
Multi-Modal Attention Framework for Underwater Bioacoustic Denoising and Recognition

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Automated monitoring of marine mammals in the St. Lawrence Estuary faces
2 extreme challenges: calls span low-frequency moans to ultrasonic clicks, often
3 overlap, and are embedded in variable anthropogenic and environmental noise. We
4 introduce a multi-modal, attention-guided framework that *first* segments spectro-
5 grams to generate soft masks of biologically relevant energy and *then* fuses these
6 masks with the raw inputs for multi-band, denoised classification. Image and mask
7 embeddings are integrated via mid-level fusion, enabling the model to focus on
8 salient spectrogram regions while preserving global context. Using real-world
9 recordings from the Saguenay–St. Lawrence Marine Park Research Station in
10 Canada, we demonstrate that segmentation-driven attention and mid-level fusion
11 improve signal discrimination, reduce false positive detections, and produce reliable
12 representations for operational marine mammal monitoring across diverse envi-
13 ronmental conditions and signal-to-noise ratios. By integrating attention-guided
14 denoising with biodiversity-oriented evaluation metrics, our framework transforms
15 raw hydrophone data streams into robust, operationally actionable presence sig-
16 nals, thereby supporting marine biodiversity conservation and climate-adaptation
17 monitoring initiatives.

18

1 Introduction

19 The St. Lawrence Estuary is an acoustic habitat where protected marine mammal species must
20 maintain essential biological functions, communication, navigation, and foraging, in the presence
21 of increasing anthropogenic noise. Ship noise can mask calls and echolocation, disrupt essential
22 behavioral sequences, and induce physiological stress[20] with ecosystem-level consequences when
23 behaviors change over space and time.

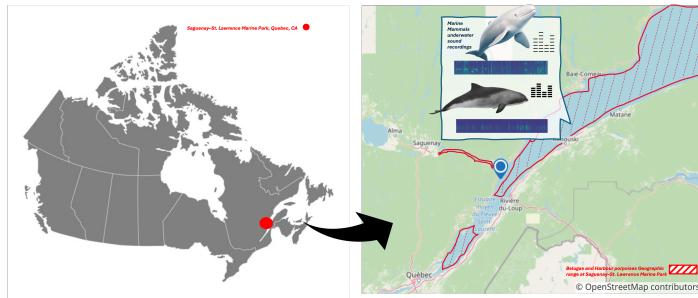


Figure 1: Saguenay–St. Lawrence Marine Park (SSLMP) representation.

24 This acoustic degradation, exacerbated by the effects of climate change on marine soundscapes
 25 and species distributions, creates time-critical monitoring challenges that require robust automated
 26 detection systems capable of real-time assessment of species presence, behavioral state changes, and
 27 climate-driven population dynamics to inform adaptive conservation interventions. [22, 23]
 28 These impacts have motivated concrete mitigation and policy efforts (e.g., quieter ship design,
 29 operational routing, and speed management) and targeted recovery planning for St. Lawrence
 30 species such as beluga. Our focus in this work is to turn raw hydrophone data into reliable presence
 31 signals that support biodiversity protection, monitoring, and adaptation actions in this sensitive
 32 region. **Our contributions:** First, we propose an end-to-end multi-modal framework that segments
 33 spectrograms to produce pseudo attention masks and fuses mask and spectrogram embeddings to
 34 guide denoising and enhance biologically relevant signal recognition. Then we evaluate real-world
 35 recordings collected by the Saguenay–St. Lawrence Marine Park Research Station, emphasizing cross-
 36 season robustness and per-class precision, with control for empty signals. Finally, we demonstrate
 37 that segmentation-driven attention and mid-level fusion improve precision recall, stabilize detection
 38 thresholds, and produce robust field-ready representations for underwater bioacoustic monitoring.

39 2 Dataset description and problem setup

40 **Dataset description** We used an exclusive subset of the Saguenay - St. Lawrence Marine Park
 41 (SSLMP) monitoring dataset [7], a long-term multimodal collection designed to study the impact
 42 of maritime traffic on endangered marine mammals. Data come from two complementary sources:
 43 bottom-moored hydrophones (passive acoustic monitoring, PAM) that provide $\sim 1,500$ hours of
 44 continuous recordings and shore-based surveys (LBS) that provide ~ 500 hours of visual observations
 45 over four years. These data streams are synchronized, producing species-level annotations in [7] for
 46 belugas (*Delphinapterus leucas*) and harbour porpoises (*Phocoena phocoena*). Our subset consists
 47 of $\sim 10,000$ five-minute segments manually annotated [7] with species presence and sound types
 48 (beluga whistles and clicks, 10–100 kHz; porpoise narrowband clicks, 50–150 kHz). The recordings
 49 also capture vessel noise and other natural and anthropogenic sounds spanning 10 Hz–150 kHz. The
 50 dataset is challenging due to environmental noise, overlapping calls, and domain shifts across seasons,
 51 sites, and sensors, making it a unique benchmark for machine learning in underwater bioacoustics.

52 **Problem setup** We work with a dataset of raw marine acoustic recordings containing vocalizations
 53 from multiple species. Our goal is to automatically recognize marine mammal vocalizations in
 54 noisy recordings, addressing challenges such as variable signal-to-noise ratios, overlapping calls, and
 55 environmental noise. We explore both multi-label and multi-class classification, before introducing
 56 attention mask driven framework using spectrogram-based representations of the audio data.

