ is a Kronecker productQ1⊗Q2, whereQ1 ∈ Rm×m
and Q2 ∈ Rn×n; and (e) arbitrary (symmetric) matrices.
Activation and NTK matrices for neural networks have been
hypothesized to exhibit Kronecker-like structures, as in case
(d) (Martens & Grosse, 2015). In Appendix F, we derive
the joint eigenvalue density for each of these classes.

The key observation, noted in Remark F.6, is that the joint
densities for (a)–(e) all exhibit absolute differences of eigen-
values, |λi − λj |, differing mainly in how many such terms
are multiplied together. This variation reflects differing
degrees of eigenvalue repulsion, a consequence of the re-
duced randomness in the eigenvectors, as formalized in the
eigenvector-eigenvalue identity (Denton et al., 2022, Theo-
rem 1). Because structured matrices lack uniformly random
eigenvectors, their joint eigenvalue densities are not sym-
metric, complicating the determination of a limiting spectral
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Structure κ∗

(a) Diagonal 0
(b) Commuting block diagonal m

n −
1

2n
(c) Symmetric block diagonal (m− 1) · mn

mn−1

(d) Kronecker-like matrix n
m + m

n
(e) Symmetric (no structure) mn

Table 2. Behavior of κ∗ across matrix structures for matrices with
n× n blocks of size m×m. Assuming n > m, the first term in
each expression provides the dominant behavior.

density. To make these densities symmetric, one can ap-
proximate them by symmetric polynomials; isolating the
leading-order behavior leads to (6). Therefore, by proposing
(6) as a variational family of approximations to the spectral
density, for an arbitrary joint density of eigenvalues q, the
temperature κ∗ can be identified by

κ∗ = argmin
κ

dKL(qκ‖q). (7)

We consider the behavior of κ∗ for each of the five differ-
ent matrix structures described above. See Appendix G
for details. In particular, in Proposition G.1, we prove that
κ∗ counts the number of eigenvalue repulsions in q, when
it exhibits a simple product form, as in cases (a), (c), (e).
The more complex structures, (b) and (d), require numerical
methods. In Algorithm 1 of Appendix G, an efficient numer-
ical procedure for estimating κ∗ is provided (satisfying a
central limit theorem, see Proposition G.5). Using symbolic
regression, the relationship between κ∗ and m,n can be
ascertained. Our findings are summarized in Table 2. We
observe a direct correlation between the size of κ∗ and how
restrictive the matrix structures are, with the most restrictive
(diagonal) and least restrictive (arbitrary) cases occupying
the smallest and largest possible values of κ∗.

4.3. Including Population Covariance
The most popular hypothesis behind the origin of heavy-
tailed spectral behavior is the occurrence of this behavior
in the data.3 We can understand this in terms of the Master
Model Ansatz as follows. For a fixed prior π, let MΣ be
distributed according to the (6). Assuming a homogeneous
prior, MΣ, is equivalent in distribution to Σ1/2MIΣ

1/2.
Thus, the spectral density of MΣ can be computed from
MI and Σ using Voiculescu’s S-transform (Voiculescu,
1987). We then have the following proposition, which
highlights how heavy-tailed spectra in MΣ can arise from
heavy-tailed spectra in the population covariance Σ, assum-
ing that the feature matrix MI for isotropic data exhibits
lighter-tailed spectra than the data. This is true whenever
MΣ = Σ1/2MIΣ

1/2, regardless of whether (6) holds.
Proposition 4.2. Assume that the spectral measure µΣ of Σ
satisfies µΣ((z,+∞)) ∼ z−αL(z) as z →∞, for a slowly

3Even if this is less interesting from the perspective of HT-MU
and this paper, we include this for completeness.

varying function L(z), and Etr(Mα+1
I ) < +∞. Then the

spectral measure µMΣ of MΣ satisfies µMΣ((z,+∞)) ∼
cαz
−αL(z) as z →∞ for a constant cα.

Proposition 4.2 follows from Kołodziejek & Szpojankowski
(2022, Lemma 7.2). A similar argument shows that popula-
tion covariance can also generate power laws for M−1

Σ .

While spectral distributions of many datasets, including
CIFAR-10 and large language datasets, tend to exhibit
power law behavior (Clauset et al., 2009; Zhang et al., 2023),
Proposition 4.2 “predicts” that if the population covariance
is the only mechanism by which heavy-tailed spectra occur,
then the tail exponents should not differ between model
architectures. This is an example of the power-law in, power-
law out (PIPO) principle. More recent analyses have shown
how other decisions, including architectural decisions, can
alter the power law (Maloney et al., 2022). However, these
results hold only for specialized models. One advantage of
our approach is that the direct influence of the data can be
separated, so our conclusions depend only on the resulting
structure of the feature matrix, independently of the data.

4.4. Tail Behavior
We now put everything together to state our main theorem.

Theorem 4.3. Let MN denote the N ×N Gram matrix of
a trained feature matrix obeying the Master Model (2). For
ρN , the empirical spectral distribution of MN , and Σ, the
label covariance matrix with spectral measure µΣ, we have:

ρN (λ)→ (µΣ � ρ)(λ) as N →∞, (8)
where � denotes free multiplicative convolution. Under the
ensemble (6), the limiting density ρ(λ) = λ−2ρHTMP(λ−1)
if κ is finite; ρ(λ) = λ−2ρMP(λ−1) if κ =∞, where ρMP

and ρHTMP are the probability density functions of MPγ
and HTMPγ defined in Theorems E.1 and E.2, respec-
tively. Additionally,

• Power Law at∞: For some constant c+ > 0,

ρ(x) ∼


bounded support if κ =∞, γ 6= 1

c+x
−3/2 if κ =∞, γ = 1

c+x
− κ

2γ
−1+κ

2 otherwise,
as x→∞.

• Inverse Gamma Law at 0: If κ =∞, the support of ρ is
bounded away from zero; otherwise, for some c−, β− > 0,

ρ(x) ∼ c−x−
κ
2γ
−1−κ

2 exp

(
−β−
x

)
as x→ 0+.

Remark 4.4. The power law for the limiting density ρ con-
tains a tail exponent that gets heavier as κ decreases, i.e.,
as the structure of the underlying matrix becomes more
rigid. Interpreting this as increasing implicit model bias, our
findings are in line with conjectures of Martin & Mahoney
(2021b) and Simsekli et al. (2019), claiming that heavier
tails imply stronger model biases, and therefore better model
quality and generalization ability. Importantly, the elements
of these models need not have heavy-tailed behavior.
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To the best of our knowledge, our HTMP model represents
the first RMT ensemble that captures key empirical proper-
ties of (strongly-correlated) modern state-of-the-art neural
networks (Martin & Mahoney, 2021b; Martin et al., 2021).

5. Applications
Here, we describe how our theory relates to several heavy-
tailed results observed empirically for neural networks.

5.1. Neural Scaling Laws
Perhaps the most famous appearances of power laws in
deep learning are the neural scaling laws, which assert that
the test loss at the end of training scales as a power law
with respect to both the number of parameters, d, and the
size of the dataset, N (Hestness et al., 2017; Kaplan et al.,
2020). In its modern form given by Hoffmann et al. (2022),
using our notation, the test loss is observed to behave as
L ∼ L0 + A

dα + B
Nβ
, for some constants α, β,A,B,L0 > 0.

Since the total cost C of training satisfies C ∝ Nd, for a
fixed computational budget, one can identify the optimal
choices of N and d to achieve minimal test loss.

We present a neural scaling law for ridge regression on the
activation matrix satisfying the spectral density function in
Theorem 4.1. Unlike previous scaling law work, instead of
assuming a power law in the dataset (e.g., as done by Wei
et al. (2022); Defilippis et al. (2024); Paquette et al. (2024);
Lin et al. (2024)), we show how the scaling limit depends on
the power law in the feature matrix Φ, discussed in Section 3.
The following proposition is proven in Appendix C.3.

Proposition 5.1 (NEURAL SCALING LAW). Consider the
activation matrix scenario in Section 3 with m = 1 and
ϕ : X → Rd. Suppose that each label yi = w>∗ ϕ(xi), i ∈
[n] and Φ satisfies the conditions of Theorem 4.1, with
Σ = I and parameters κ and γ. For the solution ŵ =
argminw L(w,Φ), consider the generalization error

L := Ex,w∗∼N (0, 1d I)
[(ϕ(x)>ŵ − y)2]. (9)

Then, for µ = n−` with ` ∈ (0, 1), with high probability,

L � n−`(2+ κ
2γ−

κ
2 ), as n→∞.

We compare this result with previous work in Appendix H.
Several works have outlined theories to explain the appear-
ance of neural scaling laws (Bahri et al., 2024; Maloney
et al., 2022). Each assumes the eigenvalues of a covariance
matrix (either the final layer of activations or J) exhibit
power law decay λk ∼ ck−s. We remark that the shape of
the spectrum of J after training is key, as the spectrum at
initialization cannot predict neural scaling laws (Vyas et al.,
2023; Bordelon et al., 2024b) for feature learning.

Similar to neural scaling laws is the appearance of power
law decay in the rate of convergence to zero in the train-
ing loss. That is, letting fT denote the model obtained at

epoch T , then LN (fT ) ∼ cT−α as T →∞ (Agrawal et al.,
2022). Velikanov & Yarotsky (2024) provide a comprehen-
sive theoretical framework establishing power law rates of
convergence across multiple optimizers (see also Velikanov
& Yarotsky (2021)), under the assumption that the spectral
density of J satisfies a power law near zero.

5.2. Optimizer Trajectories
Contrary to the popular belief that stochastic optimizers
exhibit Gaussian fluctuations, Mandt et al. (2016); Simsekli
et al. (2019) observed that the distribution of gradient norms
of large neural networks during training exhibits a power
law. This behavior manifests in heavy-tailed fluctuations
during training, and it enables rapid escape from basins
of poor-performing models in the loss landscape (Nguyen
et al., 2019). We use the terms lower and upper power law
to correspond to polynomial behavior in the distribution of
gradient norms about zero and infinity, respectively:

P(‖∇̂LN‖ ≤ x) ∼ C−xα as x→ 0+, (10a)

P(‖∇̂LN‖ > x) ∼ C+x
−β as x→∞. (10b)

Both behaviors have been observed in practice, with gen-
eralization performance tied to the lower tail exponent α
(Hodgkinson et al., 2022). There has been significant theo-
retical justification for the upper power law (10b) in terms
of the Kesten mechanism (Hodgkinson & Mahoney, 2021;
Gurbuzbalaban et al., 2021; 2022), but there has been little
justification for the lower power law (10a). Our analysis
can partially explain this too. The following proposition is
proven in Appendix C.44.

Proposition 5.2. Consider the loss function (4). Assuming
the residuals fΘ,Φ(X) − Y are normally distributed and
independent of an inverse Wishart-distributed NTK matrix
J , the stochastic gradients ∇̂LN satisfy (10).

