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Abstract

Effective integration of Artificial Intelligence (AI)
agents into daily life requires them to understand
and adapt to individual human preferences, par-
ticularly in collaborative roles. Although recent
studies on embodied intelligence have advanced
significantly, they typically adopt generalized ap-
proaches that overlook personal preferences in
planning. We address this limitation by develop-
ing agents that not only learn preferences from
few demonstrations but also learn to adapt their
planning strategies based on these preferences.
Our research leverages the observation that pref-
erences, though implicitly expressed through min-
imal demonstrations, can generalize across di-
verse planning scenarios. To systematically eval-
uate this hypothesis, we introduce Preference-
based Planning (PBP) benchmark, an embodied
benchmark featuring hundreds of diverse pref-
erences spanning from atomic actions to com-
plex sequences. We demonstrate that incorpo-
rating learned preferences as intermediate rep-
resentations in planning significantly improves
the agent’s ability to construct personalized plans.
These findings establish preferences as a valuable
abstraction layer for adaptive planning, opening
new directions for research in preference-guided
plan generation and execution.

1. Introduction

The field of embodied Artificial Intelligence (Al) is rapidly
advancing, driven by significant progress in foundation mod-
els for vision and language ( s ;
s ; s ; , ). These ad-
vances enable Al systems to autonomously collaborate with
or assist humans in dally tasks, partlcularly in domestic set-
tings ( s ; s ; s
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; s ). However, recent approaches utiliz-
ing natural language instructions ( , ;

s ; , ) face fundamental limitations
in capturing human preferences ( , ). While
natural language is our primary means of communication,
its inherent ambiguity creates a gap between instructions
and intended executions ( s ; R

; ; , ). For instance, when a user
requests help in preparing an apple, the agent needs to un-
derstand specific preferences about apple selection, washing
requirements, cutting style, and container choice—details
that vary significantly across individuals; see also Figure 1
for a graphical illustration.

Preference, central to personalization ( s ), re-
mains inadequately addressed in embodied Artificial Intel-
ligence (AI). Integrating personalized preferences is cru-
cial for tailoring agent actions to individual users, thereby
enhancing the effectiveness and satisfaction of embodied
assistants ( , ; s ). More-
over, preferences guide human-like decision-making and
intelligent behavior. Psychological research emphasizes that
understanding preferences is vital for interpreting human
behaviors ( , ) and facilitating social
interactions ( s ; s ),
suggesting that preference understanding could enable more
grounded planning in embodied assistants.

Learning human preferences in real-world settings presents
unique challenges ( , ). Humans typically
communicate their needs succinctly ( , ), with-
out exhaustive preference details ( ,
), and many preferences include unconscious or in-
stinctive elements difficult to articulate ( s ;

, ). A more practical approach is to infer pref-
erences from observed human choices and decision-making
patterns, as illustrated in Figure 1, where a robot assistant
can learn users’ preferences and behavior habits from previ-
ous observations.

In this paper, we focus on developing agents capable of
learning preferences from human behavior and subsequently
planning actions guided by these learned preferences. While
previous studies like NeatNet ( s )
and SAND ( , ) have explored preference-
based learning, they are limited to specific tasks (e.g., rear-
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Figure 1: An example of preference-based planning in a food preparation scenario. When the assistant receives a natural language
instruction for a food preparation task, it can follow one of two approaches: (Left, traditional methods) The assistant verifies details
with the user at each step through exhaustive communication; or (Right, our personalized approach) it first learns from previous user
action sequences to infer explicit preference labels and then generates a personalized plan based on the learned preferences. The planning
tree (middle) illustrates how preferences guide the whole decision-making process across multiple dimensions. By learning preferences
as a key intermediate representation from minimal human demonstrations, our approach enables Al agents to deliver personalized and

adaptable assistance without explicit step-by-step instructions.

rangement) and fail to generalize across different situations.
To address this limitation, we introduce Preference-based
Planning (PBP), a comprehensive embodied benchmark
built upon NVIDIA Omniverse and OmniGibson ( s

). PBP provides realistic simulation and real-time ren-
dering for thousands of daily activities across 50 scenes,
featuring a parameterized vocabulary of 290 diverse prefer-
ences. These preferences span multiple levels, from specific
action-level preferences (e.g., preferred glass type, water
temperature) to task sequence-level preferences (e.g., task
ordering, subtask prioritization).

Given the expensive nature of data collection ( ,

) and the few-shot nature of preference acquisition,
we frame preference learning as a few-shot learning from
demonstration task. In this framework, agents must respond
to ambiguous instructions by formulating plans aligned with
preferences demonstrated in limited example sequences.
Specifically, an agent needs to analyze behavioral data,
identify consistent patterns, and extrapolate these patterns
to higher-level preference abstractions that can generalize
across various tasks ( , ). Furthermore, when
confronted with new tasks, the agent should leverage these
learned preferences to generate adaptive action sequences
that align with user preferences while maintaining task effi-
ciency.

With the PBP benchmark developed, we challenge exist-
ing learning agents on their ability to learn human prefer-

ence and subsequently conduct preference-based planning.
Our systematic evaluation of State-of-the-Art (SOTA) al-
gorithms on PBP reveals that preferences serve as valu-
able abstractions of human behaviors, and their incorpora-
tion as intermediate planning steps significantly enhances
agent adaptability. Through extensive experimentation, we
demonstrate that symbol-based approaches show promise
in scalability, yet significant challenges remain in both pref-
erence learning and planning. These challenges stem from
the complexity of planning intricate activities and the nu-
anced nature of learning preferences through perception.
Our analysis particularly highlights the difficulties in few-
shot preference learning and preference-guided planning,
establishing preferences as a crucial abstraction layer be-
tween high-level goals and low-level actions. We present
this work as a foundation for addressing these challenges in
preference-based embodied Al

2. Related Work

2.1. Theoretical Foundations of Human Preferences

Preference theory originates from psychological research,
where it describes predictable patterns in human behavior
that can be modeled mathematically ( s ).
These preferences reflect individual attitudes towards avail-
able choices in decision-making ( ,

) and operate both consciously and unconsciously to
shape behavior ( , ). A fundamental prin-
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ciple is that underlying preferences can be inferred from
consistent behavioral patterns (Sen, ), enabling system-
atic analysis of decision-making processes. This framework
has extended beyond psychology into economics, where
Rational Choice Theory ( R ) models decision-
making based on rational self-interest (Zey, ). Building
on this, Utility Theory provides a mathematical foundation
for modeling how preferences relate to attitudes toward re-
wards and risks ( s ; s ).
These theoretical foundations establish preferences as fun-
damental elements in shaping both individual behavior and
broader societal dynamics. In recent years, these preference
models have found new applications in artificial intelligence
and robotics, particularly in developing human-centric Al as-
sistants capable of understanding and adapting to individual
user preferences.

