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Reproducibility Summary1

Scope of Reproducibility2

The authors in [1] claim that with the underlying learning dynamics of BYOL [2] and SimSiam [3], a new method3

DirectPred can be derived. We investigate the assumptions made for this derivation and also compare the quality of the4

produced encoder representations through linear probing of these networks.5

Methodology6

We reimplemented BYOL, SimSiam and DirectPred from scratch as well as their ablations in TensorFlow. We checked7

original repository in written PyTorch for some implementation details. In all experiments we used the CIFAR-10 train8

set for training and the test set for evaluation. We were running our experiments for more than 100 hours on GCP’s9

V100 GPU.10

Results11

We show that the theoretical assumption regarding eigenspace alignment and symmetry hold also for a different dataset12

other than the one used in the original paper. In addition, we reproduce ablations regarding learning rate, weight decay13

and Exponential Moving Average.14

Since we used CIFAR-10 in all experiments we can not directly compare accuracies. However, we show the same15

relative behaviour of different networks given hyperparameter changes. We can directly compare performance for16

one of the experiments (Table 8. in [1] bottom left part). Our models, namely SGD Baseline, DirectPred (with17

and without frequency=5), achieve comparable accuracy which differ by at most 1%. We also confirm the claim18

that DirectPred outperforms its one-layer SGD alternative. Our code can be accessed under the following link:19

https://anonymous.4open.science/r/SelfSupervisedLearning-FD0F.20

What was easy21

The architecture of the Siamese network and training schemes were both straightforward to implement and easy to22

understand.23

What was difficult24

We could not run our code on STL-10 dataset due to time and resource constraints. Due to differences between PyTorch25

and TensorFlow libraries, we had to implement some parts by hand to keep our code as close to the original work as26

possible. Also, original repository is not easy to read and does not cover all the experiments (e.g. eigenspace alignment27

experiment). Correctly applying data-augmentation was also a hard task due to assumptions of how the individual data28

augmentations functions actually work.29

Submitted to ML Reproducibility Challenge 2021. Do not distribute.

https://anonymous.4open.science/r/SelfSupervisedLearning-FD0F


Communication with original authors30

We did not contact authors of the paper since we did not encounter any major issues during the reproducibility study.31
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1 Introduction32

Self-Supervised learning has become an important task in many domains, since labeled data is often rare and expensive33

to get. Many modern methods of Self-Supervised learning are based on Siamese-networks [4] which are weight sharing34

Neural networks for two or more inputs which representations then will be compared in latent space. The representation35

created by this approach can then be used for classification by fine-tuning on fewer labelled data-points. Traditionally,36

during pre-training positive pairs (same image, or two images from the same class) and negative pairs (different images37

or two images from a different class) are used. The distance of the representation of positive pairs is minimized while38

the distance of the representation of negative pairs is maximized, which prevents the networks from collapse (i.e39

mapping all inputs to the same representation). These methods have shown quite some success in the past [5], [6], [7],40

[8]. However, these methods rely on negative pairs, and large batch sizes which makes the training less feasible.41

Recently, new methods have been proposed which rely only on positive pairs and yet don’t collapse [2], [3]. In the42

paper "Understanding Self-Supervised Learning Dynamics without Contrastive Pairs" by Tian et.al. [1] the underlying43

dynamics are explored and based on the theoretical results, a new method, DirectPred, was proposed which does not44

need an update of the predictor via gradient descent but instead is set directly each iteration.45

The focus of this work is to test several assumptions made in [1] for the theoretical analysis and see if they hold. For46

this, we will concentrate especially on the eigenvalues of the predictor network and the eigenspace alignment with its47

input. Also, we will reproduce the results from [1], [2] and [3] on CIFAR-10 to compare their learned representation48

using linear probing.49

2 Related work50

A common approach to representation learning without Siamese networks is generative modelling. Typically these51

methods model a distribution over the data and a latent space, from which then embeddings can be drawn as data52

representations. Usually these approaches rely on Auto-encoding [9, 10] or Adversarial networks [11, 12]. However,53

generative models are often computatinaly heavy and hard to train.54

Discriminative methods using Siamese networks like SimCLR [5, 6] and Moco [7] outperform generative models and55

have lower computational cost. However, these methods rely on very large batch sizes since they use contrastive pairs.56