5.3. The 5+1 Phases of Training
The more difficult power laws to explain are those appear-
ing in the weight matrices themselves (Martin & Mahoney,
2019; 2020; 2021b). Power law exponents in the spectrum
of weight matrices are simple to compute and are strongly
predictive of model performance (Martin et al., 2021; Yang
et al., 2023; Zhou et al., 2023). In a sequence of papers, Mar-
tin & Mahoney observed six classes of behaviors in trained
weight matrices, with a smooth transition from a random-
like MP law to a heavy-tailed density, before experiencing a
“rank collapse.” Excluding the rank collapse phase, the five
primary phases are: (a) Random-Like: pure noise, modeled
by a MP density; (b) Bleeding-Out: some spikes occurring
outside the bulk of density; (c) Bulk+Spikes: spikes are dis-
tinct and separate from the MP bulk; (d) Bulk-Decay: tails
extend so that the support of the density is no longer finite;

4Proposition 5.2 for the beta-ensemble (6) remains an open
problem, although we conjecture that it holds universally
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(a) Random-Like: batch size 1000 (b) Bleeding-Out: batch size 800 (c) Bulk+Spikes: batch size 250

(d) Bulk-Decay: batch size 100 (e) Heavy-Tailed: batch size 50 (f) Rank Collapse: batch size 5

Figure 2. The “5+1 phases of training” in weight matrices, as estimated by Theorem 4.1. Compare with Figure 12 of Martin & Mahoney
(2021b) (which is Figure 14 in the technical report version of their paper). All spectral densities (black) are compared to a corresponding
MP density with an aspect ratio γ = 0.3255. The red dashed lines are density functions in Theorem 4.1 with different κ. The top row
comprise cases with κ =∞; the last row involves κ = 5.5, κ = 1.9 and κ = 10−3 from left to right. See Section 5.3 for details.

and (e) Heavy-Tailed: the tails become more heavy-tailed,
exhibiting the behavior of a (possibly truncated) power law.
The transition from (a) to (e) is also seen in Thamm et al.
(2022), as well as some non-uniformity in the eigenvectors,
indicative of matrix structure. This smooth transition be-
tween multiple phases is a primary motivation of this work.
We find that this behavior is displayed by a combination
of a nontrivial covariance matrix to capture the spikes and
the HTMP class with decreasing κ. Indeed, we have the
following, Proposition 5.3, proved in Appendix C.5.

Proposition 5.3 (WEIGHT MATRICES). Consider the acti-
vation matrix scenario in Section 3. Let A = W>W , where
W = argminW L(W,Φ). Assume M = ΦΦ> satisfies (2)
and π(ΣM) has joint eigenvalue density (6) with V ≡ 1.
As m, d→∞, for γ in Theorem 4.1, the empirical spectral
distribution of β

α−κ2−1A converges to HTMPγ,κ.

In Figure 2, we show that the HTMP family, HTMPγ,κ,
provides good fits to observed spectral distributions across
the five phases of training, compared with Martin & Ma-
honey (2021b, Figure 2). In Figure 2, we plot the eigenvalue
distributions of the fully connected layer of MiniAlexNet (a
smaller AlexNet used by Zhang et al. (2021)) after training,
using different batch sizes. In all the cases, we ensure the
training losses are smaller than 0.01. Figure 2 indicates how
training dynamics affect the heaviness of the tail, related to
κ, for the trained weight matrices.

6. Conclusions
Motivated by complementary lines of work describing
heavy-tailed properties in state-of-the-art neural networks

structure and/or dynamics, we present a modeling frame-
work for spectral densities of trained feature matrices, in-
cluding activation matrices, Hessian matrices, and NTK
matrices, culminating in a Master Model Ansatz (2). Based
on this, we explored several factors contributing to the ori-
gins of HT-MU. In line with the PIPO hypothesis, if the
covariance of the data exhibits heavy-tailed spectra, trained
feature matrices should be expected to adopt this behavior.
Moreover, if a model exhibits bias on the distribution of
eigenvectors, reducing eigenvector entropy, the joint density
of eigenvalues can be approximated by a high-temperature
inverse-Wishart ensemble. The local eigenvalue spacings
can be characterized with a new parameter, κ, and we pro-
pose the use of the HTMPγ,κ model for the limiting spectral
density. This distribution becomes more heavy-tailed as κ
decreases (more implicit bias, see Theorem 4.1). This model
was used to explain recent examples of heavy-tailed phenom-
ena: obtaining new scaling laws; explaining the presence of
lower power laws in optimizer trajectories; and describing
the five phases of training from Martin & Mahoney (2019).

We anticipate that the HTMP density can serve as a valu-
able starting point for investigating heavy-tailed spectral
phenomena. Nevertheless, we emphasize that our primary
objective was to establish a theoretical framework capable
of elucidating the underlying causes of heavy-tailed spectral
behavior (HT-MU). It is premature to precisely link model
generalization to our hyperparameters, α and β in (2) and
κ in (6). In future work, we can examine more closely this
connection and extend the scaling law in Proposition 5.1 to
more general cases.
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A. Experiment Details
A.1. Empirical Spectral Distributions of NTK Matrices

In this section, we describe the experimental details behind the results in Figure 1, where we plot the empirical spectral
distributions of NTK Gram matrices. The (empirical) NTK is

kNTK(x, y) = DfΘ(x)>DfΘ(y) ∈ Rm×m,

where DfΘ ∈ Rd×m is the Jacobian of a function fΘ : X → Y ⊂ Rm with respect to its parameters Θ ∈ Rd. The
corresponding Gram matrix over {xi}ni=1 ⊂ X is the matrix J ∈ Rmn×mn with m×m blocks Jij = kNTK(xi, xj). This
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Gram matrix is often enormous when fΘ is a deep neural network: in double precision, the empirical NTK Gram matrix for
an ImageNet-1K classifier requires more memory than most international datacenters (Ameli et al., 2025). While some
approximations exist to estimate certain quantities of this matrix (Mohamadi et al., 2023), none of these approximations are
valid for the purposes of plotting the eigenspectrum. Instead, we consider models trained on a subsample of 1000 datapoints
from the CIFAR-10 dataset with 10 classes (Krizhevsky, 2009). We remark that it is important, for our purposes, to ensure
that the model is only trained on data contained in the matrix, as this will inevitably impact the shape of the resulting
spectrum in our analysis.

In Figure 1, we consider three convolutional neural networks of moderate size: VGG11 (9.2M parameters) (Simonyan &
Zisserman, 2014); ResNet9 (4.8M parameters); and ResNet18 (11.1M parameters) (He et al., 2016). The output layer of each
model is altered from its usual ImageNet counterparts to be classified into ten classes. All networks were initialized with
weights randomly chosen according to the standard He initialization scheme (He et al., 2016). The top half of Figure 1 plots
the eigenspectrum of these networks at initialization over 1000 entries of the CIFAR-10 dataset. This is a similar scenario
to that of Wang et al. (2023), but with real model architectures. The inverse Gamma law is plainly visible here across the
spectrum; a maximum likelihood fit to α, β in the law p(λ) ∝ λ−αe−β/λ is performed, with the Kolmogorov-Smirnov
statistics reported5. Values of β are small, and the tail exponent α < 2. We remark that the corresponding weight matrices
in this scenario exhibit spectral densities with the Marchenko-Pastur law.

Next, the networks are trained on this set of 1000 examples using 200 epochs of a cosine annealing learning rate schedule
with a 200 epoch period, starting from a learning rate of 0.05 with a batch size of 64. All models achieve near-zero loss
under cross-entropy and an accuracy of 100%. The lower half of Figure 1 presents the spectral densities after training. Here,
there are two distinct “bumps”, both of which exhibit inverse Gamma behavior. The right tail is not too different from that of
the spectrum at initialization, so we draw special attention to the inverse Gamma behavior near zero. Once again, we perform
maximum likelihood fits, with the Kolmogorov-Smirnov statistics reporting good adherence to the inverse Gamma law.

A.2. Empirical Spectral Distributions of Trained Weight Matrices

In this section, we present the experimental details of Figure 2 for 5+1 phases of trained weight matrices and their empirical
spectral distributions. In these experiments, we train a MiniAlexNet (Martin & Mahoney, 2019) for the CIFAR-10
classification task with different batch sizes. This MiniAlexNet is a simplified version of AlexNet (Krizhevsky et al.,
2012), which comprises two convolutional blocks–Conv(3→ 64, 3× 3, stride = 2)+ReLU+MaxPool and Conv(64→ 192,
3 × 3)+ReLU+MaxPool–followed by two fully-connected layers (192 × 4 × 4 → 1000 → 10) with ReLU activations.
All weights are initialized via the parametrization (Jacot et al., 2018), i.e., the entries of trainable weights are i.i.d.
N (0, 1/

√
fanin). We normalize each data point in CIFAR-10 to zero mean and unit variance per channel, and rescale it so

that each flattened input vector has Euclidean norm
√
d where d = 3× 32× 32 is the input dimension for each data point.

We train this MiniAlexNet with SGD (momentum 0.9, weight decay 10−4), using a learning rate scaled as 2/batch size for
different batch sizes and early stopping once the training loss falls below 0.01 or 200 epochs. In Figure 2, we separately
train MiniAlexNet with batch sizes 1000, 800, 250, 100, 50 and 5; and we repeat the experiments 3 times for the average.
Post-training, Figure 2 shows histograms of the eigenvalues of WW> ∈ R1000×1000 where W is the trained weight matrix
in the first fully-connected layer with input dimension 192× 4× 4 and output dimension 1000, for different batch sizes.
Notice that, because of the NTK parameterization at initialization, the empirical spectral distribution of WW> is close to
the MPγ with γ = 1000/(192 × 4 × 4). For large batch sizes, batch size = 1000, after training, the empirical spectral
distribution of WW> remains similar to a random case, as depicted in Figure 2(a). The red dashed line is computed using
the density function of MPγ with γ = 1000/(192× 4× 4), which is described by (E.3). This MPγ can also be interpreted
as HTMPγ,κ with κ =∞. When the batch size decreases, we observe eigenvalue bleed out from the bulk spectrum and
the emergence of many spike eigenvalues in Figure 2(b) and (c). Despite this, the bulk spectrum remains relatively close
to MPγ . Further decreasing the batch size, Figure 2(d) and (e), the bulk spectrum of the trained weight is also changed
into heavier tailed distribution which is close to HTMPγ,κ for some finite κ. The red dashed lines in Figure 2(d) and
(e) are computed by the density function of HTMPγ,κ with κ = 5.5, 1.9 and γ = 1000/(192× 4× 4), defined in (E.5).
Additionally, when the batch size is small (batch size = 5), the trained weight matrix exhibits significant rank deficiency,
corresponding to HTMPγ,κ with κ approaching zero. In such scenarios, the model’s ability to effectively learn the task is
compromised due to over-regularization. Hence, Figure 2(f) is not a particularly interesting case for further exploration.

5Recall that the Kolmogorov-Smirnov statistic between two cumulative distribution functions F1 and F2 is dKS(F1, F2) =
supx∈R |F1(x)− F2(x)|.
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B. Stochastic Minimization Model Optimizes PAC-Bayes Bounds
In this section, we outline the connection between our stochastic minimization operator, sminΘ of Equation (1), and the
celebrated PAC-Bayesian bounds (McAllester, 1998), which have seen increasing popularity and success for explaining
the success of deep learning (Wilson, 2025) and for providing non-vacuous generalization bounds (Lotfi et al., 2022). In
particular, we will show that the stochastic minimization operator applied to training losses (as Monte–Carlo estimators
of the test loss) minimizes, by definition, a PAC-Bayesian upper bound on the test loss. Our discussion mostly follows
expositions by Germain et al. (2016). For the sake of brevity, instead of the two-part loss function, L(Θ,Φ) from Section 3,
we consider arbitrary loss functions of the form L(Θ). This is no less general: we can once again split the parameter space
into two parts and apply our arguments here to each part independently.

The foundation of modern PAC-Bayes proofs, as first outlined in Bégin et al. (2016), is the Donsker–Varadhan variational
formula, first introduced in Donsker & Varadhan (1983, Eqn. (1.7)). For completeness, we state both the formula and its
proof in Lemma B.1.

Lemma B.1 (DONSKER–VARADHAN VARIATIONAL FORMULA). For any probability measure µ on a measurable space
Ξ and f : Ξ→ R,

sup
ν�µ

(Eν(Θ)f(Θ)− dKL(ν‖µ)) = logEµ(Θ)e
f(Θ),

and for ef ∈ L1(µ), the probability measure ν that achieves this equality satisfies

dν∗

dµ
(Θ) ∝ exp(f(Θ)), Θ ∈ Ξ. (B.1)

Proof. For brevity, let µ = πΘ. Let ν denote an arbitrary probability measure that is absolutely continuous with respect to
µ. By the Lebesgue decomposition, µ = µac + µsing where µac � ν and µsing ⊥ ν. Then, the Radon–Nikodym derivative
dν
dµ = dν

dµac
ν-almost everywhere, and

dKL(ν‖µ) = Eν(Θ) log
ν(Θ)

µ(Θ)
= Eν(Θ) log

ν(Θ)

µac(Θ)
= dKL(ν‖µac).