2.2. Preference in Embodied Task Planning

The application of preferences in embodied task planning
encompasses two distinct approaches. The first focuses on
general preference-based planning, where robots leverage
commonsense knowledge to execute universally accepted
behavioral norms. Object rearrangement exemplifies this ap-
proach, with systems organizing items based on common oc-
currence patterns and spatial relationships ( ,
; , ). The second approach emphasizes
personalized preferences, where embodied agents align
their actions with individual user habits. This includes per-
sonalized object placement strategies ( , ;
s ; s ), preference-
aware table setting ( R ), and multi-agent
coordination where agents maintain individual preferences
while achieving optimal coordination ( , ).

Our work extends these approaches by considering pref-
erences across diverse situations and scenes. Beyond spa-
tial arrangements, we address temporal action sequences,
state transitions during interactions, and few-shot preference
learning. This comprehensive framework enables robust
preference modeling and adaptation in real-world scenarios.

2.3. Embodied Assistants

The development of intelligent embodied assistants has
evolved from basic Vision-and-Language Navigation (VLN)
tasks ( s ; s ;
s ) to complex interactive scenarios. ALFRED
( , ) introduced object manipulation, state
tracking, and temporal dependencies between instructions,
while platforms like Habitat ( s ; s
) and AI2-THOR ( s ) emphasize ac-
tive perception, long-term planning, and interactive learn-
ing in realistic environments. Recent research has shifted
toward implicit-instruction scenarios, particularly in house-

keeping tasks ( s ; s ;

s ; s ), where robots must

reason about object arrangements without explicit direc-

tives. Works on proactive assistance ( ,

; , ; s ) further explore
anticipating temporal patterns in humans’ daily routines.

Methodologically, recent advances utilize Large Language
Models (LLMs) as few-shot planners to generate language-
based action sequences from limited demonstrations (
s ). Foundation Vision-Language Models (VLMs)
have enhanced robotic systems’ perception and reasoning ca-
pabilities ( s ; s ; , ;
; ; ; ; ) ),
enabling understanding of complex visual and linguistic
inputs in everyday tasks. However, while these foundation
models excel at reasoning from text or image information,
their ability to learn individual preferences from limited
demonstrations and plan adaptively remains an open chal-
lenge, particularly in multi-step tasks requiring personalized
execution strategies.

3. Formulating Preference-based Planning

Tasks in PBP mirror real-world watch-and-help scenarios
( s ), where an agent observes a few demon-
strations of a user performing tasks that reveal preferences.
The agent must then complete similar tasks in different
setups while adhering to the demonstrated preferences.

Preference-based planning comprises two key components:
few-shot preference learning of user preferences and subse-
quent planning guided by these learned preferences. Since
humans, even infants, can naturally detect others’ prefer-
ences from limited decisions ( s ), and col-
lecting extensive personal demonstrations is impractical
in daily life, we formulate this as few-shot learning from
demonstration.

Given a user with preference p, the agent observes the user
performing tasks from a first-person perspective, denoted
as O. These observations span multiple demonstrations.
Formally, O contains both state and action observations:
O = {(S;, A;, M)y}, where S; denotes the egocentric ob-
servation sequence in the i-th demonstration, .A; represents
the action sequence, and M optionally provides a bird’s-eye
view of the entire scene map.

In the first stage, the objective is to learn the preference
representation demonstrated through user actions:

p = f(O;0f), (1)

where p denotes the learned preference representation here.
It can either be a hidden representation or an explicit textual
label, depending on the task settings.
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The learned preference p should then guide planning when
the agent faces different setups with varying objects, room
layouts, or entire scenes. Specifically, the agent optimizes:

L= >"Ug(si, f(0307):0,), ai), @)
=1

where ¢(-) represents a potentially parameterized planning
function that maps the current state and preference repre-
sentation to the next action, and a; denotes the ground-truth
action demonstrating the user’s preference at the current
stage.

4. The Preference-based Planning (PBP)
Benchmark

Built on NVIDIA’s Omniverse and OmniGibson simulation
environment ( s ), our PBP benchmark enables
realistic simulation of thousands of daily activities. It spans
50 distinct scenes and encodes 290 unique preferences, with
a comprehensive test set of 5000 instances. Below, we detail
the preference structure and test set construction.

4.1. Definition of Preferences

We organize preferences in a three-tiered hierarchical struc-
ture that captures varying degrees of specificity across tasks.
Figure 2 provides an overview of all preferences and their
distribution, while Figure 3 illustrates concrete examples
of preferences and corresponding agent actions. The 290
preferences are distributed across three levels: 80 sequence-
level, 135 option-level, and 75 action-level preferences.
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Action Level These bottom-level preferences govern fine-
grained execution details within specific sub-tasks, such
as water quantity preferences when filling cups or shelf
placement choices for books.

Option Level Middle-level preferences encode alterna-
tive approaches to sub-tasks. For instance, in “storing-
nonperishable-food,” users may prefer cabinet storage ver-
sus table placement. These preferences can bind to different
objects and may compose multiple action-level preferences.

Sequence Level Top-level preferences define task order-
ing and prioritization. They capture temporal dependencies
between sub-tasks, such as cleaning furniture before rear-
ranging kitchen utensils, followed by dinner preparation
upon returning home.

4.2. Constructing PBP Test Set

Our PBP benchmark includes a default test set for system-
atic model evaluation. Following the formulation in Sec-
tion 3, we structure PBP tasks as few-shot learning-from-
demonstration problems. Each test point comprises several
(typically three) unique demonstrations with egocentric ob-
servations of action sequences and their corresponding pref-
erence labels. As illustrated in Figure 4, a demonstration
includes an egocentric video of agent activity, a bird’s-eye-
view map tracking agent position, and frame-level action
annotations. We also provide third-person view recordings
for enhanced visualization. We prioritize the egocentric
perspective for two reasons: 1) it offers a clear view with
minimal occlusions, and 2) it aligns with human perception,
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Figure 2: Hierarchical organization of user preferences. Our framework organizes preferences in a three-tiered structure, visualized
through sunburst diagrams: (a) Action level captures fine-grained execution details within specific tasks, from quantity preferences in
“Contain” (e.g., “half a cup” vs. “full cup”) to environmental controls (e.g., lighting and window operations). (b) Option level represents
spatial preferences for object categories, encoding both storage decisions (e.g., table vs. fridge for fruits) and organizational choices
(e.g., shelf levels and boxes for tools/toys). (c) Sequence level defines temporal relationships between tasks, encompassing both basic
preparation sequences (e.g., “Prepare Food first”) and conditional orderings (e.g., “Clean after Cook,” “[A]->[B]”). Each diagram’s
hierarchical structure branches from general categories to specific instances, revealing detailed preference patterns upon closer inspection.

