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Abstract

Learning generalizable robotic manipulation policies remains a key challenge due
to the scarcity of diverse real-world training data. While recent approaches have at-
tempted to mitigate this through self-supervised representation learning, most either
rely on 2D vision pretraining paradigms such as masked image modeling, which
primarily focus on static semantics or scene geometry, or utilize large-scale video
prediction models that emphasize 2D dynamics, thus failing to jointly learn the ge-
ometry, semantics, and dynamics required for effective manipulation. In this paper,
we present DynaRend, a representation learning framework that learns 3D-aware
and dynamics-informed triplane features via masked reconstruction and future
prediction using differentiable volumetric rendering. By pretraining on multi-view
RGB-D video data, DynaRend jointly captures spatial geometry, future dynamics,
and task semantics in a unified triplane representation. The learned representations
can be effectively transferred to downstream robotic manipulation tasks via action
value map prediction. We evaluate DynaRend on two challenging benchmarks, RL-
Bench and Colosseum, as well as in real-world robotic experiments, demonstrating
substantial improvements in policy success rate, generalization to environmental
perturbations, and real-world applicability across diverse manipulation tasks.

1 Introduction

Developing versatile robotic control policies capable of performing diverse tasks across varying
environments has emerged as an active area of research in embodied Al [4, 3, 25, 38, 1]. Despite the
promise of end-to-end approaches for generalizable robotic control, the lack of abundant, diverse and
high-quality robot data remains a key bottleneck.

To address this, recent works leverage self-supervised methods to learn transferable visual repre-
sentations for downstream policy learning. One line of research [30, 23, 28, 33] directly adopts
2D vision paradigms such as contrastive learning and masked image modeling. While effective at
capturing high-level semantics, these methods overlook the specific needs of robotic manipulation,
including 3D geometry understanding and future dynamics modeling. Another line [17, 4 1] focuses
on predictive representations via future prediction, using large-scale video generative models to learn
object and environment dynamics. However, these approaches mainly model dynamics in 2D and
lack explicit awareness of the underlying 3D scene structure. A few recent efforts [26, 19] explore
3D dynamics learning with explicit representations like dynamic Gaussians, but these introduce
significant structural complexity, limiting flexibility and scalability for downstream policy learning.
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Figure 1: Comparison of representation learning paradigms for robot learning. (a) Learning
predictive 2D representations [ | 7] by forecasting future frames from the current observation to capture
future dynamics. (b) Learning semantic or geometric features through reconstruction of static scenes
using MAE [33] or 3D reconstruction [46]. (c) Our approach leverages differentiable volumetric
rendering to jointly learn semantics, geometry, and dynamics in a unified 3D representation.

In this paper, we introduce DynaRend, a representation learning framework for robotic manipulation
focusing on learning generalizable visual representations via 3D-aware masked future rendering. Our
work leverages neural rendering to perform pretraining on multi-view RGB-D video data, enabling
the model to learn representations that are grounded in both spatial geometry and future dynamics.
Specifically, we begin by reconstructing a point cloud from multi-view RGB-D observations, which
is then projected onto a triplane representation. A random subset of the triplane features is masked
and replaced with a learnable embedding. The masked features and the language instruction are
processed through a reconstructive and a predictive model, yielding two intermediate feature volumes
that represent the current scene state and the predicted future counterpart, respectively. To provide
supervision, we randomly select one current and one future frame, and extract their semantic features
using a pretrained vision foundation model such as DINOv2 [31]. We then sample rays and apply
differentiable volumetric rendering to generate RGB, semantics, and depth outputs from the predicted
volumes, which are supervised by ground-truth views without annotations. After pretraining, we use
the reconstruction and dynamics models to extract triplane features, which are then fine-tuned with
an action decoder to predict action value maps on downstream manipulation tasks.

Compared to prior approaches, by jointly modeling spatial geometry, future dynamics, and task
semantics through rendering-based supervision, DynaRend provides a unified framework for learning
generalizable and scalable 3D representation tailored to manipulation tasks. Additionally, while
previous methods [26, 46] incorporate neural rendering as auxiliary supervision, they typically
require extensive calibrated novel views to serve as supervision, which is feasible in simulation but
impractical in real-world settings with limited camera views. To address this, we leverage pretrained
visual-conditioned generative models to augment target views by synthesizing novel views from
existing views, reducing reliance on dense camera setups and enhancing real-world applicability.

We evaluate our method on two challenging robotic manipulation benchmarks, RLBench [2 1] and
Colosseum [32]. Results show that our pretraining framework significantly improves manipulation
success rates and exhibits strong generalization to unseen environmental perturbations such as object
size, color, and lighting. We further validate our method across five real-world tasks, demonstrating
effectiveness and adaptability in practical settings. Our contribution can be summarized as follows:

* We propose DynaRend, a novel representation learning framework that learns generalizable
triplane features via masked future rendering for robotic manipulation.

* We conduct a systematic study of different pretraining strategies, including reconstruction
and prediction objectives, masking strategy and view synthesis, on the effectiveness of
downstream policy learning.

* We validate our method through extensive experiments in both simulation and the real world,
showing consistent improvements over existing approaches.



2 Related Work

Representation Learning for Robotics. In recent years, the field of computer vision has witnessed
a growing research focus on self-supervised learning paradigms, where a variety of techniques [7, 9, &,

, 9, 311 have demonstrated remarkable effectiveness in learning transferable representations without
supervision. Inspired by this, prior works have applied such techniques to robotics tasks. Notably,
some approaches such as VC-1 [28], Voltron [23], and 3D-MVP [33] focus on learning discriminative
visual features through masked image modeling. Other lines of work have explored the use of
contrastive objectives [30] and distillation [46] for learning generalizable representations. However,
existing approaches primarily focus on 2D static pretraining with limited 3D spatial awareness as
well as future dynamics understanding, which are essential for manipulation tasks.

