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ABSTRACT

Real-world time series data are inherently multivariate, often exhibiting complex
inter-channel dependencies. Each channel is typically sampled at its own period
and is prone to missing values due to various practical and operational constraints.
These characteristics pose three fundamental challenges involving channel depen-
dency, sampling asynchrony, and missingness, all of which must be addressed si-
multaneously to enable robust and reliable forecasting in practical settings. How-
ever, existing architectures typically address only parts of these challenges in iso-
lation and still rely on simplifying assumptions, leaving unresolved the combined
challenges of asynchronous channel sampling, test-time missing blocks, and intri-
cate inter-channel dependencies. To bridge this gap, we propose ChannelToken-
Former, a Transformer-based forecasting framework with a flexible architecture
designed to explicitly capture cross-channel interactions, accommodate channel-
wise asynchronous sampling, and effectively handle missing values. Extensive
experiments on public benchmark datasets reflecting practical settings, along with
one private real-world industrial dataset, demonstrate the superior robustness and
accuracy of ChannelTokenFormer under challenging real-world conditions.

1 INTRODUCTION

Accurate time series forecasting is critical in domains such as industrial monitoring (Jean-Pierre
et al., 2024} |Zhao et al., [2024b), energy systems (Yao et al., [2025; Nascimento et al., 2023; [Hu,
2024), and healthcare (He & Chiang| [2025; Tang et al., [2024), where predictive insights directly
influence operational safety, resource efficiency, and long-term outcomes. Yet, real-world time series
present several challenges that are often oversimplified by current modeling approaches.

One key challenge lies in the complex interdependencies among channels. Signals from differ-
ent sensors or subsystems are rarely independent; their interactions often encode latent correlative
dynamics crucial for accurate forecasting. Some studies have directly adopted channel-dependent
architectures (Zhang & Yan, 2023} Wang et al., 2024c; |Liu et al.,[2024c), exploring inter-channel de-
pendencies under specific structural assumptions. As an alternative, many models employ a channel-
independent design (Nie et al.| 2023; Wang et al.| 2024b)), which has shown competitive robustness
to distributional drift (Han et al) [2024b). Nevertheless, carefully designed channel-dependent ap-
proaches (Chen et al., 2024a; Lee et al., 2024) can still exploit interdependencies to provide richer
predictive signals and deliver performance gains beyond channel-independent baselines.

Another difficulty arises from the heterogeneity of data sources (Reiss et al.| 2019 |Filho et al.,
2024} \Dong et al.| 2025} |Ying et al.l [2025; |Agency, [2025). Time series signals commonly origi-
nate from diverse sensors, such as those tracking temperature, pressure, actuator positions, or bi-
ological signals. Due to differing physical properties and application contexts, these signals are
frequently sampled at varying temporal resolutions, often leading to channel-wise (multi-source)
asynchronous sampling in practice. Nonetheless, most existing approaches (Wang et al., [2024c}
Chen et al.,|2025)) assume idealized input conditions: fully observed sequences sampled at identical
intervals and aligned timestamps across channels. Such assumptions ignore variations in sampling
periods and sequence lengths, complicating both model design and data preprocessing in real-world
settings. Beyond channel-independent strategies, the challenge of channel-wise asynchronous sam-
pling remains underexplored.
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Figure 1: Our proposed practical conditions highlight the simultaneous presence of channel-wise
asynchronous sampling, block-wise missingness at test time, and inter-channel dependencies. Inter-
polation over coarsely sampled regions leads to signal distortion. See Appendix @for more details.

As with interdependencies and sampling variability, missing data represents another key challenge
in time series modeling. Real-world signals often contain long contiguous intervals of missing
observations, often arising from maintenance issues, sensor malfunctions, or communication fail-
ures (You et al., 2025} Nejad et al.,2024)). In such cases, naive interpolation, which is commonly ap-
plied during preprocessing, can be unreliable or misleading, particularly for dynamic signals. More
robust approaches can instead benefit from leveraging cross-channel correlations to infer missing
dynamics, rather than relying solely on extrapolation from partially observed inputs.

These three core challenges highlight the need for forecasting models that remain robust under real-
istic conditions, as illustrated in Figure[I] In particular, models should be capable of: (i) leveraging
cross-channel dependencies to capture complex interactions and maintain structural consistency;
(i1) handling asynchronous, variable-length inputs across channels without strict alignment or re-
sampling; and (iii) addressing block-wise missing intervals during test-time inference by directly
exploiting information from other channels, rather than relying on imputation methods.

While these requirements are clear, prior approaches have only provided partial solutions. Channel-
dependent models capture inter-channel dependencies but overlook asynchrony and missingness;
channel-independent strategies handle misalignment but lose cross-channel structure; and special-
ized approaches for missing values do not account for asynchrony, while irregular time series meth-
ods focus on within-channel non-uniformity under sparse settings rather than cross-channel hetero-
geneity in sampling.

To overcome these limitations, we propose ChannelTokenFormer, a unified Transformer-based fore-
casting framework designed to tackle all three challenges in a unified and simultaneous manner:
channel-wise asynchronous sampling, test-time missing blocks, and cross-channel dependencies.
The key is to revisit channel tokens under realistic multivariate conditions, viewing them as compact
representations that aggregate local temporal information within each channel while also captur-
ing cross-channel dependencies. Although this idea resembles the channel-level summary tokens
in iTransformer (Liu et al., |2024c) and TimeXer (Wang et al.| 2024e), our framework distinguishes
itself by introducing a mask-guided attention strategy that enables a unified treatment of intra- and
cross-channel interactions. In this way, the tokens serve as global attention anchors. Predictions are
made from compressed channel-wise representations that account for heterogeneous sampling peri-
ods and masked tokens from missing blocks, regardless of the number of local tokens. This design
preserves natural channel resolutions, remains robust to partially observed inputs, and adaptively
captures cross-channel dependencies.

2 RELATED WORK

Channel-Dependent Strategies for Multivariate Time Series Channel-Dependent (CD) strate-
gies jointly model all channels to capture inter-channel dependencies, and has been widely adopted
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across various neural architectures, including TCN/CNNs (Luo & Wangl 2024} Wu et al., |2023),
MLPs (Han et al., [2024aj; |Huang et al., [2024)), Transformers (Cheng et al., 2024; [Liu et al., [2024b;
Shu & Lampos| 2024} [Wang et al., [2024efc; |[Zhang & Yan, [2023} |Liu et al., [2024c} |Yang et al.,
2024; Yu et al., 2023), and GNNs (Huang et al.| 2023} |Y1 et al.| 2023} |Cao et al.| [2020; [Liu et al.,
2022)). Generative approaches such as COSCI-GAN (Seyfi et al., [2022)) also employ CD principles,
emphasizing cross-channel coherence in the context of sequence generation. These approaches are
particularly effective when channels are correlated, since sparsely observed or low-resolution sig-
nals can benefit from denser ones through cross-channel interactions. In practice, however, most
CD strategies only partially address real-world challenges: they typically assume aligned sampling
across channels, are not designed to handle block-wise missing intervals and can be sensitive to
noisy inter-dependencies. In contrast, our method utilizes channel tokens that explicitly encode
cross-channel relationships while remaining robust under asynchronous sampling and block-wise
missingness.

Irregularity of Multivariate Time Series (Multi-Source Asynchrony) Irregularly sampled mul-
tivariate time series are characterized by channels observed at non-uniform and often unpredictable
time points, resulting in irregular gaps within individual channels. A number of recent works (Che
et al., 2018} Shukla & Marlin| 2021} L1 et al.l [2023a} |Chen et al., 2023 |Zhang et al.| [2023} 2024;
Mercatali et al.,[2024; |Liu et al.| 2024a;2025}; | Kim & Leel [2024} Klotergens et al.,|2025)) address this
challenge by developing models that operate directly on non-uniform time intervals, often using time
encodings, interpolation-based alignment, attention mechanisms, or graph-based structures. Models
such as Raindrop (Zhang et al.| |2022) and Hi-Patch (Luo et al.,2025)) are tailored for highly sparse
settings, focusing on point-wise inter-channel relations rather than capturing temporal patterns. As a
result, they are less suited to structured multi-source asynchrony and do not align with our proposed
practical setting, which unifies three core challenges in continuous, long-term forecasting. In con-
trast, we target a real-world setting, including fixed but distinct sampling periods across channels,
as categorized in the recent Time-IMM dataset (Chang et al.l 2025).

Missing Value Handling for Time Series and Test-time Missing Intervals Models such as
BRITS (Cao et al.l [2018) and SAITS (Du et al., [2023) reconstruct missing values through impu-
tation based on recurrent dynamics or self-attention, while general-purpose frameworks like Times-
Net (Wu et al., |2023) and TimeMixer++ (Wang et al.,|2024a) treat imputation as a downstream task.
While these models can perform imputation, they typically rely on a separate forecasting module
to complete the end-to-end pipeline, which increases complexity and may hinder practical deploy-
ment in real-world scenarios. BiTGraph (Chen et al., |2024b) and S4M (Jing et al., [2025) integrate
missing-value handling into forecasting architectures, but still assume regularly sampled time series.
Other studies such as TimeXer (Wang et al.|[2024¢) and TFT (Zhou, |2023) test robustness to missing
inputs by simple replacements, offering no explicit mechanism for structured sparsity. SERT (Nejad
et al.| [2024) highlights the importance of handling block-wise missingness in real-world forecasting
scenarios, reinforcing the need for explicit mechanisms beyond simple replacement. In contrast, our
approach leverages channel tokens to minimize imputation-induced distortion and directly handle
test-time missing intervals during inference, providing a robust solution for real-world settings.

3 PROBLEM FORMULATION

Asynchronous Channel-wise Observations We consider a multivariate time series forecast-
ing task where each channel ¢ € {1,...,N} is sampled at a distinct, fixed period s;. Let
Smin = min(sy,...,sy) denote the shortest sampling period, and define the sampling factor as
r; = 8;/Smin- The input sequence for channel ¢ over a fixed observation window of length L is
represented as x(V = [z{" z{" . ,:c(Lll)] € RL+, where L; = |L/r;]. Given a prediction window
of length H, the forecast horizon for channel i becomes y() = [y%z), ygl), e ,yg)] € R, where
H; = | H/r;|. This implies that channels with longer sampling periods contain fewer observations
within the same time window, resulting in shorter prediction horizons H;. Note that this adjustment
is made in the data point domain, not the time domain, so that the actual time horizon covered by
each channel’s prediction remains consistent. We formulate a forecasting model fy parameterized
by 6 that predicts the future values by leveraging sampling period information from all channels:
v = fo({(x,5;)}N,). Here, s; enables the model to account for the temporal resolution and data
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density of each input channel. The learning objective is to minimize the mean squared error across
all channels, each of which may have a different prediction length H; due to its unique sampling
period. The total training loss is computed by first calculating the average MSE over each channel’s
prediction horizon, then averaging across channels. We refer to this as Channel-aggregated MSE

SE):
(CMSE) L o1 N Hiog G o
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For evaluation, we adopt CMSE as the primary metric, along with CMAE, its MAE-based variant.