(Vector graphics; zoom in for details.)
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Figure 3: Example of preferences and their corresponding
actions in PBP. At the primitive action level, we demonstrate
preferences through basic tasks: (a) cooking using microwave, (b)
washing in the sink, and (c) cutting into halves. At the option level,
we showcase different approaches to object rearrangement, where
users can prefer either (d) grouping objects by their categories
(vl) or (e) placing them on the same layer of the fridge (v2).
At the sequence level, we illustrate how preferences guide task
ordering: (f) shows a user’s preference to have fruits first, followed
by specific cleaning tasks.

facilitating transfer to real-world data from head-mounted
devices.

The test set construction follows a two-stage process. First,
we build a reusable and extensible demonstration pool. To
generate each demonstration, we randomly assign a pref-
erence from our defined primitives to one of 50 OmniGib-
son scenes, then sample relevant objects within the chosen
scene. We generate multi-perspective observations using
rule-based planners for high-level planning and predefined
scripts for low-level execution (e.g., Inverse Kinematics (IK)
for grasping, A* for movement).

Second, we construct test points by sampling preferences
and retrieving relevant demonstrations from the pool. To
reflect real-world few-shot scenarios, each preference pairs
with demonstrations that share the same high-level prefer-
ence but vary in scene settings or object selections. We also
include unrelated demonstrations to prevent sampling bias.

The default test set contains 5,000 test points, drawing from
a pool of 15,000 unique recordings. Unless specified other-
wise, all experiments use this default set. The benchmark
also supports custom test point generation through flexible
demonstration sampling, preference definition, and third-
person view video creation.

4.3. Models

Our evaluation focuses primarily on multimodal models that
incorporate LL.Ms and demonstrate strong few-shot learning
capabilities. The LLM component serves as a knowledge
base that can enhance preference learning through com-
monsense reasoning. We also include symbol-based LLM

models for ablation studies to analyze how different modali-
ties impact PBP performance. Most models evaluated can
function in both end-to-end and two-stage pipeline configu-
rations. See Appendix D for detailed implementations.

S. Experiments
5.1. Experimental Setup

We evaluate preference learning capabilities across two dis-
tinct settings: end-to-end and two-stage approaches. In the
end-to-end setting, models directly map raw state inputs
to action outputs. Leveraging models’ in-context learning
abilities, we provide demonstrations alongside current state
information as input and evaluate the generated action se-
quences against ground truth.

The two-stage setting introduces an intermediate step where
models first learn to predict explicit preference labels during
training. These predicted labels then serve as preference
representations for subsequent planning stages. For black-
box models, we employ carefully designed prompts rather
than fine-tuning approaches.

All demonstration videos maintain consistent technical spec-
ifications across models and agents: egocentric perspective,
512 x 512 resolution, and 8 fps frame rate. Video dura-
tion matches the corresponding action sequence length. For
LLM inference, we use conservative decoding parameters:
temperature of 0.05, top-k of 1, and top-p of 0.05. All ex-
periments run on a single machine with 8 NVIDIA A100
GPUs.

5.2. End-to-end Action Preference Learning

We first evaluate model performance in the end-to-end set-
ting, where models generate actions directly from previous
demonstrations and current state information. To quan-
tify performance, we use Levenshtein distance to measure
discrepancies between generated and ground truth action
sequences, treating each individual action as a token.

As shown in Table 1 (the End-to-end row), video-based
models produce Levenshtein distances approaching the av-
erage ground truth sequence lengths (15.80 at option level,
35.87 at sequence level). These high distances indicate
that the models generate predominantly inconsistent action
sequences, suggesting a failure to grasp preferences embed-
ded in demonstration videos. While symbol-based models
show modest improvements, their performance gains remain
limited.

These findings expose a fundamental limitation in current
models: they struggle to extract underlying relationships
from perceptual inputs without explicit intermediate guid-
ance. The models appear to learn individual, isolated actions
rather than cohesive action patterns that reflect implicit pref-
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Figure 4: Example of a demonstration in PBP. The robot in the demonstration is executing the task “Pick Apple from Fridge and place
on Table”. Top: A third-person view video provides an overhead perspective of the entire scene. Middle: The bird’s-eye-view map
displays the robot’s relative position within the scene. Bottom: The egocentric video captures the robot’s first-person observations during
task execution. Text: The per-frame action annotations contain Omniverse object IDs, which ensure each object reference is unique and
enable the model to identify specific objects precisely.

Table 1: Levenshtein distance between generated and ground truth action sequences. End-to-end represents models directly
generating action sequences from demonstration-preference pair examples. Second-stage indicates generation using both demonstrations
and previously inferred preference labels based on demonstrations. Second-stage (gt) uses demonstrations alongside ground truth

preference labels for sequence generation.

VIDEO-BASED INPUT

SYMBOL-BASED INPUT

ViViT LLaVA-Next EILEV GPT-4V Llama3-8B GPT-4
End-to-end 15.49+1.29  1594+3.41 12.8842.20 15.63+2.31 1474+£3.21 12.234£2.96
Option Level Second-stage - 12.46+3.23  12.89+3.74  8.37+2.19 9.67+5.16  2.23+2.79
Second-stage (gt) - 3284529  11.18+4.20  1.26+2.55 8224558  0.124£3.12
End-to-end 34.04+11.84 34.76+11.25 33.10+12.21 33.75+11.15  31.79+7.32 27.85+6.57
Sequence Level  Second-stage - 30.02+13.54 33.03+13.61 27.524+9.48 25.46+5.93 16.45+4.00
Second-stage (gt) - 18.92+14.18 26.57+12.21 11.36+8.05 19.02+7.10  12.29+3.12
End-to-end 24.76 25.35 22.99 24.69 23.26 20.04
Overall Second-stage - 21.24 22.96 17.94 17.56 9.34
Second-stage (gt) - 11.10 18.88 6.31 13.62 6.21

erences. This significant gap underscores the inherent chal-
lenge of performing end-to-end preference learning solely
from demonstrations.