Future Prediction for Policy Learning. Existing approaches have also investigated the use of
future prediction as an auxiliary objective to facilitate policy learning. GR-1/GR-2 [42, 0] leverage
an autoregressive transformer to generate subsequent frames and actions as a next token prediction
task. SuSIE [?] and UniPi [10] employ a generative diffusion model to predict future images or
video and subsequently train an inverse dynamics model conditioned on the generated goal to
predict actions. VPP [17] and VidMan [4 1] exploit video diffusion models pretrained on large-scale
datasets to capture future dynamics, which is subsequently utilized to inform action prediction.
Nevertheless, existing methods primarily focus on pretraining dynamics models using 2D video data,
while neglecting 3D dynamics modeling — an essential capability for robotic manipulation tasks
that requires reasoning over object and environment interactions in 3D space. In addition, methods
such as Imagination Policy [ 9] and ManiGaussian [26] have explored learning dynamics based on
explicit 3D representations. Despite their ability to learn spatial and dynamic information through
point clouds or 3D Gaussians, these methods often suffer from limited scalability and are difficult to
directly integrate with downstream policy due to representational complexity of explicit 3D structures.
In addition, the effectiveness of these methods often hinges on the availability of extensive novel-view
supervision, posing significant challenges for scalability and deployment in real-world scenarios.

Neural Rendering. Recent advances in 3D vision, particularly in neural rendering [29], have
enabled scene representation through neural radiance fields that are supervised via volume rendering
from multi-view images. In light of these developments, prior works [ 18, 48, 44, 39, 20] have
employed differentiable neural rendering to facilitate 3D representation learning. Yet, such approaches
remain confined to applications in 3D perception and autonomous driving, with limited exploration in
interactive robotics scenarios. Some recent efforts have attempted to bridge this gap by applying such
techniques to robot learning. For instance, SPA [47] leverages differentiable rendering to pretrain
a 2D visual backbone with enhanced 3D spatial awareness; GNFactor [46] distills features from
pretrained visual foundation models via volumetric rendering to learn voxel-based representations.
However, these methods primarily focus on learning 3D consistency in static environments, which
limits their effectiveness in robotic manipulation tasks where capturing future dynamics is essential.

3 Methodology

In this section, we present the proposed DynaRend in detail. We begin by formulating the problem
in Sec. . In Sec. , we describe the process of feature volume extraction and construction
with multi-view RGB-D image inputs. Given feature volumes, we leverage differentiable volumetric
rendering to learn a reconstructive model and a predictive model for pretraining, detailed in Sec.
Finally, in Sec. , we explain how the pretrained representations and models are transferred to
downstream robotic manipulation tasks. The overall pipeline is illustrated in Fig.

3.1 Problem Definition

Language-conditioned robotic manipulation is a fundamental yet challenging task that requires agents
to ground natural language instructions into executable actions based on visual observations. Among
various paradigms, keyframe-based manipulation has emerged as a popular approach, where the agent
is tasked with predicting the next key action state — including the end-effector pose and gripper state
— given a goal-conditioned instruction and current observations. These predicted keyframes are then
executed using a low-level motion planner to reach the desired target.
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Figure 2: DynaRend framework overview. (a) We reconstruct the point cloud from multi-view
RGB-D inputs, encode it with an MLP, and project it onto three orthogonal planes to produce triplane
features. (b) We mask a subset of the triplane features and sequentially pass it through a reconstructive
network and a predictive network to obtain current and future scene representations. For pretraining,
both triplane volumes are rendered into RGB, depth, and semantic maps via volumetric rendering
and supervised by corresponding current and future target views. (c) For finetuning, two networks
serve as a triplane encoder and are trained with an action decoder on demonstration data.

One effective way to learn keyframe-based policies is through imitation learning [36, 13, 12], which
allows the agent to mimic expert behaviors by learning from demonstrations. Each demonstration
consists of a trajectory sequence where each element is represented as a triplet including visual
observation O, language instruction 1, and end-effector state A. A trajectory’s keyframes can be
identified via heuristic rules [36]. The learning objective for the agent is to predict the end-effector
state of the nearest future keyframe, conditioned on the current observation O and the instruction 1.

3.2 Representing 3D Scenes as Triplanes

Recent advances in 3D representation learning for robotic manipulation have explored various scene
encodings, including voxel grids [36, 46], point clouds [24], and 3D Gaussians [260]. While effective in
capturing geometric details, these representations are either computationally expensive or structurally
complex, making them difficult to scale and generalize across tasks in manipulation-specific domains.
To balance efficiency and expressiveness, we adopt a triplane representation to encode 3D scenes in a
compact and learnable manner. Specifically, given the observation consisting of a set of calibrated
multi-view RGB-D images O = {I1, I, - - - , I, }, we first reconstruct a scene-level point cloud using
depth back-projection. The resulting point cloud is then encoded through an MLP to extract per-point
features. To construct the triplane feature representation, we divide the 3D workspace into a regular
voxel grid of size H x W x D, and apply axis-aligned max pooling to project the point features onto
three orthogonal planes:

fmy c RH><W><C'7 fxz c RHXDXC’ fyz c RWXDXC’ (1)

where C' is the feature channel. The resulting triplane features V = {f,,,f,.,f,.} serve as a
structured, spatially-aware encoding of the observed scene for the following reconstruction and
dynamics modeling in the pretraining stage.

3.3 Rendering with Volumetric Representation

Masked future prediction. After constructing the triplane-based scene encoding, we aim to learn
generalizable representations that are both 3D-aware and dynamics-informed for downstream policy
learning. To this end, we formulate the pretraining task as a combination of two complementary
objectives: reconstruction, which encourages understanding of scene geometry, and future prediction,
which guides the model to capture future dynamics. Specifically, we first randomly mask a subset of
the triplane features and replace them with a learnable mask embedding, resulting in a partially masked
triplane representation denoted as V = {f,,,f,.,f,.}. To incorporate task-specific information,
we encode the language instruction using a pretrained CLIP [34] text encoder and concatenate the
resulting embeddings 1 with the triplane features, which are then fed into a reconstructive network



Erecon to reconstruct the complete 3D feature representation of the current scene:
Vnow - {fnow fnow fnow} = 5recon(f}a 1) (2)
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Following reconstruction, the output feature volume is further processed by a predictive network Eyreq
to predict the 3D representation of the nearest future keyframe:

Vfuture = {fiuyture’ fiuzture’ f{/l;ture} = Epred(vnowa 1) (3)
Both the reconstructive and predictive networks share the same architecture and are jointly used as
the triplane encoder for downstream policy learning. Each network adopts a standard Transformer
architecture with four layers, enhanced with recent techniques (i.e., SWiGLU [35], QK Norm [16],
and RoPE [37]) to enhance stability and expressiveness.