Test-time Missing Intervals In many real-world scenarios, observations exhibit persistent sparsity
due to temporary failures, communication losses, or maintenance, leading to block-wise missing
intervals at test time. This type of missingness is typically easy to detect, as most channels rarely
show prolonged zero readings unless the device is disconnected or malfunctioning. Accordingly,
we introduce a binary mask as auxiliary metadata to indicate whether each channel contains valid
observations: {1’ i xgz) is observed,

m® e {01}, m{Y =

0, if xg-z) is missing @
The binary mask m(? indicates whether each patch in channel i should be masked or retained. Con-
ventional patch-based methods cannot handle variable numbers of patches per channel, and thus are
unable to leverage this binary mask. Instead, they typically fill missing entries within each patch
using zeros or mean values. In contrast, our model adopts a non-overlapping patch representation
that supports variable patch lengths and counts across channels. This enables the binary mask to
be effectively used for removing fully unobserved patches from the input, rather than merely filling
in missing values. Accordingly, the forecasting model is extended to accommodate masking-aware
inputs across all channels: ¥ = fo({(x®, m®, 5;)}¥ ). This formulation supports forecasting un-
der heterogeneous horizons from channel-wise asynchronous sampling, while also accommodating
channel-specific missingness in the input at test time. The forecast horizon is assumed to be fully
observed, since missing intervals in the future cannot be predicted in advance.

4 CHANNELTOKENFORMER

Repurposing Channel Tokens for Realistic Settings Pioneering studies have explored the use
of auxiliary tokens, for example, query tokens for extracting forecasting-relevant information from
sequences of varying lengths (Kim et al.| |2024), and special tokens for mediating information ex-
change across heterogeneous entities (Zhao et al.|[2024a). Channel-level summary tokens have also
been introduced in iTransformer (Liu et al., 2024c) and TimeXer (Wang et al., [2024e)). Building on
these insights, we repurpose channel tokens for realistic multivariate forecasting conditions, where
patches are inherently unbalanced across channels due to heterogeneous sampling, optionally their
own dominant frequencies, and prolonged missing intervals. In our framework, Channel Tokens
act as compact abstractions that summarize each channel’s patches into stable channel-level embed-
dings, so that forecasting relies on these embeddings rather than on uneven patch sequences that
would otherwise complicate the decoder input. This reframing allows the model to remain robust
under practical conditions where patch imbalance poses a fundamental challenge.

Channel-wise Frequency-based Dynamic Patching and Tokenization Prior frequency-guided
patching (e.g., Moirai (Woo et al [2024), LightGTS (Wang et all 2025)) in time series founda-
tion models targeted variable-length segmentation for univariate streams with heterogeneous gran-
ularities. In contrast, we repurpose this frequency-guided granularity selection for a channel-wise
asynchronous multivariate setting. This enables non-aligned, per-channel patching while sharing
projection layers (i.e., tokenizers) across equal patch lengths and introducing dedicated channel to-
kens, thereby preserving efficiency. Specifically, each input channel x(*) is adaptively patched by
estimating its dominant frequency via the Fast Fourier Transform (FFT). If a clear peak is identified,
the patch length is set to the corresponding period; otherwise, it is chosen through a sampling-
aware fallback. Full details on thresholds, dataset-specific examples, and the fallback procedure are
provided in Appendix This frequency-aware patching allows each channel to be divided into
non-overlapping local patches that reflect its temporal characteristics and are subsequently summa-
(@)

rized by channel tokens. Each local patch p;~ € R is projected into a fixed-dimensional token
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Figure 2: Overview of ChannelTokenFormer (CTF). All tokens across channels pass through a
unified attention layer, where local and global information is aggregated into channel tokens. Only
the channel tokens are decoded by decoders, each shared among channels with the same sampling
period, to produce the final prediction.

i . . . i 4
Lg. ) ¢ RY using a linear layer parameterized by the patch length: LS- ) = W[(,atc)hpg ). In paral-
lel, multiple channel tokens C() = [C{”;...; C{¥] € R4 are initialized per channel to serve as

global representations, where C' denotes the number of channel tokens assigned to each channel. We
add a fixed positional embedding ep,s and a learnable channel embedding eéfl) that encodes channel
1’s identity to each local token, while the channel token receives only the channel embedding.

Training-Time Proxying for Test-Time Missingness via Channel-wise Patch Masking Build-
ing on channel-wise dynamic patching, our framework supports variable input lengths via patch
masking and explicitly targets block-wise missingness at test time. Unlike prior uses of random
patch masking that primarily serve as a regularizer to curb overfitting, we repurpose it as a training-
time proxy for realistic test-time incompleteness: inference-time inputs may be partially missing, so
the model is trained to handle such missing blocks by design. We adopt random patch masking,
as introduced in PatchDropout (Liu et al., [2023), applied to a subset of channel-wise patches at the
input stage during training to simulate block-wise missingness at test time. As illustrated in Fig-
ure [2] if a missing segment spans an entire patch (as indicated by a binary mask) at test time, the
corresponding local token is removed at the input stage, thereby being excluded from the attention
computation. This prevents fully unobserved patches from contributing spurious signals, minimizing
the risk of propagating invalid information. Despite temporal gaps induced by masking, temporal
ordering and context are retained through fixed positional embeddings. This perspective shift im-
proves resilience to test-time missing intervals and, as a side effect, acts as an implicit regularizer
that mitigates overfitting in low-resource settings.

A Unified Mask-Guided Attention with Channel Tokens for Real-World Challenges To jointly
address three practical challenges in multivariate time series, we design a unified, mask-guided
self-attention mechanism that integrates local and global representations within a single attention
operation. As illustrated in Figure 2] this design unifies both token types in one attention step.

Each channel i € {1,..., N} contributes two types of tokens: (i) local tokens L() € RE" xd
representing patch-level embeddings, and (ii) global channel tokens C() € R¢*¢ summarizing
high-level contextual information, where L and C denote the number of local and channel tokens,
respectively. The full token sequence is constructed as X = [L(1); C(D; .. LM C(M)] ¢ RT*4,
with total token count 7' = Zivzl(L(i) + C). This unified sequence is passed through a masked

multi-head self-attention layer with residual connection: X, = X + Attention(Q, K, V'), where
Q=XWgq, K =XWg,and V = XWy are linear projections of X, and the attention is com-

puted as Attention(Q, K, V) = softmax( T M) V. Here, M € RT*T encodes structural

constraints on how tokens can attend to one another, reflecting their types, channels, and masking.
Our tailored masking scheme constructs M as illustrated in Figure[3} (1) Local tokens attend only to
other local tokens within the same channel, enabling intra-temporal modeling. (2) Channel tokens
attend to their own local tokens and to other channels’ tokens, but are not accessible to local tokens
due to their read-only role in the attention mechanism. (3) Channel tokens do not attend to them-
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Figure 3: Our unified attention masking strategy. Local tokens perform intra-temporal attention
within the same channel. Channel tokens aggregate local and cross-channel information, but are not
visible to local tokens and do not attend to themselves. Optionally, attention among channel tokens
from the same channel can be masked to encourage inter-channel interaction and reduce redundancy.

selves; for each query C(), the key C¥) is excluded to avoid self-reinforcement and to encourage
informative cross-channel interaction. Our unified masking strategy, inspired by read-only prompt
attention |[Lee et al.| (2023)) and attention control techniques |[Kim et al.[ (2025), is implemented with-
out modifying the standard Transformer architecture. Stacked masked attention blocks with residual
connections and layer normalization enable deeper modeling of temporal and cross-channel depen-
dencies. Although channel-wise tokenization introduces additional parameters, the masking strategy
ensures computation remains efficient by restricting attention to necessary token interactions, while
scaling reliably to realistic channel counts and sequence lengths, as shown in Appendix [C.3]

5 EXPERIMENTS

To assess the effectiveness of ChannelTokenFormer under our proposed problem settings, we con-
duct extensive experiments on four widely used multivariate time series benchmarks adapted to
practical conditions, and on two real-world datasets from air monitoring and the LNG cargo han-
dling system. Additional results under conventional settings are provided in Appendix [D]

Datasets We evaluate forecasting performance under channel-wise asynchronous sampling using
four multivariate datasets. ETT1-practical and ETT2-practical (ETT1 & ETT2) modify ETTm1
and ETTm?2 (Zhou et al.| 2021) by resampling channels to domain-specific temporal resolutions
(e.g., 1-hour for load, 15-minute for temperature). Weather-practical (Weather), adapted from the
Weather benchmark (Wu et al| 2021])), assigns heterogeneous sampling periods to channels based
on distinct physical characteristics. Monash-SolarWindPower-practical (SolarWind) combines
solar and wind power series from the Monash Forecasting Archive (Godahewa et al., 2021), with
variables resampled to 20-minute and 5-minute intervals, respectively. EPA-Air (EPA), adapted
from the U.S. Environmental Protection Agency’s air quality monitoring data (Chang et al., |2025)),
collects measurements from several regions with heterogeneous sampling periods across channels
(e.g., 1-hour for temperature, 8-hour for PM; s, among others). We choose four regions, Maricopa,
Richmond, LA and Hillsborough. LNG Cargo Handling System (CHS) is a real-world industrial
dataset collected from an LNG carrier, consisting of sensor channels related to cargo operations,
ship navigation, and surrounding weather conditions. To assess robustness under block-wise test-
time missing intervals, we additionally conduct experiments on SolarWind by varying the missing
ratio. Detailed dataset specifications are provided in Appendix [A.]