5.3. Two-Stage Learning-Planning

Given the limitations of end-to-end learning, we implement
a two-stage approach to decompose the preference learning
problem. The first stage focuses on preference prediction,
where we provide models with auxiliary preference token
labels and train them to predict hidden preferences explicitly.
These preference tokens, as discussed in Section 4.1, main-
tain sufficient semantic content for translation into primitive
actions.

Results from the first stage (Table 2) reveal significant per-
formance variations across models. At the option level,
GPT-4V achieves superior performance with 48.48% accu-
racy, demonstrating strong capability in interpreting demon-

strated preferences. Among symbol-based models, the stark
contrast between DAG-Opt’s limited performance and the
improved results from Llama3-8B and GPT-4 highlights
the advantage of next-token prediction over dependency
learning for preference inference. Models with language
components consistently show improved preference under-
standing compared to end-to-end learning.

The second stage involves generating action sequences
based on both demonstrations and predicted preference la-
bels from the first stage, introducing potential error prop-
agation. Results in Table 1 ( Second-stage row) and Fig-
ure 5 show significant improvements when models receive
explicit preferences. For comprehensive evaluation, we
include planning results using ground truth preference la-
bels ( Second-stage (gt) row). GPT-4V and GPT-4 achieve
near-zero Levenshtein distances, indicating almost perfect
alignment with ground truth action sequences.

Analysis of both stages reveals distinct challenges across
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Figure 5: Levenshtein distance between generated and ground
truth action sequences. Results shown for both (a) option level

and (b) sequence level under two conditions: End-to-end bars
represent direct sequence generation from previous observations,

while Second-stage bars show performance when models receive

predicted preference labels. The - line indicates average ground
truth sequence length (option level: 15.80, sequence level: 35.87).
Lower distances indicate better performance. Results demonstrate
significantly improved performance under the two-stage approach
compared to end-to-end generation.

model types. Vision-based models like LLaVA-Next and
GPT-4V struggle with preference inference but excel in
action planning given preference labels, suggesting diffi-
culty in abstracting preferences from visual input. Symbol-
based models perform well in both preference inference
and preference-guided planning, yet underperform in end-
to-end settings. This indicates that models may lack innate
preference-based reasoning capabilities but can effectively
plan when preferences are explicitly provided.

To isolate the impact of prior knowledge versus in-context
learning, we conduct ablation studies by removing demon-
strations and testing preference prediction on isolated test
sequences. Results in Table 2 (bottom) show significant
performance degradation compared to few-shot learning
(Table 2 (top)), particularly at the sequence level. This
suggests that while models may encode basic task-specific
preferences, they rely heavily on demonstrations to recog-
nize complex preference patterns in varied sequences.

5.4. Generalization

While human actions may vary across different objects
and scenes, underlying preferences often remain consistent.

Table 3: Models’ generalization ability. direct denotes experi-
ments conducted without generalization. orig denotes the original
experiments conducted with generalization cases. Also the accu-
racy of preference prediction.

LLaVA-Next EILEV GPT-4V GPT-4

Option Level direct 33.25 46.93 5324 86.32
Option Level orig 36.87 38.33 4848 86.27
Sequence Level direct 33.12 37.53 3942 7027
Sequence Level orig 24.85 32.69 3750 6842

We evaluate the models’ ability to generalize preference
learning across varying visual contexts. The original test
set inherently tests generalization by randomly sampling
scenes and objects when rendering video demonstrations
for each preference. To gain additional insights, we con-
duct complementary experiments with controlled conditions
where demonstration and test videos are rendered in iden-
tical rooms with the same objects. This controlled setting
enables direct performance comparisons under consistent
conditions. We evaluate Efficient In-context Learning on
Egocentric Videos (EILEV), Large Language and Vision
Assistant (LLaVA), and GPT-4 series models on this variant
of PBP, as these models previously demonstrated strong
few-shot reasoning capabilities. Results are summarized in
Table 3.

Symbol-based reasoning (GPT-4) demonstrates consistent
performance regardless of scene or object variations, while
vision-based models show greater sensitivity to scene
changes. This distinction stems from the nature of our prede-
fined preferences, which are sufficiently abstract and general
to apply across diverse scenes and objects. Vision-based
models, however, tend to anchor their few-shot learned
preferences to specific visual features of scenes or objects.
When these visual elements change, preference recognition
accuracy may deteriorate. This contextual dependence re-
mains a persistent challenge for vision-based models, which
often overfit to scene-specific features from training videos.

Analysis of test points across direct and gen conditions
(Figure 6) reveals two key findings: (i) Preference learn-
ing performance correlates with scene characteristics, with
certain scenes proving consistently challenging across both

Table 2: Preference prediction accuracy in few-shot and ablative settings.

VIDEO-BASED INPUT

SYMBOL-BASED INPUT

ViViT LLaVA-Next EILEV GPT-4V  DAG-Opt Llama3-8B GPT-4

Option Level 9.38 36.87 38.33  48.48 10.15 72.98 86.27

Few-shot Sequence Level 4.24 24.85 32.69 37.50 13.49 67.18 68.42
Sequence Level 6.81 30.86 3551 4299 11.82 70.08 77.34

Option Level 9.16 15.47 4.77 29.42 3.84 39.50 73.87

Ablative Sequence Level 4.38 8.13 0.00 0.00 1.28 6.25 9.42
Sequence Level 6.77 11.8 2.38 14.71 2.56 22.88 41.64
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conditions. (ii) While direct cases show better performance
overall, failure patterns differ between conditions, particu-
larly for vision-based models. This suggests models rely
heavily on visual context consistency—including object ar-
rangement and scene layout—for accurate predictions, indi-
cating potential superficial learning rather than true pref-
erence understanding. Symbol-based reasoning maintains
robust performance across varied scenes due to the gen-
eral nature of predefined preferences, whereas vision-based
models’ strong dependence on specific visual contexts limits
their generalization capability.

