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ABSTRACT

Tractably modelling distributions over manifolds has long been an important goal
in the natural sciences. Recent work has focused on developing general ma-
chine learning models to learn such distributions. Though these are significant
advances, many problems require the learned distribution to obey symmetries in-
herent to the manifold. Up until now, the theory of invariant learning on manifolds
was underdeveloped—models were unable to incorporate these symmetries while
learning. In this paper, we lay the theoretical foundations for learning symmetry
invariant distributions on arbitrary manifolds via equivariant manifold flows. We
demonstrate the efficacy of our approach in the context of quantum field theory in
learning gauge invariant densities over SU(n).

1 INTRODUCTION

Density learning over manifolds has a broad array of applications, ranging from quantum field theory
in physics (Wirnsberger et al., 2020) to motion estimation in robotics (Feiten et al., 2013) to protein-
structure prediction in computational biology (Hamelryck et al., 2006). Recent work (Lou et al.,
2020b) has extended the powerful framework of continuous normalizing flows (Chen et al., 2018;
Grathwohl et al., 2019) to the setting of Riemannian manifolds, lifting the utility of these models for
learning complex probability distributions to a more general setting.

Although tractable and principled learning of manifold distributions was a considerable step for-
ward, this is insufficient for some problems in the natural sciences. Several applications, for example
sampling coupled particle systems in physical chemistry (Köhler et al., 2020) or sampling for SU(n)
lattice gauge theories in theoretical physics (Boyda et al., 2020), require distribution symmetries that
are nontrivial to enforce. Typically, manifold density structure and symmetries are enforced in an
ad hoc way, using properties specific to the manifold in order to make density learning tractable.
In contrast, our paper presents a fully general way to learn flows that induce symmetry invariant
distributions.

2 RELATED WORK

Normalizing Flows on Manifolds Normalizing flows on manifolds have received a considerable
amount of attention, both in terms of manifold-specific and general constructions. Rezende et al.
(2020) introduced constructions specific to tori and spheres, while Bose et al. (2020) introduced
constructions for hyperbolic space. Following this work, Lou et al. (2020b); Mathieu & Nickel
(2020) introduced a fully general construction by extending Neural ODEs (Chen et al., 2018) to the
setting of Riemannian manifolds.

Equivariant Machine Learning Equivariance has been recently discussed in the context of ma-
chine learning (Cohen & Welling, 2016; Cohen et al., 2018; 2019; Kondor & Trivedi, 2018), and
in particular, Köhler et al. (2020) introduced equivariant normalizing flows for Euclidean space.
Boyda et al. (2020), introduced equivariant flows for SU(n) via a manifold-specific construction. In
contrast, the equivariant manifold flows in our paper are fully general and are applicable to arbitrary
Riemannian manifolds.
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3 BACKGROUND

In this section, we provide a terse overview of necessary concepts. For a more detailed introduction,
we refer the reader to a text such as Lee (2013); Kobyzev et al. (2020).

3.1 RIEMANNIAN GEOMETRY

Recall that a Riemannian manifold (M, h) is an n-dimensional manifold with a smooth collection
of inner products (hx)x∈M for every tangent space TxM. The Riemannian metric h induces a
distance dh on the manifold.

A diffeomorphism f : M → M is called an isometry if h(Dxf(u), Dxf(v)) = h(u, v) for all
tangent vectors u, v ∈ TxM where Dxf is the differential of f . Note that isometries preserve the
manifold distance function. The collection of all isometries forms a group G, which we call the
isometry group of the manifoldM.

Riemannian metrics also allow for a natural analogue of gradients on Rn. For a function f :M→
R, we define the Riemannian gradient∇xf to be the vector on TxM such that h(∇xf, v) = Dxf(v)
for v ∈ TxM.

3.2 NORMALIZING FLOWS ON MANIFOLDS

Let (M, h) be a Riemannian manifold. A normalizing flow onM is a diffeomorphism fθ :M→
M (parametrized by θ) that transforms a prior density ρ to target density ρfθ . The target distribution
can be computed via the change of variables equation

ρfθ (x) = ρ
(
f−1
θ (x)

) ∣∣∣∣∣det
∂f−1

θ (x)

dx

∣∣∣∣∣ = ρ
(
f−1
θ (x)

) ∣∣∣det Jf−1
θ

(x)
∣∣∣ .

