
Unsupervised Attributed Dynamic Network Embedding with Stability
Guarantees

Emma Ceccherini1 Ian Gallagher2 Andrew Jones3 Daniel Lawson1

1University of Bristol, U.K.
2The University of Melbourne, Australia

3University of Edinburgh, U.K.

Abstract

Stability for dynamic network embeddings ensures
that nodes behaving the same at different times
receive the same embedding, allowing compar-
ison of nodes in the network across time. We
present attributed unfolded adjacency spectral em-
bedding (AUASE), a stable unsupervised repres-
entation learning framework for dynamic networks
in which nodes are attributed with time-varying
covariate information. To establish stability, we
prove uniform convergence to an associated latent
position model. We quantify the benefits of our
dynamic embedding by comparing with state-of-
the-art network representation learning methods
on four real attributed networks. To the best of
our knowledge, AUASE is the only attributed dy-
namic embedding that satisfies stability guarantees
without the need for ground truth labels, which we
demonstrate provides significant improvements for
link prediction and node classification.

1 INTRODUCTION

Representation learning on dynamic networks [Goyal et al.,
2020, Zuo et al., 2018, Trivedi et al., 2019, Zhou et al., 2018,
Ma et al., 2020, Hamilton et al., 2017, Goyal et al., 2018],
which learns a low dimensional representation for each node,
is a widely explored problem. While most existing network
embedding techniques focus solely on the network features,
nodes in real-world networks are associated with a rich set
of attributes. For example, in a social network, the user’s
posts are significantly correlated with trust and following
relationships, and it has been shown that jointly exploiting
both information sources improves learning performance
[Tang et al., 2013].

Network embeddings for static attributed networks include
frameworks based on matrix factorisation [Yang et al.,

2015], or deep learning [Gao and Huang, 2018, Tu et al.,
2017, Tan et al., 2023, Sun et al., 2016, Zhang et al., 2018,
Li et al., 2021]. Some existing dynamic network embed-
dings leverage node attributes, but their exploitation of node
attributes is rather limited, as they are usually solely used to
initialise the first layer [Sankar et al., 2020, Dwivedi et al.,
2023, Liu et al., 2021, Xu et al., 2020b,a].

Approaches that purposefully exploit node attributes include
frameworks based on matrix factorisation [Liu et al., 2020,
Li et al., 2017], deep learning [Tang et al., 2022, Ahmed
et al., 2024, Wei et al., 2019], or Bayesian modelling [Luodi
et al., 2024]. However, to the best of our knowledge, none
of these methods have stability guarantees, which ensure
that if two node/time pairs ‘behave the same’ in the network,
their representation is the same up to noise. Stability allows
for the comparison of embeddings over time because the
embedding space has a consistent interpretation.

Attributed unfolded adjacency spectral embedding (AUASE)
is a framework for unsupervised dynamic attributed network
embedding with stability guarantees. AUASE builds on un-
folded adjacency spectral embedding (UASE) [Jones and
Rubin-Delanchy, 2021], an unsupervised spectral method
for dynamic network embedding with stability guarantees
[Gallagher et al., 2021]. However, UASE is only suited to
unattributed networks. To include node attributes, AUASE
combines the adjacency matrix and a covariate matrix, with
edge weight proportional to covariate values, into an attrib-
uted adjacency matrix.

To analyse the statistical properties of AUASE, we define an
attributed dynamic latent position model combining a latent
position dynamic network model [Gallagher et al., 2021]
with a dynamic covariate model. We show that AUASEs
converge asymptotically to the noise-free embedding, which
is essential to demonstrate AUASE’s stability properties.

Figure 1 shows the embeddings of AUASE and two compar-
able methods - visually explaining the difference between
stable and unstable embeddings. The astute reader will be
wondering why leading dynamic graph methods could have

Figure 1: AUSE provides stable embeddings, meaning that nodes that behave the same at different times receive the same
embedding illustrated with two-dimensional t-SNE visualisations of node embeddings (in a shared temporal space) of the
DBLP datasets. Colours correspond to community membership.

such a visually poor internal representation. There are a
wide class of problems - for which graph neural networks
(GNNs) were developed - that can be expressed as a super-
vised learning problem, and the classifier learns a separate
map for each time point, for instance, node classification
and link prediction [Rossi et al., 2020, Pareja et al., 2020].
However, many problems are not of this form and require
unsupervised stable embeddings. Examples include but are
not limited to: group discovery in purchasing networks for
marketing purposes [Palla et al., 2007], anomaly detection in
financial or cybersecurity networks [Ranshous et al., 2015]
and protein function prediction in dynamic biological net-
works [Klein et al., 2012, Yue et al., 2020].

We compare AUASE to state-of-the-art unsupervised attrib-
uted dynamic embeddings on the tasks of node classification
and link prediction as a means to demonstrate AUASE em-
bedding’s validity and the value of stability. In extensive
experiments on four large real-world datasets AUASE con-
siderably outperforms other methods, which in many cases
perform worse than baseline guessing precisely because
they lack embedding stability.

2 THEORY & METHODS

Let G = (G(1), . . . ,G(T)) represent a dynamic sequence
of T node-attributed networks each with nodes [n] =
{1, . . . , n}. At time t ∈ [T], we denote G(t) = (A(t),C(t)),
where A(t) ∈ {0, 1}n×n represents the network structure

using a binary adjacency matrix and C(t) ∈ Rn×p repres-
ents the time-varying node attributes as covariates. The aim
is to obtain a low-dimensional embedding {Ŷ(t)

A }t∈[T] rep-
resenting the network and covariate behavior of each node
across time.

2.1 ATTRIBUTED UNFOLDED ADJACENCY
SPECTRAL EMBEDDING

We present our attributed embedding procedure, which ex-
tends unfolded adjacency spectral embedding (UASE).

For each time period t ∈ [T], we incorporate the covariates
C(t) into the adjacency matrix A(t) by including them as
p attribute nodes in the network. Nodes are connected to
these p attribute nodes with edge weight proportional to the
corresponding covariate value, producing the augmented
adjacency matrix,

A
(t)
C =

[
(1− α)A(t) αC(t)

αC(t)⊤ 0p×p

]
∈ R(n+p)×(n+p),

where the hyperparameter α ∈ [0, 1] balances the relative
contributions of A(t) and C(t), fixed for all t ∈ [T].

Given the augmented adjacency matrices A(t)
C , the proced-

ure continues analogously to UASE. Hence, for α = 0,
AUASE reduces to UASE. The unfolded attributed adja-
cency matrix AC is constructed by concatenating the attrib-
uted adjacency matrices, and the dynamic spectral embed-

ding is obtained using the output of the d-truncated SVD.
This procedure is detailed in Algorithm 1.

Algorithm 1 Attributed unfolded adjacency spectral embed-
ding (AUASE).

Input: Attributed dynamic network G, embedding dimen-
sion d, hyperparameter α ∈ [0, 1].

1: Construct the attributed adjacency matrix A
(t)
C .

2: Construct the unfolded attributed adjacency matrix

AC = (A
(1)
C | · · · | A(T)

C).

3: Compute the d-truncated SVD of

AC ≈ UAΣAV⊤
A.

4: Divide V⊤
A into T blocks

VA = (V
(1)
A | · · · | V(T)

A).

5: Define the attributed unfolded adjacency spectral em-
beddings (AUASE) as

Ŷ
(t)
A = (Y

(t)
A)1:n = (V

(t)
A Σ

1/2
A)⊤1:n,

Output: Node embeddings {Ŷ(t)
A }t∈[T].

We focus exclusively on the rows of Y(t)
A corresponding to

nodes in the dynamic network G. While AUASE produces
dynamic embeddings for the p attribute nodes, we do not
consider their asymptotic properties as we assume a fixed
number of attributes.

2.2 ATTRIBUTED DYNAMIC NETWORK MODEL

To analyse the asymptotic properties of the embeddings, we
propose a latent position model for dynamic attributed net-
works. The use of dynamic latent position models to study
dynamic networks is well established [Jones and Rubin-
Delanchy, 2021, Sewell and Chen, 2015, Lee and Priebe,
2011, Kim et al., 2018]. To incorporate node attributes, we
combine a non-attributed dynamic network model [Galla-
gher et al., 2021] with a dynamic covariate model using the
same dynamic latent positions.

Definition 1 (Dynamic network model). Conditional on lat-
ent positions Z(t)

i ∈ Z , the sequence of symmetric matrices
A(1), . . . ,A(T) ∈ Rn×n is distributed as a dynamic latent
position network model, if, for all i < j,

A
(t)
ij | Z(t)

i , Z
(t)
j

ind∼ H(Z
(t)
i , Z

(t)
j),

where H is a symmetric real-valued distribution function,
H(Z1, Z2) = H(Z2, Z1), for all Z1, Z2 ∈ Z .

Definition 2 (Dynamic covariate model). Conditional on
latent positions Z

(t)
i ∈ Z , the sequence of covariate

matrices C(1), . . . ,C(T) ∈ Rn×p is distributed as a dy-
namic latent position covariate model, if, for all i ∈ [n],
ℓ ∈ [p],

C
(t)
iℓ | Z(t)

i
ind∼ fℓ(Z

(t)
i),

where fℓ(Z) is a real-valued distribution for all Z ∈ Z .

Our goal is to describe the attributed adjacency matrices
A

(t)
C as a special type of dynamic network model (Definition

1). To include node attributes, we add fixed latent positions
Z

(t)
n+ℓ = iℓ representing an index for each covariate such that

I = {iℓ : ℓ ∈ [p]} is disjoint from the possible node latent
positions Z . For convenience, we denote fiℓ(Z) = fℓ(Z).

Definition 3 (Attributed dynamic latent position model).
Conditional on latent positions Z(t)

i ∈ Z and fixed latent
positions Z(t)

n+ℓ = iℓ, the sequence of symmetric matrices

A
(1)
C , . . . ,A

(T)
C ∈ R(n+p)×(n+p) is distributed as an attrib-

uted dynamic latent position network model with sparsity
parameter ρ > 0, if,

for all i < j,

A
(t)
ij | Z(t)

i , Z
(t)
j

ind∼ H(Z
(t)
i , Z

(t)
j),

where H is a symmetric real-valued distribution function
satisfying

H(Zi, Zj) =
(1− α)Bernoulli(ρf(Zi, Zj)) Zi, Zj ∈ Z,

αρ1/2fZj
(Zi) Zi ∈ Z, Zj ∈ I,

δ0 Zi, Zj ∈ I,

where δ0 represents the Dirac delta function with mass at
zero, and X ∼ αf is shorthand for X/α ∼ f .

Definition 3 includes the scenario where the covariates do
not change over time, for all nodes, C(t)

iℓ = Ciℓ for all
t ∈ [T]. To show this, we construct latent positions which
includes the fixed covariate, Z ′

i = (Zi,Ciℓ). The dynamic
covariate model is then a deterministic function of this new
latent position, fℓ(Z ′

i) = Ciℓ. Multiple covariates can be
included this way.