Furthermore, by Jensen’s inequality,

Eν(Θ)

(
ef(Θ) dµac

dν

)
≤ logEν(Θ)e

f(Θ) dµac

dν
(Θ) = Eµac(Θ) exp(f(Θ)) ≤ Eµ(Θ) exp(f(Θ)).

At the same time,

Eν(Θ)

(
ef(Θ) dµac

dν

)
= Eν(Θ)f(Θ)− dKL(ν‖µac) = Eν(Θ)f(Θ)− dKL(ν‖µ),

and so
sup
ν�µ

(Eν(Θ)f(Θ)− dKL(ν‖µ)) ≤ Eµ(Θ) exp(f(Θ)).

It now only remains to show that the measure ν∗ satisfying (B.1) saturates this inequality. Letting Z = Eµ(Θ) exp(f(Θ)),
so that dν∗

dµ = Z−1 exp(f(Θ)), there is

dKL(ν∗‖µ) = Eν∗(Θ) log

(
dν∗

dµ

)
dν∗ = Eν∗(Θ)(f(Θ)− logZ) = Eν∗(Θ)f(Θ)− logZ.

Hence,
Eν∗(Θ)f(Θ)− dKL(ν∗‖µ) = logZ = logEµ(Θ)e

f(Θ),

as required.

Now we return to the case where ν and µ are both absolutely continuous measures with respect to Lebesgue measure, and
are in turn represented by probability densities on Ξ ⊂ Rd, and we let µ = πΘ(Θ), in line with the setup from Section 3.
Most losses to be minimized are training losses of the form Ln(Θ) = n−1

∑n
i=1 `(Θ, xi, yi), where each (xi, yi) is an
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input-output pair. Training losses are random; a Monte-Carlo approximation of the test loss L(Θ) defined as the expectation
ELn(Θ). Let τ > 0 and consider the function fn(Θ) = n

τ (L(Θ)− Ln(Θ)). Then, by Lemma B.1,

Eq(Θ)fn(Θ) ≤ dKL(q‖πΘ) + log ζn,τ ,

where ζn,τ is defined by

ζn,τ = EπΘ(Θ)fn(Θ) = EπΘ(Θ) exp
(n
τ

(L(Θ)− Ln(Θ))
)
.

If (xi, yi)
n
i=1 are independent and identically distributed, then subgaussian concentration inequalities such as the Bernstein

inequality (Boucheron et al., 2013, Theorem 2.10) imply that Eζn,τ is bounded as n→∞. In particular, we may assume that

Kτ := sup
n

Eζn,τ < +∞.

From Markov’s inequality, for 0 < δ < 1, P(ζn,τ > Kτ/δ) ≤ P(ζn,τ > Eζn,τ/δ) ≤ δ, and so with probability at least
1− δ,

Eq(Θ)fn(Θ) ≤ dKL(q‖πΘ) + log

(
Kτ

δ

)
.

Recalling the definition of fn reveals the (simplified) PAC-Bayes bound, as presented in Germain et al. (2009, Theorem 2.1).

Theorem B.2 (PAC-BAYES THEOREM (Germain et al., 2009)). For any probability density q absolutely continuous with
respect to πΘ on Ξ ⊂ Rd, assuming (xi, yi)

n
i=1 are iid, then with probability at least 1− δ,

Eq(Θ)L(Θ) ≤ Eq(Θ)Ln(Θ) +
τ

n
dKL(q‖πΘ) +

τ

n
log

(
Kτ

δ

)
. (B.2)

As the left-hand-side of (B.2) corresponds with the test loss, we are interested in considering densities q that assign
probabilities to model parameters Θ that have been fitted to the data. The density πΘ acts as the prior in the PAC-Bayes
theory, and it assigns probability mass to models that are believed to be more or less likely to exhibit small test loss, prior to
looking at data. This is to be contrasted with uniform PAC bounds, which typically treat all models as equally likely. A
key feature of the prior is that it is data-independent, but otherwise it is arbitrary. It is this feature that has allowed (B.2) to
achieve the tightest generalization bounds to date (Lotfi et al., 2022).

It is now also immediately clear, by definition, that the density qn which minimizes the bound of the test error on the
right-hand side of (B.2) is precisely given by the argsmin operator:

qn(Θ) =
πΘ,τn

argsmin
Θ

Ln(Θ), where τn :=
τ

n
.

C. Proofs of Assorted Results from the Main Text
In this section, we present proofs of several results from the main text. Below, we first prove Proposition 3.1 and subsequently
complete the proof of Equation (3) for activation matrices introduced in Section 3.2. We defer the analysis of NTK matrices
and the proof of Equation (5) to Appendix D for further details. Subsequently, we present the proofs of Propositions 5.1,
5.3, and 5.3. Our random matrix results, as outlined in Theorem 4.1 and Theorem 4.3, are presented in Section E to ensure
clarity and self-containedness.

C.1. Proof of Proposition 3.1

The primary tool in the proof of Proposition 3.1 is a corollary of the Donsker–Varadhan variational formula in Lemma B.1,
which we now state in the notation of Section 3.

Corollary C.1. For Ξ ⊆ Rd and f : Ξ → R such that q(Θ) = exp(− 1
τ f(Θ))πΘ(Θ) is integrable over Θ ∈ Ξ,

argsminπΘ,τ
Θ f(Θ) ∝ q(Θ).

Proof. Letting P denote the set of probability densities that are absolutely continuous with respect to Lebesgue measure
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on Ξ,

πΘ,τ

argsmin
Θ

f(Θ) = argmin
q(Θ)∈P

[Eq(Θ)f(Θ) + τdKL(q‖πΘ)]

= argmax
q(Θ)∈P

[
Eq(Θ)

(
−1

τ
f(Θ)

)
− dKL(q‖πΘ)

]
.

Applying Lemma B.1, it follows that the minimizing density is proportional to q(Θ).

Let q be as in Corollary C.1, and let Zτ = EΘ∼πΘ exp(− 1
τ f(Θ)), so that q̃(Θ) = Z−1

τ q(Θ) is a probability density. As an
immediate consequence of Lemma B.1, since dKL(q̃‖πΘ) = − 1

τ EΘ∼q̃f(Θ)− logZτ , it follows that

πΘ,τ

smin
Θ

f(Θ) = −τ logZτ . (C.1)

Proposition 3.1 now follows immediately from Corollary C.1 and (C.1): for Zτ (Φ) as defined in Proposition 3.1,

πΦ,η

argsmin
Φ

πΘ,τ

smin
Θ

L(Θ,Φ) ∝ exp

(
τ

η
logZτ (Φ)

)
πΦ(Φ) = Zτ (Φ)τ/ηπΦ(Φ).

C.2. Proof of Equation (3): for Activation Matrices

Now we prove Equation (3). Recall that

L(W,Φ) = ‖ΦW − Y ‖2F + µ‖W‖2F

where µ > 0. Our objective is to first compute

Zτ (Φ) = EW∼N (0,σ2I) exp

(
−1

τ
‖ΦW − Y ‖2F −

µ

τ
‖W‖2F

)
.

For the sake of brevity, we ignore all constants of proportionality that do not depend on Φ. First, observe that

Zτ (Φ) ∝
∫

exp

(
−1

τ
‖ΦW − Y ‖2F −

µ

τ
‖W‖2F −

1

2σ2
‖W‖2F

)
dW,

and so Zτ (Φ) is proportional to the marginal likelihood p(Y |Φ) =
∫
p(Y |W,Φ)p(W )dW corresponding to the likelihood

p(Y |W,Φ) =
1

(2πτ)mn/2
exp

(
−1

τ
‖ΦW − Y ‖2F

)
,

of the model Y = ΦW + τ
2 ε, and the prior

p(W ) ∝ exp

(
−
(
µ

τ
+

1

2σ2

)
‖W‖2F

)
,

implying W ∼ N (0, σ̃2I), where

σ̃2 =

(
2µ

τ
+

1

σ2

)−1

=
σ2

1 + 2µσ2

τ

.

Let y = vec(Y ) and w = vec(W ), recalling that y = (I ⊗ Φ)w + τ
2 ε under the model likelihood. Since w is normal, y|Φ

is normal also, with E[y|Φ] = 0 and

Cov(y) = Cov((I ⊗ Φ)w) + τ
2 I

= (I ⊗ Φ)(σ̃2I)(I ⊗ Φ>) + τ
2 I

= I ⊗ (σ̃2ΦΦ> + τ
2 I).
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Therefore,

p(y|Φ) =
1

(2π)nm/2
·

exp
(
− 1

2y
>[I ⊗ (σ̃2ΦΦ> + τ

2 I)]−1y
)

det(I ⊗ (σ̃2ΦΦ> + τ
2 I))1/2

.

Since tr(A>B) = vec(A)>vec(B), we can get

y>[I ⊗ (σ̃2ΦΦ> + τ
2 I)]−1y = y>vec((σ̃2ΦΦ> + τ

2 I)−1Y )

= tr(Y >(σ̃2ΦΦ> + τ
2 I)−1Y ).

In terms of Y ,

Zτ (Φ) ∝ p(Y |Φ) =
exp

(
− 1

2 tr(Y >(σ̃2ΦΦ> + τ
2 I)−1Y )

)
det(σ̃2ΦΦ> + τ

2 I)m/2
.

C.3. Proof of Proposition 5.1

Recall the solution to the ridge regression problem as

ŵ := (Φ>Φ + λI)−1Φ>Y ∈ Rd, (C.2)

and, by definition, we know that

ŵ = (Φ>Φ + λI)−1Φ>Φw∗,

for any λ > 0. Thus, the training loss is

L0 :=
1

n

n∑
i=1

(ϕ(xi)
>ŵ − ϕ(xi)

>w∗)
2] = λ2w>∗ (Φ>Φ + λI)−1Φ>Φ(Φ>Φ + λI)−1w∗. (C.3)

Here, we do not consider label noise: each label is the form of yi = ϕ(xi)
>w∗. Based on the definition of the generalization

error defined in Proposition 5.1, we have

L = E[(ϕ(x)>ŵ − ϕ(x)>w∗)
2] (C.4)

= (ŵ − w∗)>Σ(ŵ − w∗) (C.5)

= w>∗ ((Φ>Φ + λI)−1Φ>Φ− I)Σ((Φ>Φ + λI)−1Φ>Φ− I)w∗ (C.6)

= λ2w>∗ (Φ>Φ + λI)−1Σ(Φ>Φ + λI)−1w∗, (C.7)

where we denote that Σ := E[ϕ(x)ϕ(x)>]. Suppose that w∗ ∼ N (0, 1
dI). Then, we can apply Hanson-Wright inequality

to get

L =
λ2

d
tr(Φ>Φ + λI)−2Σ + o(1),

with high probability as d→∞. Based on our assumptions in Proposition 5.1, we set Σ to be the identity matrix, namely
the isotropic case. (For general Σ, we would need to apply Theorem 4.3 and a deterministic equivalent statement for
tr(Φ>Φ + λI)−2A, for any deterministic matrix A ∈ Rd×d. However, currently, such a deterministic equivalence for
inverse Wishart matrices is unknown in RMT. We leave this general statement for future work.)

Since we assume that Φ>Φ has a limiting eigenvalue distribution with density functions described in Theorem 4.1, we can
claim that

L→ λ2S′ργ,κ(−λ) =: f(λ),

almost surely, as d→∞, where S′ργ,κ(z) is the derivative of Sργ,κ(z), defined in Proposition E.3, with respect to z. Here
Sργ,κ(z) is the Stieltjes transform of HTMPγ,κ introduced in Theorem 4.1. For more details, see Appendix E. From (E.7),
we know that

Sργ,κ(−λ) =
κ

2γ
·
U(κ/2 + 1, 2− κ

2γ + κ
2 ; κλ2γ )

U(κ/2,− κ
2γ + 1 + κ

2 ; κλ2γ )
, λ > 0. (C.8)
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Now we want to study the asymptotic limit of the function f(λ) as λ → 0. Notice that λ → 0 represents the ridgeless
regression; and, in this case, the training loss will converge to zero, because of (C.3). Hence, we are considering the case
when the estimator interpolates all the training datasets.