Baselines We compare CTF against representative state-of-the-art models across architectures
and methods for irregularity and missingness. Transformer baselines include TimeXer (Wang
et al.| 2024e)), iTransformer (Liu et al.| [2024c)), and PatchTST (Nie et al., 2023). We also cover
CNNs, GNNs, and MLPs, including TimesNet (Wu et al.| [2023)), CrossGNN (Huang et al., [2023),
TimeMixer++ (Wang et al.| 2024a), and DLinear (Zeng et al., [2023). We further include irregular-
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sampling methods such as ContiFormer (Chen et al.| [2023), t-PatchGNN (Zhang et al.| |2024), and
Hi-Patch (Luo et al.,[2025)) as well as a missingness-robust approach, BiTGraph (Chen et al.| 2024b).

Setup and Implementation Details Baseline models for regular time series assume uniformly
sampled and fully observed inputs. To satisfy this requirement, we employ linear interpolation to
recover values unobserved at timestamps not covered by channel-specific sampling periods. To
isolate architectural effects from interpolation, we further implement interpolation-free variants,
including a version of TimeXer (Wang et al., [2024¢) modified to handle temporally non-aligned
cross-channel inputs. Implementation details are provided in Appendix [C.4] In contrast, irregular
or missing-aware baselines do not require interpolation, as they operate solely on observed values.
To simulate block-wise missingness at test time, we randomly mask contiguous input regions. For
fairness, regular baselines without explicit missing-value handling are also provided with linearly
interpolated values for these masked regions, consistent with their training procedure. For each
dataset, input and prediction lengths are selected to reflect the channel-wise temporal resolution.
Despite heterogeneous sampling periods across channels, it is practical to define input and prediction
windows by a fixed time duration instead of requiring the same counts of sample points across
channels. The actual number of input and output points per channel is determined by its sampling
period, with shorter periods yielding more points over the same window.

5.1 MAIN RESULTS

Case 1: Channel-wise Asynchronous Forecasting We evaluate forecasting performance using
datasets that reflect realistic sampling heterogeneity across channels. Unlike regular baselines that
rely on interpolation, our approach preserves the original sampling structure and operates directly
on observed values. Averaging CMSE and CMAE over all prediction lengths (Table I)), our method
achieves the best performance on all datasets in the practical setting, highlighting the benefit of
avoiding imputation when channels are temporally misaligned. Our method also handles asynchrony
more effectively than irregular baselines. Detailed results for each prediction length and dataset are
provided in Appendix [E]

Table 1: Forecasting performance on the channel-wise asynchrony (Case 1).

Approach ‘ Channel-Dependent Channel-Independent Irregular modeling

Model ‘CTF(ours) TimeXer iTrans. CrossGNN  TimesNet TimeMixer++ PatchTST DLinear Hi-Patch  tPatchGNN

Metric ‘CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE

ETTI [0.399 0.410{0.422 0.424 |0.435 0.431(0.428 0.416|0.452 0.44410.433 0.432|0.411 0.4160.425 0.420|0.448 0.454|0.465 0.470
ETT2 |0.377 0.383|0.380 0.388|0.396 0.396{0.386 0.388|0.399 0.396|0.396 0.400|0.390 0.396|0.455 0.447]0.397 0.4010.393 0.406
SolarWind|0.403 0.452|0.424 0.469|0.470 0.485{0.465 0.478|0.471 0.474]0.429 0.468|0.417 0.467 |0.421 0.516|0.431 0.473|0.447 0.493
Weather |0.275 0.296|0.300 0.3100.313 0.323]0.285 0.315|0.314 0.322{0.276 0.296|0.275 0.331|0.287 0.331]0.301 0.3200.312 0.324
EPA  |0.776 0.586(0.886 0.611{0.882 0.611]0.979 0.665|0.937 0.643|0.931 0.637|0.854 0.597|1.047 0.713{0.808 0.629|0.801 0.628
CHS |0.285 0.126[0.298 0.128 [0.305 0.132]0.298 0.139]0.330 0.140|0.296 0.129]0.315 0.132(0.351 0.248|0.301 0.129[0.294 0.125

Case 2: Channel-wise Asynchronous Forecasting with Test-time Missing Blocks We further
evaluate all models under a more challenging setting, where test-time inputs include block-wise
missing intervals, explicitly indicated to the model, on top of channel-wise asynchronous sampling.
This configuration encompasses all three core challenges of interest. In this case, all models receive
inputs containing contiguous missing segments filled with zeros. But for a fair comparison, linear
interpolation is applied to regular baselines to avoid underestimating their capability. Unlike other
approaches, our model can internally adjust input length by design, enabling the use of zero-patch
masking to effectively handle missing regions. As shown in Table|2| our model consistently outper-
forms all baselines in average CMSE and CMAE for all prediction lengths across different missing
ratios, maintaining high performance even as the severity of missingness increases. This robustness
stems from the use of random patch masking during training, which improves the model’s ability
to generalize to incomplete patterns. Unlike other methods, our model avoids distortion from artifi-
cially zero-filled values and preserves signal fidelity under block-wise missing conditions. Detailed
results across datasets are provided in Appendix |E} To further demonstrate the overall robustness to
missing handling, we conducted additional experiments on the ETT1 and EPA datasets with smaller
interval missing settings. The corresponding details are provided in Appendix[A.2]

7
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Table 2: Channel-wise Asynchronous Forecasting performance on the SolarWind dataset under
block-wise test-time missingness with varying missing ratios m (Case 2).

Approach ‘ Channel-Dependent

Channel-Independent

Irregular modeling Missing

Model | CTF(ours) ~TimeXer  iTrans.

CrossGNN  TimesNet TimeMixer++ PatchTST

DLinear Hi-Patch  tPatchGNN ContiFormer BiTGraph

Metric ‘CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE|CMSE CMAE

m = 0.125/0.409 0.463|0.427 0.474|0.475 0.491|0.472 0.488|0.468 0.474(0.436 0.473|0.426 0.477|0.426 0.523(0.427 0.473|0.450 0.496|0.442 0.488|0.426 0.508
m = 0.250|0.429 0.482|0.442 0.48810.496 0.512|0.487 0.505|0.495 0.495|0.467 0.499|0.456 0.509|0.436 0.538{0.450 0.495|0.467 0.514|0.456 0.517 |0.444 0.523
m = 0.375]0.452 0.507 |0.462 0.505/0.539 0.5480.511 0.529|0.537 0.527{0.531 0.545|0.515 0.561|0.452 0.559{0.468 0.513 |0.496 0.542|0.475 0.545|0.467 0.542
m = 0.500/0.475 0.533/0.514 0.543|0.606 0.598 [0.553 0.562|0.595 0.564|0.633 0.613|0.593 0.616|0.478 0.587|0.500 0.542|0.522 0.571|0.508 0.573]0.495 0.562

5.2 ABLATION STUDY

To assess the effectiveness of our design in address-
ing the three key challenges, we conduct an ablation
study where each component is selectively removed

Table 3: Ablation study under channel-wise
asynchronous sampling with block-wise test-
time missing (missing ratio = 0.375). Results

or replaced. For Dependency, we disable cross-
channel attention. For Asynchrony, we remove the
dynamic patching mechanism, forcing fixed patch

are averaged across all prediction lengths on
the SolarWind dataset.

boundaries that ignore dominant frequencies and Ablation Setting | CMSE  CMAE
channel-specific sampling periods. For Missingness, Full model (CTF) 0.452  0.508
we eliminate patch masking during training and test w/o Channel Dependence (Clonly) | 0474 0.521
time, exposing the model to zero-filled inputs in- w/o Dynamic patching 0494 0.536

w/o Patch masking 0.458 0.508

stead. These experiments show that robust forecast-
ing under practical conditions requires all three components, since removing any one degrades per-
formance. Additional ablations are provided in Appendix

6 ANALYSIS

6.1 UNDERSTANDING THE OPTIMAL NUMBER OF CHANNEL TOKENS

The number of channel tokens was varied to analyze its impact on asynchronous forecasting. Results
in Table [4] show that the optimal choice differs by dataset: two channel tokens work best for ETT1
and SolarWind, three for EPA, and one for Weather and CHS. These outcomes reflect how channels
interact under asynchronous sampling. When channels move in a similar and highly correlated way,
a single channel token captures the shared pattern and more tokens add redundancy. ETT1 and
SolarWind, which exhibit two dominant groups of channels, benefit from two tokens. EPA shows
stronger heterogeneity, and three tokens better capture its diverse structures. Overall, the optimal
number of channel tokens depends on the degree of channel similarity and diversity in each dataset.

Table 4: Effect of varying the number of channel
tokens {1, 2, 3} on asynchronous forecasting per-
formance. Results are reported in CMSE, averaged
over all prediction lengths.

Table 5: Evaluation of robustness to vary-
ing input lengths during test time. Our CTF
is trained with an input length of 576 using
random patch masking, and tested with other

shorter input lengths of 288, 360, and 432 on

‘ Dataset the SolarWind dataset.
# Channel .
Tokens ETT1 ETT2 SolarWind Weather EPA CHS Test Input Length ‘ 288 360 432 576
1 | 0399 0377 0.404 0274 0775 0.282
2 0.398 0377 0.400 0275 0777 0.289 Avg. CMSE 0429 0461 0448  0.409
3 | 0411 | 0375 0.406 0281  0.774 0.295 Avg. CMAE 0457 0495 0491 0.457

6.2 ROBUSTNESS TO INPUT LENGTH VARIABILITY

Random patch masking is primarily designed to make the model robust to incomplete inputs caused
by block-wise missing intervals at test time. An additional benefit of this design is robustness to
input length variability, which remains a limitation for conventional forecasting models. Most exist-
ing approaches train and evaluate separate models for each target input length, and even models that
technically accept variable lengths often degrade in performance when the sequence length changes.
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As shown in Table [5] CTF maintains stable performance across all test input lengths on the Solar-
Wind dataset without requiring retraining. Since each channel has a different sampling period, we
define the input length based on the channel with the smallest sampling interval, which corresponds
to 576 time steps over 2 days. Even when this length is reduced to 288 (equivalent to 1 day), the
CMSE increases by only 4.9%, demonstrating strong generalization to input length variation, which
is another essential property for real-world forecasting under inconsistent input conditions.