2.3 THEORETICAL RESULTS

In this section, we present theoretical results that describe
the asymptotic behaviour of the dynamic embedding Ŷ(t)

given the following model assumptions:

Assumption 1 (Low-rank expectation). There exist maps
ϕ : ZT ∪ IT → Rd and ϕt : Z ∪ I → Rd for all t ∈ [T]
such that

E[(A(t)
C)ij | Zi, Zj] = ϕ(Zi)ϕt(Z

(t)
j)⊤,

where Zi = {Z(1)
i , . . . , Z

(T)
i }.

Assumption 2 (Singular values of PC). The d non-zero
singular values of the mean unfolded adjacency matrix
PC = E(AC) satisfy

σi(PC) = Θ(T 1/2ρn)

for all i ∈ [d] with high probability as n → ∞.

Assumption 3 (Finite number of covariates). p = O(1).

Assumption 4 (Network sparsity). The sparsity factor ρ
satisfies

ρ = ω(n−1 logk(n))

for some constant k.

Assumption 5 (Subexponential tails). There exists a con-
stant β > 0 such that

P
(
|fl(Z(t)

i)− E[fl(Z(t)
i)]| > x | Z(t)

i

)
≤ exp (−βx)

Assumption 1 allows us to define a canonical choice for the
maps ϕ based on the mean attributed unfolded adjacency
matrix PC = E[AC]. The low-rank assumption states that
the d-truncated SVD PC = UPΣPVP is exact and we
define canonical choice for the maps,

ϕ(Zi) = (UPΣ
1/2
P)i ∈ Rd,

ϕt(Z
(t)
i) = (V

(t)
P Σ

1/2
P)i = (Y

(t)
P)i ∈ Rd.

In particular, we will demonstrate how the AUASE output
Ŷ

(t)
A is a good approximation of the noise-free embedding

Ŷ
(t)
P = (Y

(t)
P)1:n defined by the map ϕt.

Assumption 2 is a technical condition which ensures that
the growth of the singular values of PC is regulated. As-
sumption 3 assumes a fixed number of covariates which
alongside Assumption 4 ensures that the networks are dense
enough to recover the latent positions. Versions of these
assumptions are required to analyse the multilayer random
dot product graph [Jones and Rubin-Delanchy, 2021]. These
assumptions are not limiting as for finite n (i.e., any prac-
tical application) scaling α would mitigate any imbalance
between sparsity in the graph and the covariates.

Assumption 5 prevents large attribute values, which would
otherwise ruin the structure in an embedding. It is satisfied
trivially for bounded distributions like the Bernoulli and
Beta distributions and many other common distributions like
the exponential and Gaussian distributions. An equivalent
condition is established in the weighted generalised random
dot product graph model [Gallagher et al., 2024].

Our main result shows that Ŷ(t)
A is a good approximation of

some invertible linear transformation of Ŷ(t)
P , as the size of

the largest error tends to zero as the number of nodes grows.
Let ∥·∥2→∞ denote the two-to-infinity norm [Cape et al.,
2019], the maximum row-wise Euclidean norm of a matrix.

Theorem 1 (Uniform consistency). Under Assumptions 1-5
there exists a sequence of orthogonal matrices W = Wn ∈
O(d) such that, for all t ∈ [T],

∥Ŷ(t)
A − Ŷ

(t)
P W∥2→∞ = OP

(
log1/2(n) rα(1, 1/β)

T 1/4ρ1/2n1/2

)
,

where for x, y ∈ R, we define rα(x, y) = (1−α)x+αy, and
Xn = OP(an) means that Xn/an is bounded in probability
Janson [2011].

Theorem 1 has important methodological implications sim-
ilar to the equivalent theorem in Jones and Rubin-Delanchy
[2021]. Uniform consistency in the two-to-infinity norm
implies that subsequent statistical analysis is consistent up
to rotation.

2.4 STABILITY PROPERTIES

Xue et al. [2022] argues that dynamic network embeddings
are desirable to preserve the network’s local structure and
the long-term dynamic evolution. The survey observes that
most dynamic network embeddings possess only one of
these properties, but not both. In this section, we show that
AUASE captures both local and global network structures,
which we refer to as spatial and temporal stability, respect-
ively.

We say that node/time pairs (i, s) and (j, t) are exchange-
able if they ‘behave the same’ within the dynamic network.
For the attributed dynamic latent position model (Defini-
tion 3) this is equivalent to stating, for all Z ∈ Z ∪ I,

H(Z
(s)
i , Z) = H(Z

(t)
j , Z).

It is desirable for exchangeable node/time pairs (i, s) and
(j, t) to have equal embeddings Ŷ(s)

i and Ŷ
(t)
j up to noise. If

two exchangeable nodes behave consistently at a fixed time
(i ̸= j, s = t), we say the embedding has spatial stability. If
a node behaves consistently between two exchangeable time
points (i = j, s ̸= t), we say the embedding has temporal
stability.

The following lemma shows that AUASE has both spatial
and temporal stability.

Lemma 1 (AUASE stability). Given exchangeable
node/time pairs (i, s) and (j, t), the embeddings (Ŷ

(s)
A)i

and (Ŷ
(t)
A)j are asymptotically equal,

∥(Ŷ(s)
A)i − (Ŷ

(t)
A)j∥ = OP

(
log1/2(n) rα(1, 1/β)

T 1/4ρ1/2n1/2

)
.

Spatial and temporal stability is crucial for downstream
machine-learning tasks. Training a predictive model using
embedding data is only meaningful if the embedding space

has a consistent interpretation. Sections 3.3, 3.5, and 3.6
demonstrate problems when using dynamic embedding tech-
niques that do not have spatial or temporal stability. To the
best of our knowledge, AUASE is the only existing attrib-
uted dynamic embedding which satisfies both these desir-
able stability properties.

2.5 PARAMETER SELECTION

The AUASE procedure detailed in Algorithm 1 requires two
additional input parameters; the embedding dimension d
and the attributed adjacency matrix weight α. This section
outlines approaches for selecting these parameters.

In the theory it is assumed that the embedding dimension d
is known, however in practice it will need to be estimated.
For a given α, the truncated SVD of AC is computed up to
some maximum embedding dimension and d is determined
by a singular value threshold, for example, using profile
likelihood Zhu and Ghodsi [2006] or ScreeNOT Donoho
et al. [2023].

The hyperparameter α balances the contributions of the net-
work and covariates in the AUASE procedure. The truncated
SVD gives the best low-rank approximation of AC with re-
spect to the Frobenius norm. By increasing α, the truncated
SVD is incentivised to minimise the squared error terms
corresponding to the scaled covariate matrices in AC .

For a downstream task, such as node classification, cross-
validation can be used to choose α. For unsupervised learn-
ing, one can compare embedding quality metrics [Tsitsulin
et al., 2023]. We show that practical performance is robust
to the choice of α in Section 3.7.

3 EXPERIMENTS

3.1 METHOD COMPARISON

We compare AUASE to the following baselines:

• DRLAN [Liu et al., 2020]: Efficient framework incor-
porating an offline and an online network embedding
model. Hyperparameter β weights network features
and attribute contribution.

• DySAT [Sankar et al., 2020]: Learns node embeddings
through self-attention layers and temporal dynamics.

• GloDyNE [Hou et al., 2020]: Dynamic but not attrib-
uted, and updates node embeddings for a selected sub-
set of nodes that accumulate the largest topological
changes over subsequent network snapshots.

• DyRep [Trivedi et al., 2019]: Inductive GNN-based
dynamic graph embedding method, it supports (non-
time-varying) node attributes.

• CONN [Tan et al., 2023]: Attributed but static GNN
that explicitly exploits node attributes.

To the best of our knowledge, DRLAN and DySAT are the
only unsupervised time-varying attributed dynamic embed-
dings with available source code, hence directly comparable
to AUASE. The motivations for the exclusion of other com-
parable methods are in Appendix D.2.

For the sake of completeness, we also include a dynamic
but not attributed method (GloDyNE), a dynamic embed-
ding with non-time-varying attributes (DyRep) and a static
method (CONN). However, these methods are not directly
comparable with AUASE and, therefore, are not suited for
tasks which require a stable dynamic attributed embedding
on data with time-varying attributes.

3.2 IMPLEMENTATION AND EFFICIENCY

Both AUASE and UASE can be easily implemented with
the pyemb Python package1. The code for the reproducing
experiments is available at this GitHub repository 2.

The computational times to compute the dynamic embed-
dings of four large real-data networks for each baseline are
reported in Table 2. The runtime of AUASE implemented
with the pyemb Python package is orders of magnitude faster
than competing methods, showing that AUASE is highly
efficient for large graphs.

We do not provide a comprehensive time and space com-
plexity analysis as AUASE is essentially a sparse truncated
SVD whose space and time complexity has been extensively
studied. The space complexity in the sparsest regime we
consider is O(Tn logk(n)).

The truncated SVD of AC can be computed using the Aug-
mented Implicitly Restarted Lanczos Bidiagonalization al-
gorithm [Baglama and Reichel, 2005] implemented in the
irlba package in R, or the irlbpy in Python. Although the
exact time complexity of this algorithm has not been stud-
ied theoretically, it is known that the time complexity of
more general Lanczos-type algorithms for computing the
rank truncated SVD is O(Nd) [Tomás et al., 2023], in the
sparsest regime we consider, this is O(Tn logk(n)d). The
author of the irlba package demonstrates its speed by per-
forming a simulated experiment in which they compute the
first 2 singular vectors of a sparse 10M x 10M matrix with
1M non-zero entries which takes approximately 6 seconds
on a computer with two Intel Xeon CPU E5-2650 processors
(16 physical CPU cores) running at 2 GHz equipped with
128 GB of ECC DDR3 RAM 3.

1https://pyemb.github.io/pyemb/html/
index.html

2https://github.com/emmaceccherini/AUASE
3https://bwlewis.github.io/irlba/

comparison.html

https://pyemb.github.io/pyemb/html/index.html
https://pyemb.github.io/pyemb/html/index.html
https://github.com/emmaceccherini/AUASE
https://bwlewis.github.io/irlba/comparison.html
https://bwlewis.github.io/irlba/comparison.html

3.3 SIMULATED EXAMPLE

To illustrate the properties of AUASE we simulate a se-
quence of attributed networks using a dynamic stochastic
block model with three communities with time-varying node
attributes.

We assume three possible behaviours denoted Z
(t)
i ∈

{1, 2, 3} and define the attributed dynamic latent position
model in Definition 3,

A
(t)
ij | Z(t)

i , Z
(t)
j

ind∼ Bernoulli(B
Z

(t)
i ,Z

(t)
j
),

C
(t)
iℓ | Z(t)

i
ind∼ Normal(D

Z
(t)
i ,ℓ

, I),

where the latent position indexes into the community edge
probability matrix B ∈ R3×3 and the mean attribute matrix
D ∈ R3×p,

B =

p1 p0 p0
p0 p0 p0
p0 p0 p0

 , D =

µ1

µ1

µ2

 .

Note that in this experiment it is impossible to distinguish
Z

(t)
i = 2 and Z

(t)
i = 3 using the adjacency matrices alone.