Volumetric rendering. Given the reconstructed current and predicted future triplane features, we
apply differentiable volumetric rendering [29] to each of them independently, using target views
to supervise both the current state reconstruction and future state prediction. During training, we
randomly sample a subset of pixels from a selected target view for supervision. Each pixel is
associated with a camera ray r(¢) = o + td, which can be defined by the camera origin o, view
direction d and depth ¢ € [tnear, trar]- To render a pixel, we sample N ray points {p; = o + t;d|i =
1,--+,N,t; < t;+1} along the ray r. For each sampled ray point, we project its 3D coordinates
onto the three axis-aligned planes (i.e., the x — y, x — 2z, and y — z planes) of the triplane features.
Bilinear interpolation is then applied on each plane to query features at the projected locations. The
features from the three planes are aggregated via summation to obtain a feature descriptor v; for each
point along the ray. These pointwise features are subsequently decoded through lightweight MLP
heads to predict the attributes for each sampled point: 1) density o(v;): R® — R ; 2) RGB values
c(vy,d): RE+3 — R3; 3) sematic feature s(v;, d): RET3 — R, Following the formulation, the
final rendered outputs for each pixel are obtained by integrating the predicted attributes along the ray:

N N N
(Aj(r7 V) = Zwic(vi,d), S(r7 V) = Zwis(vi, d), f)(r,V) = Zwiti, %)
i=1 i=1 i=1

where C, S and D are the rendered RGB color, sematic featueres and depth respectively, w; =
T;(1—exp(o(v;)d;)) is the weight for each ray point, T; = exp(— Z;;ll o(vj)d;) is the accumulated

transmittance, and §; = ¢;41 — t; is the distance to the previous adjacent point.

Target view augmentation. Existing rendering-based pretraining methods [46, 26] often rely
on additional camera viewpoints as supervision, which is feasible in simulation but impractical in
real-world setups due to limited camera views. To overcome this, we leverage pretrained generative
models to synthesize novel views without extra cameras. Specifically, for a given target frame, we
start with a set of calibrated multi-view RGB-D images. We randomly select a base view and perturb
its camera pose to define a target view. The multi-view reconstructed point cloud is then warped
to the target pose via projection and back-projection. We then employ See3D [27], a pretrained
visual-conditioned multi-view diffusion model, to generate realistic images conditioned on the warped
views, and we estimate depth maps from the synthesized views using Depth Anything v2 [45]. These
generated RGB-D pairs are used as additional supervision for pretraining. In both simulation and
real-world experiment setups, we rely solely on data from fixed camera viewpoints.

Loss functions. During pretraining, we randomly select two target views from the current frame
and future frame to supervise the reconstructed and predicted triplane representations, respectively.
To improve training efficiency, for each target view, we randomly sample K pixels at each iter-
ation. The rendering loss is computed as the mean squared error between the rendered outputs
and the corresponding ground-truth values from the target images. To further distill high-level
semantic information into triplane features, we extract semantic features from the target views using
RADIOV2.5[15], an agglomerative vision foundation model, to encourage semantic consistency in the
learned representations. Since our focus lies in rendering pretraining, we do not explore alternative
foundation models. The rendering losses for reconstruction and future prediction are formulated as

Lrecon = Ac||C(r) — C(P,VHOW)H + As|[S(r) — g(r, Vaow) || + AaSiLog(D(r), f)(r, Vaow) )

Lored = Acl|C(r) — C(ra Viutre) || + As|[S(r) — S(I‘, Viure)|| + AaSiLog(D(r), ]f)(r, Viuture) ) s
®)]



where C(r), S(r) and D(r) denote the ground-truth RGB values, sematic features and depth respec-
tively, SiLog is scale-invariant log loss [! 1] to optimize depth, and A., As and \; are weights to
balance different losses. The overall objective for pretraining is a weighted combination of two loss
terms for reconstruction and future prediction respectively:

£pretrain = )\reconﬁrecon + Apredﬁpreda (6)
where Arecon and Apreq are loss weights.

3.4 Predicting Actions for Downstream Tasks

To adapt the pretrained triplane encoder to downstream robotic manipulation tasks, we extend it
with an action decoder and fine-tune the entire model using expert demonstrations. Following
RVT [13], we formulate action prediction as multi-view action value map prediction. Specifically,
given current observations, inputs are passed sequentially through the reconstructive network Eecon
and the predictive network Eyeq Without masking to extract a spatially and dynamically informed
triplane representation. The objective is to predict the next keyframe action A = {apose, Agripper }»
where apose = {Auans, arot} € SE(3) is the end-effector pose, and agripper € {0, 1} is the gripper state.

For translation component a,,s, we process the extracted triplane features through a convolution
layer and an upsampling layer to produce action heatmaps over the three orthogonal planes. The
ground-truth action translation is projected onto the three orthogonal planes to generate corresponding
target heatmaps, which are used to supervise the predicted action heatmaps via cross entropy loss.
For rotation component a, and gripper state agripper, We query the triplane features at the predicted
action translation position by interpolating the three planes and aggregating the resulting features by
summation. The resulting feature is then passed through a lightweight MLP to predict discretized
rotation Euler angles and the binary gripper open/close state, both supervised using cross entropy
loss with respect to the ground-truth labels. The final fine-tuning loss is formulated as

Lﬁnetune = )\transCE(atranSa étrans) + )\rotCE(arou érot) + )\gn‘pperCE(agrippera égripper) (7)

where Airans, Aror and Agripper are the predicted action translation, rotation and gripper state respectively.
During inference, the predicted orthogonal plane-wise heatmaps are first broadcast and summed
across axes to form a 3D heatmap over the workspace. The spatial location with the highest activation
is selected as the predicted position of the end-effector for the next keyframe. This position is
then used to query the triplane representation for subsequent rotation and gripper state prediction,
following the same decoding procedure as during training.

4 Experiments

4.1 Simulation Experiments

Environmental setup. We conduct simulation experiments on two challenging robotic manipulation
benchmarks: RLBench [21] and Colosseum [32]. All experiments utilize a 7-DoF Franka Emika
Panda robot arm equipped with a parallel gripper, mounted on a fixed tabletop setup. The input
observation at each time step consists of four calibrated RGB-D images captured from the front, left
shoulder, right shoulder, and wrist viewpoints of the robot, following prior works [36, 13]. We collect
100 expert demonstrations per task for training on both benchmarks.

