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ABSTRACT

Large Language Models (LLMs) leverage step-by-step reasoning to solve complex
problems. Standard evaluation practice involves generating a complete reasoning
trace and assessing the correctness of the final answer presented at its conclusion.
In this paper, we challenge the reliance on the final answer by posing the follow-
ing two questions: Does the final answer reliably represent the model’s optimal
conclusion? Can alternative reasoning paths yield different results? To answer
these questions, we analyze intermediate reasoning steps, termed subthoughts,
and propose a method based on our findings. Our approach involves segmenting
a reasoning trace into sequential subthoughts based on linguistic cues. We start
by prompting the model to generate continuations from the end-point of each
intermediate subthought. We extract a potential answer from every completed
continuation originating from different subthoughts. We find that aggregating these
answers by selecting the most frequent one (the mode) often yields significantly
higher accuracy compared to relying solely on the answer derived from the original
complete trace. Analyzing the consistency among the answers derived from differ-
ent subthoughts reveals characteristics that correlate with the model’s confidence
and correctness, suggesting potential for identifying less reliable answers. Our
experiments across various LLMs and challenging mathematical reasoning datasets
(AIME2024 and AIME2025) show consistent accuracy improvements, with gains
reaching up to 13% and 10% respectively.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in solving complex tasks
when prompted to articulate their reasoning process step-by-step (Wei et al., 2022). Reasoning does
not only require sufficient knowledge base acquired by scaling up pre-training, but also by increasing
computational resources during inference (test-time compute). This allows models to engage in
deliberate, multi-step reasoning process akin to human "System 2 thinking" (Kahneman, 2011),
moving beyond immediate, intuitive "System 1" responses (Kahneman, 2011). Models like OpenAI’s
o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025) attest to the importance of scaling test-time
compute by dedicating substantial inference resources to generate elaborate reasoning traces before
producing a final output. Standard evaluation protocols for such models typically focus exclusively
on the final output, ie, the model generates a reasoning trace culminating in a final answer, and only
this single final answer is evaluated for correctness.

However, relying on the final answer potentially overlooks valuable information encoded within the
reasoning process itself. It implicitly assumes that the single generated path represents the model’s
definitive reasoning, neglecting the possibility that slight variations in the thought process could lead
to different, and perhaps more accurate, conclusions. This raises a fundamental question: Can we
establish a more reliable assessment of an LLM’s reasoning ability by analyzing the evolution and
consistency of its answers throughout the reasoning process?

In this paper, we propose a method to investigate this question by probing the internal consistency of
an LLM’s reasoning. Our core idea involves interrupting the reasoning process at intermediate points,
or "subthoughts", and examining the conclusions reached from these states as illustrated in Figure 1.
Specifically, our methodology entails:
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The length of a rectangular garden is 12 meters, and the width is 8 meters. What is the area of 

the garden?

Reasoning 

LLM

Question

To find the area of a rectangle, I need to multiply its length by its width.

Thoughts

The length of the rectangle is 12 meters and the width is 8 meters. So I'll calculate the area as 

length × width = 12 × 8.

Computing 12 × 8 = 96. So the area of the rectangular garden is 96 square meters.

Let me double-check this calculation. The formula for the area of a rectangle is length × width. 

With length = 12 meters and width = 8 meters, we get 12 × 8 = 96 square meters.

Therefore, the area of the rectangular garden is 96 square meters.

Solution

First, to find the area of a rectangle, I need to multiply its length by its width.

Hmm, the length of the rectangle is 12 meters and the width is 8 meters. I'll calculate the 

area as length × width = 12 × 8.

So, computing 12 × 8 = 96. So the area of the rectangular garden is 96 square meters.

Let me double-check this calculation. The formula for the area of a rectangle is length × 

width. With length = 12 meters and width = 8 meters, we get 12 × 8 = 96 square meters.

Actually, I think 12 x 8 is 50 not 96 square meters.

20

90

96

96

50

Figure 1: Subthought Analysis. We show that by examining intermediate reasoning steps and their
corresponding answers (A1, . . . , A5), taking the mode of these answers (Amode) often leads to better
performance than using only the final answer (Alast), as is typically done. This figure illustrates a
case where Amode = 96 is correct, while Alast = 50 is not.