Likewise, it is impossible to distinguish between Z
(t)
i = 1

and Z
(t)
i = 2 using the covariate matrices alone. Both are

required to determine all three types of behaviour.

We construct the attributed dynamic latent position model
with n = 1000 nodes and p = 150 covariates over
T = 10 time points. Nodes are assigned with equal prob-
ability to three communities, depicted by the colours in
Figure 2a, corresponding to a trajectory of local behaviours
(Z

(1)
i , . . . , Z

(T)
i), represented by the shapes in Figure 2a.

The edge probabilities are p0 = 0.5, p1 = 0.3 and mean
attributes µ1,µ2 ∈ Rp are detailed in Appendix C.

Figure 2b demonstrates the behaviour of the three com-
munities we would like the dynamic embedding techniques
to recover, shown through the noise-free embedding of
PC = E(AC). For instance, for t ∈ {4, 5}, all three
communities have Z

(t)
i = 2 (star), so the embeddings are

the same due to spatial stability. After t = 7 community
Zi = 1 (blue) switches from latent position Z

(t)
i = 2 (star)

to Z
(t)
i = 1 (circle), so the embedding returns to its previous

position due to temporal stability.

We compute the dynamic embedding using UASE, AUASE
with α = 0.2, DRLAN and DySAT into d = 3 dimen-
sions, the known number of communities. Further details
and experiments regarding the choice of these parameters
and specific algorithm hyperparameters can be found in
Appendix C.

Figures 2c-2f show the dynamic network embedding for
these four techniques. For visualisation, we reduce the three-
dimensional embeddings to one dimension with UMAP

McInnes et al. [2020]. The solid line shows the mean embed-
ding for each community with a 90% confidence interval.

Only AUASE is able to fully recover the underlying struc-
ture of the attributed network, displaying both spatial and
temporal stability as predicted by the theory. UASE cannot
detect the differences between communities 2 and 3, as we
expected, as these only differ in their covariates, which is
not considered by the technique.

DRLAN captures the dynamic patterns from both edge and
attribute information, although it is unable to produce a
sensible embedding at time t = 0 and has wide confidence
intervals. The stability is also very sensitive to the choice
of hyperparameter (see Appendix C.3). DySAT is clearly
unstable, for instance, the switching of embeddings between
times t = 7 and t = 8. Moreover, the embeddings of com-
munities 2 and 3 appear merged for the whole time frame
as observed with UASE. This occurs because DySAT, like
most existing neural network methods, only incorporates
node attributes as input to the first layer [Dwivedi et al.,
2022].

3.4 DATASETS

As discussed in Section 2.4, stability is a desirable intrinsic
property of a dynamic embedding essential for any down-
stream analysis. To provide an objective measure of its value,
we evaluate the learned node representations on the down-
stream tasks node classification and link prediction for the
following four attributed dynamic networks. Further details
about the construction of the adjacency matrices A(t) and
covariate matrices C(t) are given in Appendix D.

• DBLP4 [Ley, 2009]: Co-authorship network consisting
of bibliography data from computer science public-
ations. Nodes represent authors with edges denoting
co-authorship. Attributes are derived from an author’s
abstracts published in each time interval. For each in-
terval an author has one of seven labels based on their
most frequent publication area.

• ACM4: Co-authorship network similar to DBLP.

• Epinions5 [Tang et al., 2013]: Trust network among
users of a social network for sharing reviews. Nodes
represent users with edges denoting a mutual trust re-
lationship between users. Attributes are derived from
users’ reviews in each time interval. For each interval,
a user has one of 22 labels based on their frequent
review category.

• ogbn-mag 6 [Wang et al., 2020]: Co-authorship net-
work from the Microsoft Academic Graph. We con-
struct 10 adjacency matrices and attributes matrices

4https://www.aminer.cn/citation
5http://www.epinions.com
6https://ogb.stanford.edu/docs/nodeprop

https://www.aminer.cn/citation
http://www.epinions.com
https://ogb.stanford.edu/docs/nodeprop

Figure 2: (a) Representation of global community (colour) and local behaviours (shape) of the synthetic attributed dynamic
network. (b)-(f) One-dimensional UMAP visualisation of different node embedding techniques. The coloured lines show
the mean embedding for each community with a 90% confidence interval. The y-axis should only be interpreted as an
illustration of community separation, rotated to best align the ground truth.

where authors are the nodes. The tasks we perform are
at author-level not paper-level (usual for ogbn-mag)
which creates much harder tasks (see Appendix D for
more details).

Dataset statistics are shown in Table 1.

Table 1: Attributed dynamic network statistics for the data-
sets showing the number of nodes n, the number of covari-
ates p, the number of time intervals T , and the number of
node labels K.

Datasets Nodes - n Attributes - p Intervals - T Labels - K
DBLP 10092 4291 9 7
ACM 34339 6489 15 2

Epinions 15851 7726 11 22
ogbn-mag 479979 128 10 349

The embedding dimension is selected using ScreeNOT [Zhu
and Ghodsi, 2006] giving d = 15, d = 29 and d = 22 for
DBLP, ACM and Epinions, respectively. The one exception
is DySAT on the ACM dataset where d = 32. For ogbn-mag
we choose d = 50 based on the scree plot. We use degree

correction for AUASE and UASE embeddings [Passino
et al., 2022].

The number of nodes in ogbn-mag is an order of mag-
nitude larger than in the other datasets, therefore only UASE,
AUASE and DRLAN are computationally feasible. More de-
tails about the computational barriers of DySAT, GloDyNE,
DyRep and CONN are given in Appendix D.

Figure 1 shows the dynamic embedding using AUASE,
DySAT and GloDyNE for the DBLP dataset for two con-
secutive time intervals. We reduce each embedding into
two-dimensions using t-SNE Van der Maaten and Hinton
[2008] jointly over all time intervals to preserve stability.
The DySAT and GloDyNE embeddings find community
structures, but they appear to have moved over time show-
ing a lack of temporal stability. Conversely, AUASE shows
both types of stability, for instance, authors in Computer
Architecture and Computer Theory staying approximately
in the same position over time.

Figure 3: Node label classification accuracies for DBLP, ACM, Epinions and ogbn-mag datasets for each time interval in the
corresponding test datasets. The dynamic embedding techniques outlined in Section 3.1 are solid lines, and different colors
represents different methods. A basic baseline predicting the most common label is dashed.

3.5 NODE CLASSIFICATION

Node classification aims to predict label categories for cur-
rent nodes using the historical node embedding data. We
train a classifier using XGBoost [Chen and Guestrin, 2016]
on the first 65% of time intervals for all the datasets and
test on the remaining data. We reserve 10% of the training
data for validation to select the weight hyperparameters via
cross-validation for AUASE, DRLAN and CONN. Other
hyperparameters are set to the default values provided by
the original authors.

Figure 3 reports the classification accuracy for each test
year, while Table 2 reports the mean accuracy over all test
data. Other metrics were considered and gave equivalent
results (see Appendix D, Tables 4, 5 and 6). Because la-
bel prediction requires predicting current embeddings, the
stability illustrated in Figure 1 allows AUASE to dramatic-
ally outperform baselines in terms of accuracy - 40% over
DyRep on DBLP, 23% over DySAT on ACM, 11% over
GloDyNE on Epinions and 12% over DRLAN on ogbn-
mag. AUASE also performs noticeably better than UASE,
suggesting that the inclusion of covariate information is im-
proving the quality of the dynamic embedding. Stability is
clearly driving this performance increase, as Figure 3 shows
that no unstable dynamic method consistently outperforms
the baseline classifier of predicting the most common class.

3.6 LINK PREDICTION

For link prediction, the goal is to predict whether two nodes
form an edge in the current network, given historical em-
beddings. Training data consists of two node embeddings
from the same time interval,(

(Ŷ
(t)
A)i, (Ŷ

(t)
A)j

)
.

These are assigned a positive label if there exists an edge
between the two nodes at time t+ 1, namely, A(t+1)

ij = 1,

otherwise, they are assigned a negative label, balanced so
the classes have the same size. We train a binary classifier
using XGBoost [Chen and Guestrin, 2016] on the first T −2
intervals for all the datasets, test on the remaining data and
repeat the sampling 10 times.

Table 2 reports the area under the receiver operating charac-
teristic curve which lies in the interval [0, 1] with higher val-
ues indicating better prediction. Stability allows using more
history in the classifier, which helps AUASE outperform
nearly all of its competitors. However, there is still strong in-
formation about edge probabilities in unstable embeddings,
allowing GloDyNE to perform marginally better for the
ACM dataset. There is less distinction between AUASE and
UASE which suggests that covariate information is not as
beneficial for this task on these data.

UASE
(no attributes)

Attributes
only

AUASE

Figure 4: AUASE is not sensitive to the attribute weight
hyperparameter α as shown by accuracy on DBLP dataset.

3.7 PARAMETER SENSITIVITY

In an unsupervised setting, there are many proposed heur-
istics for hyperparameter estimation, e.g., Tsitsulin et al.
[2023], which might result in different choices of α in
AUASE. Importantly, the information contained in the em-

Table 2: AUC for link prediction, average accuracy for node classification and time to compute the dynamic embedding for
each baseline. Errors show the 90% CI, the best performance is bold, second underlined.

Method Task DBLP ACM Epinions ogbn-mag

CONN
Link Pred. 0.741± 0.007 0.771± 0.008 0.602± 0.072 -

Node Class. 0.219 0.526 0.131 -
Time ≈1h ≈1h ≈1h -

GloDyNE
Link Pred. 0.883± 0.004 0.907± 0.005 0.729± 0.016 -

Node Class. 0.185 0.568 0.175 -
Time ≈10m ≈1h ≈1h -

DRLAN
Link Pred. 0.575± 0.018 0.641± 0.015 0.626± 0.081 0.939± 0.009

Node Class. 0.232 0.573 0.118 0.044
Time ≈1s ≈1s ≈1s ≈ 10m

DyRep
Link Pred. 0.511± 0.014 0.552± 0.010 0.548± 0.022 -

Node Class. 0.272 0.578 0.143 -
Time ≈5h ≈40h ≈48h -

DySAT
Link Pred. 0.802± 0.018 0.758± 0.023 0.596± 0.107 -

Node Class. 0.175 0.591 0.095 -
Time ≈1h ≈5h ≈3h -

UASE
Link Pred. 0.907±0.003 0.896± 0.003 0.806± 0.009 0.911± 0.002

Node Class. 0.550 0.758 0.201 0.140
Time ≈1s ≈5s ≈1s ≈30m

AUASE
Link Pred. 0.915± 0.004 0.896± 0.005 0.809± 0.009 0.954± 0.003

Node Class. 0.668 0.825 0.281 0.173
Time ≈5s ≈5s ≈5s ≈30m

bedding is not sensitive to this choice. To demonstrate this,
Figure 4 presents the prediction accuracy for node classific-
ation on AUASE embeddings of the DBLP dataset.