From DLMF, (13.3.22), recall that
d

dz
U(a, b, z) = −aU(a+ 1, b+ 1, z).

In general, from DLMF, (13.2.16-22), we also know that

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +O

(
z2−<b) , <b ≥ 2, b 6= 2, (C.9)

U(a, 2, z) =
1

Γ(a)
z−1 +O(ln z), (C.10)

U(a, b, z) =
Γ(b− 1)

Γ(a)
z1−b +

Γ(1− b)
Γ(a− b+ 1)

+O
(
z2−<b) , 1 ≤ <b < 2, b 6= 1, (C.11)

U(a, 1, z) = − 1

Γ(a)
(ln z + ψ(a) + 2γ) +O(z ln z), (C.12)

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
+O

(
z1−<b) , 0 < <b < 1, (C.13)

U(a, 0, z) =
1

Γ(a+ 1)
+O(z ln z), (C.14)

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
+O(z), <b ≤ 0, b 6= 0. (C.15)

Now for simplicity, in (C.8), we define that

z =
κλ

2γ
,

a = κ/2 + 1, b = κ/2 + 2− κ

2γ
,

c = κ/2, d = − κ

2γ
+ 1 +

κ

2
.

Thus, we now have

f(λ) = z2 cU(c+ 1, d+ 1; z)U(a, b; z)− aU(a+ 1, b+ 1; z)U(c, d; z)

U(c, d; z)2

= z2 cU(a, b; z)2 − aU(a+ 1, b+ 1; z)U(c, d; z)

U(c, d; z)2
.

Let us consider the case when b > 1 and d > 0. Hence, using the asymptotic results in (C.9)-(C.15), we can get that

f(λ) � zd+1,

as z → 0+. Notice that here a, b, c, d are constants and γ ∈ (0, 1). Therefore, when assuming that λ = n−`, we can
conclude the result in Proposition 5.1. For more comparison of Proposition 5.1 with previous literature, we refer to
Appendix H.

C.4. Proof of Proposition 5.2

The stochastic gradients ∇̂LN are given by ∇̂LN = DfΘ,Φ(X)>Z, where Z = fΘ,Φ(X) − Y are assumed to be
independent and standard normal. Consequently,

‖∇̂LN‖2 = Z>DfΘ,Φ(X)DfΘ,Φ(X)>Z = Z>JZ,

where J has the inverse-Wishart distribution. Due to a result of Hotelling (1992), d−N+1
dN ‖∇̂LN‖2 is F -distributed with

(N, d−N + 1) degrees of freedom, and therefore satisfies (10).
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C.5. Proof of Proposition 5.3

Consider the activation matrix model in Section 3. By Golub & Pereyra (1973, Theorem 1), with the pseudo inverse, trained
weights are given by W = Φ†Y , so A = d−1W>W = d−1Y >(ΦΦ>)−1Y . Since the (nonzero) eigenvalues of the product
of two matricesAB are always the same as those ofBA, assuming Σ = Y Y > is full rank, the spectrum ofA−1 is equivalent
to that of B = Σ−1M where M = ΦΦ>. Under the conditions of Theorem 4.1, M satisfies the Master Model (2) and so

q(M) ∝ (detM)−α exp(−βtr(ΣM−1))π(M).

Performing the change of variables M 7→ Σ−1M , we find that

q(B) ∝ (detB)−α exp(−βtr(B−1))π(ΣB),

and since we assert that π(ΣB) has a Weyl formula that aligns with (6) for V ≡ 1, the eigenvalues of B satisfy

q(λ1, . . . , λN ) ∝
N∏
i=1

λ−αi e−β/λi
∏

i,j=1,...,N
i<j

|λi − λj |κ/N .

From Theorem 4.1, with B = B(m, d) and γ = κ/2
α−κ/2−1 , the sequence of empirical spectral distributions satisfy

spec
(

β

α− κ/2− 1
B(m, d)−1

)
m,d→∞−−−−−→ HTMPγ,κ.

Since spec(B(m, d)−1) = spec(A(m, d)), the result follows.

D. NTK Matrix Densities using the Interpolating Information Criterion
Motivated by the overparameterization (d > n) of many deep neural network models, Hodgkinson et al. (2023) developed
approximations to the marginal likelihood, for very general models, that are effective in the interpolating regime. These
approximations led to the development of an interpolating information criterion to judge model quality in the interpolating
regime. In this section, we will show how their techniques combined with Proposition 3.1 reveal a precise family of densities
for the NTK matrices of interpolating models. We will also show how the NTK approximation discussed in Section 3
compares and its implications on implicit regularization.

Suppose that πΘ(Θ) ∝ e−
1
µRΦ(Θ), and let Θ0 = argminΘRΦ(Θ) and R̄Φ(Θ) = RΦ(Θ)−RΦ(Θ0). Consider the neural

tangent kernel matrix, J(Φ) ∈ Rmn×mn, which satisfies J(Φ)ij = Df(xi)
>Df(xj), where Df ∈ Rd×m is the Jacobian

of a model, fΘ,Φ : X → Y ⊂ Rm, in its parameters Θ ∈ Rd. If∇2
M represents the manifold Hessian (Absil et al., 2008),

then the marginal Gibbs likelihood for the loss

L(Θ,Φ) = ‖fΘ,Φ(X)− Y ‖2F , (D.1)

for inputs X and outputs Y , satisfies (Hodgkinson et al., 2023, Theorem 1)

Zτ (Φ) ∝ e−
1
µ R̄Φ(Θ∗)√
det J(Φ)

√
det∇2RΦ(Θ0)

det∇2
MRΦ(Θ∗)

[1 +O(τ + µ)], (D.2)

where Θ∗ is the interpolator
Θ∗ = argmin

Θ
RΦ(Θ) subject to L(Θ,Φ) = 0. (D.3)

Using (D.2) with Proposition 3.1 constitutes a precise formula for minimizing the density: up to an O(τ + µ) factor,

q(Φ) ∝ (det J(Φ))−ρ/2
(

det∇2RΦ(Θ0)

det∇2
MRΦ(Θ∗)

)ρ/2
exp

(
− ρ
µ
R̄Φ(Θ∗)

)
πΦ(Φ). (D.4)

While we cannot elucidate the spectral density from (D.4), it provides a more accurate picture of the complexities with
ascertaining the densities of trained feature matrices at scale. Indeed, we can use (D.4) to understand our model for the NTK
feature matrix (5) without appealing to linear approximations.

23



Models of Heavy-Tailed Mechanistic Universality

First, we ask the question: if Θ∗ should yield a robust predictor, what is a good choice of RΦ? For the sake of brevity, we
drop the dependence on the features Φ and write RΦ as simply R. In the overparameterized regime, the test loss is primarily
dictated by the variance in model predictions with respect to label noise (Holzmüller, 2020). For a Lipschitz loss function,
this variance depends on that of the estimator Θ∗ itself. Consequently, to ensure that a solution to (D.3) exhibits small test
loss, the regularizer R should be chosen to control the variance of the induced estimator. This leads us to the following
Definition D.1. Here, the variance of a random vector is considered as the sum of the variances over each coordinate, i.e.,
VarX =

∑
i VarXi.

Definition D.1 (IDEAL REGULARIZER). An ideal regularizer (for minimizing test error) is a choice of R(θ) that controls
the induced label noise of the corresponding estimator:

R(Θ) ≥ 1

2
VarY Θ∗(Y ).

Although the precise form of an ideal regularizer may be quite complicated, a simple lower bound can be derived in the
scenario where the label noise has finite covariance.

Lemma D.2. If J is full rank, then VarY Θ∗(Y ) ≥ tr(ΣJ−1) + o(‖Σ‖2), where Σ = Cov(Y ).

Proof. First, performing a Taylor series expansion in Y , we find that

VarY Θ∗(Y ) = ‖DY Θ∗(Y ) Σ1/2‖2F + o(‖Σ‖2), (D.5)

where Σ1/2 is the symmetric square root of Σ. Letting fΘ∗ denote the underlying model, since fΘ∗(X) = Y in the
interpolating regime, taking derivatives of both sides in Y reveals that DF DY Θ∗ = I , and DY Θ∗ is a right-inverse of DF .
Consequently, DY Θ∗Σ1/2 is also a right-inverse of Σ−1/2DF , and so

‖DY Θ∗Σ1/2‖2F ≥ ‖(Σ−1/2DF )+‖2F
= tr

(
(Σ−1/2DFDF>Σ−1/2)−1

)
= tr(ΣJ−1),

where the second equality follows from the identity ‖X†‖2F = tr((XX>)−1). Altogether, this implies that

VarY Θ∗(Y ) ≥ tr(ΣJ−1) + o(‖Σ‖2),

as required.

Remark D.3. In the case where Y is normally distributed, (Cacoullos, 1982, Proposition 3.7) implies that (D.5) can be
replaced by

VarY Θ∗(Y ) ≥ ‖DY Θ∗Σ1/2‖2F ,

and so the limit o(‖Σ‖2) can be dropped.

Choosing R(Θ) = tr(ΣJ−1) = ‖DF (Θ)+Y ‖2F to saturate these lower bounds, (D.4) becomes

q(Φ) ∝ (det J(Φ))−ρ/2
(

det∇2R(Θ0)

det∇2
MR(Θ∗)

)ρ/2
exp

(
− ρ
µ

tr(ΣJ(Φ)−1)

)
πΦ(Φ). (D.6)

This is equivalent to the density (5) obtained under the linearized model except for the second-order factor
(det∇2R(Θ0)/ det∇2

MR(Θ∗))ρ/2. Formally speaking, it is unclear what the influence of this factor is for general
models, however, we can make some conjectures. For (D.6) to coincide with (5) under the change of variables Φ 7→ J(Φ),
it is important for ∇2R(Θ0) and det∇2

MR(Θ∗) to be minimally dependent on J(Φ). In the former case, we could that
the mutual information between R(Θ0) and R(Θ∗) is small as a consequence of the training procedure. This has some
empirical merit according to Fort et al. (2020). The latter object is more complex, but depends primarily on the null space
of DF (Θ∗) and the higher-order derivatives of F . Again, we may conjecture that the mutual information between these
quantities and the eigenspectrum of J(Φ) is relatively minimal, although such claims require further study.
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E. The High-Temperature Marchenko-Pastur (HTMP) Distribution
In this section, we present more background on the beta ensemble in RMT, we then prove Theorems 4.1 and 4.3, and we
then present additional properties of the HTMP distribution introduced in Theorem 4.1.

E.1. Beta Laguerre Ensembles for Two Regimes

In RMT, for N ≥ 1 and β > 0, the beta-Hermite (Gaussian) ensemble of size N ×N is defined by its joint eigenvalue
density function:

pH(λ1, . . . , λN ) ∝ e−
β
2

∑N
i=1 λ

2
i

∏
1≤i<j≤N

|λj − λi|β .

This reduces to the classical random matrix ensembles: GOE, GUE, and GSE, when β = 1, 2, 4 respectively. We refer to
Chapter 4 of Anderson et al. (2009) for more details on beta ensemble matrices. In our setting, replacing the quadratic
confinement above with a Wishart-type matrix yields the beta-Laguerre ensemble (Dumitriu & Edelman, 2002).

We define a random matrix AN with a beta-Laguerre ensemble of size N ×N via its joint eigenvalue density function:

q(λ1, . . . , λN ) ∝
N∏
i=1

(
λ
β
2 (D−N+1)−1
i e−

βD
2 λi

) ∏
i,j=1,...,N

i<j

|λj − λi|β , (E.1)

for some β = β(N) > 0 and any N,D ∈ N. Denote β = κ/N for some κ > 0. In this section, we present RMT for
the beta-Laguerre ensemble for two different regimes, based on different limits of β, or equivalently, the limits of κ. We
clarify that the parameter β in the beta-Laguerre ensemble, as defined in (E.1), is distinct from the β encountered in our
Master Model Ansatz, presented in (3.2). With slight ambiguity, the term β is employed in this section for a distinct purpose
compared to its usage in the main text.