5.5. Ablations on Demonstration Numbers

We examine the effect of demonstration quantity on model
performance through an ablation study (Figure 7). Re-
sults show that increasing demonstration numbers generally
improves preference learning and planning effectiveness.
This improvement is most evident in second-stage planning,
where models achieve lower sequence distances by more
accurately replicating human actions. Models like GPT-4,
Llama3, and EILEV show consistent performance gains
with additional demonstrations. However, we observe that
excessive demonstrations (e.g., 5-demo cases for GPT-4 and
EILVE) can sometimes impair first-stage prediction accu-
racy. Despite these occasional exceptions, the overall trend
confirms our intuition: more demonstrations enhance learn-
ing and planning performance. These findings highlight
the importance of demonstration quantity in developing ef-
fective personalized planning systems that align with user
preferences.

6. Conclusion

We investigate methods for embodied agents to learn and
implement human preferences through behavioral obser-
vation and user interaction. We present Preference-based
Planning (PBP), a comprehensive embodied benchmark de-
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Figure 7: Ablation study on the number of demonstrations.
Models are evaluated across both of the two stages within PBP
task: (a) first-stage preference learning and (b) second-stage action

planning. We evaluate both Option Level and Sequence Level

tasks. The number of few-shot demonstrations varies from [1, 2, 3,
5], presented left to right. For (a), higher accuracy indicates better
performance. For (b), lower distance indicates better performance.
Increased demonstration quantity generally improves both prefer-
ence learning capability and planning effectiveness.

signed to capture the complexity of real-world human pref-
erences. We also develop an evaluation framework to assess
models’ preference learning and implementation capabili-
ties. Our findings demonstrate that preferences effectively
abstract human behaviors and guide planning processes.
While current models still face challenges in preference in-
ference and adaptive planning from limited observations,
incorporating preference-based reasoning improves both ef-
fectiveness and generalization. We aim to stimulate further
research in this crucial yet understudied domain of develop-
ing preference-aware embodied agents.

Limitations and Future Work Our work’s primary lim-
itation stems from its reliance on synthetic data. Despite
Omniverse’s high-quality scene rendering, the simulator
cannot fully replicate real-world complexity and variabil-
ity. Furthermore, human-defined preference labels may not
completely capture preference subtleties and diversity. We
are addressing these limitations by collecting real-world
preference demonstrations using head-worn devices.

I direct @ & gen @
direct @ & gen X
Invalid Data
direct X & gen @

I direct X & gen X

Figure 6: Analysis of test samples in direct and generalization settings. Lines represent distinct scenes, with grid colors indicating

different sample statuses.
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Impact Statement

The development of personalized, preference-based embod-
ied Al agents has the potential to significantly enhance
human-Al collaboration, improving efficiency and user satis-
faction in a variety of daily tasks. As Al agents increasingly
adapt to individual behaviors, ensuring that these systems
respect user autonomy and data privacy is crucial. Given our
focus on private scenarios, we anticipate minimal negative
societal impact from this research.
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A. Dataset Card

We follow the datasheet proposed in ( ) for documenting our proposed PBP:

1. Motivation

(a)

(b)
(©)

(d)

For what purpose was the dataset created?

The benchmark was created to evaluate existing learning agents on their ability to understand and adapt to various
human preferences. Specifically, it aims to test the agents’ proficiency in few-shot learning from demonstrations,
where they must respond to ambiguous task instructions and formulate adaptive task plans based on limited
examples of user preferences. The benchmark is designed to highlight the challenges and gaps in current Al
systems’ capabilities in planning activities and abstracting human preferences, ultimately driving advancements
towards developing more intelligent and personalized embodied agents.

Who created the dataset and on behalf of which entity?

N/A.

Who funded the creation of the dataset?

N/A.

Any other Comments?

None.

2. Composition

(a)

(b)

©

(d)

(e)
®
(2
(h)
@

@

&)

What do the instances that comprise the dataset represent?

Each instance contains an egocentric video of an agent’s activity, its bird’s-eye-view map of the position of the
agent, and a frame-level textual annotation of the current action, as shown in Figure 4. Additionally, we provide a
rendered third-person view of the entire process.

How many instances are there in total?

15000.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a
larger set?

No. The dataset contains a set of demonstrations rendered within the simulator, The users can render more diverse
instances if they want. We have provided the rendering instructions.

What data does each instance consist of?

The instances that comprise the benchmark represent various types of human preferences applied to different tasks
within a realistic embodied scene. Each instance is designed to challenge the learning agents to understand and
adapt to these preferences based on a few demonstration examples, reflecting the diverse and hierarchical nature
of user preferences in real-world scenarios. See above for data details.

Is there a label or target associated with each instance?

Yes.

Is any information missing from individual instances?

No.

Are relationships between individual instances made explicit?

Yes.

Are there recommended data splits?

No.

Are there any errors, sources of noise, or redundancies in the dataset?

No.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets,
other datasets)?

Self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal
privilege or by doctor-patient confidentiality, data that includes the content of individuals’ non-public

communications)?
No.

Al
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(1) Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might
otherwise cause anxiety?
No.

(m) Does the dataset relate to people?
No.

(n) Does the dataset identify any subpopulations (e.g., by age, gender)?
No.

(o) Isit possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in
combination with other data) from the dataset?
No.

(p) Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals racial or
ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations;
financial or health data; biometric or genetic data; forms of government identification, such as social
security numbers; criminal history)?

No.

(qQ) Any other comments?
None.

3. Collection Process

(a) How was the data associated with each instance acquired?
We render PBP using NVIDIA’s Omniverse and OmniGibson simulation environment ( R ).

(b) What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, manual
human curation, software program, software API)?
The data for each instance in the benchmark was acquired by sampling preferences from a predefined set and
constructing tasks paired with a few demonstrations that shared high-level preferences but differed in specific
objects and scenes. Each sampled preference was randomly assigned to one of the 50 scenes provided by
OmniGibson, with relevant objects sampled within the scene. Egocentric observation and action sequences of
an embodied agent were generated as the agent performed tasks guided by a rule-based planner using planning
primitives like inverse kinematics for grasping and the A* algorithm for movement.

(c) If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)?
N/A.
(d) Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were
they compensated (e.g., how much were crowdworkers paid)?
N/A.
(e) Over what timeframe was the data collected?
N/A.
(f) Were any ethical review processes conducted (e.g., by an institutional review board)?
The dataset raises no ethical concerns.
(g) Does the dataset relate to people?
No.
(h) Did you collect the data from the individuals in question directly, or obtain it via third parties or other
sources (e.g., websites)?
N/A.
(i) Were the individuals in question notified about the data collection?
N/A.
(j) Did the individuals in question consent to the collection and use of their data?
N/A.