AUASE performs better than competing methods shown in
Figure 3a for any α ∈ [0.1, 0.9] for which attributes and
network are jointly embedded, and fine-tuning increases
accuracy by 15% compared to UASE. Since AUASE is
computationally efficient, a fast exploration of different hy-
perparameter choices is possible. An equivalent analysis
on link prediction gives similar results (see Appendix D,
Table 3).

4 CONCLUSION

By combining provable stability over time with attributed
embedding, we have shown that AUASE learns intrinsically
‘better’ dynamic attributed embeddings that solve problems
that all previous (i.e., unstable) methods cannot. This em-
pirically improves predictive performance for node classi-
fication and link prediction problems, it is expected to help
with unsupervised tasks and aids interpretability.

A limitation of our method is the choice of embedding
dimension and of the weight hyperparameter to balance the
contribution of network features and attributes. While these
are common challenges for unsupervised methods, we have
a solution for supervised tasks and demonstrated AUASE
robustness to the choice of α.

Future research includes exploring non-linear solutions to
attributed dynamic embeddings exploiting AUASE stability
properties [Davis et al., 2023]. Extending AUASE to deal
with continuous-time network data [Modell et al., 2024]
could also be valuable.

Acknowledgements

Emma Ceccherini gratefully acknowledges support by the
Centre for Doctoral Training in Computational Statist-
ics and Data Science (Compass, EPSRC Grant number
EP/S023569/1). This work was carried out using the com-
putational facilities of the Advanced Computing Research
Centre, University of Bristol - http://www.bris.ac.
uk/acrc/. Andrew Jones gratefully acknowledges sup-
port by the NeST EPSRC programme grant EP/X002195/1.

http://www.bris.ac.uk/acrc/
http://www.bris.ac.uk/acrc/

References

Nourhan Ahmed, Ahmed Rashed, and Lars Schmidt-
Thieme. Learning attentive attribute-aware node embed-
dings in dynamic environments. International Journal of
Data Science and Analytics, 17(2):189–201, 2024.

James Baglama and Lothar Reichel. Augmented impli-
citly restarted lanczos bidiagonalization methods. SIAM
Journal on Scientific Computing, 27(1):19–42, 2005.

Joshua Cape, Minh Tang, and Carey E Priebe. The two-
to-infinity norm and singular subspace geometry with
applications to high-dimensional statistics. The Annals of
Statistics, 47(5):2405–2439, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

Ed Davis, Ian Gallagher, Daniel John Lawson, and Patrick
Rubin-Delanchy. A simple and powerful framework for
stable dynamic network embedding, 2023. URL https:
//arxiv.org/abs/2311.09251.

David Donoho, Matan Gavish, and Elad Romanov. Screenot:
Exact mse-optimal singular value thresholding in correl-
ated noise. The Annals of Statistics, 51(1):122–148, 2023.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu,
Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks, 2022. URL
https://arxiv.org/abs/2003.00982.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu,
Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. Journal of Ma-
chine Learning Research, 24(43):1–48, 2023.

Ian Gallagher, Andrew Jones, and Patrick Rubin-Delanchy.
Spectral embedding for dynamic networks with stability
guarantees. Advances in Neural Information Processing
Systems, 34:10158–10170, 2021.

Ian Gallagher, Andrew Jones, Anna Bertiger, Carey E Priebe,
and Patrick Rubin-Delanchy. Spectral embedding of
weighted graphs. Journal of the American Statistical
Association, 119(547):1923–1932, 2024.

Hongchang Gao and Heng Huang. Deep attributed net-
work embedding. In Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI)), 2018.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyn-
GEM: Deep embedding method for dynamic graphs.
arXiv preprint arXiv:1805.11273, 2018.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo.
dyngraph2vec: Capturing network dynamics using dy-
namic graph representation learning. Knowledge-Based
Systems, 187:104816, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. Advances in
neural information processing systems, 30, 2017.

R. Horn and C. Johnson. Matrix Analysis (Second Edition).
Cambridge University Press, New York, NY, 2012.

Chengbin Hou, Han Zhang, Shan He, and Ke Tang. Glo-
DyNE: Global topology preserving dynamic network em-
bedding. IEEE Transactions on Knowledge and Data
Engineering, 2020. doi: 10.1109/TKDE.2020.3046511.

Svante Janson. Probability asymptotics: notes on notation.
arXiv preprint arXiv:1108.3924, 2011.

Andrew Jones and Patrick Rubin-Delanchy. The mul-
tilayer random dot product graph, 2021. URL https:
//arxiv.org/abs/2007.10455.

Bomin Kim, Kevin Lee, Lingzhou Xue, and Xiaoyue
Niu. A review of dynamic network models with latent
variables, 2018. URL https://arxiv.org/abs/
1711.10421.

Cecilia Klein, Andrea Marino, Marie-France Sagot, Paulo
Vieira Milreu, and Matteo Brilli. Structural and dynam-
ical analysis of biological networks. Briefings in func-
tional genomics, 11(6):420–433, 2012.

Nam H Lee and Carey E Priebe. A latent process model
for time series of attributed random graphs. Statistical
inference for stochastic processes, 14:231–253, 2011.

Michael Ley. DBLP: some lessons learned. Proceedings of
the VLDB Endowment, 2(2):1493–1500, 2009.

Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang,
and Huan Liu. Attributed network embedding for learn-
ing in a dynamic environment. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Man-
agement, pages 387–396, 2017.

Zhao Li, Xin Wang, Jianxin Li, and Qingpeng Zhang. Deep
attributed network representation learning of complex
coupling and interaction. Knowledge-Based Systems, 212:
106618, 2021.

Zhijun Liu, Chao Huang, Yanwei Yu, Peng Song, Baode
Fan, and Junyu Dong. Dynamic representation learning
for large-scale attributed networks. In Proceedings of the
29th ACM International Conference on Information &
Knowledge Management, pages 1005–1014, 2020.

https://arxiv.org/abs/2311.09251
https://arxiv.org/abs/2311.09251
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2007.10455
https://arxiv.org/abs/2007.10455
https://arxiv.org/abs/1711.10421
https://arxiv.org/abs/1711.10421

Zhijun Liu, Chao Huang, Yanwei Yu, and Junyu Dong.
Motif-preserving dynamic attributed network embedding.
In Proceedings of the Web Conference 2021, pages 1629–
1638, 2021.

Xie Luodi, Hui Tian, and Hong Shen. Learning dynamic
embeddings for temporal attributed networks. Knowledge-
Based Systems, 286:111308, 2024.

Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei
Yin. Streaming graph neural networks. In Proceedings
of the 43rd international ACM SIGIR conference on re-
search and development in information retrieval, pages
719–728, 2020.

Leland McInnes, John Healy, and James Melville. UMAP:
Uniform manifold approximation and projection for di-
mension reduction, 2020. URL https://arxiv.
org/abs/1802.03426.

Xian Mo, Jun Pang, and Zhiming Liu. Deep autoencoder
architecture with outliers for temporal attributed net-
work embedding. Expert Systems with Applications, 240:
122596, 2024.

Alexander Modell, Ian Gallagher, Emma Ceccherini, Nick
Whiteley, and Patrick Rubin-Delanchy. Intensity profile
projection: A framework for continuous-time representa-
tion learning for dynamic networks. Advances in Neural
Information Processing Systems, 36, 2024.

Gergely Palla, Albert-László Barabási, and Tamás Vic-
sek. Quantifying social group evolution. Nature, 446
(7136):664–667, April 2007. ISSN 1476-4687. doi:
10.1038/nature05670. URL http://dx.doi.org/
10.1038/nature05670.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma,
Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler, Tao
Schardl, and Charles Leiserson. Evolvegcn: Evolving
graph convolutional networks for dynamic graphs. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pages 5363–5370, 2020.

Francesco Sanna Passino, Nicholas A Heard, and Patrick
Rubin-Delanchy. Spectral clustering on spherical coordin-
ates under the degree-corrected stochastic blockmodel.
Technometrics, 64(3):346–357, 2022.

Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Har-
enberg, Christos Faloutsos, and Nagiza F Samatova. An-
omaly detection in dynamic networks: a survey. Wiley
Interdisciplinary Reviews: Computational Statistics, 7(3):
223–247, 2015.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Dav-
ide Eynard, Federico Monti, and Michael Bronstein.
Temporal graph networks for deep learning on dynamic
graphs. arXiv preprint arXiv:2006.10637, 2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and
Hao Yang. Dysat: Deep neural representation learning on
dynamic graphs via self-attention networks. In Proceed-
ings of the 13th international conference on web search
and data mining, pages 519–527, 2020.

Daniel K Sewell and Yuguo Chen. Latent space models for
dynamic networks. Journal of the American Statistical
Association, 110(512):1646–1657, 2015.

Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu. A general
framework for content-enhanced network representation
learning. arXiv preprint arXiv:1610.02906, 2016.

Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong
Li, and Xia Hu. Collaborative graph neural networks for
attributed network embedding. IEEE Transactions on
Knowledge and Data Engineering, 2023.

Jiliang Tang, Huiji Gao, Xia Hu, and Huan Liu. Exploiting
homophily effect for trust prediction. In Proceedings of
the sixth ACM international conference on Web search
and data mining, pages 53–62, 2013.

Shaowei Tang, Zaiqiao Meng, and Shangsong Liang. Dy-
namic co-embedding model for temporal attributed net-
works. IEEE Transactions on Neural Networks and
Learning Systems, 35(3):3488–3502, 2022.

Andrés E Tomás, Enrique S Quintana-Orti, and Hartwig
Anzt. Fast truncated svd of sparse and dense matrices on
graphics processors. The International Journal of High
Performance Computing Applications, 37(3-4):380–393,
2023.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and
Hongyuan Zha. DyRep: Learning representations over
dynamic graphs. In International conference on learning
representations, 2019.

J. A. Tropp. User-friendly tail bounds for sums of random
matrices. Foundations of Computational Mathematics,
12(4):389–434, 2012.

Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi.
Unsupervised embedding quality evaluation. In Topo-
logical, Algebraic and Geometric Learning Workshops
2023, pages 169–188. PMLR, 2023.

Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun.
Cane: Context-aware network embedding for relation
modeling. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1722–1731, 2017.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-SNE. Journal of machine learning research,
9(11), 2008.

https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1038/nature05670

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han
Wu, Yuxiao Dong, and Anshul Kanakia. Microsoft aca-
demic graph: When experts are not enough. Quantitative
Science Studies, 1(1):396–413, 2020.

Hao Wei, Guyu Hu, Wei Bai, Shiming Xia, and Zhisong Pan.
Lifelong representation learning in dynamic attributed
networks. Neurocomputing, 358:1–9, 2019.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar,
and Kannan Achan. Inductive representation learning
on temporal graphs. arXiv preprint arXiv:2002.07962,
2020a.

Zenan Xu, Zijing Ou, Qinliang Su, Jianxing Yu, Xiaojun
Quan, and Zhenkun Lin. Embedding dynamic attributed
networks by modeling the evolution processes. arXiv
preprint arXiv:2010.14047, 2020b.

Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen,
Chengshuai Zhai, and Ruochen Kong. Dynamic network
embedding survey. Neurocomputing, 472:212–223, 2022.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and
Edward Y Chang. Network representation learning with
rich text information. In IJCAI, volume 2015, pages
2111–2117, 2015.

Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the
Davis-Kahan theorem for statisticians. Biometrika, 102:
315–323, 2015.

Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthas-
arathy, Soheil Moosavinasab, Yungui Huang, Simon M
Lin, Wen Zhang, Ping Zhang, and Huan Sun. Graph em-
bedding on biomedical networks: methods, applications
and evaluations. Bioinformatics, 36(4):1241–1251, 2020.

Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Ping-
gang Yu, Jianwei Zhang, Martin Ester, and Can Wang.
Anrl: attributed network representation learning via deep
neural networks. In Ijcai, volume 18, pages 3155–3161,
2018.

Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yuet-
ing Zhuang. Dynamic network embedding by modeling
triadic closure process. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 32, 2018.

Mu Zhu and Ali Ghodsi. Automatic dimensionality selec-
tion from the scree plot via the use of profile likelihood.
Computational Statistics & Data Analysis, 51(2):918–
930, 2006.

Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu,
and Junjie Wu. Embedding temporal network via neigh-
borhood formation. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discov-
ery & data mining, pages 2857–2866, 2018.

Supplementary Material

Emma Ceccherini1 Ian Gallagher2 Andrew Jones3 Daniel Lawson1

1University of Bristol, U.K.
2The University of Melbourne, Australia

3University of Edinburgh, U.K.

A PROOF OF THEOREM 1

Note that row and column permutations of a matrix leave its singular values unchanged, while simply permuting the entries
of its left- and right-singular vectors. Thus, for ease of exposition, we may assume without loss of generality that our
matrices AC and PC take the form

AC =

(
(1− α)A αC

αC∗ 0p×Tp

)
and PC =

(
(1− α)P αD
αD∗ 0p×Tp

)
,

where C ∈ Rn×Tp and C∗ ∈ Rp×Tn are defined by

C =
(
C(1) | . . . |C(T)

)
and C∗ =

(
C(1)⊤ | . . . |C(T)⊤

)
,

and D and D∗ are the expectation matrices of C and C∗ respectively.

Proposition 1. ∥AC −PC∥ = OP

(
T 1/2ρ1/2n1/2 log1/2(n) rα(1, 1/β)

)
.

Proof. Condition on a choice of latent positions. A standard application of the triangle inequality then tells us that

∥AC −PC∥ ≤ (1− α)∥A−P∥+ αmax {∥C−D∥, ∥C∗ −D∗∥} .

By Proposition 8 of Jones and Rubin-Delanchy [2021] we know that ∥A − P∥ = OP

(
ρ1/2T 1/2n1/2 log1/2(n)

)
, so it

suffices to find a bound for the spectral norm of the centred covariate matrices.

We use the following notation:

• Let E(t)
il and Fi denote the n× Tp (respectively (n+ Tp)× (n+ Tp)) matrix with (i, (t− 1)p+ l)th (respectively

(i, i)th) entry equal to 1 and all other entries equal to 0.

• For any matrix M ∈ Rn×Tp, the symmetric dilation of M is the matrix S(M) ∈ R(n+Tp)×(n+Tp) given by

S(M) =

(
0n×n M
M⊤ 0Tp×Tp

)
.

Note that

S(E(t)
il)

k =

{
Fi + Fn+(t−1)p+l k even

S(E(t)
il) k odd

for any i ∈ [n] and l ∈ [p], and that the matrix Fi + Fn+(t−1)p+l − S(E(t)
il) is positive semi-definite, since for any

x ∈ Rn+Tp we have
x⊤[Fi + Fn+(t−1)p+l − S(E(t)

il)]x = (xi − xn+(t−1)p+l)
2 ≥ 0.

Thus in particular S(E(t)
il)

k ≼ Fi + Fn+(t−1)p+l for all k, where ≼ denotes the standard partial order on positive semi-
definite matrices.

Now, note that we can write

S(C−D) =

n∑
i=1

p∑
l=1

[
T∑

t=1

ρ1/2(fl(Z
(t)
i)− E[fl(Z(t)

i)])S(E(t)
il)

]

where each of the bracketed terms in the sum is an independent matrix.

Let

Mil =

T∑
t=1

fl(Z
(t)
i)− E[fl(Z(t)

i)])S(E(t)
il).

By Assumption 5 and comparison with the exponential distribution we see that

E[Mk
il] ≼

2k!

βk

[
T∑

t=1

S(E(t)
il)

2

]

for any k ≥ 2 (where we have used the fact that S(E(s)
il)S(E(t)

il) = 0 if s ̸= t) and thus we may apply a subexponential
version of matrix Bernstein (Theorem 6.2 in Tropp [2012]) to find that

P (λmax (S(C−D)) ≥ t) ≤ (n+ p) exp

(
−t2/2ρ

4σ2/β2 + t/βρ1/2

)
where

σ2 =

∥∥∥∥∥∥
n∑

i=1

p∑
j=1

[
T∑

t=1

S(E(t)
ij)

2

]∥∥∥∥∥∥ =

∥∥∥∥∥
n∑

i=1

p∑
l=1

[
TFi +

T∑
t=1

Fn+(t−1)p+l

]∥∥∥∥∥ .
We find that the sum over all i ∈ [n] and l ∈ [p] is a diagonal matrix whose first n entries are equal to Tp and remaining Tp
entries are equal to n, and thus σ2 = n, and so we deduce that

λmax (S(C−D)) = OP

(
1
β ρ

1/2n1/2 log1/2(n)
)
.

Since the spectral norm of any matrix is equal to the greatest eigenvalue of its symmetric dilation, we therefore conclude that

∥C−D∥ = OP

(
1
β ρ

1/2n1/2 log1/2(n)
)
.

An identical argument shows that ∥C∗ −D∗∥ = OP

(
1
βT

1/2ρ1/2n1/2 log1/2(n)
)

, from which the result follows.

Thus, taking a union bound and integrating over all possible sets of latent positions gives us our desired result.

Corollary 1. The non-zero singular values σi(AC) satisfy

σi(AC) = ΘP

(
T 1/2ρn

)
for each i ∈ [d].

Proof. A corollary of Weyl’s inequalities (Horn and Johnson [2012], Corollary 7.3.5) states that |σi(AC) − σi(PC)| ≤
∥AC −PC∥ for all i, and so in particular

σi(PC)− ∥AC −PC∥ ≤ σi(AC) ≤ σi(PC) + ∥AC −PC∥

and the result follows directly from Assumption 2 and Proposition 1.

Proposition 2. The following bounds hold:

(i) ∥UAU⊤
A −UPU

⊤
P∥, ∥VAV⊤

A −VPV
⊤
P∥ = OP

(
log1/2(n) rα(1,1/β)

ρ1/2n1/2

)
.

(ii) ∥U⊤
P(AC −PC)VP∥Frob = OP

(
log1/2(n) rα(1, ρ

1/2/β)
)

.

(iii) ∥U⊤
P(AC −PC)VA∥Frob, ∥U⊤

A(AC −PC)VP∥Frob = OP
(
T 1/2 log(n) rα(1, 1/β)

2
)
.

(iv) ∥U⊤
PUA −V⊤

PVA∥Frob = OP

(
log(n) rα(1,1/β)2

ρn

)
.

Proof.

(i) Denoting by θ1, . . . , θd the principal angles between the subspaces spanned by the columns of UP and UA, a variant
of the Davis–Kahan theorem (Yu et al. [2015], Theorem 4) states that

max
i∈[d]

| sin(θi)| ≤
2d 1/2 (2σ1(PC) + ∥AC −PC∥) ∥AC −PC∥

σd(PC)2
.

By definition, θi = cos−1(σi), where the σi are the singular values of the matrix U⊤
PUA. A standard result states that

the non-zero eigenvalues of the matrix UAU⊤
A −UPU

⊤
P are precisely the sin(θi) (each occurring twice) and thus the

result follows after applying the bounds from Assumption 2 and Proposition 1. An identical argument gives the result
for ∥VAV⊤

A −VPV
⊤
P∥.

(ii) Condition on a choice of latent positions. For any i, j ∈ [d], and for any t ∈ [T], let u and v(t) denote the ith and jth
columns of UP and V

(t)
P respectively, so that(

U⊤
P(AC −PC)VP

)
ij
= (1− α)(T1 +T2) + αT3,

where

T1 =

T∑
t=1

n∑
k=2

k−1∑
l=1

(ukv
(t)
l + ulv

(t)
k)
(
A

(t)
kl −P

(t)
kl

)
T2 =

T∑
t=1

n∑
k=1

ukv
(t)
k

(
A

(t)
kk −P

(t)
kk

)
T3 =

T∑
t=1

n∑
k=1

p∑
l=1

(
ukv

(t)
n+l + un+lv

(t)
k

)(
C

(t)
kl −D

(t)
kl

)
.

The term T2 can be seen to be OP(ρT), and so we can disregard it for the purposes of our analysis. The terms in the
remaining two sums are independent zero-mean random variables, where the terms in T1 are bounded in absolute value
by |ukv

(t)
l + ulv

(t)
k | and so we can apply Hoeffding’s inequality to find that |T1| = OP(log

1/2(n)) (noting that since u
and v have norm at most 1, the sum of the terms |ukv

(t)
l + ulv

(t)
k |2 is at most 2). Similarly, one can use the fact that the

sum of the terms |ukv
(t)
n+l + un+lv

(t)
k |2 is at most 2 and apply Assumption 5 to find that |T3| = OP(

1
β ρ

1/2 log1/2(n)),
and so deduce that ∣∣∣(U⊤

P(A
(t)
C −P

(t)
C)VP)ij

∣∣∣ = OP

(
log1/2(n) rα(1, ρ

1/2/β)
)
.

The result is then obtained by taking a union bound over all i, j and integrating over all possible choices of latent
positions.

(iii) Observe that, since V⊤
AVA = Id, we may write

U⊤
P(AC −PC)VA = U⊤

P(AC −PC)(VAV⊤
A −VPV

⊤
P)VA +U⊤

P(AC −PC)VPV
⊤
PVA.

These terms satisfy

∥U⊤
P(AC −PC)(VAV⊤

A −VPV
⊤
P)VA∥Frob = OP

(
T 1/2 log(n) rα(1, 1/β)

2
)

and
∥U⊤

P(A−P)VPV
⊤
PVA∥Frob = OP

(
log1/2(n) rα(1, ρ

1/2/β)
)

where we have applied Proposition 1, the results from parts (i) and (ii), and the fact that

∥MN∥Frob ≤ max
{
∥M∥∥N∥Frob, ∥N∥∥M∥Frob

}
for any commensurate matrices M and N. The first of these two terms dominates, from which the result follows, and
an identical argument bounds the term ∥U⊤

A(A−P)VP∥Frob.