3.3 EQUIVARIANCE

We say that a function f : X → Y is equivariant if, for symmetries gx : X → X and gy : Y → Y ,
f ◦ gx = gy ◦ f . We say a function f : X → Y is invariant if f ◦ gx = f . When X and Y are
manifolds, the symmetries gx and gy are isometries.

4 THEORETICAL DERIVATIONS

In this section, we derive the necessary theorems for flows equivariant to isometries on the manifold.
In particular, we show how equivariant flows induce an invariant density, and we present a way of
constructing equivariant flows from invariant functions. We defer the proofs of the theorems to the
appendix.

4.1 EQUIVARIANT FLOWS

Invariance of Density For a groupG, a density ρ on a manifoldM isG-invariant if, for all g ∈ G
and x ∈M , ρ(Rgx) = ρ(x), where Rg is the action of g on x.

Equivariant Flows A flow f on a manifoldM is G-equivariant if it commutes with actions from
G, i.e. we have Rg ◦ f = f ◦Rg .

We first show that isometry equivariant flows induce isometry invariant densities. Note that we
require the group to be an isometry in order to control the distribution of ρf , and the following
theorem does not hold for general diffeomorphism groups.

Theorem 1. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its
subgroups). If ρ is a G-invariant density on M, and f is a G-equivariant diffeomorphism, then
ρf (x) is also G-invariant.

2



Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

4.2 CONSTRUCTING EQUIVARIANT FLOWS ON MANIFOLDS

To actually construct manifold equivariant flows, we will use tools from manifold ordinary differen-
tial equations (ODEs) and continuous normalizing flows (CNFs).

Equivariant Vector Field Let X :M× [0,∞) → TM, X(m, t) ∈ TmM be a time-dependent
vector field on manifoldM, with base point x0 ∈M.

X is a G-equivariant vector field if ∀(m, t) ∈M× [0,∞), X(Rgm, t) = (DmRg)X(m, t).

Manifold Continuous Normalizing Flows A manifold continuous normalizing flow with base
point z is a function γ : [0,∞)→M that satisfies the manifold ODE

dγ(t)

dt
= X(γ(t), t) , γ(0) = z

We define FX,T :M→M, z 7→ FX,T (z) to map any base point z ∈ M to the value of the CNF
starting at z, evaluated at time T . This function is known as the (vector field) flow of X .

There exists a natural correspondence between equivariant flows and equivariant vector fields.
Theorem 2. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its
subgroups). Let X be any time-dependent vector field onM, and FX,T be the flow of X . Then X is
a G-equivariant vector field if and only if FX,T is a G-equivariant flow.

4.3 EQUIVARIANT GRADIENT OF POTENTIAL

To design an equivariant vector fieldX as stated above, it is sufficient to set the vector field dynamics
of X as the gradient of some G-invariant potential function Φ :M→ R.
Theorem 3. Let (M, h) be a Riemannian manifold andG be its group of isometries (or an isometry
subgroup). If Φ :M→ R is a smooth G-invariant function, then the following diagram commutes
for any g ∈ G:

M M

TM TM

Rg

∇Φ ∇Φ

DRg

or ∇RguΦ = DuRg(∇uΦ). Hence ∇Φ is a G-equivariant vector field. This condition is also tight
in the sense that it only occurs if G is the group of isometries.

5 EQUIVARIANT FLOWS ON SU(n)

For many applications in physics (specifically gauge theory and lattice quantum field theory), one
works with the Lie Group SU(n) — the group of unitary matrices with determinant 1. In particular,
when modelling probability distributions on SU(n), the desired distribution must be invariant under
conjugation by SU(n) (Boyda et al., 2020). Conjugation is an isometry on SU(n), so we can model
probability distributions invariant under this action with our developed theory.

5.1 INVARIANT POTENTIAL PARAMETERIZATION

Our previous derivations have reduced our problem of modelling G-equivariant flows to modelling
G-invariant potential functions Φ : SU(n) → R. Note that matrix conjugation preserves eigenval-
ues. Thus, for a function Φ : SU(n) → R to be invariant to matrix conjugation, it has to act on the
eigenvalues of x ∈ SU(n) as a multi-set.

We can parameterize such potential functions Φ by the DeepSet network from Zaheer et al. (2017).
DeepSet is a permutation invariant neural network that acts on the eigenvalues, so the mapping of
x ∈ SU(n) is Φ(x) = Φ̂({λ1(x), . . . , λn(x)}) for some set function Φ̂.
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Figure 1: Learned densities on SU(2) from [Left] Boyda et al. (2020) model and [Right] our model.
The target density is in orange, while the model densities are in blue. All densities are normalized to
have maximum value 1. The x-axis is θ for the eigenvalue eiθ of a matrix in SU(2) (note the other
eigenvalue is determined as e−iθ). Our model has favorable behavior in low-density regions.