Most recent methods, replicated in this work, like BYOL [2] and SimSiam [3], only rely on positive pairs and therefore57

can make use of smaller batch sizes. To understand why these methods do not collapse, the dynamics of these networks58

are analysed with linear models in [1, 13]. From this analysis, the authors could derive ablations of BYOL where part of59

the network is directly set to its optimal solution instead of being trained by gradient descent.60

3 Method61

In this section we will describe the methods of BYOL and SimSiam as well as their successor DirectPred.62

3.1 BYOL & SimSiam63

The network architecture of the models is shown in Figure 1. First, two augmented views X ′
1 and X ′

2 of an image X64

are created and fed into the online network W and target network Wa respectively. Both of these networks have the65

same architecture, a ResNet-18 (W x
enc) as encoder [14], which is supposed to create hidden features and a projector66

head W x
pro, which is a two layer MLP, with purpose to map the feature space into a lower dimensional hidden space.67

The online network also has an additional predictor head, again consisting of a two layer MLP. The target network has68

a StopGrad function instead of a predictor head. Therefore during back propagation, only the weights of the online69

network are updated via gradient decent. The loss between the output of the online and target network is equal to the70

cosine-similarity loss function.71

L(Ẑ(O)
1 , Ẑ

(T )
2 ) = − ⟨Z ′

1, Z
′
2⟩

||Z ′
1||2||Z ′

2||2
(1)

Note, that the final loss of one image is the symmetric loss L(Ẑ(O)
1 , Ẑ

(T )
2 )+L(Ẑ(O)

2 , Ẑ
(T )
1 ), since each augmentation is72

given to both networks. As mentioned, the target network is not updated with gradient descent, but with an exponential73
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Figure 1: Network architecture for all presented methods

moving average (EMA). After each batch the target network will be set to Wa = Wa + (1− τ)(W −Wa). In SimSiam74

the target network is set directly to the online network after each update, i.e τ = 0.75

3.2 DirectPred76

[1] derives a one layer predictor head analytically with the analysis of the underlying learning dynamics of the models77

presented in Section 3.1 with an approximation of the actual network as a purely linear model. The learning dynamics78

of the networks are79

Ẇp = αp(−WpW (X +X ′) +WaX)W⊤ − ηWp (2)

Ẇ = WT
p (−WpW (X +X ′) +WaX)− ηW (3)

Ẇa = β(−Wa +W ) (4)

With X = E[x̂x̂⊤], where x̂ is the average augmented view of a datapoint and X ′ is the covariance matrix of the80

augmented views. αp and β are multiplicative learning rate ratios, i.e αp =
αpred

α and β = 1−τ
α (here α and αpred are the81

learning rates for W and Wp respetively). In addition to the linearity of the network, three simplifying assumptions82

where made:83

• The target network is always in a linear relationship with the online network (e.g. Wa(t) = τ(t)W (t)84

• The original data distribution p(X) is Isotropic and its augmentation p̂(X ′|X) has mean X and covariance σI85

• The predictor Wp is symmetric86

Based on these assumptions, one can show, that the eigenspaces of the output of the online network and the predictor87

Wp align. Let F = WXW⊤ (i.e. the output of the online network when it is approximated as a linear model), then it88

follows with the three assumptions, that the eigenspaces of these two matrices align over time (e.g. for all non-zero89

eigenvalues λWp , λF of Wp and F , the corresponding normalized eigenvectors vWp , vF are parallel, v⊤Wp
vF = 1).90