(iv) Note that

ΣP(U
⊤
PUA −V⊤

PVA) + (U⊤
PUA −V⊤

PVA)ΣA = U⊤
P(AC −PC)VA −V⊤

P(AC −PC)
⊤UA

and for any i, j ∈ [d] the (i, j)th entry of the left-hand matrix is equal to(
σi(PC) + σj(AC)

)
(U⊤

PUA −V⊤
PVA)ij .

Thus

∣∣(U⊤
PUA −V⊤

PVA)ij
∣∣2 =

∣∣(U⊤
P(AC −PC)VA −V⊤

P(AC −PC)
⊤UA)ij

∣∣2
(σi(PC) + σj(AC))

2

≤
2
(∣∣(U⊤

P(AC −PC)VA)ij
∣∣2 + ∣∣(V⊤

P(AC −PC)
⊤UA)ij

∣∣2)
(σd(PC) + σd(AC))

2

and so

∥∥U⊤
PUA −V⊤

PVA

∥∥
Frob

≤
2max

{∥∥U⊤
P(AC −PC)VA

∥∥
Frob

,
∥∥U⊤

A(AC −PC)VP

∥∥
Frob

}
σd(PC) + σd(AC)

by summing over all i, j ∈ [d] and noting that the Frobenius norm is invariant under matrix transposition. The result
then follows by applying part (iii), Proposition 1 and Corollary 1.

Proposition 3. Let U⊤
PUA +V⊤

PVA admit the singular value decomposition

U⊤
PUA +V⊤

PVA = UΣV⊤,

and let W = UV⊤. Then

max
{
∥U⊤

PUA −W∥Frob, ∥V⊤
PVA −W∥Frob

}
= OP

(
log(n) rα(1, 1/β)

2

ρn

)
.

Proof. A standard argument shows that W satisfies

W = argmin
Q∈O(d)

∥U⊤
PUA −Q∥2Frob + ∥V⊤

PVA −Q∥Frob.

Let U⊤
PUA = U∗Σ∗V

⊤
∗ be the singular value decomposition of U⊤

PUA, and define W∗ ∈ O(d) by W∗ = U∗V
⊤
∗ . Then,

denoting by σ1, . . . , σd the singular values of U⊤
PUA and defining θi = cos−1(σi) as in Proposition 2 (i), we see that

∥U⊤
PUA −W∗∥Frob = ∥Σ∗ − Id∥Frob ≤ d 1/2 sin2(θd) ≤ d 1/2∥UAU⊤

A −UPU
⊤
P∥2

and so

∥U⊤
PUA −W∗∥Frob = OP

(
log(n) rα(1, 1/β)

2

ρn

)
.

Also,
∥V⊤

PVA −W∗∥Frob ≤ ∥V⊤
PVA −U⊤

PUA∥Frob + ∥U⊤
PUA −W∗∥Frob

and so

∥V⊤
PVA −W∗∥Frob = OP

(
log(n) rα(1, 1/β)

2

ρn

)
.

by Proposition 2, part (iv).

Since by definition

∥U⊤
PUA −W∥2Frob + ∥V⊤

PVA −W∥2Frob ≤ ∥U⊤
PUA −W∗∥2Frob + ∥V⊤

PVA −W∗∥2Frob

the result follows.

Proposition 4. The following bounds hold:

(i) ∥WΣA −ΣPW∥Frob = OP
(
T 1/2 log(n) rα(1, 1/β)

2
)
.

(ii) ∥WΣ
1/2
A −Σ

1/2
P W∥Frob = OP

(
T 1/4 log(n) rα(1,1/β)2

ρ1/2n1/2

)
.

(iii) ∥WΣ
−1/2
A −Σ

−1/2
P W∥Frob = OP

(
log(n) rα(1,1/β)2

ρn

)
.

Proof.

(i) Observe that

WΣA −ΣPW = (W −U⊤
PUA)ΣA +U⊤

P(AC −PC)VA +ΣP(V
⊤
PVA −W)

and so
∥WΣA −ΣPW∥Frob = OP

(
T 1/2 log(n) rα(1, 1/β)

2
)

by Assumption 2, Corollary 1 and Propositions 2 and 3.

(ii) Note that

(WΣ
1/2
A −Σ

1/2
P W)ij =

(WΣA −ΣPW)ij
σj(A)1/2 + σi(P)1/2

,

and so the result follows by applying part (i), Assumption 2, Corollary 1 and summing over all i, j ∈ [d].

(iii) Note that

(WΣ
−1/2
A −Σ

−1/2
P W)ij =

(
WΣ

1/2
A −Σ

1/2
P W

)
ij

σi(P)1/2 σj(A)1/2

and so the result follows as in part (ii).

Proposition 5. Let

R1,1 = UP(U
⊤
PUAΣ

1/2
A −Σ

1/2
P W)

R1,2 = (I−UPU
⊤
P)(AC −PC)(VA −VPW)Σ

−1/2
A

R1,3 = −UPU
⊤
P(AC −PC)VPWΣ

−1/2
A

R1,4 = (AC −PC)VP(WΣ
−1/2
A −Σ

−1/2
P W)

and

R2,1 = VP(V
⊤
PVAΣ

1/2
A −Σ

1/2
P W)

R2,2 = (I−VPV
⊤
P)(AC −PC)(UA −UPW)Σ

−1/2
A

R2,3 = −VPV
⊤
P(AC −PC)

⊤UPWΣ
−1/2
A

R2,4 = (AC −PC)
⊤UP(WΣ

−1/2
A −Σ

−1/2
P W)

and let R̂1,i and R̂2,i denote the restrictions to the first n and Tn rows of R1,i and R2,i respectively. Then the following
bounds hold:

(i) ∥R̂1,1∥2→∞ = OP

(
T 1/4 log(n) rα(1,1/β)2

ρ1/2n

)
and ∥R̂2,1∥2→∞ = OP

(
log(n) rα(1,1/β)2

T 1/4ρ1/2n

)
.

(ii) ∥R̂1,2∥2→∞ = OP

(
T 1/4 log(n) rα(1,1/β)2

ρ1/2n3/4

)
and ∥R̂2,2∥2→∞ = OP

(
log(n) rα(1,1/β)2

T 1/4ρ1/2n3/4

)
.

(iii) ∥R̂1,3∥2→∞ = OP

(
log1/2(n) rα(1,1/β)

T 1/4ρ1/2n

)
and ∥R̂2,3∥2→∞ = OP

(
log1/2(n) rα(1,1/β)

T 3/4ρ1/2n

)
.

(iv) ∥R̂1,4∥2→∞, ∥R̂2,4∥2→∞ = OP

(
log3/2(n) rα(1,1/β)3

ρn

)
.

Proof. We give full proofs of the bounds only for the terms R̂1,i, noting that any differences in the proofs for the terms R̂2,i

can be derived. Observe that for all i, j we have ∥R̂i,j∥2→∞ ≤ ∥Ri,j∥2→∞.

(i) Note that UP = PCV
⊤
PΣ

−1
P and so using the relation ∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥ and the fact that the spectral

norm is invariant under orthonormal transformations we find that ∥UP∥2→∞ ≤ ∥PC∥2→∞∥Σ−1
P ∥ = O(n−1/2) by

Assumption 2 and the fact that the Euclidean norm of any row of PC is O(T 1/2ρn1/2). Noting that

∥R̂1,1∥2→∞ ≤ ∥UP∥2→∞∥U⊤
PUAΣ

1/2
A −Σ

1/2
P W∥

≤ ∥UP∥2→∞

(
∥(U⊤

PUA −W)Σ
1/2
A ∥Frob + ∥WΣ

1/2
A −Σ

1/2
P W∥Frob

)
the result follows by applying Proposition 3 and 4 and Corollary 1.
For R̂2,1, we note that the Euclidean norm of any column of PC is O(ρn1/2), and so ∥VP∥2→∞ = O((Tn)−1/2),
and the rest of the proof follows in the same manner as before.

(ii) We begin by splitting the term R1,2 = M1 +M2 +M3, where

M1 = UPU
⊤
P(AC −PC)(VA −VPW)Σ

−1/2
A

M2 = (AC −PC)VP(V
⊤
PVA −W)Σ

−1/2
A

M3 = (AC −PC)(I−VPV
⊤
P)VAΣ

−1/2
A

Now,
∥M̂1∥2→∞ ≤ ∥UP∥2→∞∥AC −PC∥∥VA −VPW∥∥Σ−1/2

A ∥

where

∥VA −VPW∥ ≤ ∥VA −VPV
⊤
PVA∥+ ∥VP(V

⊤
PVA −W)∥

= ∥VAV⊤
A −VPV

⊤
P∥+ ∥V⊤

PVA −W∥

= OP

(
log1/2(n) rα(1, 1/β)

ρ1/2n1/2

)

by Propositions 2 and 3 and our assumptions regarding the asymptotic growth of ρ, and so

∥M̂1∥2→∞ = OP

(
T 1/4 log(n) rα(1, 1/β)

2

ρ1/2n

)
by combining this with Proposition 1 and Corollary 1.
Next, note that

∥M̂2∥2→∞ ≤ ∥(AC −PC)VP∥2→∞∥V⊤
PVA −W∥∥Σ−1/2

A ∥.

To bound the term ∥(AC −PC)VP∥2→∞, one can use an identical argument to that of Proposition 2(ii) to find that
the absolute value of each term in the matrix is OP(log

1/2(n) rα(1, ρ
1/2/β)), and since each row has d elements, the

bound also holds for the 2-to-infinity norm. By applying Proposition 3 and Corollary 1 we then find that

∥M̂2∥2→∞ = OP

(
log3/2(n) rα(1, 1/β)

3

T 1/4ρ3/2n3/2

)
.

To bound ∥M̂3∥2→∞, let M̂ = (ÂC − P̂C)(I−VPV
⊤
P)VAV⊤

A, so that M̂3 = M̂VAΣ
−1/2
A and thus

∥M̂3∥2→∞ ≤ ∥M̂∥2→∞∥VAΣ
−1/2
A ∥.

The term ∥VAΣ
−1/2
A ∥ is OP

(
1

T 1/4ρ1/2n1/2

)
by Corollary 1, so it remains to bound ∥M̂∥2→∞.

To do so, we claim that the Frobenius norm of the rows of M̂ are exchangeable and thus have the same expected value,
which in turn implies that E[∥M̂∥2Frob] = nE[∥M̂i∥2] for any i ∈ [n]. Applying Markov’s inequality, we therefore see
that

P(∥M̂i∥ > r) ≤ E[∥M̂i∥2]
r2

=
E[∥M̂∥2Frob]

nr2
.

Now,
∥M̂∥Frob ≤ ∥M∥Frob = OP

(
T 1/2 log(n) rα(1, 1/β)

2
)

by Propositions 1 and 2 (where we note that (I−VPV
⊤
P)VAV⊤

A = (VAV⊤
A −VPV

⊤
P)VAV⊤

A to apply the latter)
and so it follows that

∥M̂∥2→∞ = OP

(
T 1/2 log(n) rα(1, 1/β)

2

n1/4

)
and

∥M̂3∥2→∞ = OP

(
T 1/4 log(n) rα(1, 1/β)

2

ρ1/2n3/4

)
.