We let D,N →∞ with D ≥ N and N/D → γ ∈ (0, 1). Then, (E.1) is asymptotically equivalent to

q(λ1, . . . , λN ) ∝
N∏
i=1

(
λ
κ
2 ( 1
γ−1)−1

i e−
κ
2γ λi

) ∏
i,j=1,...,N

i<j

|λj − λi|κ/N . (E.2)

We will prove Theorem 4.1 based on the joint density function (E.2). Here, we focus on the beta-Laguerre ensemble AN
and its joint probability density function (E.1), with β = β(N) and D = D(N) ≥ N . For each value of N , let µN denote
the empirical spectral distribution of AN . Specifically, µN is the measure defined as µN = N−1

∑N
i=1 δλi(AN ).

We now present the limits of the empirical spectral distribution of AN , for two distinct regimes of β(N) or, equivalently,
κ = κ(N) = β · N . These have been summarized by Dung & Duy (2021). Later, we will use these results to prove
Theorem 4.1.

Firstly, we review the asymptotic results when N · β(N)→∞. In this case, the Marchenko-Pastur distribution appears
in the limiting spectral distribution. The Marchenko-Pastur distribution MPγ with parameter γ ∈ (0, 1) is absolutely
continuous on (0,∞) with finite support only on the interval Iγ = [γ−, γ+] where γ± = (1±√γ)1/2. The corresponding
probability density function is given by

ργ(x) =
1

2π

√
(γ+ − x)(x− γ−)

γx
, x ∈ Iγ . (E.3)

Theorem E.1 (MARCHENKO-PASTUR THEOREM). If β(N) = Ω(N−1) as N → ∞ and N/D → γ ∈ (0, 1), then the
empirical spectral distributions µN of beta-Laguerre ensemble AN , defined by (E.1), converge weakly to the Marchenko-
Pastur distribution MPγ whose probability density function is ργ(x) with parameter γ, defined by (E.3).

This Marchenko-Pastur Theorem has been established by Dumitriu & Edelman (2006), for any fixed value of β. Subsequently,
Dung & Duy (2021) extended this theorem to encompass general β(N), as long as the limit of N · β(N) approaches infinity.

Secondly, we consider the high temperature case where β(N) ∼ κN−1 for some fixed κ > 0. Let U(a, b, z) denote the
Tricomi confluent hypergeometric function (DLMF, 13.2.42), defined for negative arguments when b is not a negative
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integer by

U(a, b,−z) =
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b,−z) +

Γ(b− 1)

Γ(a)
z1−beiπb1F1(a− b+ 1, 2− b,−z), z > 0, (E.4)

where Γ is the Gamma function and pFq is the generalized hypergeometric function. The integer case can be obtained by
taking appropriate limits. Below, we present the result of the beta-Laguerre ensemble for the high-temperature case, proved
by Dung & Duy (2021) using moment methods.
Theorem E.2. Assume that κ(N) = β(N)/N → κ ∈ (0,∞) as N →∞ and N/D → γ ∈ (0, 1). The empirical spectral
distributions µN of beta-Laguerre ensemble AN defined by (E.1), converge weakly to a probability distribution on (0,∞)
with a probability density function ργ,κ defined as

ργ,κ(x) =
κ

2γ

1

Γ(κ/2 + 1)Γ(κ/2γ)

(
κx
2γ

) κ
2γ−1−κ2 e−

κx
2γ

|U(κ/2,− κ
2γ + 1 + κ

2 ;−κx/2γ)|2
, x ≥ 0. (E.5)

We call this limiting spectrum the high-temperature Marchenko-Pastur (HTMP) distribution, denoted by HTMPγ,κ with
parameters κ, γ > 0.

E.2. Proof of Theorem 4.1

To prove Theorem 4.1, let MN be an N ×N matrix possessing the high-temperature inverse-Wishart ensemble defined in
(6), that is,

qκ(λ1, . . . , λN ) ∝
N∏
i=1

λ−αi e−βλ
−1
i

∏
i,j=1,...,N

i<j

|λi − λj |κ/N .

We focus on the matrix M−1
N , whose eigenvalues are reciprocals of those of MN . By a change of variables λi 7→ λ−1

i , the
joint eigenvalue density of M−1

N , denoted by q̃κ, satisfies

q̃κ(λ1, . . . , λN ) ∝
N∏
i=1

λα−2
i e−βλi

∏
i,j=1,...,N

i<j

∣∣∣∣ 1

λi
− 1

λj

∣∣∣∣κ/N .
Furthermore, observe that ∏

i,j=1,...,N
i<j

∣∣∣∣ 1

λi
− 1

λj

∣∣∣∣κ/N =
∏

i,j=1,...,N
i<j

∣∣∣∣λj − λiλiλj

∣∣∣∣κ/N

=
∏

i=1,...,N

λ
−κ+κ/N
i

∏
i,j=1,...,N

i<j

|λj − λi|κ/N ,

and so

q̃κ(λ1, . . . , λN ) ∝
N∏
i=1

λ
α−2−κ+κ/N
i e−βλi

∏
i,j=1,...,N

i<j

|λj − λi|κ/N .

Another change of variables λi 7→ 2γβ
κ λi shows that the matrix VN = 2γβ

κ M−1
N has joint eigenvalue density

q(λ1, . . . , λN ) ∝
N∏
i=1

λ
α−2−κ+κ/N
i e−

κ
2γ λi

∏
i,j=1,...,N

i<j

|λj − λi|κ/N . (E.6)

Notice that α− 2− κ = κ
2 ( 1

γ − 1)− 1 since we denote

γ =
κ/2

α− κ/2− 1
,
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which turns the joint eigenvalue density of VN into

q(λ1, . . . , λN ) ∝
N∏
i=1

(
λ
κ
2 ( 1
γ−1)−1+ κ

N

i e−
κ
2γ λi

) ∏
i,j=1,...,N

i<j

|λj − λi|κ/N ,

which is asymptotically equivalent to (E.2) as N →∞. Hence, it is also asymptotically equivalent to (E.1), where we take
β(N) = κ(N)/N and N/D → γ ∈ (0, 1) in (E.1). Notice that γ ∈ (0, 1) indicates that we need to assume α > κ + 1.
Applying Theorems E.1 and E.2 shows convergence in distribution for two different regimes of β(N). Therefore, we can
conclude that

• when κ(N)→∞, the empirical spectrum distribution of VN converges weakly to MPγ ; and

• when κ(N)→ κ, the empirical spectrum distribution of VN converges weakly to HTMPγ,κ.

This completes the proof of Theorem 4.1.

E.3. Proof of Theorem 4.3

The proof of (8) in Theorem 4.3 is directly based on the Master Model Ansatz (2) and free probability theory. For more
details on free probability theory, the definitions of multiplicative free convolution and asymptotic freeness, and their
connections with RMT, see Chapter 5 of (Anderson et al., 2009). Precisely, to prove (8), we can apply an independent
N × N unitary matrix UN following the Haar measure to Σ. Then, Corollary 5.4.11 in (Anderson et al., 2009) proves
that MN and UNΣU∗N are asymptotically free. Thus, we can conclude that the limiting eigenvalue distribution is the
multiplicative free convolution µΣ � ρ. The precise definition of the multiplicative free convolution “�” of two probability
distributions can be found in Definition 5.3.28 of Anderson et al. (2009).

Hence, when Σ is identity and MN follows the high-temperature inverse-Wishart ensemble (6), we can apply Theorem 4.1
to conclude that empirical spectrum density ρN (λ)→ ρ(λ) weakly, where the limiting density ρ(λ) = λ−2ρHTMP(λ−1) if
κ is finite, and ρ(λ) = λ−2ρMP(λ−1) if κ =∞. Here ρMP and ρHTMP are the probability density functions of MPγ and
HTMPγ,κ defined in Theorems E.1 and E.2, respectively.

Now, we further identify the tail asymptotics of the limiting spectral density ρ(x) for two different cases of κ(N).

First, as κ(N)→∞, applying (E.3), we know that the limiting spectral density of κ
2γβMN is

ρ(x) =
1

2π

√
(γ+ − x−1)(x−1 − γ−)

γx
, x ∈ [γ−1

+ , γ−1
− ],

assuming that γ 6= 1. In this case, the density has bounded support. If γ = 1, then

ρ(x) =
1

2π

√
2x−1 − x−2

x
, x ∈ [2,∞),

and so ρ(x) ∼ 1
π
√

2
x−3/2 as x→∞. Scaling these densities does not influence the tail behavior.

Next, we turn to the case κ(N) → κ ∈ (0,∞) as N → ∞, and we rely on two asymptotic properties of the Tricomi
confluent hypergeometric function defined in (E.4):

(I) For any b < 0, U(a, b, z) = Γ(1−b)
Γ(a−b+1) +O(z) as |z| → 0 (DLMF, 13.2.22); and

(II) For any a, b, |U(a, b, z)| ∼ |z|−a as |z| → ∞ with | arg z| < 3π
2 (DLMF, 13.2.6).

From (I) and (II), the probability density function ργ,κ(x) given in (E.5) satisfies

ργ,κ(x) ∼ c1x
κ
2γ−1−κ2 as x→ 0+, and ργ,κ(x) ∼ c2x

κ
2γ−1+κ

2 e−
κ
2γ x as x→∞.
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Thus, with a change of variables, the density function ρ of κ
2γβM

−1
N satisfies

ρ(x) ∼ c1x−
κ
2γ−1+κ

2 as x→∞, and ρ(x) ∼ c2x−
κ
2γ−1−κ2 exp

(
− κ

2γx

)
as x→ 0+.

We now only need to observe that rescaling MN will not change the exponent in the power law, but it will change the
coefficient in the exponential term.

E.4. Properties of High-Temperature Marchenko-Pastur Distribution

Recall that the Stieltjes transform of a spectral density ρ is given by Sρ(z) =
∫

(x − z)−1ρ(x)dx. Thus, we have the
following result.

Proposition E.3. The Stieltjes transform of HTMPγ,κ defined in (E.5) is given by

Sργ,κ(z) =

∫ ∞
0

ργ,κ(x)

x− z
dx =

κ

2γ
·
U(κ/2 + 1, 2− κ

2γ + κ
2 ;−κz2γ )

U(κ/2,− κ
2γ + 1 + κ

2 ;−κz2γ )
, z ∈ C \ R. (E.7)

The proof of the above proposition is given by Ismail et al. (1988).

From DLMF, 13.7.3, the asymptotic expansion for large z of U(a, b, z) is given by

U(a, b, z) ∼ z−a
∞∑
k=0

c
(a,b)
k z−k, c

(a,b)
k := (−1)k

Γ(a+ k)Γ(a− b+ k + 1)

k!Γ(a)Γ(a− b+ 1)
. (E.8)

Using (E.7) and this approximation of U(a, b, z), we can compute the first few moments of the HTMPγ,κ distribution.
These are given in the following proposition.

Proposition E.4. Let mk =
∫∞

0
xkργ,κ(x)dx denote the k-th moment of the HTMPγ,κ distribution for any k ∈ N. Then

m0 = 1, m1 = −(a− b+ 1), and m2 = (a− b+ 1)(2a− b+ 2) where a = κ
2 and b = 1 + κ

2 −
κ
2γ . In general,

mk =
k

a
c
(a,b)
k −

k−1∑
l=1

mk−lc
(a,b)
l ,

where c(a,b)k is defined in (E.8).

Proof. We seek an expansion of the form Sργ,κ(z) =
∑∞
k=0mkz

−k−1, as the coefficients mk are precisely the moments of
HTMPγ,κ. Let a = κ

2 and b = 1 + κ
2 −

κ
2γ . From (E.7) and (E.8), formally,

∞∑
k=0

mkz
−k−1 =

z−a−1
∑∞
k=0 c

(a+1,b+1)
k z−k

z−a
∑∞
k=0 c

(a,b)
k z−k

,

and so ( ∞∑
k=0

mkz
−k

)( ∞∑
k=0

c
(a,b)
k z−k

)
=

∞∑
k=0

c
(a+1,b+1)
k z−k.