(k) If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent
in the future or for certain uses?
N/A.
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(1) Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection
impact analysis) been conducted?
Yes.
(m) Any other comments?
None.

4. Preprocessing, Cleaning and Labeling

(a) Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization,
part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)?
N/A.

(b) Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated
future uses)?
N/A.

(c) Is the software used to preprocess/clean/label the instances available?
N/A.

(d) Any other comments?
None.

5. Uses

(a) Has the dataset been used for any tasks already?
No, the dataset is newly proposed by us.
(b) Is there a repository that links to any or all papers or systems that use the dataset?
No, the dataset is new.
(c) What (other) tasks could the dataset be used for?
This dataset could be used for research topics like embodied Al and human-computer interaction.
(d) Is there anything about the composition of the dataset or the way it was collected and prepro-

cessed/cleaned/labeled that might impact future uses?
N/A.

(e) Are there tasks for which the dataset should not be used?
N/A.

(f) Any other comments?
None.

6. Distribution

(a) Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization)
on behalf of which the dataset was created?
No before it is made public.

(b) How will the dataset be distributed (e.g., tarball on website, API, GitHub)?
On our project website upon acceptance.

(c) When will the dataset be distributed?
Upon acceptance.

(d) Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under
applicable terms of use (ToU)?
Under CC BY-NC ! license.

(e) Have any third parties imposed IP-based or other restrictions on the data associated with the instances?
No.

(f) Do any export controls or other regulatory restrictions apply to the dataset or to individual instances?
No.

(g) Any other comments?
None.

"https://creativecommons. org/licenses/by-nc/4.0/
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7. Maintenance

(a) Who is supporting/hosting/maintaining the dataset?
The authors.

(b) How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
N/A.

(c) Is there an erratum?
Future erratum will be released through the website.

(d) Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances’)?
Yes.

(e) If the dataset relates to people, are there applicable limits on the retention of the data associated with the
instances (e.g., were individuals in question told that their data would be retained for a fixed period of time
and then deleted)?

N/A. The dataset does not relate to people.

(f) Will older versions of the dataset continue to be supported/hosted/maintained?
Yes.

(g) If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do
so?
Yes. We will release the source code as well as a licence on our project website after acceptance.

(h) Any other comments?
None.

B. Dataset Statistics

The length of the simulations in the dataset ranges from 1 to 5 minutes, depending on the tasks recorded. And the videos are
recorded at 30 fps.

B.1. Preferenes

See Table Al for the preference statistics in PBP.

Table Al: Dataset Statistics in PBP.

Action_Level Option_Level Sequence_Level

Preference Num 75 135 80
Video Num 5000 5000 5000
Sub-task Num 1 2-3 2-3

B.2. Actions

See Table A2 for the action statistics in PBP. We implement 17 action primitives in PBP to assist with model planning and
dataset rendering. These action primitives have parameters that simplify tasks and are considered the lowest-level actions.
Each sub-task contains 8 to 20 such lowest-level actions. Generally, most of these actions consist of two parts: the robot
movement part and the arm (gripper) execution part. For robot movement, we use the A* algorithm to find paths and avoid
collisions. We build a connection map during scene initialization for navigation, taking the robot’s width into consideration.
For the arm (gripper) execution, we primarily use the IK algorithm to compute arm movements. However, since IK cannot
handle complex tasks, such as picking objects from the fridge, we also leverage the Open Motion Planning Library (OMPL)
planner ( , ) with forward planning to assist in planning the arm positions.

B.3. More Dataset Details and Discussion

Dataset production The process of producing data is mainly explained in Section 4.2. In summary, we follow the order
of “sample preference - sample scene - sample objects to be manipulated - generate actions guided by a rule-based planner”.
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Length and FPS of the simulations The length of the simulations ranges from 1 to 5 minutes, depending on the tasks
recorded. The videos are recorded at 30 fps.

Actions contained in each simulation The number of actions in simulations varies among different preference levels.
There is 1 subtask for action-level, 2-3 subtasks for option-level, and 2-3 subtasks for sequence-level preferences. Each
subtask contains 8-20 actions.

Scenes and rooms Each scene contains various types of rooms. The main differences between scenes are the
type, number, and layout of both rooms and furniture. Additionally, each room may contain different objects
and have unique layouts. Details of the scenes and rooms can be found in Omnigibson’s official documentation
(https://behavior.stanford.edu/omnigibson/), as we directly adopt these scenes from the open-sourced project.

290 preference types Considering that preferences in household activities are not only multi-dimensional but also
hierarchical, we first define a hierarchy of preferences from the perspective of how things happen in a life scenario, that is,
from each specific action to a sub-task consisting of several actions, and then to the sequence combining these sub-tasks.
The next step is to expand each level with typical tasks and actions. The detailed definition of the 290 preferences can be
found in Section 4.1.

The egocentric view Collecting both egocentric observations and third-person views is feasible in PbP or similar
environments built on simulators like iGibson. However, in real-world scenarios, it is generally easier to gather egocentric
observations of human daily activities, as these can be efficiently captured through wearable devices. Additionally, there are
numerous egocentric-view datasets available, such as Ego4D( , ), which further facilitate this approach.
While third-person views can provide a different perspective, they often encounter issues such as occlusion. Although
research based on third-person views is essential for applications involving real robots, focusing on egocentric views in the
current work allows for a more straightforward exploration of preference learning and planning. Nevertheless, third-person
view data can be obtained by integrating additional cameras, as outlined in our provided code.

Action ground truth In experiments involving vision input, we do not explicitly provide the action sequence of the
user. In the symbolic-based experiment, we provide the action sequence to reduce the perception cost to concentrate more
effectively on the inference and planning aspects of the study.

Table A2: Action Primitives in PBP.