To see that our claim is true, let Q ∈ O(n) be a permutation matrix, and let

Q∗ = diag(Q, . . . ,Q︸ ︷︷ ︸
T

, ITp) ∈ O(T (n+ p)).

Since the latent positions Zi are assumed to be iid, the matrix entries of the pairs (AC ,PC) and (QACQ
⊤
∗ ,QPCQ

⊤
∗)

have the same joint distribution, as these transformations simply correspond to a relabelling of the nodes, while the left-
and right-singular vectors of QACQ

⊤
∗ (respectively QPCQ

⊤
∗) are given by QUA and Q∗VA (respectively QUP

and Q∗VP).
Thus, since

QM̂Q⊤
∗ = Q(ÂC − P̂C)Q

⊤
∗ (I−Q∗VPV

⊤
PQ

⊤
∗)Q∗VAV⊤

AQ⊤
∗

we deduce that the matrix entries of M̂ and QM̂Q⊤
∗ have the same joint distribution, proving our claim.

Combining these results, we see that

∥R̂1,2∥2→∞ = OP

(
T 1/4 log(n) rα(1, 1/β)

2

ρ1/2n3/4

)
as required.
The proof for R̂2,2 follows similarly, but involves splitting the matrix M̂′ = (ÂC − P̂C)

⊤(I−UPU
⊤
P)UAU⊤

A into
T distinct blocks and applying the same argument to show that the rows of each individual block are exchangeable.
Note that in this case we divide through by a factor of T 1/2, as the spectral norm of each individual block is
OP(n

1/2 log1/2(n) rα(1, 1/β)), and consequently find that

∥R̂2,2∥2→∞ = OP

(
log(n) rα(1, 1/β)

2

T 1/4ρ1/2n3/4

)
.

(iii) We see that

∥R̂1,3∥2→∞ ≤ ∥UP∥2→∞∥U⊤
P(AC −PC)VP∥Frob∥WΣ

−1/2
A ∥

= OP

(
log1/2(n) rα(1, 1/β)

T 1/4ρ1/2n

)

by Proposition 2 and Corollary 1. The proof for R̂2,3 follows identically, noting the additional factor of T 1/2 in the
denominator from ∥VP∥2→∞.

(iv) We see that

∥R1,4∥2→∞ ≤ ∥(AC −PC)VP∥2→∞∥WΣ
−1/2
A −Σ

−1/2
P W∥Frob

= OP

(
log3/2(n) rα(1, 1/β)

3

ρn

)

by applying Proposition 4 and bounding the term ∥(AC −PC)VP∥2→∞ as in part (ii).

Theorem 1

Proof. We first consider the left embedding X̂A. Observe that

X̂A − X̂PW = (ÂC − P̂C)VPΣ
−1/2
P W +

4∑
i=1

R̂1,i

and so

∥X̂A − X̂PW∥2→∞ ≤ σd(P)−1/2∥(ÂC − P̂C)VP∥2→∞ +

4∑
i=1

∥R̂1,i∥2→∞.

As shown in the proof of Proposition 5, ∥(ÂC − P̂C)VP∥2→∞ = OP(log
1/2(n) rα(1, 1/β)), and consequently we see that

∥X̂A − X̂PW∥2→∞ = OP

(
log1/2(n) rα(1, 1/β)

T 1/4ρ1/2n1/2

)
+

4∑
i=1

∥R̂1,i∥2→∞

= OP

(
log1/2(n) rα(1, 1/β)

T 1/4ρ1/2n1/2

)

by using the bounds on ∥R̂1,i∥2→∞ from Proposition 5.

Similarly, for the embeddings Ŷ(t)
A we find that

Ŷ
(t)
A − Ŷ

(t)
P W = (Â

(t)
C − P̂

(t)
C)⊤UPΣ

−1/2
P W +

4∑
i=1

R̂2,i

and so

∥Ŷ(t)
A − Ŷ

(t)
P W∥2→∞ ≤ σd(P)−1/2∥(Â(t)

C − P̂
(t)
C)⊤UP∥2→∞ +

4∑
i=1

∥R̂1,i∥2→∞,

and an identical argument yields the same bound.

B PROOF OF LEMMA 1

Proof. For node/time pairs (i, s) and (j, t) to be exchangeable in the attributed dynamic latent position model (Definition 3),
for all Z ∈ Z ∪ I,

H(Z
(s)
i ,Z) = H(Z

(t)
j ,Z).

This implies that the corresponding rows of the mean attributed unfolded adjacency matrix are equal, (P(s)
C)i = (P

(t)
C)j .

Since XP(Y
(t)
P)⊤ = P

(t)
C is a symmetric matrix for all t ∈ [T],

Y
(t)
P = P(t)XP(X

⊤
PXP)

−1,

which implies that the corresponding rows of the noise-free dynamic embedding are equal, (Y(s)
P)i = (Y

(t)
P)j .

By Theorem 1,

∥Ŷ(s)
i − (Y

(s)
P)iW∥, ∥Ŷ(t)

j − (Y
(t)
P)jW∥ = OP

(
log1/2(n) rα(1, log

γ(n))

T 1/4ρ1/2n1/2

)
,

which, by the triangle inequality and the equality of the noise-free embeddings, shows that

∥Ŷ(s)
i − Ŷ

(t)
j ∥ = OP

(
log1/2(n) rα(1, log

γ(n))

T 1/4ρ1/2n1/2

)
.

C DETAILS OF THE SIMULATED EXAMPLE OF SECTION 3.3

C.1 EXPERIMENTAL SETUP DETAILS

We define the attributed dynamic latent position model in Definition 3,

A
(t)
ij | Z(t)

i , Z
(t)
j

ind∼ Bernoulli(B
Z

(t)
i ,Z

(t)
j
),

C
(t)
iℓ | Z(t)

i
ind∼ Normal(D

Z
(t)
i ,ℓ

, σ2I),

with community edge probability matrix B ∈ R3×3 and mean attribute matrix D ∈ R3×p,

B =

p1 p0 p0
p0 p0 p0
p0 p0 p0

 , D =

µ1

µ1

µ2

 ,

where p0 = 0.5, p1 = 0.3, µ1 = [0, . . . 0︸ ︷︷ ︸
0-19

, 1, . . . 1︸ ︷︷ ︸
20-74

, 0, . . . 0︸ ︷︷ ︸
75-149

] and µ2 = [0, . . . 0︸ ︷︷ ︸
0-79

, 1, . . . 1︸ ︷︷ ︸
80-139

, 0, . . . 0︸ ︷︷ ︸
140-149

].

C.2 HYPERPARAMETER SELECTION

We set the embedding dimension d = 3 for all the methods, the known number of communities. Experiments with other
embedding dimension are given in https://anonymous.4open.science/r/AUASE-80E4/README.md. The
selection of hyperparameters for each method shown in Figure 2 is outlined below:

• UASE - no other parameters.

• AUASE - visually chosen parameters (see Figure 5): α = 0.2.

• DRLAN - visually chosen parameters (see https://anonymous.4open.science/r/AUASE-80E4/
README.md): β = 0.7, p = 2, q = 1, α = [1, 0.1, 0.001, 0.0001], θ = [1, 1, 0.1, 0.001, 0.0001].

• DySAT - default parameters.

C.3 ADDITIONAL FIGURES

https://anonymous.4open.science/r/AUASE-80E4/README.md
https://anonymous.4open.science/r/AUASE-80E4/README.md
https://anonymous.4open.science/r/AUASE-80E4/README.md

Figure 5: One-dimensional UMAP visualisation of the AUASE node embeddings for varying α ∈ [0.1, 0.9]. The coloured
lines show the mean embedding for each community with a 90% confidence interval.

D DETAILS OF THE REAL DATA ANALYSIS OF SECTION 3.4

D.1 EXPERIMENTAL SETUP DETAILS

DBLP. The raw data can be downloaded from https://www.aminer.cn/citation as DBLP-Citation-network V3.
We consider papers published from 1996 to 2009. We group years 1996 - 2000 and 2001 - 2002, while we consider the
remaining years as a single time point so that in each time point we have a similar order of magnitude of papers. We only
consider authors who published at least three papers between 1996 and 2009.

To construct the adjacency matrices, we form an edge if two authors collaborated on at least one paper within that time point.
For the attributes, we consider words from titles and abstracts of the papers published by an author within a certain time
point. We remove stop words, words that have less than three characters, and any symbol that is not an English word. Then,
we remove words that have an overall count of less than 100 and the ones that have an overall count of more than 5000.

We label each paper from the venue where it is published as follows:

• Computer Architecture: PPOPP, PPOPP/PPEALS, ASP-DAC, EURO-DAC, DAC, MICRO, PODC, DIALM-PODC.

• Computer Network: SIGCOMM, MOBICOM, MOBICOM-CoRoNet, INFOCOM, SenSys.

• Data Mining: SIGMOD Conference, SIGMOD Workshop, Vol. 1, SIGMOD Workshop, Vol. 2, SIGSMALL/SIGMOD
Symposium, SIGMOD Record, ICDE, ICDE Workshops, SIGIR, SIGIR Forum.

• Computer Theory: STOC, SODA, CAV, FOCS.

• Multi-Media: SIGGRAPH, IEEE Visualization, ICASSP.

• Artificial Intelligence: IJCAI, IJCAI (1), IJCAI (2), ACL2, ACL, NIPS.

• Computer-Human Interaction: IUI, PerCom, HCI.

Then, each author is assigned a label at each time point based on the majority label of their papers published within that time
point.

ACM. The raw data can be downloaded from https://www.aminer.cn/citation as ACM-Citation-network V8.
We consider the years from 2000 to 2014; each year is a time point. The network and the attributes are constructed in the
same manner as for DBLP. The labels are constructed as follows:

• Data Science: VLDB, SIGMOD, PODS, ICDE, EDBT, SIGKDD, ICDM, DASFAA, SSDBM, CIKM, PAKDD, PKDD,
SDM, DEXA.

• Computer Vision: CVPR, ICCV, ICIP, ICPR, ECCV, ICME, ACM-MM.

Epinions. The raw data can be downloaded from https://www.cse.msu.edu/~tangjili/datasetcode/
truststudy.htm. We consider the years from 2001 to 2011, and we consider users who establish at least two trust
relationships in this time frame. Each year is a time point, and an edge is formed if the users trusted each other within that
year.

The attributes are the words of the titles of the reviews published by each author within that year. We remove stop words,
words with less than three characters, and words with an overall count of less than 100 or more than 10000.

To construct the labels, we consider the most frequent category of the reviews published by an author in a given year. We
merge some sparse categories with similar, more popular ones; the resulting labels are Books, Business & Technology,
Cars & Motorsports, Computers & Internet, Education, Electronics, Games, Home and Garden, Hotels & Travel, Kids &
Family, Magazines & Newspapers, Movies, Music, Musical Instruments, Online Stores & Services, Personal Finance, Pets,
Restaurants & Gourmet, Software, Sports & Outdoors, Wellness & Beauty.

ogbn-mag. The raw data can be downloaded from https://ogb.stanford.edu/docs/nodeprop/. The data
spans years from 2010 to 2019, each year is a time point. We consider authors which published at least ten paper in the
whole time frame.