6.3 FREQUENCY BIAS ANALYSIS IN PREDICTED TIME SERIES

We analyze how interpolation affects the frequency rpT— -
— roun ru

characteristics of predicted time series under practi- 040 - Predicted(CTF)- Ours
cal conditions with channel-wise asynchronous sam- —+- Predicted(TimeXer)
pling. To this end, we focus on TimeXer (Wang Attenuation Prevented
et al} 2024€), which is structurally similar to CTF 3 A e
and achieves nearly identical performance to ours g ,, ’,;.‘-{\

< \

in the conventional setting on the ETTm1 bench- K Mid-band High-band

mark. This makes TimeXer a strong reference point 010| //

for fair comparison. In the practical setting, how- e 2

ever, TimeXer can only process asynchronous in- : = o™ Nor
0.00 0.05 0.10 0.15 0.20 0.25 0.30

puts by performing interpolation, since its original Frequency
design cannot directly accommodate non-aligned se-
quences without architectural modifications. As a
result, any performance gap observed here reflects
interpolation-induced distortion rather than inherent
modeling differences. We analyze dominant fre-
quency difference and amplitude spectrum RMSE across frequency bands in the ETT1 dataset (Ta-
ble[6). In ETT1 (Table [6), both models localize dominant cycles similarly, since the main periodic-
ities (e.g., 8, 12, and 24 hours) lie in the low- to mid-frequency range where interpolation-induced
phase delay is minimal. However, amplitude spectrum RMSE shows consistent gaps: as Figure []
illustrates, both models exhibit some attenuation, but the effect is noticeably stronger for TimeXer,
while CTF better preserves spectral energy. Thus, although TimeXer matches CTF in conventional
settings, its reliance on interpolation in the practical setting introduces frequency bias that propa-
gates into predictions. By avoiding interpolation, CTF mitigates this distortion and better retains
trend and periodicity under asynchronous sampling.

Figure 4: Frequency-domain comparison be-
tween CTF and TimeXer on a test sample
from ETT1, showing that amplitude attenua-
tion is prevented across all frequency bands.

Table 6: Frequency-domain comparison between CTF (interpolation-free) and TimeXer
(interpolation-based) on the ETT1 for a prediction length of 192 (2-day window). Lower values
indicate better spectral fidelity. RMSEs are computed over three frequency bands under 1-hour sam-
pling (fs = 1): Low (0.00-0.10), Mid (0.10-0.25), and High (0.25-0.50) cycles/hour, corresponding
to periodicities longer than 10 hours, between 4 and 10 hours, and shorter than 4 hours, respectively.

Model / Metric | Dominant Freq. Diff. | Low-band RMSE  Mid-band RMSE  High-band RMSE

CTF (Ours) 0.0098 0.1877 0.0735 0.0457
TimeXer 0.0099 0.1901 0.0745 0.0473

7 CONCLUSION

A practical forecasting setting is introduced where three core real-world challenges occur simulta-
neously: channel-wise asynchronous sampling, block-wise missing intervals, and complex cross-
channel dependencies. Instead of interpolation, our approach handles both missing segments and
sampling gaps through masking and frequency-based dynamic patching. The unified mask-guided
attention leverages channel tokens with read-only masking and cross-channel attention, consistently
outperforming prior methods across real-world conditions. Scalability analysis further shows that
the masking-based design remains efficient for realistic channel counts and input lengths, although
extreme scales may still pose challenges. Beyond scaling, future work will also consider apply-
ing ChannelTokenFormer to broader domains, integrating multimodal signals, and improving inter-
pretability of channel interactions, thereby expanding its utility in real-world forecasting.
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A IMPLEMENTATION DETAILS

A.1 DATASET CONFIGURATION UNDER MULTI-SOURCE ASYNCHRONY

We conduct long-term forecasting experiments on four modified benchmark datasets adapted to our
practical setting, as well as two real-world datasets. In this setting, each channel provides a differ-
ent number of observations over the same temporal window, reflecting channel-specific sampling
periods within the multivariate time series. This configuration more closely mirrors real-world con-
ditions, where sensor deployment strategies and data acquisition policies vary across channels.

ETT1-practical & ETT2-practical (ETT1 & ETT2) ETTI1-practical and ETT2-practical are
variants of the commonly used ETTml [Zhou et al.| (2021) and ETTm2 datasets. Unlike their
original versions, where all channels are sampled uniformly at 15-minute intervals, ETT1-practical
and ETT2-practical introduce channel-specific sampling periods to reflect industrial environments,
where sensors operate at different acquisition frequencies depending on their physical properties and
monitoring requirements. Specifically, the channels are grouped into two categories: load-related
channels and the oil-temperature (OT) channel. The load-related channels are downsampled to an
hourly rate, representing slowly varying electrical load measurements, while the OT channel retains
its original 15-minute resolution to capture high-frequency thermal dynamics.

Weather-practical (Weather) Weather-practical is constructed from the widely used WeatherWu
et al.| (2021) benchmark. While the original dataset assumes uniform sampling periods across all
channels, this assumption rarely holds in real-world environmental monitoring systems. In Weather-
practical, we reorganize the channels to reflect heterogeneous sampling frequencies, based on the
intrinsic temporal dynamics of each channel. For instance, fast-changing environmental channels
such as wind velocity, precipitation, and solar radiation are sampled at 10-minute intervals, whereas
more stable channels such as air pressure or vapor pressure are sampled at a coarser hourly rate.
Mid-range channels—such as air temperature and specific humidity—are sampled at 20-minute or
30-minute intervals in accordance with their moderate temporal variability. This configuration, sum-
marized in Table[7} mimics the asynchronous and heterogeneous acquisition patterns encountered in
operational weather stations and provides a more realistic testbed for evaluating forecasting models
under non-uniform input conditions.

Table 7: Channel Specification in the Weather-practical Dataset

Channel Description Sampling Period
p (mbar) Air Pressure 1 hour
T (°C) Air Temperature 20 min
Tpot (K) Potential Temperature 1 hour
Tdew (°C) Dew Point Temperature 1 hour
rh (%) Relative Humidity 30 min
VPmax (mbar) Saturation Water Vapor Pressure 1 hour
VPact (mbar) Actual Water Vapor Pressure 1 hour
VPdef (mbar) Water Vapor Pressure Deficit 1 hour
sh (g/kg) Specific Humidity 1 hour
H20C (mmol/mol) Water Vapor Concentration 1 hour
rho (kg/m?) Air Density 1 hour
wv (m/s) Wind Velocity 10 min
max. wv (m/s) Max Wind Velocity 10 min
wd (°) Wind Direction 10 min
rain (mm) Precipitation 10 min
raining (s) Duration of Precipitation 10 min
SWDR (W/m?) Short Wave Downward Radiation 10 min
PAR (umol/m2/s) Photosynthetically Active Radiation 10 min
max. PAR (umol/m2/s) Max PAR 10 min
Tlog (°C) Internal Logger Temperature 1 hour
oT Operational Timestamp (Offset) 10 min
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(a) LNG Carrier (from Wikimedia) and Route (b) Diagram of LNG Cargo Handling System

Figure 5: Overview of the LNG Cargo Handling System (CHS).

Monash-SolarWind-practical (SolarWind) Monash-SolarWind-practical is derived from Aus-
tralian Energy Market Operator (AEMO) ['|and the Monash Forecasting Repository (Godahewa et al.
(2021) and built upon high-frequency power generation data originally collected at 4-second inter-
vals. In real-world energy monitoring systems, distinct sensors are used for solar and wind power,
each exhibiting unique temporal behaviors and operational constraints. To replicate these real-world
dynamics, we apply channel-specific downsampling: solar-related channels are resampled at 20-
minute intervals, capturing smooth and gradual irradiance trends, while wind-related channels are
resampled at 5S-minute intervals to reflect the rapid fluctuations characteristic of wind dynamics. This
restructured dataset captures modality-specific asynchrony and sampling heterogeneity, offering a
challenging benchmark for assessing model robustness under realistic conditions where different
signal types operate on distinct temporal resolutions.

EPA-Air (EPA) EPA-Air is sourced from air quality monitoring data (Chang et al., 2025)) of the
U.S. Environmental Protection Agencyﬂ collects measurements from several monitoring regions
across the United States. In real-world air quality monitoring, different channels are reported at
heterogeneous temporal resolutions due to channel-specific measurement practices. To reflect these
conditions, we assign channel-specific sampling periods: temperature-related variables are recorded
at 1-hour intervals, fine particulate matter (PM,5) is reported at 8-hour intervals, air quality indices
(AQI) are provided at daily intervals, and ozone measurements are reported at weekly intervals.
For our experiments, we selected four representative cities, Maricopa, Richmond, Los Angeles,
and Hillsborough, from the original dataset that contains measurements from eight metropolitan
areas. This real-world dataset preserves the inherent asynchrony and heterogeneity of environmental
sensing, yielding a benchmark that mirrors practical conditions where meteorological variables,
pollutant measurements, and derived indices are recorded on distinct temporal resolutions.

LNG Cargo Handling System (CHS) CHS is a real-world dataset collected from an LNG (Lig-
uefied Natural Gas) carrier during a ballast voyage. The dataset contains time series measurements
from a total of 52 channels, each sampled at distinct frequencies based on their physical character-
istics and operational requirements. Specifically, weather and navigation channels, such as latitude
and wave period, are sourced from external systems and sampled at a coarse hourly rate. In contrast,
onboard sensor channels are sampled more frequently to support real-time monitoring and control.
These include machinery-related channels (e.g., Low Duty Compressor (LDC) suction pressure,
main engine inlet pressure, and LNG consumption), sampled at 10-minute intervals, and cargo tank
sensor channels (e.g., tank temperature at top, mid, and bottom levels, and tank pressure), sampled at
I-minute intervals. For experimental evaluation, we selected 10 key channels from the full set of 52,
focusing on those most relevant to navigation and weather conditions, cargo tank thermodynamics,
and machinery operations.

The LNG carrier is equipped with four independent cargo tanks. During voyage, ambient heat
ingress into the cargo tanks causes the LNG stored in these tanks to partially vaporize, producing

"http://www.nemweb.com.au/
“https://www.epa.gov/data
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what is known as Boil-Off Gas (BOG). Efficient BOG management is critical: the gas can be used
as fuel, reliquefied, or combusted via a Gas Combustion Unit (GCU), which converts it into CO, be-
fore discharge. The operational objective is to minimize unnecessary combustion while maximizing
energy utilization as fuel, all while maintaining tank pressure within safe operational bounds. The
CHS dataset captures the dynamic interplay among external conditions, cargo tank behavior, and
onboard machinery responses. It provides a foundation for predictive modeling of key control chan-
nels, including tank gas pressure and LDC suction pressure. Accurate prediction of these channels
is important for safe and energy-efficient voyage execution under the channel-wise asynchronous
sampling conditions found in real-world LNG cargo operations.