With this matrix conjugation invariant potential Φ, we can model a matrix conjugation equivariant
vector field on SU(n) with∇Φ.

5.2 PRIOR DISTRIBUTIONS

For the prior distribution of the flow, we use the Haar measure on SU(n), which is given for an
x ∈ SU(n) as Haar(x) =

∏
i<j |λi(x) − λj(x)|2 (Boyda et al., 2020). Note that this distribution

is invariant with respect to matrix conjugation, so we may use it in our model. We can sample from
and compute the log probabilities with respect to this distribution efficiently with standard matrix
computations (Mezzadri, 2007).

6 EXPERIMENTS

As mentioned previously, the learning of such an invariant density over a manifold has myriad ap-
plications, ranging from sampling coupled particle systems in physical chemistry (Köhler et al.,
2020), to sampling for SU(n) lattice gauge theories in theoretical physics (quantum field theory)
(Kanwar et al., 2020; Boyda et al., 2020). Boyda et al. (2020) is particularly pertinent since they
construct flows on SU(n) that are invariant to conjugation by SU(n). Hence we test in this con-
text and compare our general model (with the above DeepSet potential) to their manifold-specific
construction.

6.1 SU(n) GAUGE EQUIVARIANT NEURAL NETWORK FLOWS

With our equivariant flows and invariant base distribution, our model learns densities on SU(n) that
are invariant to matrix conjugation. Figure 1 displays learned densities for our model and the model
of Boyda et al. (2020) in the case of a particular density on SU(2) described in Appendix C.2.
Training details are given in Appendix C.1. While both models match the target distribution well in
high-density regions, we find that our model shows an improvement in lower-density regions, where
the tails of our learned distribution decay faster. Hence, our model appears to inherit the strength of
Neural Manifold ODEs in modelling such regions (Lou et al., 2020a).

7 CONCLUSION

In this work, we introduce equivariant manifold flows in a fully general context and provide the nec-
essary theory to ensure a principled construction. We also demonstrate the efficacy of our approach
in the context of learning a conjugation invariant density over SU(n), which is an important task for
sampling SU(n) lattice gauge theories in quantum field theory.
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A PROOF OF THEOREMS

In this section, we restate and prove the theorems in Section 4. These give the theoretical foundations
that we use to build our models.

A.1 PROOF OF THEOREM 1

Theorem 1. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its
subgroups). If ρ is a G-invariant density on M, and f is a G-equivariant diffeomorphism, then
ρf (x) is also G-invariant.

Proof. We wish to show ρf (x) is also G-invariant, i.e. ρf (Rgx) = ρf (x) for all g ∈ G, x ∈M.

We first recall the definition of ρf :

ρf (x) = ρ
(
f−1(x)

) ∣∣∣∣∣det
∂f−1(x)

dx

∣∣∣∣∣ = ρ
(
f−1(x)

) ∣∣det Jf−1(x)
∣∣ .

Since f ∈ C1(M,M) is G-equivariant, we have f ◦ Rg = Rg ◦ f for any g ∈ G. Also, since ρ is
G-invariant, we have ρ ◦Rg = ρ. Combining these properties, we see that:

ρf (Rgx) = ρf (Rgx)
|det JRg (x)|
|det JRg (x)|

=
ρRg−1◦f (x)

|det JRg (x)|
(expanding definition of ρf )

=
ρf◦Rg−1 (x)

|det JRg (x)|
= ρ

(
(Rg ◦ f−1)(x)

) |det JRg◦f−1(x)|
|det JRg (x)|

(G-equivariance of f)

= (ρ ◦Rg ◦ f−1)(x)
|det JRg (f−1(x))Jf−1(x)|

|det JRg (x)|
(expanding Jacobian)

= (ρ ◦ f−1)(x)
|det JRg (f−1(x))||det Jf−1(x)|

|det JRg (x)|
(G-invariance of ρ)

= ρ(f−1(x))|det Jf−1(x)| ·
|det JRg (f−1(x))|
|det JRg (x)|

(rearrangement)

= ρf (x) ·
|det JRg (f−1(x))|
|det JRg (x)|

(expanding definition of ρf )

Now note that G is contained in the isometry group, and thus Rg is an isometry. This means
|det JRg (x)| = 1 for any x ∈M, so RHS above is simply ρf (x), which proves the theorem.