Using the Cauchy product,
∞∑
k=0

(
k∑
l=0

mk−lc
(a,b)
l

)
z−k =

∞∑
k=0

c
(a+1,b+1)
k z−k,

and so for k ≥ 0,

mk +

k∑
l=1

mk−lc
(a,b)
l = c

(a+1,b+1)
k .

Evaluating mk for k ∈ {0, 1}, we find that m0 = 1 (as expected),

m1 = −(a− b+ 1),
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where we use the fact that Γ(z + 1) = zΓ(z). Furthermore, for k = 2, we have

m2 = (a− b+ 1)(2a− b+ 2).

F. Structured Matrix Models: Weyl Formulae and Joint Eigenvalue Densities
In this section, we derive a change-of-variable formulae (also called Weyl formulae) for obtaining joint eigenvalue densities
with structured matrix models. The models we consider are outlined in Table F.1. The results proved in this section will be
applied later in Appendix G to solve the variational problem (7) for various matrix models outlined in Table F.1.

Type Description Weyl Formula General Form

(a) Diagonal All off-diagonal entries are zero Trivial A = diag(λ1, . . . , λn)

(b) Commuting block diag. Block-diagonal with symmetric blocks
Ai = A>i , plus [Ai, Aj ] = 0 for all i, j

Thm. F.2 A = diag(A1, . . . , Ak),
where [Ai, Aj ] = 0

(c) Symmetric block diag. Block-diagonal with symmetric blocks
Ai = A>i

Cor. F.4 A = diag(A1, . . . , Ak)

(d) Kronecker-like matrix Full symmetric matrix with commuting
subblocks

Thm. F.5 A = [Aij ]
k
i,j=1, where

Aij = A>ji and [Aij , Akl] =
0

(e) Symmetric General symmetric matrix Cor. F.3 A = A>

Table F.1. A collection of structured matrix models with explicit joint eigenvalue densities.

Computing Jacobians for matrix-valued functions presents a notationally complex task. To address this challenge, we
employ the following technique derived from the change of coordinates relationships prevalent in Riemannian geometry, as
outlined in (Menon & Trogdon, 2015).

Change of Coordinates Trick: Assuming thatM = F (x1, . . . , xN ) is a matrix-valued function, let ∂M = (∂M)ij
where (∂M)ij =

∑N
k=1 Jijkdxk and Jijk =

∂Fij
∂xk

are the elements of the corresponding Jacobian matrix. Compute

tr(∂M>∂M) =

N∑
k,l=1

gkldxkdxl where gkl =
∑
i,j

JijkJijl.

Then for any integrable function f ,∫
f(M)dM =

∫
f(F (x1, . . . , xN ))

√
det g(x1, . . . , xN ) dx1 · · · dxN .

As a simple example of this trick, Lemma F.1 considers the task of finding the Haar measure (the uniform distribution) on
the space of symmetric matrices.

Lemma F.1 (SYMMETRIC MATRICES). The Haar measure on the group of N × N real-valued symmetric matrices is
given by

dM = 2
N(N−1)

4

N∏
j=1

dMjj

∏
1≤j<k≤N

dMjk.
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Proof. Since dMkj = dMjk, it follows that

tr(∂M>∂M) =
∑
j,k

dMjkdMkj =
∑
k

dM2
kk + 2

∑
j<k

dM2
jk.

Therefore, for M ∈ RN×N , gii = 1 and gij = 2 for i 6= j. Hence, det g = 1N · 2
N(N−1)

2 = 2
N(N−1)

2 , and the
result follows.

We are now interested in applying the trick to obtain joint densities of eigenvalues starting from densities over Haar measure
on subclasses of symmetric matrices. The most famous result in this regard is the Weyl formula for the joint density of
eigenvalues over the general class of symmetric matrices. This is presented in Corollary F.3, as a special case of a useful
generalization that we present next in Theorem F.2. This next result treats our commuting block diagonal matrices (type (b)),
and is inspired by McCarthy (2023), involving d real-valued symmetric matrices that are simultaneously-diagonalizable.
That is, these are families of matrices M1, . . . ,Mn such that Mi = QΛiQ

>, where Q is orthogonal and each Λi is diagonal.
Note that if N = mn, then N ×N matrices which are block-diagonal with commuting m×m blocks can be treated in
this way.
Theorem F.2 (WEYL FORMULA: TYPE (B)). Let dM be the Haar measure on the space Mn

m of n-simultaneously-
diagonalizable matrices of size m×m. Let f :Mn

m → R be such that f satisfies f(QMQ>) = f(M) where Q ∈ Rm×m
is orthogonal and M ∈Mn

m. Then, there exists a constant Cm,n > 0 independent of f such that∫
f(M)dM = Cm,n

∫
f(Λ)

∏
i,j=1,...,m

i<j

‖λ·j − λ·i‖dΛ,

where Λ = (Λ1, . . . ,Λn) and Λi = diag{λi1, . . . , λim}.

Proof. Immediately, we restrict the support to those matrices with distinct eigenvalues. One can readily verify that the set of
matrices with non-distinct eigenvalues has zero measure with respect to the Haar measure on symmetric matrices, so this
does not affect the density. Let Λ = (Λ1, . . . ,Λn), so that M = Q(Λ1, . . . ,Λn)Q>, where M = (M1, . . . ,Mn). Then

∂M = dQ(Λ1, . . . ,Λn)Q> +Q(dΛ1, . . . ,dΛn)Q> +Q(Λ1, . . . ,Λn)dQ>

= Q
[
(dΛ1, . . . ,dΛn) +Q>dQ(Λ1, . . . ,Λn) + (Λ1, . . . ,Λn)dQ>Q

]
Q>.

Since Q>Q = I , this implies that dQ>Q = −Q>dQ, and so

∂M = Q
[
(dΛ1, . . . ,dΛn) +Q>dQ(Λ1, . . . ,Λn)− (Λ1, . . . ,Λn)Q>dQ

]
Q>

= Q
[
dΛ + [Q>dQ,Λ]

]
Q>.

Consider the variable A such that dA = Q>dQ, so that ∂M = Q(dΛ + [dA,Λ])Q>. Now,

tr(∂M>∂M) =

n∑
i=1

tr(dΛ2
i ) + 2tr(dΛi[dA,Λi]) + tr[dA,Λi]

2.

Observe that for a diagonal matrix P = diag{p1, . . . , pm}, we have that

[dA,P ]ij = (dAP − PdA)ij = dAijpj − pidAij = (pj − pi)dAij ,

and so

tr([dA,P ])2 =

m∑
i,j=1

[dA,P ]ij [dA,P ]ji

=

m∑
i,j=1

(pj − pi)dAij(pi − pj)dAji

=

m∑
i,j=1

(pj − pi)2dA2
ij ,

= 2
∑
i<j

(pj − pi)2dA2
ij ,
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where the last two lines follow from the fact that dA = dQ>Q is anti-symmetric, and so (dA)ii = 0 and (dA)ik = −(dA)ki.
Similarly,

tr(dP [dA,P ]) =
∑
k

dpk[dA,P ]kk = 0,

since [dA,P ]kk = 0. Consequently,

tr(∂M>∂M) =

n∑
i=1

m∑
j=1

dλ2
ij + 2

∑
j<k

‖λ·j − λ·k‖2dA2
jk. (F.1)

Therefore, using the change of coordinates trick,∫
f(M)dM = 2

m(m−1)
2

∫
f(Λ, A)

∏
j<k

‖λ·j − λ·k‖
n∏
i=1

m∏
j=1

dλ2
ij

∏
j<k

dA2
jk,

and for f independent of A, the integral over the measure of A separates, and so for some Cm,n > 0 independent of f , we
have that ∫

f(M)dM = Cm,n

∫
f(Λ)

∏
j<k

‖λ·j − λ·k‖2dΛ.

From this result, we immediately obtain the following two results as corollaries.

Corollary F.3 (WEYL FORMULA: TYPE (E)). Let dM be the Haar measure on the space of real-valued symmetric
matrices of size N × N . Let f be a matrix function that depends only on the eigenvalues. Then there exists a constant
CN > 0 independent of f such that

∫
f(M)dM = CN

∫
f(λ1, . . . , λN )

∏
j,k=1,...,N

j<k

|λj − λk|
N∏
i=1

dλi.

Corollary F.4 (WEYL FORMULA: TYPE (C)). Let dM be the Haar measure on the space of real-valued symmetric
matrices of size N ×N with N = mn, that are block-diagonal with block size m ×m. Let f be a matrix function that
depends only on the eigenvalues. Then there exists a constant Cm,n > 0 independent of f such that∫

f(M)dM = Cm,n

∫
f(Λ)

n∏
i=1

∏
j,k=1,...,m

j<k

|λij − λik|dΛ.

Finally, we consider the case of general block matrices with commuting blocks. This case is slightly different than the
setting in Theorem F.2, as the orthogonal decomposition adopts a Kronecker-like structure. However, we can use the same
techniques to obtain the joint eigenvalue density.

Theorem F.5 (WEYL FORMULA: TYPE (D)). Let dM be the Haar measure on the space Mm,n of mn × mn real-
valued symmetric matrices comprised of n × n commuting m ×m blocks. Let f : Mm,n → R be such that f satisfies
f(QMQ>) = f(M), where Q ∈ Rm×m is orthogonal and M ∈ Mm,n. Then there exists a constant Cm,n > 0
independent of f such that

∫
f(M)dM = Cm,n

∫
f(Λ)

∏
i,j=1,...,m

i<j

 n∑
k,l=1

(λjl − λik)2

1/2 ∏
i,j=1,...,n

i<j

 m∑
k,l=1

(λlj − λki)2

1/2

dΛ,

where Λ = (Λ1, . . . ,Λn) and Λi = diag{λi1, . . . , λim}.
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Proof. The proof proceeds in a similar fashion to the proof of Theorem F.2. Once again, the support of the density is
appropriately restricted, without loss of generality. Now consider the change of coordinates

M = (Q⊗O)>diag{Λ1, . . . ,Λn}(Q⊗O),

where Q ∈ Rn×n and O ∈ Rm×m are both orthogonal, and so U = Q ⊗ O is also orthogonal. Note that dU =
(dQ⊗O) + (Q⊗ dO). As before,

∂M = U(dΛ + [U>dU,Λ])U>

= U(dΛ + [(Q⊗O)>(dQ⊗O),Λ] + [(Q⊗O)>(Q⊗ dO),Λ])U>

= U(dΛ + [(Q>dQ⊗ I),Λ] + [(I ⊗O>dO),Λ])U>.

Now, consider variables A and B such that dA = Q>dQ and dB = O>dO. Since dA and dB are both antisymmetric, for
dA⊕ dB = (dA⊗ I) + (I ⊗ dB), we have that

(dA⊕ dB)> = (dA> ⊗ I) + (I ⊗ dB>) = −(dA⊗ I)− (I ⊗ dB) = −(dA⊕ dB),

and it is therefore also antisymmetric. Recall that

(dA⊗ I)m(i−1)+k,m(j−1)+l = dAij

(I ⊗ dB)m(i−1)+k,m(j−1)+l = dBkl,

and so

[(dA⊗ I),Λ]m(i−1)+k,m(j−1)+l = (λjl − λik)dAij

[(I ⊗ dB),Λ]m(i−1)+k,m(j−1)+l = (λjl − λik)dBkl.

Consequently,

tr([(dA⊗ I),Λ]2) = 2
∑
i<j

∑
k,l

(λjl − λik)2

dA2
ij

tr([(I ⊗ dB),Λ]2) = 2
∑
k<l

∑
i,j

(λjl − λik)2

dB2
kl.