A.2 IMPLEMENTATION DETAILS

Model Hyperparameters and GPU Setup All experiments were conducted using a single
NVIDIA RTX 3090 GPU with 24GB memory. We used the Adam optimizer across all models,
with initial learning rates per dataset for fair comparison: 10~* for ETT1, ETT2, SolarWind and
EPA, 10~2 for Weather, and 103 for the CHS dataset. Training was run for a maximum of 10
epochs with early stopping based on validation performance. For models with a stackable encoder
block, the number of encoder layers was set to 2. For Transformer-based models, the model di-
mension dpogel Was searched over {128, 256,512}, and the feedforward expansion ratio dg / diodel
was selected from {1,2,4}. We adopted most baseline implementations from the TimesNet (Wu
et al., 2023) repository. CrossGNN (Huang et al., [2023)), t-PatchGNN (Zhang et al., [2024), Hi-
Patch (Luo et al.,[2025)), BiTGraph (Chen et al.,[2024b)), originally provided in a separate repository,
were reimplemented and integrated into the TimesNet framework for consistency. The hyperpa-
rameters of these baselines were aligned with those specified in their original repositories. Since
ContiFormer (Chen et al. 2023) is an ODE-based model with prohibitively long training times, we
reimplemented it within the TimesNet framework by approximating its ODE solver, following the
structure of TimeXer (Wang et al., 2024e)), to ensure both efficiency and consistency. In our pro-
posed ChannelTokenFormer (CTF), the number of channel tokens was selected from {1, 2, 3}, with
the optimal value determined separately for each dataset.

Training and Evaluation under Our Proposed Practical Setting For regular time series baseline
models, both training and testing were conducted on linearly interpolated data due to architectural
constraints. To ensure a fair and consistent comparison, we preserved the original design of the
baselines and trained them on interpolated inputs with MSE loss. In contrast, our proposed model,
ChannelTokenFormer (CTF), is explicitly designed to operate on non-interpolated inputs that reflect
the original, variable sampling periods of each channel. To ensure uniform input shape compatible
with existing architectures, we apply forward-fill interpolation during dataset preprocessing; how-
ever, this step serves merely as a structural tool to meet input dimensionality requirements, not as
a modeling assumption. During the channel-wise patch embedding phase, all forward-filled val-
ues are explicitly excluded: only the valid indices L;, corresponding to truly observed data points,
are used for computation. For irregular and missing handling time series baselines, we followed
their original frameworks by providing an input mask, which was used for both data processing and
MSE computation. This procedure is exactly consistent with the forward-fill interpolation—based
approach. However, since ContiFormer does not conform to other irregular frameworks and was
reimplemented for execution, it follows the same procedure as the regular baselines. To ensure
fair evaluation, both the baselines and our model compute channel-aggregated metrics—CMSE and
CMAE, as defined in Section [3}—only over the valid indices H;, which correspond to actually ob-
served target values. Thus, although the input preprocessing methods differ, all models are eval-
uated on the same set of ground truth targets (y1,...,yn,). Note that under the practical setting,
the number of valid test samples is inherently reduced, since the test set is subsampled according to
the maximum sampling factor across channels. In summary, each model is trained under settings
aligned with its architectural requirements, but all are evaluated uniformly based on their accuracy
in predicting truly observed values.

Input/Output Length Settings per Dataset As described in Section[5] we set the input and pre-
diction lengths for each dataset to reflect the temporal characteristics of the underlying signals.
Instead of fixing the number of time steps across all channels, we define these lengths over a consis-
tent time duration to accommodate channel-wise variations in both sampling period and dominant
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frequency components. For implementation and reporting convenience, however, we represent input
and output lengths in terms of the number of steps corresponding to the channel with the smallest
sampling period. The input and prediction lengths (in time steps, relative to the finest resolution
channel) for each dataset are as follows: ETT1, ETT2: 192 (input) — [192, 336, 768, 1152] (pre-
diction), SelarWind: 576 — [288, 576, 864, 1152], Weather: 144 — [144, 288, 576, 864], EPA:
96 — [96, 192, 288, 384], CHS: 120 — [120, 240, 480, 840].

Details of Channel-wise Frequency-based Dynamic Patching In dominant frequency detection
via Fast Fourier Transform (FFT), each input channel is represented as a one-dimensional sequence
x| and its amplitude spectrum A() = |%()| is computed. Instead of relying on a predefined set
of candidate periods, the dominant period is searched within a reasonable range (empirically up to
~ 200), which covers common real-world cycles such as hourly, daily, and weekly periodicities.
The frequency index kj with the highest amplitude in this range is identified and converted into

the corresponding dominant period p; = % If the amplitude A () at k exceeds a fixed threshold

(empirically set to the 70th percentile of A(9)), p; is regarded as a strong dominant period. In patch
length assignment with relative sampling periods, the relative sampling period of channel i is defined

Si

as T = o, where s; is the actual sampling period and s,;,;,, is the minimum across all channels.
The patch length [;, representing the number of points per patch, is then assigned as I; = |p}/r; ],
ensuring consistency with both the detected periodicity and the sampling resolution. In the fall-
back mechanism, if no dominant frequency passes the 70th percentile threshold, a sampling-aware
patching rule is applied that directly determines patch lengths based on each channel’s sampling
rate, without enforcing periodicity-based constraints. This approach is designed for cases where
periodicity is too weak or noisy to guide patching, and it prioritizes maintaining consistency with
the intrinsic resolution of each channel.

Example of Channel-wise Frequency-based Dynamic Patching For example, in the SolarWind
dataset, wind power is recorded every 5 minutes and solar power every 20 minutes. Over a 2-day
period, this corresponds to 576 time steps for wind power (resulting patch length: 48 steps) and 144
for solar power (resulting patch length: 18 steps). Assuming patching is performed based on each
channel’s dominant period, this yields 576 / 48 = 12 local tokens for wind power and 144 / 18 = 8
for solar power. Detailed calculations are provided below.

* Relative sampling periods: 71 = 1,170 =4
* FFT-detected dominant periods: p} = 48, p5 = 72
* Resulting patch lengths: Iy = |pi/r1] = [48/1] = 48,1y = |p5/r2] = |72/4] =18

* Number of patches:
- P = |L/l1| = |576/48] = 12
— Popo=|L/(l3-12)| =[576/(18-4)] =8

Test-time Missing Conditions To evaluate robustness under structured missing conditions, we
introduce block-wise missing intervals in the test-time inputs of three datasets, including real-world
EPA air monitoring dataset. In the SolarWind dataset, each channel is assigned randomly positioned
missing blocks, with each block spanning exactly one patch length. This ensures that at least one
patch per channel is entirely unobserved, enabling a direct assessment of our model’s patch-level
masking strategy at test time. During training, our model applies random patch masking, as shown
in Table[I8§] training with a 0.4 random masking ratio consistently improved model robustness across
different missing ratios. In the ETT1 and EPA datasets, we insert random zero-filled missing blocks
of smaller varying lengths (5 to 20 time steps) into each channel. These settings are designed to
test model robustness to short-range missing intervals. For the ETT1 missing setting, we compared
against regular time series baselines, which are better suited to ETT data. For the EPA missing
setting, we selected representative baselines, Hi-Patch and ContiFormer. BiTGraph was excluded
from the EPA experiments as it failed to converge properly. Also, we selected LA and Hillsborough
to evaluate in a more challenging environment. Detailed results under this setting are reported in
Table[19]and Table
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B SPECTRAL DISTORTION INDUCED BY INTERPOLATION

B.1 BACKGROUND

In practical time series forecasting scenarios, multivariate signals often feature channel-wise asyn-
chronous sampling periods across channels, stemming from both inter-system and intra-system
heterogeneity in sensor design and operation. However, most existing forecasting models assume
a regular and complete time grid, necessitating the use of interpolation to align all channels to a
common temporal resolution prior to model ingestion. While this preprocessing step ensures input
compatibility, it inevitably introduces spectral distortion (Feng et al., 2004; Fitzgerald & Ander-
son, [1992) by artificially synthesizing intermediate values, thereby altering the original frequency
characteristics of the signals. Interpolation imposes artificial continuity by estimating unobserved
values from nearby observations, which can fundamentally reshape both the temporal dynamics
and spectral content of the signal. This appendix provides a theoretical explanation of how such
interpolation-induced distortion arises in the frequency domain, as observed through the Fast Fourier
Transform (FFT).

B.2 LINEAR INTERPOLATION-INDUCED FREQUENCY DOMAIN DISTORTION

Let 2(t) denote a real-valued time series obtained via uniform but sparse sampling relative to other
channels. Let Z(t) denote the version of x(¢) with intermediate values filled in via linear interpo-
lation between uniformly sampled points. This interpolation process can be interpreted as a con-
volution in the time domain, as linear interpolation is equivalent to applying a piecewise linear
(triangular) filter to the sampled signal. By the Convolution Theorem, this results in a multiplication
in the frequency domain:
X(f) =X(f)- H(f),

where H (f) is the frequency response of the triangular interpolation kernel, given by sinc? (f). This
imposes a low-pass filtering effect that attenuates high-frequency components of the original signal,
and constitutes the primary source of spectral distortion introduced by linear interpolation. Such
distortion manifests in multiple forms: (i) amplitude attenuation within the Nyquist limit, due to
low-pass filtering that suppresses mid-to-high frequency energy; (ii) amplitude gaps, due to the non-
uniform and oscillatory nature of the interpolation kernel’s frequency response, which causes broad
spectral suppression in the mid-to-high frequency range; (iii) spectral leakage beyond the Nyquist
frequency, caused by the non-ideal frequency response of finite-support interpolation kernels; and
(iv) phase delays, introduced by the filtering process, especially in the mid-to-high frequency range,
and observable in the FFT phase spectrum.

(1) Amplitude Attenuation Under linear interpolation, the reconstructed signal exhibits reduced
overall spectral energy, particularly in the mid-to-high frequency range:

X113 < IX (13-

This occurs because each frequency component is scaled by a factor | H (f)| < 1 for f > 0, resulting
in suppressed spectral magnitude:

(XN =X H < [XA)]-
Attenuation becomes stronger at higher frequencies, leading to a net reduction in total spectral en-

ergy and a smoother appearance in the time domain. This loss of high-frequency information can
impair the model’s ability to capture fine-grained temporal patterns in forecasting tasks.