For RLBench, we consider two widely adopted evaluation settings: a 18-task subset from recent
works [36, 13, 12, 33], and a 71-task setting covering all executable tasks in the suite. For the latter,
we follow SPA [47] to divide the tasks into two groups for evaluation. For both settings, each task is
evaluated over 25 rollout episodes, and we report the average task success rate. Colosseum [37] is
a benchmark for evaluating the generalization capabilities of manipulation policies under 12 types
of environmental perturbations across 20 tasks, including changes in object color, texture, size, and
lighting. For training, we use the 100 expert demonstrations collected in the unperturbed environment
for each task. During test time, for each task, we separately apply each of the 12 perturbation types,
and rollout 25 episodes per perturbation. We report the average success rate across each perturbation
category to assess the robustness of the policy to different types of environmental changes.

Comparisons and baselines. We compare the proposed method against various baselines across
both benchmarks. For the RLBench benchmark, we compare our method against both different
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Table 1: Evaluation results on 18 RLBench tasks. Each task is evaluated with 25 rollouts under 5
different seeds. We report the average success rate and standard deviation for all tasks.

policy architectures and pretraining strategies. In the 18-task setting, we primarily evaluate against
previous state-of-the-art policy models. On the 71-task setting, we mainly adopt the strong RVT-
2 [12] architecture for all methods and replace its Transformer backbone with various pretrained
visual models to compare different pretraining strategies, including 2D pretraining methods such
as MVP [43] and VC-1 [28], and 3D pretraining methods such as SPA [47]. For the Colosseum
benchmark, we compare against state-of-the-art baselines that evaluate policy generalization under
different domain shifts. The comparison includes three pretraining-based approaches including
MVP [43], VC-1 [28] and 3D-MVP [33], as well as RVT [13] architecture training from scratch.

Implementation details. During both pretraining and fine-tuning stages, we apply SE(3) augmen-
tations to the input point clouds, camera poses, and action labels. Specifically, we perform random
translations along the x, y, and z axes by up to 0.125 m, and random rotations around the z-axis by up
to 45 degrees. The triplane grid is constructed with a resolution of 16 x 16 x 16. For pretraining, we
train the model for ~60k steps, while for fine-tuning on downstream tasks, we train for an additional
~30k steps. In both stages, we use a batch size of 256 and set the initial learning rate to 1 x 10~%
with cosine decay schedule. Training is conducted using 8§ NVIDIA RTX 3090 GPUs.

Results on RLBench. We report the average success rates across the 18 RLBench tasks in Tab.
Our method significantly outperforms existing state-of-the-art approaches, including RVT-2 [12] and
3D Diffuser Actor [24]. Notably, compared to the baseline RVT [13] model, DynaRend achieves
an average success rate improvement of 32.3%. Even relative to RVT-2, a two-stage variant of
RVT that incorporates additional refinement, our method still shows noticeable gains. In addition to
performance gains, DynaRend also exhibits superior efficiency. Our model achieves the best trade-off
between success rate and inference speed when compared to other baseline methods, demonstrating
strong manipulation performance without sacrificing computational efficiency.

We further evaluate the scalability of our ap-

proach on the larger 71-task RLBench set- Method Group 1 33) Group 2 (36)  Ave. SR-
ting, comparing DynaRend against RVT-2 mod- twﬁgéifﬁ 0] 737 542 63.9
els with various pretraining methods. The re- MAE [14] 78.3 57.7 68.0
sults, summarized in Tab. 2, demonstrate that EINOVZ[ 1 7§-§ gg-l gg-é
DynaRend consistently outperforms existing ap- Mli,lg % } ;6:2 56:; 66.2
proaches, achieving an average improvement VC-11[2¢] 80.1 55.7 67.9
of 8.1% over two-stage baselines. These base- SPA [47] 80.5 61.2 70.8
lines include both 2D pretraining methods (e.g.,  single-stage

MVP [43], VC-1 [28]) and 3D pretraining meth- RVT [13] 71.9 50.4 61.1
ods (e.g., SPA [47]), all implemented within __>Y"aRend 814 8 766
the two-stage RVT-2 [12] model. Additionally, Table 2: Results on 71 RLBench tasks.

DynaRend achieves a 25.2% improvement over

the single-stage RVT baseline [13]. Moreover, unlike prior methods that rely on large-scale external
pretraining datasets, our method is pretrained solely on task-relevant multi-view RGB-D data without
additional external supervision. This highlights the efficiency and task-adaptiveness of DynaRend,
making it practical for scalable deployment in real-world setups.
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Results on COLOSSEUM. We present the results on the Colosseum benchmark in Fig. 4. Com-
pared to existing 2D pretraining methods, such as MVP [43] and R3M [30], as well as 3D pretraining
approaches like 3D-MVP [33], DynaRend achieves consistently higher success rates across most
categories of environmental perturbations. Additionally, when compared to the RVT baseline trained
from scratch, DynaRend demonstrates significantly greater robustness to various types of environ-
mental variations. In particular, our method shows notable improvements in scenarios involving
object and environment texture variations. We attribute these gains to the robust spatial and physical
priors captured during the 3D-aware masked future rendering pretraining, which enables the policy to
better generalize to unseen domain shifts without requiring domain randomization during training.

4.2 Ablation Study & Analysis

Impact of reconstruction and prediction. We study the effectiveness of pretraining and the
contribution of each individual objective, namely reconstruction and future prediction, by selectively
enabling them during the pretraining stage. As shown in Tab. 3, we report the average success rates
across the 18 RLBench tasks under four configurations: (1) training the policy model from scratch
without any pretraining; (2) pretraining with only the reconstruction objective; (3) pretraining with
only the future prediction objective; and (4) pretraining with both objectives combined. The results
indicate that pretraining consistently improves downstream policy performance, showcasing the
effectiveness of the proposed pretraining strategy. Among the two objectives, future prediction yields
greater gains than reconstruction alone. Importantly, combining both objectives leads to the best
performance, highlighting their complementary roles: reconstruction helps the model capture spatial
geometry, while future prediction encourages learning of future dynamics critical for manipulation.