57 **Formulation** Formally, let $x(t)$ denote a raw acoustic waveform. The signal is first transformed
 58 into a spectrogram via a time-frequency representation (STFT). A segmentation model \mathcal{M}_{seg} predicts
 59 a pseudo-attention mask highlighting relevant spectro-temporal regions. Both the spectrogram and the
 60 mask are then encoded into embeddings, which are fused to guide denoising and enhance biologically
 61 relevant signals. Finally, a classifier \mathcal{C} maps the fused representation to the probabilities of the target
 62 class. Formally, the pipeline is:

$$\hat{y} = \mathcal{C}\left(\text{Fuse}\left(\mathcal{E}_{\text{spec}}(\mathcal{T}(x(t))), \mathcal{E}_{\text{mask}}(\mathcal{M}_{\text{seg}}(\mathcal{T}(x(t))))\right)\right), \quad \hat{y} \in \mathbb{R}^K \quad (1)$$

63 where \mathcal{T} is the STFT, $\mathcal{E}_{\text{spec}}$ and $\mathcal{E}_{\text{mask}}$ are the embedding functions for the spectrogram and mask,
 64 respectively, and $\text{Fuse}(\cdot, \cdot)$ denotes the mid-level embedding fusion.

65 3 Mask-driven classification method

66 **Classification task** The marine mammal acoustic signals were first analyzed by supervised classifi-
 67 cation in spectrogram representations capturing species-specific signatures. Two paradigms were
 68 considered. multi-class classification: and multi-label classification. We evaluated convolutional,
 69 modern CNN, and transformer-based architectures using standard metrics,

70 As a transfer learning strategy [14], ImageNet normalization was applied to all inputs, given that
 71 most models were pretrained on this dataset.

72 Multi-class classification proved more suitable for our dataset, while noise and artifacts still limit
 73 the detection of subtle spectro-temporal patterns (see Fig. 6 and Tab. 3), motivating the denoising
 74 framework introduced next.

75 3.1 Automatic acoustic denoising framework

76 These difficulties discussed above can be largely attributed to noise that distorts the essential fine-
 77 grained temporal and spectral structures. To overcome these challenges, we introduce an automatic
 78 acoustic denoising framework designed to preprocess raw audio recordings prior to classification.
 79 This framework integrates signal transformation [2], mask-based denoising [1], and classification
 80 into a unified pipeline, thus improving robustness by clarifying relevant acoustic patterns through
 81 "pseudo-attention" masks and attention mechanisms.

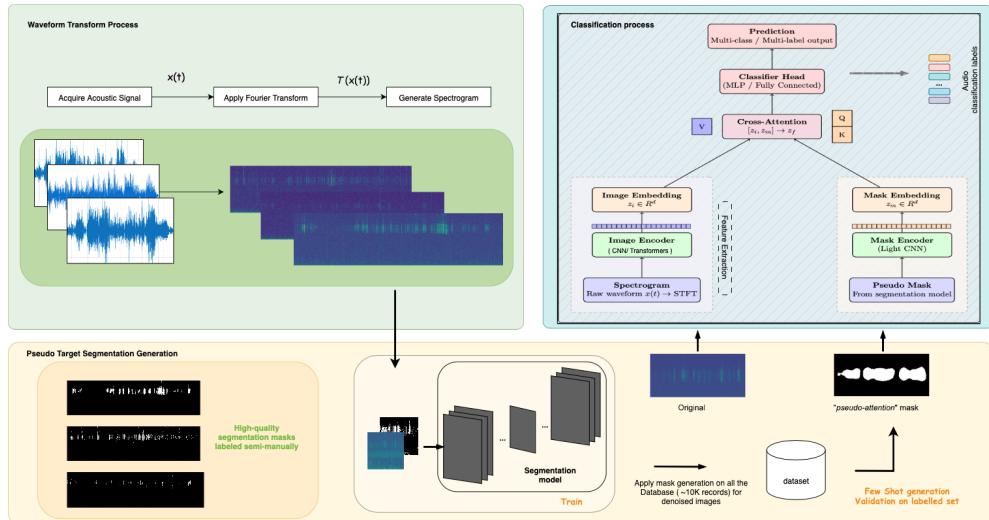


Figure 2: End-to-end framework for automatic denoising and classification from raw audio.

82 **Framework description** Raw audio signals are first converted into time–frequency representations
 83 using the STFT. This operation decomposes the signal into overlapping windows. The resulting
 84 spectrograms are then used as the primary visual input for the denoising and classification stages.
 85 We apply a denoising methodology inspired by few-shot learning and leveraging the capabilities of
 86 models such as DeepLabV3 [21]. A substantial training set is constructed to train a segmentation
 87 model that generates "pseudo-attention" masks over spectrograms. These masks are then leveraged
 88 in a multi-modal fusion framework, where both the raw spectrogram and its corresponding mask
 89 embedding are jointly encoded. The fused representation guides the network to focus on informative
 90 regions, effectively denoising the signal and enhancing underwater bioacoustic recognition. This
 91 approach is inspired by previous work in the audio denoising domain, notably the study on bird
 92 sounds [1], which demonstrated the effectiveness of deep visual denoising techniques in improving
 93 classification performance.