A.2 PROOF OF THEOREM 2

Theorem 2. Let (M, h) be a Riemannian manifold, and G be its isometry group (or one of its
subgroups). Let X be any time-dependent vector field onM, and FX,T be the flow of X . Then X is
an G-equivariant vector field if and only if FX,T is a G-equivariant flow for any T ∈ [0,+∞).

Proof. G-equivariant X ⇒ G-equivariant FX,T . We invoke the following lemma from (Lee,
2013, Corollary 9.14):

Lemma 1. Let F : M → N be a diffeomorphism. If X ∈ X(M) and θ is the flow of X, then the
flow of F∗X is ηt = F ◦ θt ◦ F−1, with domain Nt = F (Mt) for each t ∈ R.

Examine Rg and its action on X . Since X is G-equivariant, we have for any (x, t) ∈M× [0,+∞),

((Rg)∗X)(x, t) = (DR−1
g (x)Rg)X(R−1

g (x), t) = X(Rg ◦R−1
g (x), t) = X(x, t)

so it follows that (Rg)∗X = X . Applying the lemma above, we get

7



Submitted to the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

F(Rg)∗X,T = Rg ◦ FX,T ◦R−1
g

and, by simplifying, we get that FX,T ◦Rg = Rg ◦ FX,T , as desired.

G-equivariant X ⇐ G-equivariant FX,T . This direction follows from the chain rule. If FX,T is
G-equivariant, then at all times we have:

(DmRg)
(
X(FX,t(m), t

)
= (DmRg)

(
d

dt
FX,T (m)

)
(definition)

=
d

dt
(Rg ◦ FX,T )(m) (chain rule)

=
d

dt
FX,T (Rgm) (equivariance)

= X(Rg(FX,t(m)), t) (definition)

This concludes the proof of the backward direction.

A.3 PROOF OF THEOREM 3

Theorem 3. Let (M, h) be a Riemannian manifold and G be its group of isometries (or an isometry
subgroup). If Φ :M→ R is a smooth G-invariant function, then the following diagram commutes
for any g ∈ G:

M M

TM TM

Rg

∇Φ ∇Φ

DRg

or∇RguΦ = DuRg(∇uΦ). This is condition is also tight in the sense that it only occurs if G is the
group of isometries.

Proof. We first recall the Riemannian gradient chain rule:

∇u(Φ ◦Rg) = (DuRg)
>(∇RguΦ)

where (DuRg)
> : TRguM→ TuM is the “adjoint” given by

h
(
DuRg(v), w

)
= h

(
v, (DuRg)

>(w)
)
.

Since Rg is an isometry, we also have

h(x, y) = h
(
DuRg(x), DuRg(y)

)
.

Combining the above two equations gives

h(x, y) = h(DuRg(x), DuRg(y)) = h
(
x, (DuRg)

> (DuRg(y)
))
,

which implies for all y,
h
(
x, y − (DuRg)

>(DuRg(y))
)

= 0.

Since h is a Riemannian metric (even pseudo-metric works due to non-degeneracy), we must have
that (DuRg)

> ◦ (DuRg) = I .

To complete the proof, we recall that Φ = Φ ◦Rg , and this combined with chain rule gives

∇uΦ = ∇u(Φ ◦Rg) = (DuRg)
>(∇RguΦ).

Now applying DuRg on both sides gives

∇RguΦ = DuRg∇uΦ

which is exactly what we want to show.

We see that this is an “only if” condition because we must necessarily get that the adjoint is the
inverse, which must imply that Rg is an isometry.
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A.4 PROOF OF COROLLARY 1 AND 2

Recall that both Corollary 1 and 2 specializes Theorems 1 and 3 to the case M = SU(n) and
G inducing the matrix conjugation group action. To successfully apply these theorems, the one
remaining condition that we need to verify is that G is an isometry subgroup.
Lemma 2. Let G be the group action of conjugation by SU(n), and let each Rg represent the
corresponding action of conjugation by g ∈ SU(n). Then G is an isometry subgroup.