Impact of mask ratio. Additionally, we perform an abla-
tion study on the effect of the masking ratio applied to the
triplane features in Fig. 3. Removing masking entirely or ap-
plying an excessively high mask ratio both lead to degraded
performance. Introducing a moderate level of masking im-
proves generalization by preventing overfitting to specific
camera views. In contrast, a high mask ratio hampers the
model’s ability to reconstruct meaningful and coherent 3D 0.0 0.2 0.4 06 0.8
representations during pretraining, leading to a larger gap Mask Ratio

between the pretraining and fine-tuning stages. Figure 3: Ablation on mask ratio.
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Impact of different rendering objectives. In Tab. 3, we compare the impact of different rendering
objectives used during pretraining on downstream task performance. We evaluate the contribution
of each loss term, including RGB reconstruction, semantic alignment, and depth supervision, by
selectively enabling them and measuring the resulting average success rate across the 18 RLBench
tasks. Our results indicate that both the RGB loss and semantic loss are critical for learning effective
3D representations, directly influencing the quality of the learned features, which in turn affects the
performance of downstream policy. The depth supervision also provides moderate improvements,



though its contribution is less significant. We hypothesize that the triplane representation is derived
from depth-projected point clouds, and thus already encodes explicit 3D information to some extent.

Impact of target view augmentation. We further conduct an ablation on the target view aug-
mentation strategy, as shown in Tab. 3. Incorporating synthetic views during pretraining helps
mitigate overfitting to the limited camera viewpoints and encourages the model to learn more view-
invariant and robust 3D representations that better capture spatial geometry. This leads to a noticeable
improvement in downstream success rates, confirming the benefit of view diversity in supervision.

4.3 Real-world Experiments

Environmental setup. We evalu-
ate our method on five real-world

. . R Orbbec Femto Bolt
robotic manipulation tasks and com- (Left)
pare it against prior state-of-the-art -
approach. All experiments are con-
ducted using a Franka Research 3
robot arm equipped with a parallel
gripper, mounted on a fixed table-
top setup. For visual input, we em-
ploy two calibrated Orbbec Femto
Bolt RGB-D cameras, mounted to
the left and right of the robot. For
each task, we collect 30 expert
demonstrations, with spatial con-
figurations of objects randomized
across episodes. Some tasks include

multiple variants involving differ- Fjgure 5: Real-world setup and task examples. We evaluate
ent target objects and instructions. o five manipulation tasks: Put Item in Drawer, Close Pot,

Additionally, during testing, we in-  gtack Blocks, Sort Shape, Stack Cups.
troduce distractor objects into the

scenes to further evaluate the robustness of the learned policy under challenging and diverse condi-
tions. Detailed descriptions of each task are provided in the appendix. We pretrain our model on the
collected real-world dataset for 30k steps with augmented views and fine-tune it for an additional 10k
steps. The training hyperparameters are kept consistent with the simulation experiments.

Orbbec Femto Bolt

(Right) ) 5 N

Franka
Research 3\\

0

(a) Real-world Setup (b) Real-world Tasks

Quantitative results. In Tab. 4, Put Item Stack Sort Close Stack Avg.

we report the average success rates inDrawer  Blocks ~ Shapes  Pot  Cups S.R.
across the five real-world tasks. The  — ¢ 0] 20 50 30 5 20 37
results show that our method con- Ryt (/3] 25 40 5 55 5 26
sistently outperforms prior method. ~ RVT-2[12] 45 60 10 60 15 37
Notably, on tasks involving distrac- _DynaRend 65 60 35 8 4 57
t.0r Ot.)]eCtS’ RVT-2 s.truggles to dis- Put Item Stack Sort Close Stack  Avg.
tinguish between different unseen in Drawer* Blocks* Shapes* Pot*  Cups* S.R.
items, leading to frequent failu.re 3DA 1] 20 15 25 20 0 20
cases. In contrast, our method main-  RVT[13] 5 15 0 25 5 10
tains robust performance, benefit-  RVT-2[17] 15 10 10 45 0 16
DynaRend 55 55 25 65 25 45

ing from the pretrained spatially
grounded and semantically coher-
ent representations. Additionally, in
long-horizon tasks such as Stack
Cups, DynaRend achieves sizable
performance gains, which we attribute to the joint learning of 3D geometry and future dynamics in
pretraining stage, facilitating effective reasoning and manipulation in physically complex scenarios.

Table 4: Real-world performance. We report the average
success rates over 20 rollouts for each task. * indicates tasks
where additional distractors were introduced during testing.



5 Conclusion and Discussion

In this work, we proposed DynaRend, a representation learning framework that unifies spatial
geometry, future dynamics, and task semantics through masked reconstruction and future prediction
with differentiable volumetric rendering. DynaRend learns transferable 3D-aware and dynamics-
informed triplane representations from multi-view RGB-D data, which can be effectively adapted
to downstream manipulation tasks via action value map prediction. Our extensive experiments
on RLBench, Colosseum, and real-world setups demonstrate significant improvements in policy
performance and robustness under environmental variations. These results highlight the potential of
rendering-based future prediction for scalable and generalizable robot learning.

Limitations and future work. Despite the promising results, DynaRend still relies on an ex-
ternal low-level motion planner to convert the predicted keyframe actions into executable motion
sequences. An important direction for future work is to explore how to directly leverage the triplane
representations for action sequence prediction, enabling more integrated and end-to-end robot control.
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to have some path to reproducing or verifying the results.
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Justification: Code will be released in camera-ready version. All of the simulation data used
in the paper is public-available.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Training details and hyperparameters are attached in the appendix.
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» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to computational resource limitations, we only performed error statistical
analysis on some experiments. For other experiments, due to the large amount of test
rollouts, the variance between different runs is negligible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
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of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The corresponding resources are stated in the paper.
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
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. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in the research.
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e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts
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related to any private or personal data.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: The paper does not pose any safety risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We follow the licenses of open-source code, data, and models.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

Architecture. In this section, we detail the architecture
of the reconstructive model, predictive model, and render k ‘
head. Both the reconstructive and predictive models share ~ triplane resolution 16x16x16

Hyperparameter Value

the same Transformer architecture, which includes recent gggzgiﬁg ?V?:ittﬁ 728
techniques such as SwiGLU [35], RoPE [37], and QK attention heads 12
Norm [16]. To handle the 3D triplane representations, we MLP ratio 4.0
utilize rotary position encoding inspired by M-RoPE [40].  render head width 768
The feature dimensions are split into three parts, corre-  render head layers 2
sponding to the three spatial dimensions of the triplane ~ batch size 256
(i.e.,x —y,x — 2z, and y — z planes). For each dimension, ray batch size ,32
’ . optimizer AdamW

we apply RoPE encoding separately, which allows the  jeaming rate 0.0001
model to effectively learn relative positional relationships  corase sampled points 128
across the three triplane planes. fine depth sampled points 64

. . fine uniform sampled points 64
The render head takes the triplane features, interpolated Apred 1.0
according to the sampled points, as input and outputs the Arecon 1.0
corresponding density, RGB values, and semantic features.  Argb 1.0
The render head is implemented as two MLP layers with isem (?611

depth .

residual connections. Each layer consists of a linear layer,
followed by layer normalization and a ReLU activation
followed by a linear layer. This architecture enables effi-
cient feature processing and representation learning for both the reconstruction and prediction tasks,
with the same render head shared across both tasks.