94 **Audio transformation and semi-automatic mask labelisation.** The raw audio recordings are
 95 first converted to spectrogram representations using standard time-frequency analysis techniques.
 96 The spectrograms serve as the primary input for the subsequent denoising and classification stages.
 97 Once the spectrogram has been obtained, in order to efficiently annotate large collections, we adopt
 98 a semi-automatic labeling approach. First, an initial set of candidate regions is generated using
 99 signal processing techniques, such as edge detection and adaptive thresholding, to highlight potential
 100 patterns of interest. This allows us to identify and isolate prominent acoustic features. These
 101 preliminary masks are then presented to the annotator through an interactive interface, allowing
 102 manual refinement and correction, resulting in a high-quality training set (200 images) from which
 103 the denoising model can generalize mask predictions across the dataset.

104 **Few-shot learning for denoising.** Leveraging the high quality mammal sound pattern masks, we
 105 train a denoising model using a few-shot learning strategy to generalize from limited annotations.
 106 Architectures such as DeepLabV3 capture both fine-grained time–frequency structures and broader
 107 contextual patterns to distinguish signal from noise. In addition, we apply image horizontal flip
 108 augmentation to double the size of the training dataset. Once trained, the model predicts masks across
 109 the full dataset, enabling scalable denoising without exhaustive manual labeling.

Figure 3: Spectrogram (**left**), high-quality segmentation mask (**middle**), and generated pseudo-attention mask (**right**) for a recording of porpoise clicks.

110 **Mask-guided multimodal model for classification.** After training our segmentation model on
 111 spectrograms, we obtain pseudo-attention masks that highlight regions most likely to contain relevant
 112 acoustic events. So, we treat it as an auxiliary modality [13]. Intuitively, the mask acts as a form
 113 of attention-based denoising: it emphasizes salient regions of the spectrogram while suppressing
 114 background noise and irrelevant structures (see fig. 3). Concretely, we design a multimodal fusion
 115 framework with two parallel encoding branches: **Spectrogram encoder**, a ResNet50 or audio
 116 transformer backbone processes the raw spectrogram into a high-level representation. **Mask encoder**,
 117 a lightweight CNN encodes the corresponding segmentation mask into a compact embedding. Both
 118 embeddings are projected into a common latent space and then fused at an intermediate stage (mid-
 119 fusion). Fusion can be realized either by simple concatenation or through a cross-modal attention
 120 mechanism, where the spectrogram embedding serves as the query and the mask embedding provides
 121 keys and values. This enables the network to adaptively weigh spectro-temporal regions conditioned
 122 on the mask. Then, the fused representation is passed to a classification head, producing multi-class
 123 predictions. This design preserves a residual path from the spectrogram encoder to the classifier,
 124 ensuring that the system does not overly rely on potentially noisy masks while still exploiting their
 125 guidance signal. In doing so, we approximate the role of human attention in auditory scene analysis:
 126 focusing on the most informative patterns while filtering out distracting background components.

127 4 Results

128 4.1 Denoising process for marine mammals recognition

129 To evaluate the contribution of the pro-
 130 posed multimodal denoising frame-
 131 work, we compared it with stan-
 132 dard image-only classification mod-
 133 els trained on the same data set. Ta-
 134 ble 1 reports the accuracy and macro-
 135 F1 in ResNet50[11], ConvNeXt[10],
 136 ViT[12, 8], and our cross-attention fu-
 137 sion model using generated or high-
 138 quality (HQ) segmentation masks. In
 139 general, the results show that the mul-
 140 timodal approach substantially outperforms all baselines. Although ViT already provides strong
 141 performance among unimodal models (78. 8% accuracy), suggesting that attention mechanisms are
 142 better suited to model long-range temporal and spectral dependencies, the use of generated masks
 143 with cross-attention further improves the results to 83. 7%. The best performance is obtained with HQ
 144 masks (89.7% accuracy, 89.0% macro-F1), highlighting the benefit of leveraging accurate structural

Model	Accuracy	F1 macro
ResNet50	0.588	0.562
ConvNeXt	0.625	0.591
ViT	0.788	0.787
Multimodal (Gen. masks)	0.837	0.816
Multimodal (HQ masks)	0.897	0.890

Table 1: Comparison of baseline image-only models and the proposed multimodal approach with cross-attention using either generated or a **subset** with high-quality masks.

145 priors for denoising. This indicates that cross-attention enables the model to effectively exploit mask
146 information to focus on relevant acoustic structures, and helps for the robustness of the classification.

147 **4.2 Ablation study of fusion methods**

Fus. strategy	High-Quality Masks				Generated Masks			
	Train Loss	Train Acc.	Val. Loss	Val. Acc.	Train Loss	Train Acc.	Val. Loss	Val. Acc.
Concat	0.370	0.887	0.559	0.762	0.365	0.877	0.678	0.825
Gated	0.401	0.868	0.792	0.713	0.472	0.833	0.857	0.762
xAttn	0.253	0.912	0.406	0.900	0.427	0.843	0.695	0.838

Table 2: Comparison of mid-fusion strategies on the validation set using either high-quality (HQ) or generated (Gen.) masks. Cross-attention consistently achieves the best validation accuracy. (Training with RTX A100 GPU \sim 15min per method)

148 We conducted an ablation study on the fusion strategy, comparing simple concatenation, gated residual
149 fusion, and cross-attention; the results (Table 2) show that cross-attention achieves the best validation
150 accuracy. These results suggest that, while simple and gated fusion capture some complementary
151 information between the image and the mask but is more efficient with generated masks, introducing
152 cross-attention enables more effective interaction between modalities.