Proof. We first show that the matrix conjugation action of SU(n) is unitary. For R,X ∈ SU(n),
note that the action of conjugation is given by vec(RXR−1) = (R−T ⊗ R)vec(X). We have
R−T ⊗R being unitary because:

(R−T ⊗R)∗(R−T ⊗R)

= (R−1 ⊗R∗)(R−T ⊗R) (conjugate transposes distribute over ⊗)

= (R−1R−T )⊗ (R∗R) (mixed-product property of ⊗)

= (RTR−T )⊗ (I) = (I)⊗ (I) = IN2×N2 (simplification)

Now choose an orthonormal frame X1, . . . , Xn of TM. Note that TM locally consists of traceless
skew-Hermitian matrices. We show G is an isometry subgroup by noting that when it acts on the
frame, the resulting frame is orthonormal. Let g ∈ G, and consider the result of action of g on the
frame, namely RgX1, . . . , RgXn. Then we have:

(RgXi)
∗(RgXj) = X∗i R

∗
gRgXj = X∗i Xj

Note for i 6= j, we have X∗i Xj = 0 and for i = j we see X∗i Xi = 1. Hence the resulting frame is
orthonormal and G is an isometry subgroup.

B DIFFERENTIATING THROUGH EIGENDECOMPOSITION

In this section, we reconstruct the steps of differentiation through eigendecomposition from (Boyda
et al., 2020, Appendix C) that allows efficient computation in our use-case. For our matrix-
conjugation-invariant SU(n) flow, we need only differentiate the eigenvalues with respect to the
input U ∈ SU(n).

For an input U ∈ SU(n), let its eigendecomposition be U = PDP ∗, where w = diag(D) ∈ Cn
contains its eigenvalues, and P =

[
p1 · · · pn

]
∈ Cn×n with pi ∈ Cn as its eigenvectors. Let L

denote our loss function, write the downstream gradients in row vector format:

g =
[

∂L
∂Rew

∂L
∂Imw

]
=
[
g(1) g(2)

]
.

Then following similar steps as in Boyda et al. (2020), we can compute the gradient ofLwith respect
to the real and imaginary parts of U as follows:

∂L

∂ReU
=

n∑
i=1

g
(1)
i Re

(
pip
>
i

)
+

n∑
i=1

g
(2)
i Im

(
pip
>
i

)
∂L

∂ImU
= −

n∑
i=1

g
(1)
i Im

(
pip
>
i

)
+

n∑
i=1

g
(2)
i Re

(
pip
>
i

)
If we define

Q(1) =
[
g

(1)
1 p1 . . . g

(1)
n pn

]
Q(2) =

[
g

(2)
1 p1 . . . g

(2)
n pn

]
Then we can write the gradients in terms of efficient matrix computations:

∂L

∂ReU
= Re

(
Q(1)P>

)
+ Im

(
Q(2)P>

)
∂L

∂ImU
= −Im

(
Q(1)P>

)
+ Re

(
Q(2)P>

)
.
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C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

Our DeepSet network (Zaheer et al., 2017) consists of a feature extractor and regressor. The feature
extractor is a 1 layer tanh network with 32 hidden channels. We concatenate the time component to
the sum component of the feature extractor before feeding the resulting 33 size tensor into a 1 layer
tanh regressor network.

To train our flows, we minimize the KL divergence between our model distribution and the target
distribution (Papamakarios et al., 2019), as is done in Boyda et al. (2020). In a training iteration,
we draw a batch of samples uniformly from SU(2), map them through our flow, and compute
the gradients with respect to the batch KL divergence between our model probabilities and the
target density probabilities. We use the Adam stochastic optimizer for gradient-based optimization
(Kingma & Ba, 2015). The graph shown in Figure 1 was trained for 300 iterations with a batch
size of 8192 and weight decay setting of 0.01; the starting learning rate for Adam was 0.01, and a
multi-step learning rate schedule that decreased the learning rate by a factor of 10 every 100 epochs.

C.2 TARGET DISTRIBUTIONS FROM BOYDA ET AL. (2020) FOR SU(2)

Boyda et al. (2020) define a family of matrix-conjugation-invariant densities on SU(n) as:

ptoy(U) =
1

Z
e
β
nRe tr(

∑
k ckU

k),

which is parameterized by scalars ck and β. The normalizing constantZ is not particularly important
for tasks of density estimation. Note that in the case of n = 2, since the eigenvalues of a matrix
U ∈ SU(2) are eiθ, e−iθ, we have that tr(U) = eiθ + e−iθ = 2 cos(θ), so that densities with three
components take the form:

ptoy(U) =
1

Z
ec1β cos θ · ec2β cos(2θ) · ec3β cos(3θ).

We test on one instance of these densities that is also used in Boyda et al. (2020), with c1 = .98,
c2 = −.63, c3 = −.21, and β = 9.
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