Table 5: Hyperparameters.

Additionally, we follow GNFactor [46] by adopting a coarse-to-fine hierarchical structure for render-
ing. In the "fine" network, we apply depth-guided sampling to refine the predictions, improving the
model’s ability to reconstruct and predict scene features, especially at finer levels of detail.

Target view augmentation. In

real-world setups, the limited and

often fixed camera viewpoints pose

a challenge for rendering-based

pretraining. To address this lim-

itgtion, we '1§verage a pre.traine.d  See3D -
visual-conditioned multi-view dif- @

fusion model to generate novel tar- @

get views as additional supervision. @ @

Specifically, we utilize See3D [27],

a large-scale pretrained multi-view Camera Trajectory

video diffusion model. Given input

RGB-D images for a target frame, Figure 6: Target view augmentation pipeline.

we first reconstruct the scene’s

point cloud. We then select an input viewpoint as the base view, from which we sample a new
viewpoint with a random angular offset on a sphere surrounding the center of the scene. The angular
offset is restricted within a maximum range of £30 degrees, as we observe that the quality of the
synthesized novel view images decreases as the offset angle becomes larger. We generate a camera
trajectory consisting of 25 frames, where each frame corresponds to a camera pose interpolated
between the original and new viewpoints. We then use point cloud rendering to project the recon-
structed point cloud onto each frame of the trajectory, producing warped images and corresponding
masks. These warped images and masks, along with the original view, are fed into See3D, which
generates high-fidelity novel-view images. Due to the time required for generating these trajectories,
we augment only the keyframe viewpoints. For each keyframe, we randomly sample four distinct
camera trajectories, generating a total of 100 novel view images per keyframe. In both simulation and
real-world experiments, we maintain fixed camera setups and viewpoints, with the view augmentation
process described above applied consistently.

Warped Images Generated Images

Hyperparameters. We present the hyperparameters used in DynaRend as shown in Tab.
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B Simulation Experiment Details

RLBench-18. For the 18-task setting, we follow PerAct [36] and select 18 RLBench tasks that
involve at least two or more variations in object types, spatial arrangements, or instructions. This
curated subset is designed to evaluate the multi-task generalization capabilities of different agents
under diverse and realistic conditions. Detailed descriptions of each task can be found in Tab.

Task Variation Type # Variations Avg. Keyframes Language Template

open drawer placement 3 3.0 “open the __ drawer"

slide block color 4 4.7 “slide the block to __ target"

sweep to dustpan size 2 4.6 “sweep dirt to the __ dustpan"

meat off grill category 2 5.0 “take the __ off the grill"

turn tap placement 2 2.0 “turn __ tap"”

put in drawer placement 3 12.0 “put the item in the __ drawer"

close jar color 20 6.0 “close the __ jar"

drag stick color 20 6.0 “use the stick to drag the cube onto the __ target"
stack blocks color,count 60 14.6 “stack __ __ blocks"

screw bulb color 20 7.0 “screw in the __ light bulb"

put in safe placement 3 5.0 “put the money away in the safe on the __ shelf"
place wine placement 3 5.0 “stack the wine bottle to the __ of the rack"

put in cupboard category 9 5.0 “put the __ in the cupboard"

sort shape shape 5 5.0 “put the __ in the shape sorter"

push buttons color 50 3.8 “push the __ button, [then the __ button]"
insert peg color 20 5.0 “put the ring on the __ spoke"

stack cups color 20 10.0 “stack the other cups on top of the __ cup"
place cups count 3 11.5 “place __ cups on the cup holder"

Table 6: Details on 18 RLBench tasks.

RLBench-71. For large-scale multi-task evaluation, we follow SPA [47] and divide all executable
tasks in RLBench into two groups, consisting of 35 and 36 tasks respectively. For each group, we
train a language-conditioned multi-task agent. All RVT-2 [12] baselines are implemented using the
same two-stage architecture, differing only in the choice of pretrained vision encoder. All other
components and training hyperparameters remain consistent with the original RVT-2 setup. Reported
results are taken directly from SPA [47].

The 35 tasks in Group 1 include: basketball in hoop, put rubbish in bin, meat off grill,
meat on grill, slide block to target, reach and drag, take frame off hanger, water
plants, hang frame on hanger, wipe desk, stack blocks, reach target, push button, lamp
on, toilet seat down, close laptop 1lid, open box, open drawer, pick up cup, turn tap,
take usb out of computer, play jenga, insert onto square peg, take umbrella out of
umbrella stand, insert usb in computer, straighten rope, turn oven on, change clock,
close microwave, close fridge, close grill, open grill, unplug charger, press switch,
take money out safe.

The 36 tasks in Group 2 include: The 36 tasks in Group 2 include: change channel, tv on, push
buttons, stack wine, scoop with spatula, place hanger on rack, move hanger, sweep to
dustpan, take plate off colored dish rack, screw nail, take shoes out of box, slide
cabinet open and place cups, lamp off, pick and 1ift, take 1id off saucepan, close
drawer, close box, phone on base, toilet seat up, put books on bookshelf, beat the buzz,
stack cups, put knife on chopping board, place shape in shape sorter, take toilet
roll off stand, put umbrella in umbrella stand, setup checkers, open window, open
wine bottle, open microwave, put money in safe, open door, close door, open fridge,
open oven, plug charger in power supply.

Colosseum. Colosseum [32] is a recently proposed benchmark designed to evaluate the gener-
alization capabilities of robotic manipulation policies under diverse domain shifts. It consists of
20 manipulation tasks drawn from the RLBench suite, including: basketball in hoop, close
box, close laptop 1lid, empty dishwasher, get ice from fridge, hockey, meat on grill,
move hanger, wipe desk, open drawer, slide block to target, reach and drag, put money
in safe, place wine at rack location, insert onto square peg, stack cups, turn oven on,
straighten rope, setup chess, scoop with spatula.