Action List Explanation
Move_to_[] Move to a specified location, or a specified room, or a specified object
Rotate_to_[] Rotate to a specified orientation or a specified object
Pick_[] Pick up an object using the gripper, e.g., “Pick_apple”
Place_[] Place an object at a location, e.g., “Place_apple_on_table”
Fill_[]_with_[] Fill a container with a substance, e.g., “Fill_glass_with_water”
Pour_[] Pour a substance from a container, e.g., “Pour_milk”
Open_|[] Open an object, e.g., “Open_door”
Close_[] Close an object, e.g., “Close_fridge”
Cut_[] Cut an object, e.g., “Cut_carrot”
Cook_[] Cook an item, e.g., “Cook_pasta”
Wash_[] Wash an object, e.g., “Wash_dishes”
Clean_][] Clean a surface or object, e.g., “Clean_counter”
Cover_[] Cover an object, e.g., “Cover_bowl”
Uncover_[] Uncover an object, e.g., “Uncover_bowl”
Toggle on_[] Turn on a device, e.g., “Toggle_on_light”
Toggle_off [] Turn off a device, e.g., “Toggle_off_stove”
Wait_[] Wait some time
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C. Experiment Details
C.1. Case Study

We also provide a case with preference Put fruit on the bed in the following table. We present a simplified version of the
demonstrations, where all video outputs have been translated into symbol-based action sequences for ease of understanding.
Video-based models such as LLaVA-Next and GPT-4V struggle with comprehending preferences and tend to replicate
certain action patterns from the video demonstration, such as “move to” and “pick up”. Llama3 demonstrates a partial
understanding and execution of the preference. It correctly moves to each fruit (grape, banana), picks them up, and places
them on the bed. However, it also interacts with the pencil and places it on the bed, which is not required by the preference.
Ideally, the pencil should be placed on the table, similar to the pen. On the other hand, GPT-4(Symbol) accurately interacts
with the grape and banana by moving to each fruit, picking it up, and placing it on the bed. This demonstrates a better
understanding and execution of the preference compared to the other models.

Case ID Scene Actions

Context Demo 1 Beechwood move to orange, pick up orange, move to bed with or-
ange, place orange on bed, move to apple, pick up apple,
move to bed with apple, place apple on bed, move to
dvd, pick up dvd, move to table with dvd, place dvd on
table.

Demo 2 Rs move to banana, pick up banana, move to bed with ba-
nana, place banana on bed, move to club sandwich, pick
up club sandwich, move to countertop with club sand-
wich, place club sandwich on countertop, move to or-
ange, pick up orange, move to countertop with orange,
move to bed with orange, place orange on bed.

Demo 3 Merom move to pen, pick up pen, move to table with pen, place
pen, move to strawberry, pick up strawberry, move with
to bed with strawberry, place strawberry on bed, move to
textbook, pick up textbook, move with textbook, move
to bookshelf with textbook, place textbook in bookshelf.

Test Scene Beechwood grape, pencil, banana
Answer LLaVA-Next Beechwood move to grape, move to bed with grape, move to pencil,
pick up pencil, move to banana, pick up banana
GPT-4V Beechwood move to grape, pick up grape, move to bed with grape,
place grape on bed
Llama3 Beechwood move to grape, pick up grape, move to bed with grape,

place grape on bed, move to pencil, pick up pencil, move
to bed with pencil, place pencil on bed, move to banana,
pick up banana, move to bed with banana, place banana
on bed

GPT-4(Symbol) Beechwood move to grape, pick up grape, move to bed with grape,
place grape on bed, move to banana, pick up banana,
move to bed with banana, place banana on bed

Table A3: Case Study with preference Put fruit on the bed.

D. Baseline Details
D.1. ViViT

As a baseline, we employ the pure-Transformer-based Video Vision Transformer (ViViT) ( , ), an end-to-end
trainable model with proven capabilities in extracting spatial and temporal information from video inputs. Since it lacks a
LLM component, ViViT likely serves as a lower bound for commonsense understanding in PBP tasks.

Inspired by Vision Transformer, ViViT extracts spatio-temporal tokens from the input video and outputs video classification
labels for classification. We adopt the ViViT implementation from the official GitHub repo https://github.com/
google-research/scenic.

Specifically, we utilize a ViViT with an image size of 224 and a patch size of 16. We extract 2 frames per second from the
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input video and pad them with the last frame. The Transformer architecture with 3 attention heads operates on features of
hidden size of 192 and depth of 4. Each attention head operates on a dimension of 64. We train our model for 30 epochs
with a learning rate 3e-5. For the few-shot setting, we concatenate the demo videos temporally.

D.2. LLaVA

Building on more sophisticated architectures, LLaVA ( , ) represents an end-to-end trainable large multimodal
model that integrates vision and text for comprehensive visual-language understanding. We specifically evaluate LLaVA-
NeXT, which has been finetuned to excel at zero-shot video understanding tasks.

Following the official implementation of LLaVA from https://github.com/LLaVA-VL/LLaVA-NeXT, we test the LLaVA-
NeXT-Video-7B-DPO model which is designed for video understanding. Specifically, we run the model following the
default inference settings, with vicuna_v1 as the prompt mode, a sample frame number of 32, and a spatial pooling stride of
2. The textual prompts are as follows”:

“Stage One / Preference Prediction”

You are a robot assistant that can help summarize the host's preference.

All possible preferences are: {ALL POSSIBLE PREFERENCES}

Now there are some prevous video demos:

[VIDEO_DEMO_1] The preference is [PREFERENCE_1]

[VIDEO_DEMO_2] The preference is [PREFERENCE_2]

[VIDEO_DEMO_3] The preference is [PREFERENCE_3]

Now, please summarize the preference from the last video: [TEST_CASE]

Quesiton: What's the user's preference? Choose from the preference listed before:

“Stage Two / Planning”

You are a robot assistant. Please view the demos and help generate action sequence.
All possible preferences are: {ALL POSSIBLE ACTIONS}

Now there are some prevous video demos:

[VIDEO_DEMO_11]

[VIDEO_DEMO_2]

[VIDEO_DEMO_3]

Now you are in the scene with [SCENE DESCRIPTIONS]. Your action sequence is:

D.3. EILEV
For specialized egocentric video processing, we incorporate EILEV ( , ), which achieves in-context learning
through architectural modifications to a pretrained VLM. Our implementation uses OPT-2.7B ( , ) as
the language backbone. The model’s pretraining on Ego4D ( , ) aligns well with PBP’s egocentric
perspective.