153 **5 Discussion**

154 While our framework demonstrates promising results, it inherits some limitations from the signal
155 transformation choices. In particular, STFT can introduce resolution trade-offs and information
156 loss, which may restrict the model’s ability to fully capture the complexity of marine mammal
157 vocalizations. Moreover, our study did not incorporate explicit uncertainty quantification, an aspect
158 that is increasingly important for trustworthy machine learning in ecological monitoring. Future work
159 will address these issues by exploring alternative time–frequency representations, improving attention
160 mechanisms, and integrating methods to quantify predictive uncertainty, thus making the framework
161 more robust and reliable for scientific and conservation-oriented applications.

162 **6 Conclusion**

163 We introduced a segmentation-guided multimodal framework that consistently improves recognition
164 of marine mammal vocalizations under real-world noise and overlap. By fusing spectrogram and
165 mask embeddings via mid-level cross-attention, the method produces reliable and interpretable
166 presence signals that align with independent visual surveys. This establishes a principled route to
167 scientific inference from raw acoustic signals, with immediate relevance to ecology and broader
168 acoustic sensing problems. Overall, our results demonstrate that deep learning models can extract
169 reliable presence signals that directly support species monitoring and conservation, illustrating how
170 these techniques can be effectively harnessed for scientific and climate-relevant ocean studies.

171 **References**

172 [1] Zhang, Y., Li, J. (2022). BirdSoundsDenoising: Deep Visual Audio Denoising for Bird Sounds.
173 arXiv:2210.10196 [cs.SD].

174 [2] Xu, J., Xie, Y., Wang, W. (2024). Underwater Acoustic Target Recognition based on Smoothness-
175 inducing Regularization and Spectrogram-based Data Augmentation. arXiv:2306.06945 [cs.SD].

176 [3] Jiang, Z., Soldati, A., Schamberg, I., Lameira, A. R., Moran, S. (2024). Automatic Sound Event
177 Detection and Classification of Great Ape Calls using Neural Networks. arXiv:2301.02214
178 [eess.AS].

179 [4] Juodakis, J., Marsland, S. (2021). Wind-robust sound event detection and denoising for bioacous-
180 tics. arXiv:2110.05632 [stat.AP].

181 [5] Denton, T., Wisdom, S., Hershey, J. R. (2021). Improving Bird Classification with Unsupervised
182 Sound Separation. arXiv:2110.03209 [eess.AS].

183 [6] Mishachandar, B., Vairamuthu, S. (2021). Diverse ocean noise classification using deep learning.
184 Applied Acoustics, 181, 108141. doi:10.1016/j.apacoust.2021.108141.

185 [7] Bernier-Breton C. Écouter et observer les mammifères marins pour les étudier sans déranger:
186 Approche combinée pour mieux comprendre l'utilisation de l'habitat par le béluga et le marsouin
187 commun dans le parc marin du Saguenay–Saint-Laurent [thèse de maîtrise en océanographie]:
188 Université du Québec à Rimouski; 2025.

189 [8] Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H. (2020). Training
190 data-efficient image transformers & distillation through attention. arXiv:2012.12877 [cs.CV].

191 [9] Sun, B., Luo, X. (2023). Underwater acoustic target recognition based on automatic feature and
192 contrastive coding. IET Radar, Sonar & Navigation.

193 [10] Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S. (2022). A ConvNet for the
194 2020s. arXiv:2201.03545 [cs].

195 [11] He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep Residual Learning for Image Recognition.
196 arXiv:1512.03385 [cs].

197 [12] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
198 M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2021). An Image is Worth
199 16x16 Words: Transformers for Image Recognition at Scale. arXiv:2010.11929 [cs].

200 [13] Bayoudh, K., Knani, R., Hamdaoui, F., et al. (2022). A survey on deep multimodal learning
201 for computer vision: advances, trends, applications, and datasets. The Visual Computer, 38,
202 2939–2970. doi:10.1007/s00371-021-02166-7.

203 [14] Bengio, Y., Courville, A., Vincent, P. (2013). Representation Learning: A Review and New
204 Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828.
205 doi:10.1109/TPAMI.2013.50.

206 [15] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q. (2020). A Comprehen-
207 sive Survey on Transfer Learning. arXiv:1911.02685 [cs].

208 [16] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2009). ImageNet: A Large-Scale
209 Hierarchical Image Database. Proceedings of the IEEE Conference on Computer Vision and
210 Pattern Recognition (CVPR), 248-255. doi:10.1109/CVPR.2009.5206848.

211 [17] Gong, Y., Chung, Y. A., & Glass, J. (2021). AST: Audio spectrogram transformer. In Interspeech
212 2021 (pp. 571-575).