Colosseum defines 14 types of perturbation factors to simulate real-world domain shifts. In our
evaluation, we follow the standard setting and apply 12 of these perturbation factors to all 20 tasks
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to systematically assess the robustness and generalization ability of learned policies under unseen
conditions. The 12 perturbations can be categorized into three groups:

¢ Manipulation Object (MO) Perturbation: The manipulation object is the item directly
manipulated by the robot, such as the wine bottle in place wine at rack location.
Manipulation object perturbations include variations in color, texture, and size.

* Receiver Object (RO) Perturbation: The receiver object is task-relevant but not directly
manipulated, such as the rack in the same task. Receiver object perturbations also include
changes in color, texture, and size.

* Background Perturbation: These factors affect the overall scene without modifying task-
relevant objects. They include changes to 1ight color, table color, table texture,
background texture, camera pose, and the addition of distractor objects.

Tab. 7 summarizes the applied perturbations for each task. For more implementation details and
perturbation configurations, please refer to Colosseum [32].

Variation | MO RO MO Color MO Size MO Texture RO Color RO Size RO Texture Object Mass
‘ - - discrete continuous discrete discrete  continuous discrete continuous
basketball in hoop ball hoop 20 [0.75,1.25] 213 20 [0.75,1.15] - -
close box box - 20 [0.75,1.15] - - - - -
close laptop lid laptop - 20 [0.75,1.00] - - - -
empty dishwasher dishwasher plate 20 [0.80,1.00] - 20 [0.80,1.00] 213
get ice from fridge cup fridge 20 [0.75,1.25] 213 20 [0.75,1.00] - -
hockey stick ball 20 [0.95,1.05] - 20 [0.75,1.25] 213 [0.1,0.5]
meat on grill meat grill 20 [0.65,1.15] - 20 - - -
move hanger hanger pole 20 - - 20 - -
wipe desk sponge beans 20 [0.75,1.25] 213 20 - [1.0,5.0]
open drawer drawer - 20 [0.75,1.00] - - - -
slide block to target block - 20 - 213 - - - [1.0,15.0]
reach and drag stick block 20 [0.80,1.10] 213 20 [0.50,1.00] 213 [0.5,2.5]
put money in safe money safe 20 [0.50,1.00] 213 20 - 213 -
place wine at rack location bottle shelve 20 [0.85,1.15] - 20 [0.85,1.15] 213
insert onto square peg peg spokes 20 [1.00,1.50] - 20 [0.85,1.15] 213
stack cups cups - 20 [0.75,1.25] 213 - - -
turn oven on knobs - 20 [0.50,1.50] - - - -
straighten rope rope - 20 - 213 - - - -
setup chess chess pieces  board 20 [0.75,1.25] 213 20 - - -
scoop with spatula spatula block 20 [0.75,1.25] 213 20 [0.75,1.50] 213 [1.0,5.0]

Table 7: Summary of tasks and their perturbation factors. For more details, check Colosseum [32].

C Real-world Experiment Details

Hardware Setup. For the hardware setup, we use a Franka Research 3 robot arm equipped with a
parallel gripper. Visual input is provided by two Orbbec Femto Bolt RGB-D cameras, positioned on
either side of the robot arm. The cameras are calibrated using the kalibr package to determine the
extrinsics between them, while easy handeye package is used to calibrate the extrinsics between the
camera and the robot base-frame. The cameras provide RGB-D images at a resolution of 1280x720
at 30Hz. To prepare the images for model input, we resize the shortest edge to 256 and crop them to
a resolution of 256x256.

Task Variation Type # Variations Avg. Keyframes Language Template

stack cups color 5 11.5 “stack __ cups on __ cup”

stack blocks color 5 12.1 “stack __ blocks on __ block"
sort shape placement 1 54 “put yellow circle in shape sorter"
close pot placement 1 5.7 “put lid on pot"

put item in drawer category 4 8.3 “put __ in drawer"

Table 8: Details on 5 real-world tasks.

Data Collection. The real-world dataset is collected through human demonstrations. Specifically,
for each task and scenario, a human demonstrator kinesthetically moves the robot arm to specify
a series of end-effector poses. Afterward, the robot arm is reset to its initial position, and the
demonstrator sequentially moves it to the specified poses. During this process, the camera streams
and robot arm states are recorded, including end-effector position, joint positions, and joint velocities.
For each task, we collect 30 human demonstrations to train the model.
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basketball in hoop 100 96 100 96 - 100 100 100 100 100 40 100 100
close box 96 84 - - - 92 - 92 88 88 88 96 88
close laptop lid 100 100 - - - 0 - 100 100 96 68 100 96
empty dishwasher 0 0 0 - 0 0 0 0 0 0 0 0 0
get ice from fridge 92 88 96 88 - 80 72 96 100 96 64 92 100
hockey 32 36 36 - 20 44 32 28 36 20 28 28 32

meat on grill 96 100 100 - - 100 - 100 100 100 96 96 100
move hanger 0 0 0 - - - - 0 0 0 8 0 0
wipe desk 0 0 - 0 - 0 - 0 0 0 0 0 0
open drawer 84 68 - - - 68 - 68 72 60 64 68 68

slide block to target 100 100 - 100 - - - 100 100 100 100 100 100
reach and drag 100 96 96 100 100 100 52 100 96 96 60 100 96
put money in safe 56 80 4 60 64 68 - 64 60 68 60 76 68
place wine at rack location 88 80 92 - 80 52 84 80 84 88 96 88 88
insert onto square peg 8 4 12 - 28 16 12 16 0 16 0 8 8
stack cups 72 68 - 52 - 36 - 48 52 60 36 72 56
turn oven on 76 100 - - - 56 - 92 92 96 100 100 88
straighten rope 80 64 - 84 - - - 64 72 68 24 60 80
setup chess 20 0 4 16 - 16 - 16 24 24 12 8 12
scoop with spatula 84 56 96 80 88 96 60 16 88 96 56 88 88

average | 64.2 61.0 53.0 67.6 542 543 515 59.0 63.2 63.6 50.0 64.0 63.4

Table 10: All results on Colosseum benchmark.

Keyframe Discovery. Following the approach of PerAct [36], we use heuristic rules to identify
keyframes from the collected demonstrations. A frame is considered a keyframe if: 1) The joint
velocities are near zero, and 2) The gripper open state has not changed.