On the other hand, since dA and dB are antisymmetric,

tr([(dA⊗ I),Λ][(I ⊗ dB),Λ]) =
∑
i,j,k,l

(λjl − λik)2dAijdBkl = 0.

Altogether,

tr(∂M>∂M) =

n∑
i=1

m∑
j=1

dλ2
ij + 2

∑
i<j

∑
k,l

(λjl − λik)2

dA2
ij + 2

∑
k<l

∑
i,j

(λjl − λik)2

dB2
kl. (F.2)

The result follows by the change of coordinates trick.

Remark F.6. In each case, the Weyl change-of-variables factor in the joint eigenvalue densities involves absolute differences
of eigenvalues |λi − λj |, and it varies only in how these differences are included. These factors determine the degree of
eigenvalue repulsion, as they assert that configurations with eigenvalues close together should occur with reduced probability.
This plays a central role in the shape of the spectral density. An important observation for us is that the strength of these
repulsions only increases as we take products of eigenvalue differences, since sums do not further reduce the probability
density. Heuristically, we can count the number of multiplied eigenvalue differences as a rough approximation of the degree
of eigenvalue repulsion in the spectral density. Let us call this quantity θ. From the Weyl formulae, for each structured
matrix class, θ is as follows.
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(a) Diagonal: θ = 0

(b) Commuting block diagonal: θ = m(m−1)
2

(c) Symmetric block diagonal: θ = N(m−1)
2

(d) Kronecker-like matrix: θ = m(m−1)
2 + n(n−1)

2

(e) Symmetric: θ = N(N−1)
2

Clearly, θ becomes larger as the matrix class becomes less structured (more degrees of freedom).

In principle, one can measure the amount of matrix structure according to θ. Finding the spectral density of structured
matrices from their joint eigenvalue densities can be very challenging, but this becomes much simpler under an approximation
that enforces all eigenvalues to be interchangeable, that is, when the joint density is symmetric. Letting w(λ1, . . . , λN )
denote the Weyl change-of-variables factor, we can approximate w using Schur functions (Noumi, 2023, §3). This process
was recently proposed in the context of RMT in Kimura & Mazenc (2021). To reduce complexity, we can further observe
that the behavior of w will be dominated by the leading-order term

∏
i<j |λi − λj |γ for some γ (Noumi, 2023, pp. 21).

Therefore, a class of approximations that should respect the degree of eigenvalue repulsion, as measured by θ, weights each
eigenvalue difference according to the ratio θ/N(N−1)

2 , so that∏
i,j∈E

|λi − λj | becomes
∏

i,j=1,...,n
i<j

|λi − λj |
2θ

N(N−1) .

This is only a heuristic, however, and this principle must be made more precise. In Appendix G, we show that variational
approximations using beta-ensembles replicate this behavior in a principled way.

For completeness, we consider one last example of a Weyl formula which will help to make the comments in Remark F.6
more explicit. Let M be a symmetric matrix with eigendecomposition QΛQ>. Here, we consider the scenario where only
d columns of Q are variable, and the other N − d are fixed orthogonal vectors. We refer to this scenario as the “d free
eigenvectors” case, as only d of the eigenvectors of M are allowed to vary in the random matrix ensemble.
Corollary F.7 (WEYL FORMULA: FREE EIGENVECTORS). Let dM be the Haar measure on the space of real-valued
symmetric matrices of size N ×N with d free eigenvectors. Let f be a matrix function that depends only on the eigenvalues.
Then there exists a constant CN,d > 0 independent of f such that∫

f(M)dM = CN,d

∫
f(λ1, . . . , λN )

∏
j,k=1,...,d

j<k

|λj − λk|
N∏
i=1

dλi.

Proof. Let Q = (U |V ) where U ∈ RN×d is variable and V ∈ RN×(N−d) is fixed. Then

Q>Q =

(
U>U U>V
V >U V >V

)
= I,

and so

d(Q>Q) =

(
dU>U + U>dU dU>V

V >dU 0

)
= 0.

This implies that V >dU = dU>V = 0. Consequently, since dQ = (dU |0),

dA = Q>dQ =

(
U>dU 0
V >dU 0

)
=

(
U>dU 0

0 0

)
.

This implies that dAij = 0 whenever i > d or j > d. From (F.1),

tr(∂M>∂M) =

N∑
i=1

dλ2
i + 2

∑
j,k=1,...,d

j<k

|λj − λk|2dA2
jk,

and by using the change of coordinates trick, the result follows.
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Returning to Remark F.6, we can count the number of eigenvalue differences in Corollary F.7 and find θ = d(d−1)
2 . This

provides a direct relationship between the number of “degrees of freedom” in the matrix structure according to the number
of free eigenvectors, and the resulting Weyl formulae. We will return to this example in Appendix G.

G. Variational Approximations with Beta-Ensembles
In this section, we use the Weyl formulae from Appendix F to solve the variational problem (7) and to derive the relationships
in Table 2 for the matrix models outlined in Table F.1. Our derivations begin in Section G.1 with cases (a), (c), and (e) using
an exact formula when the change-of-variables factor is of a particular form. To cover cases (b) and (d) (using (c) only to
test the validity of our approach), we estimate the relationships using symbolic regression applied to estimated solutions
of (7). This approach is centered around a numerical method outlined and justified in Section G.2. The experiments are
performed and conclusions drawn in Section G.3.

Assume that a matrix M ∈ RN×N has elements distributed according to a density p(M) ∝
∏N
i=1 e

−V (λi) over some
class of matrices M, where λ1, . . . , λN are the eigenvalues of M . Such densities typically arise in the form p(M) ∝
(det g(M))αe−trf(M) for some analytic functions f, g. After performing a change of variables, the corresponding joint
density of eigenvalues adopts the form

p(λ1, . . . , λN ) ∝ w(λ1, . . . , λN )
N∏
i=1

e−V (λi), (G.1)

where w depends on the underlying class of matricesM. To provide a concrete baseline for the study of models of this
form, we consider approximation the joint density of eigenvalues by the Laguerre beta-ensemble

qβ(λ1, . . . , λN ) =
1

Z(β)

N∏
i=1

e−V (λi)
∏

i,j=1,...,N
i<j

|λi − λj |β . (G.2)

Note that β = 1 corresponds to the case whereM is the set of real symmetric matrices, and β = 2 corresponds to the case
whereM is the set of complex Hermitian matrices. Intuitively, smaller values of β correspond to a more restrictive classM.
Tridiagonal matrix models exhibiting joint eigenvalue densities given by (G.2) were discovered in Dumitriu & Edelman
(2002). To approximate (G.1) by the variational family (G.2), we consider the forward variational approximation:

β∗ = argmin
β≥0

dKL(qβ‖p), κ∗ = Nβ∗. (G.3)

G.1. Counting Eigenvalue Differences

We shall now confirm that the variational approximation (G.3) replicates the desired heuristic behavior outlined in Remark
F.6. In Proposition G.1, we show that when the change of variable factor w is of product form, then β∗ is explicitly
determined by counting the number of eigenvalue differences.
Proposition G.1. For a probability density p satisfying (G.1) with w(λ) =

∏
ij∈E |λi − λj |θij , letting θ =

∑
ij∈E θij ,

β∗ = argmin
β≥0

dKL(qβ‖p) =
2θ

N(N − 1)
.

Proof. A primary tool in the proof is the explicit expressions for the derivatives of F (β) = logZ(β), where

Z(β) =

∫
exp

− N∑
i=1

V (λi) + β
∑
i<j

log |λi − λj |

 dλ,

from it follows immediately that

F ′(β) =
Z ′(β)

Z(β)
= Eqβ

∑
i<j

log |λi − λj |

F ′′(β) =
Z ′′(β)

Z(β)
−
(
Z ′(β)

Z(β)

)2

= Varqβ
∑
i<j

log |λi − λj | > 0.
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Note that since qβ is symmetric in its arguments, each eigenvalue is an exchangeable random variable, and so

Eqβ
∑
ij∈E

θij log |λi − λj | =
∑
ij∈E

θijEqβ log |λi − λj | = Eqβ log |λ1 − λ2|
∑
ij∈E

θij =
2θ

N(N − 1)
F ′(β).

On the other hand,
Eqβ

∑
i<j

β log |λi − λj | = βF ′(β).

Altogether, letting Zp denote the normalizing constant for p,

dKL(qβ‖p) = Eqβ log

(
qβ(λ1, . . . , λN )

p(λ1, . . . , λN )

)
= logZp +

(
β − 2θ

N(N − 1)

)
F ′(β)− F (β).

Taking the derivative, we obtain
d

dβ
dKL(qβ‖p) =

(
β − 2θ

N(N − 1)

)
F ′′(β),

and since F ′′(β) > 0, the only critical point of β 7→ dKL(qβ‖p) is β = 2θ
N(N−1) . To show this is a minimizer, observe that

d2

dβ2
dKL(qβ‖p) = F ′′(β) +

(
β − 2θ

N(N − 1)

)
F ′′′(β),

and at the critical point, d2

dβ2 dKL(qβ‖p) = F ′′(β) > 0.

From this, we obtain the following result as a corollary.

Corollary G.2. For the following structured matrix models, the values of β∗, κ∗ defined in (G.3) are given by:

• (a) Diagonal: β∗ = 0, κ∗ = 0.

• (c) Symmetric block diagonal: β∗ = m−1
N−1 , κ∗ = (m− 1) · N

N−1 .

• (e) Symmetric: β∗ = 1, κ∗ = N .

Proof. The diagonal and symmetric cases are trivial. For the setting of block-diagonal matrices with

w(λ1, . . . , λN ) =
n∏
i=1

∏
j,k=1,...,m

j<k

|λij − λik|,

as shown in Corollary F.4, θ = n · m(m−1)
2 , and so Proposition G.1 implies β∗ = nm(m−1)

nm(nm−1) = O(n−1).

Performing a similar analysis for our free eigenvectors scenario in Appendix F, we obtain Theorem G.3.

Theorem G.3. Consider the density (2) with π satisfying an inverse-Wishart distribution over the space of symmetric
matrices with d free eigenvectors. The variational approximation (7) satisfies κ∗ = d · d−1

N−1 ∼
d2

N as d,N →∞.

Proof of Theorem G.3. Applying Proposition G.1 to Corollary F.4, we find that β∗ = 2θ/(N(N − 1)), with θij = 1{i, j ≤
d} and

θ =
∑

i,j=1,...,N
i<j

θij =
d(d− 1)

2
, and so β∗ =

d(d− 1)

N(N − 1)
.

Then the result follows.
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G.2. General Numerical Method

At higher generality, it is difficult to make concrete statements about the behavior of β∗. Instead, we can appeal to numerical
methods. Solving the optimization problem (G.3) directly is feasible using iterative solvers, but it is expensive and can
be unstable. Instead, Lemma G.4 shows that β∗ is the solution to a convenient fixed point problem, and hence it can be
estimated by a form of stochastic fixed point iteration.

Lemma G.4. Any local minimum β∗ of dKL(qβ‖p) satisfies β∗ = R(β∗), where

R(β) :=
Covqβ (logw(λ1, . . . , λN ),

∑N
i,j=1,i<j log |λi − λj |)

Varqβ
∑N
i,j=1,i<j log |λi − λj |

. (G.4)

Proof. Letting Zp denote the normalizing constant for p,

dKL(qβ‖p) = logZp − F (β)− Eqβ logw + βF ′(β).

Any local minimum of dKL(qβ‖p) is also a critical point; taking derivatives in β yields

d

dβ
dKL(qβ‖p) = βF ′′(β)− Eqβ

[
logw

d

dβ
log qβ

]
.

However, since
d

dβ
log qβ =

∑
i<j

log |λi − λj | − F ′(β),

which is zero-mean under qβ , it follows that any local minimum of dKL(qβ‖p) satisfies

βF ′′(β) = Covqβ

logw,
∑
i<j

log |λi − λj |

 .

The result follows.