(2) Amplitude Gaps The frequency response of linear interpolation exhibits oscillatory behavior
due to its squared sinc form, resulting in repeated dips and low-gain regions across the spectrum,
particularly in the mid-to-high frequency range. When these regions coincide with frequencies that
contain substantial energy in the original signal, the interpolated spectrum displays significant local
suppression—observable as amplitude gaps:

\X(f” < |X(f)| for f € [fmids fnign]-

Such non-uniform attenuation alters the spectral envelope and can adversely impact the performance
of forecasting models.
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(3) Spectral Leakage (Hi%h-Frequency Artifacts) The frequency response of linear interpola-
tion, given by H(f) = sinc*(f), is not band-limited and extends well beyond the Nyquist frequency,
with decaying side lobes across the spectrum. As a result, interpolation artificially introduces high-
frequency components into the signal, even when the original data is strictly band-limited. This is
particularly evident in the FFT magnitude spectrum(see Figure [6a), where the interpolated signal
exhibits spectral energy in regions beyond the Nyquist limit. These high-frequency artifacts are not
part of the true signal but emerge from the spectral spreading effect caused by the interpolation ker-
nel. They distort the original spectral structure by injecting spurious out-of-band energy, which can
mislead models.

(4) Phase Delay  Although linear interpolation produces a smooth and continuous waveform from
discretely sampled data, it introduces a frequency-dependent shift in the phase spectrum. Let ZX (f)
and ZX (f) denote the phase spectra of the original and interpolated signals, respectively. Then the
phase difference is given by:

AB(f) = ZX(f) — £X(f) <0,

which remains negative across most frequencies, with the delay becoming notably apparent from the
mid-frequency band onward (see Figure [6b). This indicates that the interpolated signal lags behind
the original in phase. The delay is negligible at low frequencies but grows rapidly in the high-
frequency band, due to the squared sinc frequency response of linear interpolation. When the signal’s
dominant spectral components lie in the high-frequency region, this phase delay leads to substantial
misalignment of key waveform features such as peaks and transitions. Even if the interpolated
waveform appears visually smooth in the time domain, the underlying temporal displacement of
high-frequency content can significantly degrade forecasting accuracy, especially in tasks that rely
on precise timing of local patterns.
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Figure 6: Spectral distortion caused by linear interpolation in the ETTh1 dataset. The left panel
shows amplitude attenuation and spectral leakage in the magnitude spectrum, while the right panel
illustrates phase delay in the FFT phase spectrum.

B.3 SUMMARY AND IMPLICATION

The four types of distortion—amplitude attenuation, amplitude gaps, spectral leakage, and phase
delay—collectively degrade the spectral integrity of interpolated signals. These artifacts can mis-
lead forecasting models into learning spurious temporal or frequency patterns. The issue becomes
more severe in multivariate settings with channel-wise asynchronous sampling, where aligning all
channels to a uniform time grid via interpolation introduces artificial synchrony and continuity. To
mitigate such distortion, we advocate for interpolation-free modeling, where models are designed
to operate directly on asynchronously sampled and non-uniformly aligned signals, without relying
on synthesized values that risk obscuring the true structure of the original signals.
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C FURTHER ANALYSIS

C.1 ADDITIONAL ABLATIONS

To complement the main experiments, we provide additional ablation studies highlighting the con-
tribution of key architectural components in ChannelTokenFormer (CTF). As shown in Table
incorporating learnable channel-specific embeddings consistently improves performance across all
datasets. This suggests that explicitly encoding channel identity through channel embeddings pro-
vides a strong inductive bias, particularly in heterogeneous multivariate settings. Furthermore, as
shown in Table 9] setting patch lengths to match each channel’s periodic characteristics, rather than
using a fixed patch length, has a clear impact on forecasting performance. This underscores the
importance of reflecting channel-specific sampling periodicities when handling asynchronous time
series.

Table 8: Effect of channel embedding on forecasting performance. Results are reported in CMSE,
averaged over all prediction lengths. Overall, channel embedding improves performance on most
datasets, indicating its effectiveness in modeling channel-specific dynamics.

Setting / Dataset ‘ ETT1 ETT2 SolarWind Weather EPA  CHS
CTF with channel embedding | 0.398 0.377 0.400 0269 0.775 0.282
CTF w/o channel embedding | 0.404 0.379 0.399 0.283  0.781 0.285

Table 9: Impact of patch length on forecasting performance. Results are reported in CMSE, averaged
over all prediction lengths. In general, frequency-guided patching improves performance on most
datasets, suggesting that adapting patch lengths to each channel’s periodic structure is beneficial.

Patch length / Dataset | ETT1 ETT2 SolarWind Weather EPA  CHS

FFT-based 0.398 0.377 0.400 0.274  0.775 0.282
8 0.404 0.378 0.405 0.289  0.817 0.300
16 0.401 0.378 0.400 0.289  0.807 0.301
32 0424 0.383 0.399 0.306  0.799 0.307

To further examine the effectiveness of our design beyond what was demonstrated in Section
we conduct an extended ablation study focusing on the three practical challenges of multivariate
forecasting: Dependency, Asynchrony, and Missingness. As summarized in Table[I0] we selectively
disable each architectural component corresponding to the three core challenges addressed by our
design, and evaluate all ablation settings under varying levels of test-time missingness. To remove
Channel Dependence, we eliminate attention between channel tokens from different channels. To
assess the impact of Dynamic Patching, we prevent the model from incorporating dominant fre-
quency information extracted from FFT as well as channel-specific sampling periods. For Patch
Masking, we disable the masking mechanism for block-wise missing intervals during both training
and testing. Across all settings, the full model consistently achieves the best results, confirming that
each architectural element contributes complementarily to the model’s overall robustness. Among
these, patch masking emerges as critical for handling contiguous missing blocks, while channel
dependency and dynamic patching offer additional gains under asynchronous and heterogeneous
conditions.

C.2 COMPARISON OF ATTENTION MASKING STRATEGIES

We conduct an ablation study comparing six variants of attention masking strategies within our
unified attention layer. To avoid analytical redundancy, all strategies share a common constraint:
channel tokens are prohibited from attending to any other tokens within the same channel, including
themselves. This restriction eliminates redundant intra-channel interactions and encourages richer
cross-channel communication.
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Table 10: Results of the ablation study under channel-wise asynchronous sampling with block-wise
test-time missing. Results are shown for different missing ratios m, with metrics averaged across all
prediction lengths on the SolarWind dataset.

Test-time Missing Ratio m = 0.125 m = 0.250 m = 0.375 m = 0.500
Ablation Setting CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE
Full model (CTF) | 0.408 0463 | 0428 0482 | 0452 0.508 | 0474 0.533

w/o Channel Dependence | 0.408  0.463 | 0429 0484 | 0474 0521 | 0522  0.551

w/o Dynamic patching | 0452 0496 | 0474 0515 | 0494 0536 | 0517  0.562

w/o Patch masking | 0412 0465 | 0434 0484 | 0458 0.508 | 0.482  0.533

The six masking strategies fall into two categories: Channel-Independent (CI) and Channel-
Dependent (CD). The key distinction lies in whether cross-channel attention among channel to-
kens is permitted. CD strategies are further subdivided based on the scope and indexing of allowed
inter-channel connections.

C.3

* Channel-Independent Masking (2 variants): All attention operations are confined to
within each channel. No cross-channel interaction is allowed.

— CI-ReadOnly: Channel tokens can attend to local tokens (read-only summarization),
but not vice versa.

— CI-Mutual: Local and channel tokens within a channel can attend to each other bidi-
rectionally.

e Channel-Dependent Masking (4 variants): Local tokens remain strictly within-channel,
attending only to tokens from the same channel. In contrast, channel tokens are permitted
to interact across channels, subject to specific masking rules.

— Global Cross-Channel Token Attention: Each channel token can attend to all chan-
nel tokens from other channels, but not to those from its own channel. This facilitates
rich cross-channel communication while maintaining strict inter-channel exclusivity.

% CD-ReadOnly: Extends CI-ReadOnly by allowing channel tokens to also attend
to channel tokens from other channels. This allows each channel token to sum-
marize both intra- and inter-channel information without influencing local token
representations directly.

#* CD-Mutual: Extends CI-Mutual with additional global attention among chan-
nel tokens across different channels. It enables two-way communication between
channel tokens, potentially enhancing global coordination and information ex-
change across channels.

— Indexed Cross-Channel Token Attention: When multiple channel tokens are as-
signed per channel, attention is restricted to those with matching indices across chan-
nels (e.g., index-0 tokens attend only to other index-0 tokens). This design encourages
index-wise specialization and alignment.

% CD-ReadOnly-Indexed: Read-only variant allowing same-index channel tokens
to attend to each other across channels. This selective communication enables
controlled abstraction across semantically aligned channel positions.

% CD-Mutual-Indexed: Mutual variant enabling bidirectional intra-channel and
same-index inter-channel attention. It balances local coherence and cross-channel
consistency by unifying both local and indexed global interactions.

SCALABILITY ANALYSIS

We further investigate the scalability of ChannelTokenFormer (CTF) with respect to both the num-
ber of channels and the input sequence length.

Channel scalability. We measured runtime per training iteration and maximum memory usage as
the number of input channels increases. Results in Table[I2]show that CTF scales reliably up to 275
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Table 11: Comparison of attention masking strategies on the SolarWind dataset under the block-wise
test-time missing scenario. Results are reported in CMSE and CMAE, averaged over all prediction
lengths with a missing ratio m = 0.375. Among the methods, CD-ReadOnly and CD-ReadOnly-
Indexed achieve the best performance under our proposed practical setting.