213 [18] Minyoung Huh, Pulkit Agrawal, & Alexei A. Efros. (2016) What makes ImageNet good for
214 transfer learning? Berkeley Artificial Intelligence Research (BAIR) Laboratory

215 [19] Robin, O., Cauchy, P., Mercure-Boissonnault, P., Catineau, H., Mérindol, J., St-Onge, G.,
216 Gervaise, C., Gauthier-Marquis, J.-C., Kesour, K., Bazinet, M.-L., Lafrance, S. (2022) The
217 MARS project: Identifying and reducing underwater noise from ships in the St. Lawrence
218 Estuary. Canadian Acoustics, Vol. 50, No. 3.

219 [20] Erbe, C., Marley, S. A., Schoeman, R. P., Smith, J. N., Trigg, L. E., & Embling, C. B. (2019) The
220 Effects of Ship Noise on Marine Mammals—A Review. *Frontiers in Marine Science*, 6(October).

221 [21] Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017) Rethinking Atrous Convolution
222 for Semantic Image Segmentation. *arXiv preprint arXiv:1706.05587*.

223 [22] D. P., Beger M., Boerder K., Boyce D. G., Cavanagh R. D., Cosandey-Godin A., et al. (2019).
224 Integrating climate adaptation and biodiversity conservation in the global ocean. *Sci. Adv.* 5 (11).

225 [23] Laidre, K. L., Stern, H., Kovacs, K. M., Lowry, L., Moore, S. E., Regehr, E. V., ... Ugarte,
226 F. (2015). Arctic marine mammal population status, sea ice habitat loss, and conservation
227 recommendations for the 21st century: Arctic Marine Mammal Conservation. *Conservation
228 Biology*, 29(3), 724–737.

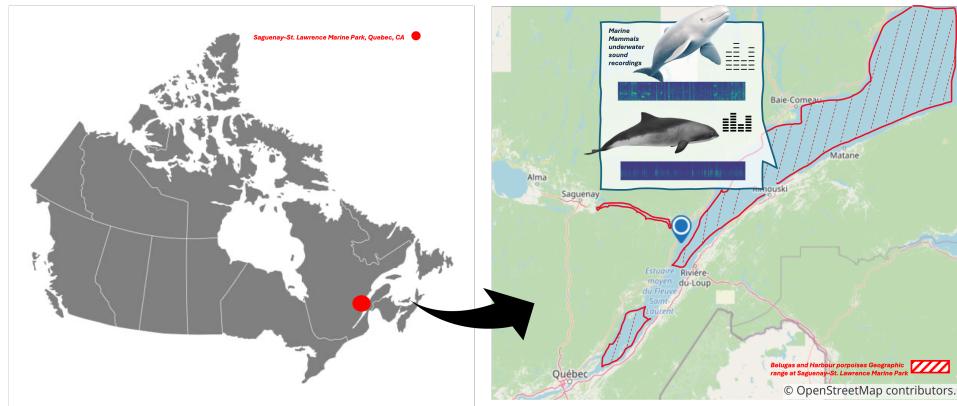


Figure 4: Saguenay-St. Lawrence Marine Park (SSLMP) representation.

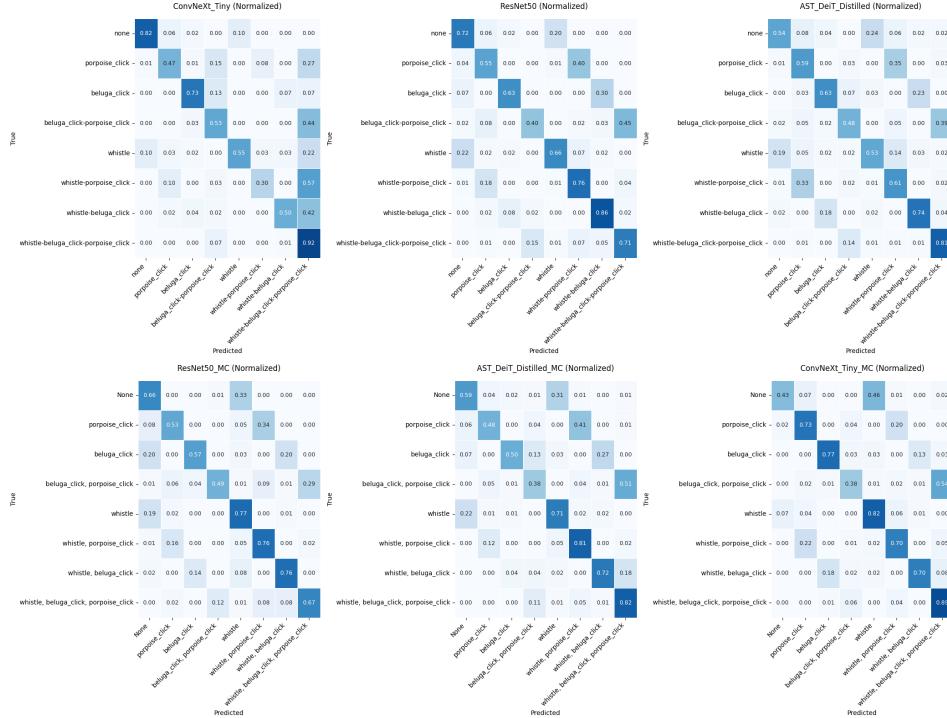


Figure 5: Architecture of the proposed model with two encoding branches and mid-fusion by cross-attention

Table 3: Performance comparison between multi-label and multi-class training approaches before multi-modal approach. *For multiclass (one label per sample): hamming loss is the average number of incorrect predictions per sample. For multilabel (multiple labels per sample): it is the average number of label errors per sample, divided by the number of labels. This metric is not comparable inter training method*