Following the official implementation from https://github.com/yukw777/EILEV.git, we test the EILEV model in PBP.
There are two reasons we chose EILEV among other VLMs as one of our baselines: 1) EILEV elicits in-context learning
through a series of architectural modifications and a unique training process, 2) EILEV is trained using ego-centric data,
which is compatible with PBP’s input. The textual prompts are as follows. Since EILEV requires the input of the videos and
texts to follow a certain pattern for better in-context learning, there are some small modifications to the prompt:

“Stage One / Preference Prediction”
You are a robot assistant that can help summarize the host's preference.
All possible preferences are: {ALL POSSIBLE PREFERENCES}

2For the textual prompts, we aim to maintain consistency across all LLMs, although some baselines may have additional requirements
for the input format. The prompt design is mainly motivated by OpenAl Cookbook git@github.com:openai/openai-cookbook.git.
We omitted the prompt tuning process, as we found that minor changes in the prompt were unlikely to significantly impact the results.
Conversely, selecting the proper demonstrations in the few-shot examples has a much greater influence on the results.
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Quesiton: What's the user's preference? Choose from the preference listed before:
Now there are some prevous video demos:

[VIDEO_DEMO_1] The preference is [PREFERENCE_1]

[VIDEO_DEMO_2] The preference is [PREFERENCE_2]

[VIDEO_DEMO_3] The preference is [PREFERENCE_3]

[TEST_CASE]

“Stage Two / Planning”

You are a robot assistant. Please view the demos and help generate action sequence.
All possible preferences are: {ALL POSSIBLE ACTIONS}

Now there are some prevous video demos:

[VIDEO_DEMO_11]

[VIDEO_DEMO_2]

[VIDEO_DEMO_3]

Now you are in the scene with [SCENE DESCRIPTIONS]. Your action sequence is:

D4. GPT-4V

To benchmark against state-of-the-art visual-language models, we evaluate GPT-4V using the Azure OpenAl API (version
“gpt-4-turbo-2024-04-09”). Due to image token limitations, we implement video input subsampling while maintaining
temporal coherence.

We run our GPT-4 model through the AzureOpenAl API using the GPT version “gpt-4-turbo-2024-04-09". The API has a
limit of 10 images per request. Consequently, for the zero-shot setting, we resample each input video to 8 frames of size
224. For the few-shot setting, where we need to input 3 extra video demonstrations, we concatenate 4 images into a frame,
thereby obtaining 4 videos in 8 frames, maintaining the same frame number as the previous setting. We test the model with
a temperature of 0.05. The textual prompts are as follows:

“Stage One / Preference Prediction”

You are a robot assistant that can help summarize the host's preference.

All possible preferences are: {ALL POSSIBLE PREFERENCES}

Now there are some prevous video demos:

[VIDEO_DEMO_1] The preference is [PREFERENCE_1]

[VIDEO_DEMO_2] The preference is [PREFERENCE_2]

[VIDEO_DEMO_3] The preference is [PREFERENCE_3]

Now, please summarize the preference from the last video: [TEST_CASE]

Quesiton: What's the user's preference? Choose from the preference listed before:

“Stage Two / Planning”

You are a robot assistant. Please view the demos and help generate action sequence.
All possible preferences are: {ALL POSSIBLE ACTIONS}

Now there are some prevous video demos:

[VIDEO_DEMO_11]

[VIDEO_DEMO_2]

[VIDEO_DEMO_3]

Now you are in the scene with [SCENE DESCRIPTIONS]. Your action sequence is:

Beyond multimodal approaches, we also evaluate single-modal models that process only action sequences:

D.5. DAG-Opt

We approach symbolic reasoning by framing the problem as a DAG-Optimization task that uncovers dependency relations
between actions and preferences ( , ). Our implementation uses a score-based NOTEARS model to learn a
generalized Structural Equation Model (SEM), following previous few-shot reasoning frameworks ( , ;

, ) based on causal dependency structures.
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We implement the DAG-Opt baseline following https://github.com/xunzheng/notears.git. Specifically, we imple-
ment a nonlinear NOTEARS using MLP in evaluation.

To assess pure language understanding, we evaluate advanced LLMs including Llama3 ( , ) and GPT-4
( , ) using only action sequence inputs. This approach treats actions as high-level abstractions of egocentric
videos, reducing visual complexity while maintaining task semantics. We benchmark Llama3-8B as our baseline against
GPT-4-Turbo as the current state-of-the-art, employing prompt designs informed by the OpenAl Cookbook for optimal
few-shot performance.

D.6. Llama3-8B

We test the Llama3 series model with the official scripts from https://github.com/meta-11lama/llama3. Specifically,
we test the 8B instruction-tuned variant “Meta-Llama-3-8B-Instruct” on PBP. We test the model with a temperature of 0.05.
The textual prompts are as follows:

“Stage One / Preference Prediction”

You are a robot assistant that can help summarize the host's preference.

Please read the following text file and summarize the user's preference.

All possible preferences are: {ALL POSSIBLE PREFERENCES}

[TEXT_ANNOTATION_1] The preference is [PREFERENCE_1]

[TEXT_ANNOTATION_2] The preference is [PREFERENCE_2]

[TEXT_ANNOTATION_3] The preference is [PREFERENCE_3]

Now, please summarize the preference from the last tet file: [TEST_CASE]
Quesiton: What's the user's preference? Choose from the preference listed before:

“Stage Two / Planning”

You are a robot assistant. Please read the following text files and help generate action sequence.
All possible preferences are: {ALL POSSIBLE ACTIONS}

Now there are some prevous video demos:

[TEXT_ANNOTATION_1] (action sequence)

[TEXT_ANNOTATION_2] (action sequence)

[TEXT_ANNOTATION_3] (action sequence)

Now you are in the scene with [SCENE DESCRIPTIONS]. Your action sequence is:

D.7. GPT-4

We use “gpt-4-turbo-2024-04-09” with a temperature of 0.05. The textual prompts are as follows:

“Stage One / Preference Prediction”

You are a robot assistant that can help summarize the host's preference.

Please read the following text file and summarize the user's preference.

All possible preferences are: {ALL POSSIBLE PREFERENCES}

[TEXT_ANNOTATION_1] The preference is [PREFERENCE_1]

[TEXT_ANNOTATION_2] The preference is [PREFERENCE_2]

[TEXT_ANNOTATION_3] The preference is [PREFERENCE_3]

Now, please summarize the preference from the last tet file: [TEST_CASE]
Quesiton: What's the user's preference? Choose from the preference listed before:

“Stage Two / Planning”

You are a robot assistant. Please read the following text files and help generate action sequence.
All possible preferences are: {ALL POSSIBLE ACTIONS}

Now there are some prevous video demos:

[TEXT_ANNOTATION_1] (action sequence)

[TEXT_ANNOTATION_2] (action sequence)

[TEXT_ANNOTATION_3] (action sequence)

Now you are in the scene with [SCENE DESCRIPTIONS]. Your action sequence is:
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