With this alignment one can derive decoupled dynamics for the eigenvalues of W and Wp. By analysing this system, it91

can be shown that it has, depending on the weight decay parameter, several fixpoints, from which some are stable and92

some not. The trivial solution (the collapse) is one of them and the basin of attraction of these fixpoints varies with the93

relative learning rate of the predictor αpred

α . With this analysis, [1] derives conditions under which the trivial fixpoint can94

be avoided. For a thorough mathematical analysis, we refer to [1]. In Section 5.1 we will present empirical evidence,95

that the symmetry assumption holds, and that the eignenspaces align. Furthermore, in Section 5.3 we will investigate96

the role of weight decay and the learning rate.97
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From the decoupled dynamics of the eigenvalues, we can also derive an analytical expression for the predictor Wp. Let98

F = UΩU⊤ be the eigen-decomposition of F with Ω = diag(λ(1)
F , ..., λ

(d)
F ) the diagonal matrix with the eigenvalues99

of F , then we can approximate the eigenvalues of Wp with100

λ
(j)
Wp

=

√
λ
(j)
F + ϵmax

j
λ
(j)
F (5)

and therefore set Wp to101

Wp = Udiag(λ(1)
Wp

, ..., λ
(d)
Wp

)U⊤ (6)

Note, that we cannot compute F directly, which is why we use a running average F̂ as approximation in practice102

F̂ = ρF̂ + (1− ρ)Ẑ (7)

where Ẑ = Ẑ
(O)
1 Ẑ

(O)⊤
2 .103

We denote this method DirectPred and in Section 5.2 we show, that DirectPred can perform similar to BYOL and104

SimSiam105

4 Data & Configurations106

We ran our experiments on Google Cloud Platform using Virtual Machine with a V100 GPU.107

All experiments are conducted on CIFAR-10 [15], which contains 60 000 RGB images uniformly distributed over 10108

classes. The pre-training and the linear evaluation are done on the entire training set, which consists of 50 000 images.109

For the linear evaluation, only a linear layer is used on top of the encoder, where the weights of the encoder are frozen110

(i.e. we test how linearly separable the encoders output is). The reported accuracy results are produced from a test set111

containing 10 000 images. Also, to account for the small dimension of the CIFAR-10 images (32 × 32 × 3) we use 3 ×112

3 convolutions and stride 1 without maximum pooling in the first block of the encoder.113

To augment each image, we first do a random flip, take a random crop (up to 8% of the original size) of the image. Then114

we randomly adjust brightness, saturation, contrast and hue of the RGB image by a random factor 1. Finally with a 20%115

chance we convert the image to grey scale.116

Self-supervised pretraining In the basic setting, the online network use ResNet-18 as encoder, two layer projector117

MLP, two layer predictor MLP, where the first layer consists of 512 nodes, followed by BatchNorm and ReLU, and then118

a linear output layer with 128 nodes. For BYOL we use EMA to update target network and for SimSiam we directly set119

encoder and projector of target network to the weights of the online one (τ = 0). We use SGD optimizer with learning120

rate 0.03, momentum 0.9 and weight decay (L2 penalty) of 0.0004. The predictor of DirectPred is set directly and are121

not trained with gradient descent and consist of one linear layer with 128 nodes. By SGD baseline for those methods122

we mean a network pre-trained with a one linear layer predictor with or without EMA. In all experiments, we use batch123

size of 128. For updating the target network we used the EMA parameter τ = 0.996. For DirectPred we use ϵ = 0.1124

and ρ = 0.3.125

Linear evaluation In order to test the performance of the different models, we use linear evaluation, i.e. we train a126

linear layer on top of the ResNet-18 encoder with frozen weights for 100 epochs. This measures how linearly separable127

the learned representations of the encoder are. We use Adam optimizer [16] with polynomial decay of learning rate128

from 5e-2 to 5e-4. Images are normalized but we do not use augmentation for this part of training just as in the original129

repository for DirectPred.130

5 Experiments and findings131

In this section, we will first show that the assumptions and theoretical findings from Section 3.2 hold in practice.132