Metric	ConvNeXt-Tiny		ResNet50		Deit-Distilled	
	Multi-Label	Multi-Class	Multi-Label	Multi-Class	Multi-Label	Multi-Class
Hamming Loss	0.1693	0.3310	0.1206	0.3466	0.1427	0.3674
Perfect Accuracy	58.17%	66.90%	66.34%	65.34%	62.45%	63.26%
Whistle						
Precision	0.806	0.61	0.745	0.60	0.730	0.64
Recall	0.891	0.82	0.816	0.77	0.745	0.71
F1-Score	0.847	0.70	0.779	0.68	0.737	0.67
Beluga Click						
Precision	0.672	0.68	0.968	0.63	0.926	0.71
Recall	0.996	0.77	0.921	0.57	0.939	0.50
F1-Score	0.802	0.72	0.944	0.60	0.932	0.59
Porpoise Click						
Precision	0.868	0.68	0.966	0.67	0.925	0.69
Recall	0.985	0.73	0.957	0.53	0.979	0.48
F1-Score	0.922	0.71	0.961	0.59	0.951	0.57

(a) Multi-labels trained classifiers performances.



(b) Multi-classes trained classifiers performances.

Figure 6: Comparison of classifiers trained with multi-labels (top row) vs. multi-classes approaches (bottom row) before integration of attention masks. Values are normalized by the size of the test set and represent the percentage of well classified labels.

230 **NeurIPS Paper Checklist**

231 **1. Claims**

232 Question: Do the main claims made in the abstract and introduction accurately reflect the
233 paper's contributions and scope?

234 Answer: **[Yes]**

235 Justification: The main contribution is the proposition of a framework, with details of its
236 components provided in 2. We demonstrate the efficiency of the approach in Section 4.

237 Guidelines:

- 238 • The answer NA means that the abstract and introduction do not include the claims
239 made in the paper.
- 240 • The abstract and/or introduction should clearly state the claims made, including the
241 contributions made in the paper and important assumptions and limitations. A No or
242 NA answer to this question will not be perceived well by the reviewers.
- 243 • The claims made should match theoretical and experimental results, and reflect how
244 much the results can be expected to generalize to other settings.
- 245 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
246 are not attained by the paper.

247 **2. Limitations**

248 Question: Does the paper discuss the limitations of the work performed by the authors?

249 Answer: **[Yes]**

250 Justification: The limitations are discussed at the end of the paper and are the subject of
251 ongoing and future research (see 6).

252 Guidelines:

- 253 • The answer NA means that the paper has no limitation while the answer No means that
254 the paper has limitations, but those are not discussed in the paper.
- 255 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 256 • The paper should point out any strong assumptions and how robust the results are to
257 violations of these assumptions (e.g., independence assumptions, noiseless settings,
258 model well-specification, asymptotic approximations only holding locally). The authors
259 should reflect on how these assumptions might be violated in practice and what the
260 implications would be.
- 261 • The authors should reflect on the scope of the claims made, e.g., if the approach was
262 only tested on a few datasets or with a few runs. In general, empirical results often
263 depend on implicit assumptions, which should be articulated.
- 264 • The authors should reflect on the factors that influence the performance of the approach.
265 For example, a facial recognition algorithm may perform poorly when image resolution
266 is low or images are taken in low lighting. Or a speech-to-text system might not be
267 used reliably to provide closed captions for online lectures because it fails to handle
268 technical jargon.
- 269 • The authors should discuss the computational efficiency of the proposed algorithms
270 and how they scale with dataset size.
- 271 • If applicable, the authors should discuss possible limitations of their approach to
272 address problems of privacy and fairness.
- 273 • While the authors might fear that complete honesty about limitations might be used by
274 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
275 limitations that aren't acknowledged in the paper. The authors should use their best
276 judgment and recognize that individual actions in favor of transparency play an impor-
277 tant role in developing norms that preserve the integrity of the community. Reviewers
278 will be specifically instructed to not penalize honesty concerning limitations.

279 **3. Theory assumptions and proofs**

280 Question: For each theoretical result, does the paper provide the full set of assumptions and
281 a complete (and correct) proof?

Answer: [Yes]

Justification: We justify our assumptions throughout the paper. For the machine learning results, we provide empirical evidence in addition to theoretical arguments to support our claims as comprehensively as possible.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For reproducibility, we relied on existing baseline models, which are cited accordingly. For our own model, we provide a detailed description of the architecture in Section 3.1, ensuring that the framework can be replicated without difficulty.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

337 **5. Open access to data and code**

338 Question: Does the paper provide open access to the data and code, with sufficient instruc-
339 tions to faithfully reproduce the main experimental results, as described in supplemental
340 material?

341 Answer: [No]

342 Justification: We are making our best efforts to share the data and code, but they remain
343 private for the moment. We plan to make them publicly available soon to contribute to the
344 research community.