Strategy ‘ CI-ReadOnly CI-Mutual CD-ReadOnly CD-Mutual CD-ReadOnly-Indexed CD-Mutual-Indexed

CMSE 0.474 0.457 0.452 0.456 0.452 0.457
CMAE 0.521 0.512 0.508 0.510 0.508 0.512
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Figure 7: Visualization of the attention masks used in Channel-Independent (CI) masking strate-
gies. CI-ReadOnly (left) allows only unidirectional attention from channel tokens to local tokens
within the same channel, while CI-Mutual (right) permits bidirectional attention between local and
channel tokens. In both cases, no cross-channel attention is allowed.
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Figure 8: Visualization of the attention masks used in Channel-Dependent (CD) masking strate-
gies with global cross-channel token attention. CD-ReadOnly (left) extends CI-ReadOnly by al-
lowing channel tokens to attend to channel tokens from other channels, while CD-Mutual (right)
permits bidirectional attention within channels and additionally enables global cross-channel atten-
tion among channel tokens.
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Figure 9: Visualization of the attention masks used in Indexed Channel-Dependent (CD) masking
strategies. CD-ReadOnly-Indexed (left) and CD-Mutual-Indexed (right) restrict cross-channel
attention to channel tokens with the same index across different channels. This design promotes
role-specific specialization while maintaining intra-channel locality for local tokens.
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channels on a single 24GB GPU. Out-of-memory (OOM) is observed only at 280 channels. Training
runtime grows proportionally with channel count (e.g., 2.69s/iter at C' = 200), while inference
latency remains comparable to TimeXer (0.903s vs. 0.917s).

Table 12: Channel scalability of CTF on a single GPU with 24GB VRAM. We report training
runtime (s/iter) and peak memory usage (MB) as the number of input channels increases. CTF
scales reliably up to 275 channels, with out-of-memory (OOM) occurring at 280 channels.

Metric / # of Channels 5 30 50 100 200 275 280
Runtime (s/iter) 0.0186 0.1193 0.2307 0.7173 2.6912 54175 OOM
Memory (MB) 1089 4603  911.2 28439 10386.1 17834.9 -

Input length scalability. We also tested longer input horizons. As shown in Table T3] inference
runtime remains stable (0.014s — 0.016s) as sequence length grows from 96 to 2048. Memory
usage scales linearly with input length.

Table 13: Input length scalability of CTF. We report training runtime (s/iter), peak memory usage
(MB), and inference latency as input length grows. Inference runtime remains stable (0.014s —
0.016s), while memory usage scales linearly with length.

Metric / Input Length 96 512 1024 2048

Training Runtime (s/iter) 0.028 0.048 0.074  0.147
Training Memory (MB) 126.1 403.3 945.8 2921.4

Inference Runtime (s/iter) 0.0140 0.0147 0.0147 0.0159
Inference Memory (MB) 126.1 404.8 945.8 29214

Summary. These results demonstrate that the masking-based attention design in CTF can handle
high-density multivariate forecasting and long-horizon inputs with stable inference latency. While
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memory grows linearly and limits appear at very high channel counts, the model remains efficient
in practical regimes.

C.4 COMPARISON WITH MODIFIED TIMEXER FOR ASYNCHRONOUS SAMPLING

For TimeXer (Wang et al., [2024¢)), we incorporated channel-wise asynchronously sampled inputs,
along with their corresponding sampling information, as exogenous inputs, following the same strat-
egy (shared tokenizers) used in our model. To ensure consistency and reduce redundancy, channels
with identical sampling periods shared the same modeling configuration when each was used as
the forecasting target. We conducted experiments on the ETT1, ETT2, and SolarWind datasets for
Case 1 (Section [5.I), and on the SolarWind dataset for Case 2 (Section [5.1)). Results are reported
as CMSE and CMAE averaged over four prediction horizons. As summarized in Table[I4] our CTF
achieves consistently better or comparable performance compared to the modified TimeXer variants.

Table 14: Comparison of CTF with modified TimeXer under asynchronous sampling. Results are
reported in CMSE and CMAE averaged over four prediction horizons.

Model \ CTF (ours) TimeXer (mod.) TimeXer
Dataset / Metric \ CMSE CMAE \ CMSE CMAE \ CMSE CMAE
ETTI 0.398 0.411 0.404 0.416 0.420 0.424
Case 1 ETT2 0.377 0.383 0.374 0.382 0.381 0.389
SolarWind | 0.400 0.448 0.417 0.450 0.420 0.468

Case2 | SolarWind | 0.440  0.496 | 0.474 0504 | 0462  0.504

D FORECASTING RESULTS IN A CONVENTIONAL MULTIVARIATE SETTING

To demonstrate that our model remains effective even under standard multivariate cases, we addi-
tionally evaluate it on regularly sampled multivariate time series without any missing values. By
aligning the sampling period and patch length across all channels, our model can be directly ap-
plied to this conventional setting. This evaluation shows that our model remains applicable beyond
the proposed practical settings. For comparison, baseline results (Chen et al., 2025} [Wang et al.,
2024eja; Liu et al.|[2024c; |Huang et al.;[2023; [Li et al., 2023bj; Nie et al., {2023 Zhang & Yan,2023;
Das et al.,[2023; Wu et al.| [2023; [Zeng et al.|, 2023)) are obtained either from the original publications
or by reproducing them using the TSLib codebase (Wang et al.l 2024d)). We compare forecasting
performance on five widely used benchmark datasets (Zhou et al., [2021; Wu et al.| [2021)): ETThI,
ETTh2, ETTm1, ETTm2, and Weather. As shown in Table @ our model achieves performance
comparable to or better than state-of-the-art baselines across all benchmark datasets in the conven-
tional forecasting setting.

E FULL RESULTS OF OUR PROPOSED PRACTICAL SETTING

Table [I6] shows the results for Case 1 using asynchronous practical datasets, where datasets with
channel-wise asynchronous sampling were linearly interpolated onto a regular sampling grid for
the regular time series baselines. Table |1/ presents the results for Case 2, which adds block-wise
test-time missing inputs on top of asynchronous sampling. All results include error bars based
on 5 random seeds to reflect performance variability. Across both cases, our model consistently
demonstrates stronger performance than baseline methods.

F FORECAST VISUALIZATION

Figure [I04] illustrates the forecasts of four models including our CTF on channel 3 of the ETT1
dataset under Case 1 in Section[5] The prediction horizon shows periodic sharp drops and recoveries,
which are critical for accurate forecasting. Our model closely tracks these rapid transitions, while
baseline models tend to underpredict their magnitude. We attribute this to the interpolation-free
nature of our model, which avoids the frequency biases introduced by linear interpolation.
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Table 15: Full results of the long-term forecasting task in the conventional setting. The best results
are highlighted in bold, and the second-best results are underlined.

Model CTF(ours) TimeMixer++ SimpleTM TimeXer iTrans. CrossGNN RLinear PatchTST Crossformer TiDE TimesNet  DLinear

Metric cMSE CMAE‘CMSE CMAE |CMSE CMAE | CMSE CMAE |CMSE CMAE | CMSE CMAE | CMSE CMAE | CMSE CMAE | CMSE CMAE | CMSE CMAE | CMSE CMAE | CMSE CMAE

96 10.371 0.397|0.361 0.403 0.366 0.392|0.382 0.403|0.386 0.405/0.382 0.398|0.386 0.395|0.414 0.419|0.423 0.448|0.479 0.464/0.384 0.402|0.386 0.400
192|0.417 0.426(0.416 0.441|0.4220.421|0.429 0.435|0.441 0.436|0.427 0.425|0.437 0.424/|0.460 0.445|0.471 0.474|0.525 0.492/0.436 0.429|0.437 0.432
336(0.4510.448|0.430 0.434|0.440 0.438|0.468 0.448|0.487 0.458|0.465 0.445|0.479 0.446|0.501 0.466|0.570 0.546|0.565 0.515/0.491 0.469|0.481 0.459
720(0.462 0.470|0.467 0.451 |0.463 0.462|0.469 0.461|0.503 0.491|0.472 0.468|0.481 0.470]0.500 0.488|0.653 0.621|0.594 0.558]0.521 0.500/0.519 0.516

‘Avg‘().425 0.435/0.419 0.4320.422 0.428|0.437 0.437|0.454 0.447|0.437 0.434|0.446 0.434|0.469 0.454|0.529 0.522]0.541 0.507|0.458 0.450|0.456 0.452

96 0.288 0.340(0.276 0.328]0.281 0.338]0.286 0.338]0.297 0.349]0.309 0.359/0.288 0.338|0.302 0.348|0.745 0.584 |0.400 0.440|0.340 0.374/0.333 0.387
1920.376 0.396|0.342 0.379 |0.355 0.387/0.363 0.389|0.380 0.400/0.390 0.406(0.374 0.390|0.388 0.400| 177 0.656|0.528 0.509|0.402 0.414|0.477 0.476
336(0.427 0.433|0.346 0.398 |0.365 0.401|0.414 0.423|0.428 0.432|0.426 0.444/0.415 0.426|0.426 0.433/1.043 0.731|0.643 0.571|0.452 0.452|0.594 0.541
720(0.428 0.444(0.392 0.415|0.413 0.436/0.408 0.432|0.427 0.445|0.445 0.444/0.420 0.440|0.431 0.446/1.104 0.763| 174 0.679|0.4620.468| 131 0.657

ETThl

ETTh2

‘Avg‘O‘SSO 0.403]0.339 0.380 |0.353 0.391|0.367 0.396(0.383 0.407|0.393 0.413|0.374 0.398|0.387 0.407|0.942 0.684 |0.611 0.550|0.414 0.427|0.559 0.515

96 10.3170.356|0.310 0.334/0.321 0.361|0.318 0.356|0.334 0.368|0.335 0.373|0.355 0.376|0.329 0.367|0.404 0.426|0.364 0.387|0.338 0.375|0.345 0.372
—=1920.359 0.381/0.348 0.362 |0.360 0.380|0.362 0.383/0.387 0.391|0.372 0.390(0.391 0.392/0.367 0.385|0.450 0.4510.398 0.404/0.374 0.387|0.380 0.389
lt 336(0.389 0.404(0.376 0.391|0.390 0.404/0.395 0.407|0.426 0.420|0.403 0.411/0.424 0.415/|0.399 0.410/0.532 0.515|0.428 0.425/0.4100.411/0.413 0.413
H1720(0.447 0.440(0.440 0.423 |0.454 0.438|0.452 0.441|0.491 0.459/0.461 0.442|0.487 0.450|0.454 0.439|0.666 0.589|0.487 0.461|0.478 0.450(0.474 0.453

‘Avg‘0.378 0.395/0.369 0.378 0.381 0.396|0.382 0.397(0.407 0.410/0.393 0.4040.414 0.407|0.387 0.400/0.513 0.496 |0.419 0.419|0.400 0.406(0.403 0.407