Finally, we will pre-train and use linear evaluation on the different models presented in Section 3 in order to test their133

performances.134

1for brightness, saturation and contrast we chose a value uniformly at random between 0.6 and 1.4. For adjusting the hue, we set
the maximal value to 0.1
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5.1 Eigenspace alignment135

First, we pre-train BYOL and SimSiam keep track of the predictor heads symmetry and eigenspace alignment. In Figure136

2 we can see, that the assumption of an symmetric predictor Wp holds. Even without symmetry regularisation, Wp137

approaches symmetry during training. Also, we can see that for all non-zero eigenvalues of Wp the eigenspaces between138

F and Wp align as the training progresses.139

Figure 2: Pre-training BYOL for 100 epochs of CIFAR-10. Top row: BYOL without symmetry regularisation on Wp.
Bottom row: BYOL with symmetry regularisation on Wp. The eigenvalues of F are plotted on the log scale, since the

eigenvalues vary a lot. The assymmetry is measured by
||Wp−W⊤

p ||
||Wp||

We ran the same Experiment for SimSiam, and can also see the same effect on the predictor and the alignment (Figure140

3). If we don’t use a symmetric predictor, we also see that the eigenspaces for the non-zero eigenvalues align. However,141

once we use symmetry regularisation on Wp, all eigenvalues become zero, which shows that the network collapses. We142

will see later in Section 5.3 that we can prevent this collapse by using different learning rates α, αpred and weight decay143

η, ηpred for W and Wp respectively.144

Figure 3: Pre-training SimSiam for 100 epochs of CIFAR-10. Top row: SimSiam without symmetry regularisation on
Wp. Bottom row: SimSiam with symmetry regularisation on Wp. Note that the eigenvalues of F are not plotted on the
log scale here, since we get 0 values.
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5.2 Performance145

Byol & SimSiam In table 1 we can see that the performance of BYOL increases slightly when using symmetry146

regularisation on the predictor. However, as already seen in Figure 3, when using no EMA, we observe that the network147

collapses. We observe in general better performance for models trained with EMA, given the same hyperarameters.148

However, we did not use extensive hyperparameter tuning, as performance is not the focus of our work.149

symmetric Wp non symmetric Wp

EMA 85.7 84.2
No EMA 20.3 79.4

Table 1: Comparision of a two layer predictor with and without symmetry regularisation as well as with and without
EMA (i.e first row is BYOL and second row is SimSiam).

DirectPred As we can see in Figure 2 & 3, the eigenspaces for both models align and therefore the theoretical150

assumptions of [1] hold. As we can see in Table 2, all models perform reasonably well, and can achieve almost the151

same performance as BYOL or SimSiam. However, as already mentioned earlier, we can see that models with EMA152

outperform models without EMA. I addition, we run an experiments where the predictor is only updated every 5th153

step according to Equation 6 and otherwise is updated with gradient decent, we call this method DirectPred5. We154

can see that the hybrid method DirectPred5 does not increase performance, however, according to [1] when training155

for 500 epochs, DirectPred5 can outperform DirectPred. Due to computational constraints we cannot reproduce this156

experiment.157

SGD Baseline DirectPred DirectPred5
EMA 83.3% 84.7% 84.1%

No EMA 77.8% 78.6% -
Table 2: The accuracies of SGD baselines, DirectPred and DirectPred with Frequency 5 with and without EMA

5.3 Influence of weight decay and learning rate158

Figure 4: SimSiam with symmetric predictor but learning rates α = 0.2, αpred = 2 and weight decay η = 0,
ηpred = 4e− 4

As we can see in Figure 3, SimSiam with symmetric predictor does collapse. However, we can prevent this by adjusting159

the weight decay and learning rate. To make sure the network does converge to a stable non-collapsing fix-point, the160

weight decay of the predictor should be set higher than the rest of the network (ηpred > η, for mathematical analysis see161