To construct the adjacency matrices, we form an edge if two authors collaborated on at least one paper within that time
point. Each paper is associated with a 128-dimensional word2vec feature vector, to construct the attributes matrices for
each author we average the feature vectors of the papers they published in that time point. An author label is set to the label
associated with the majority of the papers they published in that time point.

https://www.aminer.cn/citation
https://www.aminer.cn/citation
https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
https://www.cse.msu.edu/~tangjili/datasetcode/truststudy.htm
https://ogb.stanford.edu/docs/nodeprop/

We use ogbn-mag data to construct a datasets which is suited to our dynamic tasks. The data format and the tasks are at
author-level, different than the usual task performed on obgn-mag (‘the task is to predict the venue of each paper, given
its content, references, authors, and authors’ affiliations’). That is because we are interested in dynamic tasks; authors are
dynamic nodes, unlike papers, and their attributes and labels change over time. This creates a much harder task, hence our
performance cannot be directly compared to other performances on obgn-mag to predict papers labels.

CONN, Glodyne, DySAT and DyRep are not computationally efficient enough to compute the embeddings of ogbn-mag.
We report here the computational barriers for each methods.

• CONN: the authors’ code is designed with dense matrices, which would require about 2T of memory for ogbn-mag
matrices.

• Glodyne: we capped computational time after 48h.

• Dyrep: it requires an unreasonably large amount of memory. The largest dataset the authors’ analyses has only ≈ 10000
nodes.

For all the data sets, the nodes that are not active within a certain time point are considered Unlabelled. These nodes are not
used for training or testing.

D.2 METHOD COMPARISON

The following list shows unsupervised dynamic attributes methods we did not include in our method comparison and the
reason why.

• [Li et al., 2017] - source code not available.

• [Xu et al., 2020b] - source code not available.

• [Luodi et al., 2024] - source code not available.

• [Liu et al., 2021] - the code to construct the motif matrices is unavailable, and there is no clear documentation on how
to construct them for new datasets.

• [Tang et al., 2022] - the source code is undocumented and raises memory errors on the datasets considered in this paper.

• [Mo et al., 2024] - source code not available.

• [Wei et al., 2019] - source code not available.

• [Xu et al., 2020a] - First, the code does not allow for time-varying covariates. Second, it is extremely time-consuming
for data sets with large p; for example, one epoch on one batch for DBLP takes more than 10 min, meaning the whole
computation would be more than 1000 hours. The authors presented examples with a maximum p = 200, while for the
data sets considered in the paper, p is at least 4000.

• [Ahmed et al., 2024] - source code not available.

D.3 HYPERPARAMETER SELECTION

We choose the embedding dimension using ScreeNOT giving d = 12, d = 29 and d = 22 for DBLP, ACM and Epinions,
respectively (for DySAT, we set d = 32 for ACM). We use cross-validation to select α for AUASE, β for DRLAN and α for
CONN.

• UASE - no other parameters.

• AUASE - no other parameters.

• DRLAN - we set all the parameters to the default set by the authors for node classification: p = 2, q = 2, α =
[1, 1, 0.1, 0.1, 1], θ = [1, 10, 100].

• DySAT - we set all the parameters to the default set by the authors: epochs=200, valfreq=1, testfreq=1, batchsize=512,
maxgradientnorm=1.0, useresidual=’False’,negsamplesize=10, walklen=20, negweight=1.0, learningrate=0.001, spa-
tialdrop=0.1, temporaldrop=0.5, weightdecay=0.0005, positionffn=’True’, window=-1.

• CONN - we set all the parameters to the default set by the authors: nlayer=2, epochs=200, activate="relu", batchs-
ize=1024, lr=0.01, weightdecay=0.0, hid1=512, hid2=64, losstype=entropy, patience=50, dropout=0.6, drop=1. Note
that we implemented CONN in the unsupervised version - main_lp.py.

• GloDyNE - we set all the parameters to the default set by the authors: limit=0.1, numwalks=10, walklength=80,
window=10, negative=5, workers=32, scheme=4.

• DyRep - we set epochs to 20, batch size to 20, and we assume all of the links in Jodie as communication; we set all the
other parameters to the default set by the authors. We implemented Dyrep without node features as it only supports
non-time-varying attributes, and all three datasets we consider have time-varying attributes.

Note that for DySAT, we set d = 32 for ACM instead of d = 29. DySAT set the embedding dimension struc-
tural_layer_config = d as function of the hyperparameter structural_head_config = d1, d2, d3 such that d1 × d2 = d. For
DBLP we set structural_head_config = 4, 3, 2 giving d = 12, for Epinions we set structural_head_config = 11, 2, 2 giving
d = 22. However, the only option giving d = 29 is d1 = 29, d2 = 1. structural_head_config represent the dimensions
of the layers, and two subsequent layers with such a wide gap would give DySAT an unfair disadvantage. Hence we set
structural_head_config = 8,4,4 and structural_layer_config = 32 for ACM. Table 7 shows that our results are robust to the
choice of embedding dimension.

D.4 ADDITIONAL TABLES

Table 3: AUC of link prediction on AUASE embeddings for varying α. For α = 1 the method is using only the attributes
and not the network, contrarily to AUASE for α ∈ (0, 1).

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AUC 0.915 0.912 0.907 0.898 0.892 0.883 0.887 0.881 0.866 0.546

Method Metrics 2010 2011 2012 2013 2014

CONN
F1 0.529 0.541 0.537 0.528 0.37

F1 micro 0.535 0.569 0.553 0.542 0.431
F1 macro 0.490 0.496 0.488 0.515 0.394

GloDyNE
F1 0.703 0.712 0.717 0.731 0.664

F1 micro 0.584 0.589 0.622 0.559 0.486
F1 macro 0.509 0.515 0.535 0.481 0.441

DRLAN
F1 0.483 0.495 0.527 0.479 0.39

F1 micro 0.627 0.599 0.619 0.556 0.466
F1 macro 0.385 0.417 0.450 0.424 0.403

DySAT
F1 0.662 0.557 0.583 0.397 NA

F1 micro 0.680 0.551 0.578 0.556 NA
F1 macro 0.626 0.548 0.558 0.357 NA

UASE
F1 0.755 0.728 0.753 0.804 0.68

F1 micro 0.772 0.746 0.771 0.81 0.688
F1 macro 0.727 0.702 0.722 0.798 0.685

AUASE
F1 0.809 0.797 0.790 0.859 0.878

F1 micro 0.806 0.794 0.787 0.858 0.877
F1 macro 0.799 0.790 0.779 0.858 0.875

Table 4: Micro, macro and weighted F1 of node classification on ACM.

Method Metrics 2007 2008 2009 2010 2011

CONN
F1 0.062 0.081 0.070 0.067 0.067

F1 micro 0.114 0.133 0.137 0.129 0.131
F1 macro 0.030 0.038 0.034 0.032 0.032

GloDyNE
F1 0.194 0.176 0.141 0.140 0.154

F1 micro 0.211 0.189 0.156 0.155 0.165
F1 macro 0.113 0.103 0.087 0.086 0.096

DRLAN
F1 0.092 0.076 0.106 0.067 0.083

F1 micro 0.119 0.086 0.135 0.098 0.111
F1 macro 0.049 0.039 0.052 0.032 0.044

DyRep
F1 0.118 0.107 0.105 0.095 0.101

F1 micro 0.15 0.146 0.142 0.132 0.147
F1 macro 0.074 0.065 0.065 0.054 0.057

DySAT
F1 0.062 0.039 0.036 0.011 NA

F1 micro 0.069 0.095 0.075 0.042 NA
F1 macro 0.035 0.019 0.021 0.009 NA

UASE
F1 0.224 0.204 0.203 0.196 0.178

F1 micro 0.224 0.204 0.203 0.196 0.178
F1 macro 0.112 0.085 0.090 0.101 0.076

AUASE
F1 0.318 0.304 0.279 0.266 0.263

F1 micro 0.332 0.319 0.294 0.279 0.277
F1 macro 0.197 0.176 0.167 0.163 0.154

Table 5: Micro, macro and weighted F1 of node classification on Epinions.

Method Metrics 2007 2008 2009

CONN
F1 0.242 0.189 0.141

F1 micro 0.259 0.219 0.181
F1 macro 0.137 0.127 0.110

GloDyNE
F1 0.138 0.252 0.077

F1 micro 0.178 0.270 0.106
F1 macro 0.117 0.125 0.064

DyRep
F1 0.193 0.319 0.110

F1 micro 0.258 0.367 0.190
F1 macro 0.192 0.194 0.091

DRLAN
F1 0.135 0.241 0.150

F1 micro 0.193 0.288 0.214
F1 macro 0.115 0.163 0.148

DyRep
F1 0.193 0.319 0.110

F1 micro 0.258 0.367 0.190
F1 macro 0.192 0.194 0.091

DySAT
F1 0.029 0.267 NA

F1 micro 0.051 0.299 NA
F1 macro 0.055 0.133 NA

UASE
F1 0.433 0.707 0.376

F1 micro 0.488 0.717 0.446
F1 macro 0.460 0.525 0.424

AUASE
F1 0.584 0.757 0.564

F1 micro 0.590 0.768 0.584
F1 macro 0.545 0.554 0.543

Table 6: Micro, macro and weighted F1 of node classification on DBLP.

Method DBLP ACM Epinions
d = 32 d = 64 d = 128 d = 32 d = 64 d = 128 d = 32 d = 64 d = 128

CONN 0.532 0.589 0.597 0.766 0.779 0.782 0.165 0.176 0.183
GloDyNE 0.383 0.386 0.394 0.657 0.661 0.662 0.285 0.288 0.269
DRLAN 0.657 0.692 0.723 0.785 0.801 0.830 0.242 0.258 0.277
DyRep 0.274 - - - - - - - -
DySAT 0.752 0.780 0.812 - - - - - -
UASE 0.763 0.774 0.781 0.844 0.849 0.852 0.229 0.228 0.234

AUASE 0.853 0.864 0.872 0.927 0.936 0.940 0.306 0.335 0.349

Table 7: Accuracies of node classification on DBLP, ACM and Epinions for d = 32, d = 64, and d = 128. For DySAT and
DyRep, we only report partial results due to the intensive computational times

	Introduction
	Theory & Methods
	Attributed Unfolded Adjacency Spectral Embedding
	Attributed Dynamic Network Model
	Theoretical Results
	Stability Properties
	Parameter Selection

	Experiments
	Method Comparison
	Implementation and Efficiency
	Simulated Example
	Datasets
	Node Classification
	Link Prediction
	Parameter Sensitivity

	Conclusion
	Proof of Theorem 1
	Proof of Lemma 1
	Details of the simulated example of Section 3.3
	Experimental setup details
	Hyperparameter selection
	Additional figures

	Details of the real data analysis of Section 3.4
	Experimental setup details
	Method comparison
	Hyperparameter selection
	Additional tables