345 Guidelines:

- 346 • The answer NA means that paper does not include experiments requiring code.
- 347 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 348 • While we encourage the release of code and data, we understand that this might not be
349 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
350 including code, unless this is central to the contribution (e.g., for a new open-source
351 benchmark).
- 352 • The instructions should contain the exact command and environment needed to run to
353 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 354 • The authors should provide instructions on data access and preparation, including how
355 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 356 • The authors should provide scripts to reproduce all experimental results for the new
357 proposed method and baselines. If only a subset of experiments are reproducible, they
358 should state which ones are omitted from the script and why.
- 359 • At submission time, to preserve anonymity, the authors should release anonymized
360 versions (if applicable).
- 361 • Providing as much information as possible in supplemental material (appended to the
362 paper) is recommended, but including URLs to data and code is permitted.

365 **6. Experimental setting/details**

366 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
367 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
368 results?

369 Answer: [Yes]

370 Justification: We explain the details of the training methodology in section 3.1, and the
371 details of the datasets used for training and testing are provided in section 4.

372 Guidelines:

- 373 • The answer NA means that the paper does not include experiments.
- 374 • The experimental setting should be presented in the core of the paper to a level of detail
375 that is necessary to appreciate the results and make sense of them.
- 376 • The full details can be provided either with the code, in appendix, or as supplemental
377 material.

378 **7. Experiment statistical significance**

379 Question: Does the paper report error bars suitably and correctly defined or other appropriate
380 information about the statistical significance of the experiments?

381 Answer: [NA]

382 Justification: The main objective of this paper is to introduce and validate a complete frame-
383 work for improving the classification of underwater recordings. While the reported results
384 are consistent and reproducible across several experimental settings, we did not include
385 explicit error bars or confidence intervals. This choice was made to keep the focus on demon-
386 strating the methodological contributions and their relative improvements over baseline
387 approaches, rather than on an in-depth statistical uncertainty analysis. Nevertheless, the
388 experiments were run under fixed and well-documented conditions (same datasets, train/test

389 splits, and evaluation metrics), ensuring that the reported performance is reliable and can be
390 independently reproduced. Incorporating a more detailed uncertainty quantification is left as
391 a direction for future work.

392 Guidelines:

- 393 • The answer NA means that the paper does not include experiments.
- 394 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
395 dence intervals, or statistical significance tests, at least for the experiments that support
396 the main claims of the paper.
- 397 • The factors of variability that the error bars are capturing should be clearly stated (for
398 example, train/test split, initialization, random drawing of some parameter, or overall
399 run with given experimental conditions).
- 400 • The method for calculating the error bars should be explained (closed form formula,
401 call to a library function, bootstrap, etc.)
- 402 • The assumptions made should be given (e.g., Normally distributed errors).
- 403 • It should be clear whether the error bar is the standard deviation or the standard error
404 of the mean.
- 405 • It is OK to report 1-sigma error bars, but one should state it. The authors should
406 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
407 of Normality of errors is not verified.
- 408 • For asymmetric distributions, the authors should be careful not to show in tables or
409 figures symmetric error bars that would yield results that are out of range (e.g. negative
410 error rates).
- 411 • If error bars are reported in tables or plots, The authors should explain in the text how
412 they were calculated and reference the corresponding figures or tables in the text.

413 8. Experiments compute resources

414 Question: For each experiment, does the paper provide sufficient information on the com-
415 puter resources (type of compute workers, memory, time of execution) needed to reproduce
416 the experiments?

417 Answer: [Yes]

418 Justification: When presenting results for the various models, we describe the computational
419 resources used and provide an estimate of the running time (see Table 2).

420 Guidelines:

- 421 • The answer NA means that the paper does not include experiments.
- 422 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
423 or cloud provider, including relevant memory and storage.
- 424 • The paper should provide the amount of compute required for each of the individual
425 experimental runs as well as estimate the total compute.
- 426 • The paper should disclose whether the full research project required more compute
427 than the experiments reported in the paper (e.g., preliminary or failed experiments that
428 didn't make it into the paper).

429 9. Code of ethics

430 Question: Does the research conducted in the paper conform, in every respect, with the
431 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

432 Answer: [Yes]

433 Justification: We consider ethics a fundamental aspect of our research. This paper is written
434 in accordance with the NeurIPS Code of Ethics.

435 Guidelines:

- 436 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- 437 • If the authors answer No, they should explain the special circumstances that require a
438 deviation from the Code of Ethics.
- 439 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
440 eration due to laws or regulations in their jurisdiction).

441 10. **Broader impacts**

442 Question: Does the paper discuss both potential positive societal impacts and negative
443 societal impacts of the work performed?

444 Answer: [Yes]

445 Justification: The work discusses the impact underwater noise analysis for marine mammals
446 monitoring as explained in the paper but more specifically in the abstract and the introduction.

447 Guidelines:

- 448 • The answer NA means that there is no societal impact of the work performed.
- 449 • If the authors answer NA or No, they should explain why their work has no societal
450 impact or why the paper does not address societal impact.
- 451 • Examples of negative societal impacts include potential malicious or unintended uses
452 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
453 (e.g., deployment of technologies that could make decisions that unfairly impact specific
454 groups), privacy considerations, and security considerations.
- 455 • The conference expects that many papers will be foundational research and not tied
456 to particular applications, let alone deployments. However, if there is a direct path to
457 any negative applications, the authors should point it out. For example, it is legitimate
458 to point out that an improvement in the quality of generative models could be used to
459 generate deepfakes for disinformation. On the other hand, it is not needed to point out
460 that a generic algorithm for optimizing neural networks could enable people to train
461 models that generate Deepfakes faster.
- 462 • The authors should consider possible harms that could arise when the technology is
463 being used as intended and functioning correctly, harms that could arise when the
464 technology is being used as intended but gives incorrect results, and harms following
465 from (intentional or unintentional) misuse of the technology.
- 466 • If there are negative societal impacts, the authors could also discuss possible mitigation
467 strategies (e.g., gated release of models, providing defenses in addition to attacks,
468 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
469 feedback over time, improving the efficiency and accessibility of ML).