[1]). By omitting weight decay, we are not able to stabilize the training of SimSiam with symmetric predictor and we162

can also see, that methods without weight decay perform worse, than with weight decay (Table 3). Also, to decrease163

the basin of attraction, of the trivial fixpoints, the learning rate of the predictor should be rather large compared to the164

learning rate of the rest of the network, i.e αpred

α >> 1 (see Section 3.2 in [1]).165

6 Challenges166

The original paper describes the methods and mathematical derivations well. Authors also share which hyperparameters167

they used in most of the experiments. Since the authors provided the open-source repository for the paper, we could168
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symmetric Wp regular Wp

η = 0 & ηpred = 0.0004
Byol 81.34 % 81.69 %

SimSiam 79.1 % 81.39 %
η = ηpred = 0

Byol 80.78 % 80.42 %
SimSiam 20.27 % 79.22 %

Table 3: Byol and SimSiam trained with different values for the weight decay parameters. For all experiments in this
Table, we set the learning rates αpred = 2 and α = 0.2. Note, that the important condition is αpred

α >> 1, i.e. we got
only slightly worse results with αpred = 0.2 and α = 0.02

check some of the details of the experiments there. However, as the code is not well-structured it was at times169

challenging to analyse. Furthermore, not all of the experiments are shared in the repository, for example there is no170

code which produces eigenspace experiments results or config for weight decay experiment.171

The reproduced paper did not outlined self-contained description on the methods it used as it built upon previous works.172

Thanks to the detailed description of BYOL by Grill et. al. [2] we were able to reproduce the paper achieving similar173

results as the authors.174

Due to time constraints we decided to use CIFAR-10 instead of STL-10 which was used in most of the experiments in175

the reproduced paper. However, claims tested by us in this work are not restricted to one dataset and we shown that they176

indeed hold in a different setting. One of the main challenges was the large amount of computations required for all the177

experiments, it took around 4 hours and 30 minutes to pre-train and fine tune a single model, and in total we trained for178

around 100+ hours.179

Our work is implemented in TensorFlow and one of the challenges was differences between TensorFlow and PyTorch180

libraries. For instance, in PyTorch one of the parameters of the SGD optimizer is weight decay (L2 penalty), in181

TensorFlow we had to implement it by hand as TensorTlow’s SGDW implements only Decoupled Weight Decay182

Regularization [17]. Furthermore, image augmentation methods such as ColorJitter from PyTorch do not have exact183

corresponding methods in Tensroflow. We used a custom way to do it so that augmentations are as close as possible to184

the original version.185

7 Conclusion186

In this work we study and reimplement three architectures used to give insight into self-supervised representation187

learning without contrastive pairs namely BYOL, SimSiam, DirectPred and their ablations. Our experimental results188

aligned well with both the theoretical analysis about the eigenspaces and the symmetric assumptions made in [1] and189

translate to other dataset than used in the paper. Lastly, we confirmed that SimSiam can be prevented from collapsing190

with the use of weight decay and adjusting a learning rate of predictor.191

Furthermore, we confirm the claim that DirectPred outperforms its one-layer SGD alternative. However, we cannot192

report that DirectPred could outperform Byol. This may be due to the fact that we used CIFAR-10 as opposed to STL-10193

in the original paper. This leaves us with the conclusion, that DirectPred gives valuable insights into the dynamics of194

unsupervised representation learning without contrastive pairs, but do not necessarily build new state of the art models195

themselves.196

8 Ethical considerations197

Self-supervised learning circumvents label scarcity which is one of the most common problems when applying ML198

to new scenarios. This can have both positive and negative consequences. On one hand, it can accelerate important199

developments for example in medical diagnosis. However, it can also be used in unethical ways such as in surveillance200

or military equipment. Furthermore, there will be less need for people labelling datasets which will result in reduction201

of job positions in this area.202
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