Suppose that for each k = 1, . . . , p and fixed β ≥ 0, (λ
(β,k)
1 , . . . , λ

(β,k)
N )

iid∼ qβ . Letting

xβ,k =

N∑
i,j=1,i<j

log |λ(β,k)
i − λ(β,k)

j |

yβ,k = logw(λ
(β,k)
1 , . . . , λ

(β,k)
N ),

we can see that a consistent estimator of (G.4) is given by

β̂ =

∑p
k=1(xβ,k − x̄β)(yβ,k − ȳβ)∑p

k=1(xβ,k − x̄β)2
, (G.5)

where x̄β =
∑p
k=1 xβ,k and ȳβ =

∑p
k=1 yβ,k. Since (G.5) is exactly the estimator for the slope in simple linear regression,

it is also unbiased. Starting from β̂0 = 1
N , for fixed 0 < γ ≤ 1, consider the iterations

β̂r+1 =

(
1− γ

r + 1

)
β̂r +

γ

r + 1

∑p
k=1(xβ̂r,k − x̄β̂r )(yβ̂r,k − ȳβ̂r )∑p

k=1(xβ̂r,k − x̄β̂r )
2

. (G.6)

The following central limit theorem for β̂r follows from Zhang (2016, Theorem 1.1) and the unbiasedness of (G.5).

Proposition G.5. Let β∗ denote a critical point of dKL(qβ‖p). Then for sufficiently small γ > 0,
√
r(β̂r − β∗) converges

in distribution to a zero-mean normal random variable as r →∞.

Proposition G.5 suggests that the iterations (G.6) provide a reliable means of estimating β∗. In practice, we have found that
γ = 1 typically suffices. The complete pseudocode is provided in Algorithm 1.
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Algorithm 1 Stochastic Fixed Point Iteration for Estimating β∗

input matrix size N ∈ N, weight function w, step size γ (e.g. γ = 1), number of samples p
1: Initialize β̂0 (e.g. β0 = 5

N )
2: for r = 0, 1, 2, . . . until convergence do
3: for k = 1 to p do
4: Sample (λ1, . . . , λN ) ∼ qβ̂r
5: Compute:
6: xk =

∑N
i,j=1,i<j log |λi − λj |

7: yk = logw(λ1, . . . , λN )
8: end for
9: Compute means:

10: x̄ = 1
p

∑p
k=1 xk, ȳ = 1

p

∑p
k=1 yk

11: Compute covariance and variance:
12: Sxy =

∑p
k=1(xk − x̄)(yk − ȳ)

13: Sxx =
∑p
k=1(xk − x̄)2

14: Update β̂:
15: β̂r+1 =

(
1− γ

r+1

)
β̂r + γ

r+1
Sxy
Sxx

16: if convergence criteria met (e.g., |β̂r+1 − β̂r| < tolerance) then
17: Return β̂r+1

18: end if
19: end for

G.3. Variational Approximations for Commuting Matrix Models

To complete Table 2, we now look to use Algorithm 1 with symbolic regression (Cranmer, 2023) to estimate the behavior
of κ∗ with respect to m, n, and the shape parameter of the Laguerre beta-ensemble. To sample from qβ , we rely on the
tridiagonal matrix model of Dumitriu & Edelman (2002) (see Algorithm 2). For eigenvalue computations, we recommend
an implementation of the DSTEBZ routine in LAPACK, such as the eigvalsh tridiagonal routine in SciPy.

Algorithm 2 Generating a Sample from the Laguerre β–Ensemble
input β > 0, matrix size N ∈ N, shape parameter α > 0

1: a = α+ 2 + β(N − 1)
2: for i = 1 to N do
3: Sample di from χa−β(i−1)

4: end for
5: for i = 1 to N − 1 do
6: Sample ti from χβ (N−i).
7: end for

8: Build diagonal entries
Di = d2

i + t2i (i = 1, . . . , n− 1), Dn = d2
n.

9: Build offdiagonal entries
Ei = diti (i = 1, . . . , n− 1).

10: Compute symmetric tridiagonal matrix eigenvalues with diagonal D, off-diagonal E

To collect estimates of κ∗ for a variety of scenarios, we consider ten values of both m and n logarithmically-spaced between
3 and 100 and α = 1, 2, . . . , 5. In Algorithm 1, we let p = 50, γ = 1 and choose our tolerance in each case to be 10−3/N .
We then perform symbolic regression on these estimates with respect to m, n, and α using PySR (Cranmer, 2023) with a
maximum size of 7 terms, population size of 20, 5 iterations, addition, multiplication, and division binary operations, and
logarithmic and exponential unary operations.

To verify that this process is capable of reconstructing expected symbolic relationships for κ∗, we consider the symmetric
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block diagonal case in Figure G.1. The predicted relationship is κ∗ = (m − 1.1) × 1.05, close to the exact relationship
κ∗ = (m− 1) · N

N−1 given in Corollary G.2.

Figure G.1. Symbolic regression predictions vs. estimations using Algorithm 1 for κ∗ under the symmetric block diagonal structure over
the Laguerre beta-ensemble.

Next, we turn our attention to the commutative cases where explicit expressions for κ∗ are not known. The results are
presented in Figure G.2, which suggest the relationships:

• (b) Commuting block diagonal. κ∗ ≈ 1
n

(
m− 1

2

)
• (d) Kronecker-type. κ∗ ≈ n

m + m
n .

These relationships closely follow the heuristic in Remark F.6.

Figure G.2. Symbolic regression predictions vs. estimations using Algorithm 1 for κ∗ under the commuting block diagonal, and
Kronecker-type matrix structures over the beta-Laguerre ensemble.

H. Comparison of Neural Scaling Law for Linear Regression
Modern scaling laws in ML attempt to quantify how test errors depend on key resources such as model size and dataset
size. While many such laws have been observed empirically in deep learning, there are also rigorous proofs in simpler,
more tractable settings (e.g., linear models or kernel methods) that exhibit qualitatively similar phenomena. However, most
previous work focuses on linear regression on the training dataset (Lin et al., 2024; Bordelon et al., 2024a).

In this section, we consider a concrete power law setting for the data covariance, and we review some previous results of an
associated ridge regression scaling law, making a comparison with Proposition 5.1, which we proved in Appendix C.3. This
high-dimensional ridge regression has been studied in many different scenarios, e.g., Hastie et al. (2022); Wei et al. (2022);
Li et al. (2023); Defilippis et al. (2024). The main difference between our Proposition 5.1 and previous results is that we
considered the ridge regression on a heavy-tailed feature matrix.
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Specifically, for linear regression, we consider the dataset to be composed of, for i = 1, . . . , n:

• The feature vectors xi ∈ Rd have a covariance matrix Σ, whose eigenvalues {µj}dj=1 exhibit a power-law decay

µj(Σ) ∼ C

jα
for some constants C > 0 and α > 0, for large j. (H.1)

• The label is generated via a linear model yi = 〈xi, w∗〉+ εi, with i.i.d. Gaussian noise εi ∼ N (0, σ2).

We show how the test mean-squared error (MSE) of the ridge estimator scales with n, d, and an appropriately chosen ridge
parameter λn. Under mild conditions (detailed below), the MSE follows a particular power law in n whose exponents
depend on α and on how we scale λn with n. This illustrates how data spectral structure can drive nontrivial scaling
phenomena in high-dimensional learning.

Given a data matrix X ∈ Rn×d of n samples (each row is x>i ) and labels y = (y1, . . . , yn)>, the ridge regression estimator
with regularization λ > 0 is defined by

ŵ = arg min
w∈Rd

{
‖y −Xw‖2 + λ‖w‖2

}
= (XTX + λId)

−1XTy.

We will let λ = λn possibly depend on n (and/or d), as is common practice for controlling bias–variance tradeoffs in high
dimensions (Wei et al., 2022; Li et al., 2023). The generalization error is given by

En,d(λn) = Ex
[〈
x, ŵ

〉
− 〈x,w∗〉

]2
, where x ∼ N (0,Σ) is independent of the training set.

We now present the asymptotic behavior of En,d(λn) under the spectral assumption (H.1) and a suitable scaling of λn
with n, as n, d → ∞. For simplicity, let UΛU> be the spectral decomposition of Σ ∈ Rd×d, i.e., U is orthonormal and
Λ = diag(µ1, . . . , µd) contains the eigenvalues (ordered). We can analyze ridge regression in this eigenbasis. If we let
x̃i = U>xi, then x̃i ∼ N (0,Λ), i.e., the coordinates (x̃i)j are independent with variance µj . Similarly, w∗ can be written
in the same basis, w∗ = Uw̃∗, so w∗(j) = (w̃∗)j in that basis. Thus, when xi ∼ N (0,Σ), the matrix X = [x>1 ; . . . ;x>n ]

has an SVD tightly connected with Σ1/2, but we simply recall the well-known result that in the basis U , ridge regression
amounts to a coordinate-wise shrinkage:

ŵ = U
[̂̃w], where ̂̃wj ≈ µj

µj + λn
w̃∗j + (variance term from noise).

Hence, in expectation (conditioning on X or in an integrated sense), each coordinate is shrunk by a factor µj
µj+λn

.

Bias–variance decomposition. For x ∼ N (0,Σ), the test MSE can be written as

En,d(λn) = E
[
‖(ŵ − w∗)‖2Σ

]︸ ︷︷ ︸
MSE in the Σ-inner product

=

d∑
j=1

µj (bias2
j + varj)︸ ︷︷ ︸

coordinate-wise contributions

,

where
biasj = E

[̂̃wj − w̃∗j ], varj = E
[
( ̂̃wj − E[ ̂̃wj ])2

]
.

Ignoring constants, one finds that the bias part, biasj ≈
[ µj
µj+λn

−1
]
w̃∗j , and the variance part, varj , scales like

µ2
j

(µj+λn)2 · σ
2

n ,
reflecting how the noise ε passes through the resolvent (X>X + λnI)−1.

As n, d→∞, we replace the sum by an integral and use that µj ∼ C/jα. Then, the test MSE is roughly:

En,d(λn) ∼
d∑
j=1

µj

(
µj

µj + λn
− 1

)2

(w̃∗j )2

︸ ︷︷ ︸
bias term

+

d∑
j=1

µj
µ2
j

(µj + λn)2

σ2

n︸ ︷︷ ︸
variance term

.

If ‖w∗‖2 < ∞ in that basis, we can assume (w̃∗j )2 = O(j−β
′
) for some β′ > 0 or at least that w∗ is well-defined in

Σ’s eigenbasis. For simplicity, one often takes (w̃∗j )2 = O(1) or O(j−γ
′
); we will highlight only the main effect of the

covariance spectrum {µj} here.
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Choice of λn and the Emergent Power-Law Rate. When µj = Cj−α, the sums above partition into low-index terms
(where j is small and µj is large) and high-index terms (where j is large and µj is small). Roughly speaking:

• If λn is too large, then even the large eigenvalues µj get shrunk heavily, leading to big bias.

• If λn is too small, then the small eigenvalues (at large j) produce a large variance.

Hence the optimal ridge parameter λn in the presence of power-law {µj} often takes the form λn � n
− α

2α+1 , giving a
trade-off that yields a final MSE scaling like

En,d(λopt
n ) � n

− 2α
2α+1 . (H.2)

For more details, we refer to Li et al. (2023).

Comparison with Proposition 5.1. The scaling limit we get in Proposition 5.1 is the product of the power of heavy tail
and the ridge scaling, whereas in (H.2), the decay rate will be dominant, by the power law of the data covariance, when we
choose the ridge parameter λn based on α defined in (H.1). In this sense, our scaling limit is more general, and it really
depends on the combination of the regression model structure λn and the heavy tail distribution of the feature matrix. On the
other hand, the above derivation of (H.2) for linear regression considered the anisotropic dataset and label noise, which is not
handled in our Proposition 5.1. We leave this for future work, where we will be able to combine the heavy tail distribution in
the feature matrix, the power law for the dataset covariance, and the model structure (for instance λn in ridge regression).
This extension may require deeper RMT for inverse Wishart matrices, such as local law results by Wei et al. (2022), or
deterministic equivalence for (C.7), as in Defilippis et al. (2024).
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