470 11. **Safeguards**

471 Question: Does the paper describe safeguards that have been put in place for responsible
472 release of data or models that have a high risk for misuse (e.g., pretrained language models,
473 image generators, or scraped datasets)?

474 Answer: [NA]

475 Justification: the paper poses no such risks.

476 Guidelines:

- 477 • The answer NA means that the paper poses no such risks.
- 478 • Released models that have a high risk for misuse or dual-use should be released with
479 necessary safeguards to allow for controlled use of the model, for example by requiring
480 that users adhere to usage guidelines or restrictions to access the model or implementing
481 safety filters.
- 482 • Datasets that have been scraped from the Internet could pose safety risks. The authors
483 should describe how they avoided releasing unsafe images.
- 484 • We recognize that providing effective safeguards is challenging, and many papers do
485 not require this, but we encourage authors to take this into account and make a best
486 faith effort.

487 12. **Licenses for existing assets**

488 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
489 the paper, properly credited and are the license and terms of use explicitly mentioned and
490 properly respected?

491 Answer: [Yes]

492 Justification: Please see references.

493 Guidelines:

- 494 • The answer NA means that the paper does not use existing assets.
- 495 • The authors should cite the original paper that produced the code package or dataset.
- 496 • The authors should state which version of the asset is used and, if possible, include a
- 497 URL.
- 498 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 499 • For scraped data from a particular source (e.g., website), the copyright and terms of
- 500 service of that source should be provided.
- 501 • If assets are released, the license, copyright information, and terms of use in the
- 502 package should be provided. For popular datasets, paperswithcode.com/datasets
- 503 has curated licenses for some datasets. Their licensing guide can help determine the
- 504 license of a dataset.
- 505 • For existing datasets that are re-packaged, both the original license and the license of
- 506 the derived asset (if it has changed) should be provided.
- 507 • If this information is not available online, the authors are encouraged to reach out to
- 508 the asset's creators.

509 **13. New assets**

510 Question: Are new assets introduced in the paper well documented and is the documentation

511 provided alongside the assets?

512 Answer: [NA]

513 Justification: the paper does not release new assets.

514 Guidelines:

- 515 • The answer NA means that the paper does not release new assets.
- 516 • Researchers should communicate the details of the dataset/code/model as part of their
- 517 submissions via structured templates. This includes details about training, license,
- 518 limitations, etc.
- 519 • The paper should discuss whether and how consent was obtained from people whose
- 520 asset is used.
- 521 • At submission time, remember to anonymize your assets (if applicable). You can either
- 522 create an anonymized URL or include an anonymized zip file.

523 **14. Crowdsourcing and research with human subjects**

524 Question: For crowdsourcing experiments and research with human subjects, does the paper

525 include the full text of instructions given to participants and screenshots, if applicable, as

526 well as details about compensation (if any)?

527 Answer: [NA]

528 Justification: the paper does not involve crowdsourcing nor research with human subjects.

529 Guidelines:

- 530 • The answer NA means that the paper does not involve crowdsourcing nor research with
- 531 human subjects.
- 532 • Including this information in the supplemental material is fine, but if the main contribu-
- 533 tion of the paper involves human subjects, then as much detail as possible should be
- 534 included in the main paper.
- 535 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
- 536 or other labor should be paid at least the minimum wage in the country of the data
- 537 collector.

538 **15. Institutional review board (IRB) approvals or equivalent for research with human**

539 **subjects**

540 Question: Does the paper describe potential risks incurred by study participants, whether

541 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

542 approvals (or an equivalent approval/review based on the requirements of your country or

543 institution) were obtained?

544 Answer: [NA]

545 Justification: the paper does not involve crowdsourcing nor research with human subjects.
546

547 Guidelines:

548

- 549 • The answer NA means that the paper does not involve crowdsourcing nor research with
550 human subjects.
- 551 • Depending on the country in which research is conducted, IRB approval (or equivalent)
552 may be required for any human subjects research. If you obtained IRB approval, you
553 should clearly state this in the paper.
- 554 • We recognize that the procedures for this may vary significantly between institutions
555 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
556 guidelines for their institution.
- 557 • For initial submissions, do not include any information that would break anonymity (if
558 applicable), such as the institution conducting the review.

559 16. Declaration of LLM usage

560 Question: Does the paper describe the usage of LLMs if it is an important, original, or
561 non-standard component of the core methods in this research? Note that if the LLM is used
562 only for writing, editing, or formatting purposes and does not impact the core methodology,
563 scientific rigorousness, or originality of the research, declaration is not required.

564 Answer: [NA]

565 Justification: the core method development in this research does not involve LLMs as any
566 important, original, or non-standard components.

567 Guidelines:

568

- 569 • The answer NA means that the core method development in this research does not
570 involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
571 for what should or should not be described.