96 10.1730.255/0.170 0.245]0.173 0.257|0.171 0.256]0.180 0.264/0.176 0.266/0.182 0.265|0.175 0.259/0.287 0.366 |0.207 0.305|0.187 0.267|0.193 0.292
‘é‘ 19210.238 0.299|0.229 0.291 |0.238 0.299/0.237 0.299/0.250 0.309|0.240 0.307|0.246 0.304(0.241 0.302|0.414 0.4920.290 0.364/0.249 0.309|0.284 0.362
£5336/0.2950.336/0.303 0.343 10.296 0.338|0.296 0.338/0.311 0.348/0.304 0.345/0.307 0.342/0.305 0.343|0.597 0.542|0.377 0.422/0.321 0.351/0.369 0.427
H1720(0.392 0.394|0.373 0.399 |0.393 0.395|0.392 0.394|0.412 0.407|0.406 0.400|0.407 0.398|0.402 0.400|1.730 1.042|0.558 0.524|0.408 0.403|0.554 0.522

‘Avg‘0.274 0.321/0.269 0.320 |0.275 0.322|0.274 0.322|0.288 0.332|0.282 0.330(0.286 0.327|0.281 0.326(0.757 0.610]0.358 0.404/0.291 0.333]|0.350 0.401

96 10.1590.207|0.155 0.205 |0.162 0.207|0.157 0.205|0.174 0.214/0.159 0.218|0.192 0.232/0.177 0.218]0.158 0.230|0.202 0.261|0.172 0.220|0.196 0.255
E 192|0.207 0.251{0.201 0.245|0.208 0.248|0.204 0.247|0.221 0.254/0.211 0.266(0.240 0.271]0.225 0.259|0.206 0.277|0.242 0.298|0.219 0.261|0.237 0.296
5336/0.263 0.292(0.237 0.265 (0.263 0.290[0.261 0.2900.278 0.296|0.267 0.310[0.292 0.307|0.278 0.297|0.272 0.335 |0.287 0.335|0.280 0.306/0.283 0.335
21720(0.343 0.344(0.312 0.334 0.340 0.341/0.340 0.341(0.358 0.347|0.352 0.362]0.364 0.353|0.354 0.348/0.398 0.418[0.351 0.386/0.365 0.359(0.345 0.381

‘Avg‘0.243 0.273]0.226 0.262 0.243 0.271 ‘0241 0.271 ‘0258 0.278|0.247 0.289]0.272 0.291/0.259 0.281/0.259 0.315|0.271 0.320|0.259 0.287(0.265 0.317

We also examine Case 2 in Section [5] which involves both asynchronous sampling and block-wise
test time missing. Figure presents a visualization of model predictions for the solar power
channel from the SolarWind dataset. In this sample, a missing block of length 144 is present in
the middle of the test input. This causes TimeMixer++ and TimeXer to produce noticeably noisy
forecasts. Although CrossGNN shows relatively higher robustness, its predictions exhibit an un-
derestimation of the periodic transitions. In contrast, our model accurately identifies the missing
region and applies masking, effectively preventing the injection of unreliable inputs. As a result,
it successfully captures both the timing and magnitude of the periodic transitions, even across the
missing block.

G DISCUSSION

To jointly capture temporal dynamics and cross-channel dependencies under practical settings, we
proposed a unified attention masking strategy that merges intra- and inter-channel attention into
a single attention layer. This design avoids the need for separate attention modules, reducing the
number of parameters and simplifying the overall model architecture. This parameter efficiency
is particularly beneficial for datasets with limited data, as it reduces the risk of overfitting while
maintaining the model’s ability to capture essential temporal and cross-channel patterns. However,
this unified structure introduces scalability challenges when applied to high-dimensional datasets.
As the number of channels increases, the attention layer must process a quadratic number of token
interactions within a single computation step, leading to substantial computational overhead and
slower training. A promising direction to mitigate this issue is to optimize the attention computation,
for example, by decomposing the attention map or distributing the computation across multiple
smaller attention modules.

Beyond scalability, another limitation lies in the objective function. Although our model demon-
strates strong predictive performance across diverse practical settings, it still suffers from amplitude
attenuation—especially over longer forecasting horizons—due to the use of a standard mean squared
error loss. To address this, it is crucial to explore alternative loss functions that better preserve spec-
tral characteristics and periodicity, rather than relying solely on point-wise accuracy. This issue also
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Table 18: Average forecasting performance of our CTF model on the SolarWind dataset, evaluated
under block-wise missing at test time with varying missing ratios m, and trained with different patch
masking ratios ¢.

Missing ratio (Train) ¢ =0.1 t=0.2 t=03 t=04 t=0.5
Metric CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE
m = 0.125 0.420 0.472(0.414 0.466 (0.413 0.466|0.408 0.463|0.412 0.466
m = 0.250 0.458 0.50410.444 0.491)0.439 0.488 0.428 0.482(0.427 0.481
m = 0.375 0.490 0.537(0.474 0.521 (0.464 0.515]0.452 0.508 |0.452 0.509
m = 0.500 0.527 0.57310.498 0.5490.488 0.541(0.474 0.533(0.474 0.536

Table 19: Average CMSE and CMAE for all prediction lengths of ETT1 dataset under short-range
test-time missing intervals with varying missing ratios m. CTF is trained with a random patch
masking ratio of 0.4 to enhance robustness against missing inputs.

Approach Channel-Dependent Channel-Independent

Model CTF(ours) TimeXer iTrans. CrossGNN  TimesNet TimeMixer++ PatchTST DLinear

Metric CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE CMSE CMAE

m = 0.10.415 0.424|0.440 0.441|0.455 0.449|0.448 0.434(0.490 0.468|0.449 0.448|0.439 0.438|0.453 0.442
m =0.20.434 0.438/0.466 0.461|0.477 0.467|0.471 0.452]0.508 0.486[0.474 0.469|0.465 0.458|0.483 0.465
m = 0.30.453 0.451]0.495 0.481|0.500 0.4830.495 0.470(0.527 0.502{0.499 0.486|0.491 0.478|0.514 0.486
m = 0.4]0.471 0.463|0.526 0.502|0.523 0.499{0.520 0.487]0.550 0.519(0.522 0.503 [0.517 0.497|0.544 0.506
m = 0.5|0.493 0.477|0.563 0.526|0.548 0.515|0.549 0.506|0.576 0.536(0.546 0.518|0.547 0.518(0.577 0.526

Table 20: Average CMSE and CMAE for all prediction lengths of EPA dataset (LA, Hillsborough)
under short-range test-time missing intervals with varying missing ratios m. CTF is trained with a
random patch masking ratio of 0.4 to enhance robustness against missing inputs.

Model CTF (ours) Hi-Patch ContiFormer
Metric CMSE CMAE|CMSE CMAE|CMSE CMAE

m =0.1/1.074 0.702 | 1.084 0.742 | 1.219 0.744
m =0.2/1.146 0.731 | 1.121 0.754 | 1.237 0.757
m = 0.3] 1.226 0.756 | 1.204 0.781 | 1.254 0.773
m = 0.4/ 1.290 0.788 | 1.383 0.839 | 1.298 0.801

extends to evaluation. Conventional metrics such as MSE may fail to penalize overly smoothed
forecasts, often favoring models that suppress meaningful high-frequency or transient patterns. As
a result, structurally inaccurate predictions may still appear favorable under MSE, particularly in
long-term forecasting scenarios dominated by coarse trends. Refining evaluation metrics to better
capture structural fidelity is therefore essential. Designing both loss functions and evaluation pro-
tocols that align with the characteristics of asynchronous, partially observed time series remains an
important and open research challenge.
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USE OF LARGE LANGUAGE MODELS (LLMS) IN PAPER WRITING

LLMs were used exclusively for light copy-editing (grammar, clarity, concision) and small LaTeX
phrasing/formatting suggestions. We did not employ LLMs for retrieval or discovery (e.g., related-
work search) or for research ideation. LLMs did not draft technical content or citations and did
not contribute at a level comparable to a coauthor. All text and claims were written, checked, and
finalized by the authors; any LLM-suggested edits were adopted only after manual verification to
prevent hallucinations or unsupported statements.

ETHICS STATEMENT

This work focuses on methodological contributions for multivariate time-series forecasting. Our
experiments rely primarily on publicly available datasets from established academic and institutional
sources. In addition, we include one private dataset provided under confidentiality agreements. This
dataset contains no personally identifiable information, and we followed all necessary protocols
to ensure secure handling, access control, and compliance with data-sharing restrictions. No raw
private data will be released; only aggregated statistics and trained model weights are reported in the

paper.

Our proposed model, CTF, is designed as a general forecasting framework and does not target spe-
cific individuals, groups, or sensitive applications. Potential downstream uses of time-series fore-
casting models include socially beneficial applications (e.g., energy demand planning, environmen-
tal monitoring) as well as sensitive ones (e.g., financial or policy decision-making). We encourage
responsible usage, with attention to fairness, transparency, and possible societal impacts. All experi-
ments were conducted under standard computational settings, with environmental costs comparable
to typical machine learning research practice.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. All model architectures,
training procedures, and evaluation protocols are described in detail in the main text and Appendix.
Hyperparameters, preprocessing steps, optimization settings, and model configurations are provided
in Appendix For publicly available datasets, we specify their sources in Appendix to
facilitate exact replication. For the private dataset used under confidentiality agreements, raw data
cannot be released, but we provide aggregate statistics, evaluation splits, and implementation details
sufficient for reproducing the reported results.

Our codebase (including model implementation, training scripts, and evaluation pipeline) will be
made available upon publication. All experiments were conducted on standard hardware (NVIDIA
RTX 3090 GPUs) with fixed random seeds to reduce variance; each experiment was repeated across
three random seeds, and average results are reported. We also provide details on software dependen-
cies (Python version, PyTorch version, and major libraries) to ensure compatibility with common
research environments.
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(a) Channel 3 in the ETT1 dataset under asynchronous sampling. Our model accurately cap-
tures periodic sharp drops and recoveries, whereas the baselines tend to underpredict their

magnitude.
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(b) Solar power channel in the SolarWind dataset under asynchronous sampling with block-
wise test-time missing. Despite a long missing block, our model robustly captures periodic
transitions, while the baselines exhibit noise or trend drift.

Figure 10: Visualization of forecasting results on (a) the ETT1 and (b) the SolarWind datasets.
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