Execution. For robot control and motion planning, we use the Franka ROS and Movelt with
RRT-Connect as default planner.

D Additional Results

Additional baselines. We include additional baselines

. Meth P inD Avg. S.R.
in Tab. 9 to further compare the performance of DynaRend cthod retrain Data_ Ave. 5
with existing pretraining methods on the RLBench-18 ?/X};’[ ] Rﬂ\g’ne N gig
tasks under the in-domain setting, where models are pre- L] ene )

. . 3D-MVP [33] RLBench 67.5
trained directly on RLBench-18 data. DynaRend RLBench 83.2

Detailed results. We present the detailed results of all Table 9: Results on 18 RLBench tasks.
tasks in Tab. and Tab.

E Visualizations
In Fig. & and Fig. 10, we present the results of target view augmentation in both the simulator and

real-world environments. Fig. 7 and Fig. 9 showcase the rendering results in the simulator and
real-world settings, respectively.

F Additional Qualitative Analysis

In the supplementary materials, we provide episode rollouts of several representative tasks in the
simulator and real-world demos in the attached videos.
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Method ‘RVT MoCovd MAE DINOv2 CLIP EVA InternViT MVP VC-1 SPA DynaRend

Group 1

basket ball in hoop 100 100 100 100 100 100 100 100 100 100 100
put rubbish in bin 96 100 100 96 96 96 100 96 100 100 100
meat off grill 100 100 100 100 100 100 100 100 100 100 100
meat on grill 88 80 76 76 68 80 72 68 76 80 92
slide block to target 8 0 84 96 24 4 0 100 100 4 100
reach and drag 100 100 96 88 100 96 100 96 100 100 100
take frame off hanger 96 88 88 92 88 84 84 88 88 96 96
water plants 48 64 60 28 64 60 44 52 60 68 56
hang frame on hanger 0 8 4 0 4 8 8 12 4 4 24
wipe desk 0 0 0 0 0 0 0 0 0 0 0

stack blocks 56 60 72 72 68 56 60 84 68 68 80
reach target 96 60 96 88 100 96 80 92 96 92 100
push button 92 100 100 100 100 100 100 100 100 100 100
lamp on 60 88 68 84 88 52 80 28 88 64 100
toilet seat down 100 100 100 100 100 100 100 96 96 100 96
close laptop lid 84 96 96 96 96 84 80 80 96 100 96
open drwaer 92 88 96 92 100 88 88 92 96 96 96
pick up cup 88 92 92 88 96 96 88 96 96 96 96
turn tap 88 88 84 84 96 88 92 96 100 100 96
take usb out of computer 100 100 100 100 100 100 100 100 88 100 92
play jenga 100 96 96 96 100 96 100 96 96 96 100
insert onto square peg 8 28 84 80 44 88 40 64 92 84 24
take umbrella out of umbrella stand | 92 92 100 100 92 100 96 100 100 100 100
insert usb in computer 8 12 20 20 24 24 20 16 8 64 12
straighten rope 56 56 44 72 80 48 72 52 60 84 56
turn oven on 92 96 96 96 96 96 96 100 100 100 96
change clock 64 64 68 48 68 64 72 64 60 68 68
close microwave 100 100 100 100 100 100 100 100 100 100 100
close fridge 92 80 92 92 88 92 96 88 92 100 96
close grill 92 96 96 96 96 96 96 100 100 96 96
open grill 76 100 100 100 100 100 100 96 100 100 96
unplug charger 48 44 32 48 36 48 40 40 44 44 96
press switch 84 92 92 88 72 76 84 76 88 92 76
take money out safe 80 100 96 100 100 100 100 100 100 100 100

Group 2

change channel 0 0 8 4 0 0 4 0 0 4 100
tvon 0 4 8 0 4 4 8 4 4 8 100
push buttons 0 12 4 4 0 0 0 0 12 4 96
stack wine 12 12 16 40 4 12 0 28 8 28 20
scoop with spatula 0 0 0 0 0 0 0 0 0 0 92
place hanger on rack 0 0 0 0 0 0 0 0 0 0 100
move hanger 72 0 0 0 0 0 0 0 0 0 88
sweep to dustpan 48 92 96 96 96 92 100 100 88 96 100
take plate off colored dish rack 922 96 100 96 92 84 96 88 92 96 84
screw nail 32 52 36 36 36 36 52 32 32 48 56
take shoes out of box 4 20 28 24 36 40 12 32 36 36 8

slide cabinet open and place cups 0 0 0 0 0 0 4 0 0 4 0

lamp off 96 100 96 96 100 96 96 100 100 100 100
pick and lift 72 88 96 92 96 92 80 96 96 96 88
take lid off saucepan 100 100 100 100 100 100 100 100 100 100 100
close drawer 100 100 100 100 100 96 100 100 100 100 100
close box 96 92 92 96 96 100 96 100 96 100 88
phone on base 100 100 100 100 100 100 96 100 100 100 100
toilet seat up 72 80 88 100 88 88 80 88 92 96 24
put books on bookshelf 28 12 24 24 28 28 20 20 28 16 28
beat the buzz 88 88 92 96 88 92 84 88 88 100 100
stack cups 24 40 56 52 52 48 56 64 68 64 68
put knife on chopping board 80 72 76 68 72 80 88 80 76 80 72
place shape in shape sorter 12 20 36 32 28 36 20 44 36 56 48
take toilet roll off stand 100 100 92 76 96 92 88 84 92 96 84
put umbrella in umbrella stand 20 8 0 12 12 0 4 12 8 12 12
setup checkers 44 76 80 68 68 88 92 92 80 80 92
open window 92 96 96 100 100 96 100 96 100 100 92
open wine bottle 96 80 100 88 92 92 88 96 88 88 100
open microwave 72 100 100 88 96 100 80 96 100 100 84
put money in safe 100 96 100 88 92 100 96 100 100 100 96
open door 88 100 96 96 96 96 96 84 96 96 92
close door 12 32 68 56 60 80 20 24 20 60 0

open fridge 24 44 52 48 44 36 64 52 32 64 68
open oven 0 8 4 12 8 4 20 4 4 16 80
plug charger in power supply 40 32 36 32 24 44 36 24 32 60 28

Table 11: All results on 71 RLBench tasks.
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Figure 7: Visualization of rendered results in simulation.
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Figure 8: Visualization of target view synthesis in simulation.
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Figure 10: Visualization of target view synthesis in the real world.
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