1. Generating an initial, complete reasoning trace for a given problem using standard greedy
decoding.

2. Segmenting this trace into a sequence of subthoughts based on natural linguistic markers
that often indicate shifts or progressions in reasoning (e.g., "Wait," "Alternatively," "Hmm").

3. Prompting the same model to generate a complete solution starting from an intermediate
state (i.e., after each cumulative sequence of subthoughts).

4. Extracting the final numerical answer derived from each of these generated continuations
producing a set of potential answers reflecting conclusions reached from various points
within the initial reasoning structure.

This process yields a distribution of answers for the original problem. We analyze this distribution
with two primary goals: First, we investigate how the model’s answer evolves across different
subthought stages. We examine whether the final answer in the original trace is consistently reached
from earlier points. We also look into how the distribution of answers differs between problems
the model ultimately answers correctly versus incorrectly. We hypothesize that inconsistent or high
variability in the answers across different subthought sequences might indicate difficulty or potential
errors, serving as a signal of low confidence or hallucination.

Second, based on the insights from this analysis, we explore whether aggregating the collected
answers can lead to a more robust final result. Specifically, we hypothesize that the most frequently
occurring answer (the mode) across all generated completions represents a more reliable conclusion,
reflecting convergence across slightly perturbed reasoning trajectories.

Our experiments on challenging mathematical reasoning datasets (AIME2024, AIME2025) using
seven open-weight LLMs validate these hypotheses. We observe that the consistency patterns indeed
differ for correctly and incorrectly solved problems. Furthermore, aggregating answers via the
mode significantly improves accuracy compared to using only the final answer from the initial trace,
demonstrating the practical benefit of our analysis.

Our contributions are:

• A methodology for systematically analyzing LLM reasoning by generating and evaluating
conclusions derived from intermediate subthoughts.

• An analysis showing how answer consistency evolves during the reasoning process, revealing
distinct patterns for correct versus incorrect solutions and suggesting potential for error
detection based on answer distribution characteristics (e.g., entropy).

• Empirical evidence demonstrating that aggregating answers from subthought completions,
specifically by taking the mode, significantly improves accuracy over the standard final-
answer approach (up to 13% on AIME2024, 10% on AIME2025).
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• A comparison of greedy versus non-greedy sampling strategies for generating subthought
completions, highlighting their respective advantages.

We believe these findings offer valuable insights into the nature of LLM reasoning and suggest
that evaluating beyond the single final answer can unlock a more nuanced understanding of model
capabilities and lead to improved performance evaluation and potentially new reasoning strategies.
We proceed by detailing our methodology, followed by the experimental setup and results, and
conclude with a discussion of implications.

2 RELATED WORK

Test-Time Scaling and Reasoning. Chain of thought (CoT) (Wei et al., 2022) prompting is a pivotal
work on the scaling of test time or inference time compute. It explicitly asks an LLM to generate
a structured reasoning chain before arriving at the final answer. Self-consistency CoT (Wang et al.,
2023b) is a CoT variant technique that replaces greedy-decoding with sampling-based decoding to
sample multiple reasoning chains and select the best answer through consistency aggregation. Other
prompting techniques focus on constructing reasoning-provoking structured prompts (Paranjape
et al., 2021; Sanh et al., 2021; Mishra et al., 2021). Search and planning prompting based techniques
divide the reasoning task into a set of sub-tasks (Dua et al., 2022; Zhou et al., 2022; Khot et al.,
2022; Suzgun & Kalai, 2024). These methods can be categorized into methods that evaluate the
final outcome or the reasoning process (Lightman et al., 2023). Prompting based test-time scaling
techniques guide the model to select the best reasoning chain without updating its parameters. Our
approach utilizes the full reasoning chain generated from vanilla CoT prompting. It then prompts the
same model with a growing sequence of subthoughts to elicit an answer at different reasoning chain
length. The distribution of answers are then aggregated with the mode akin to self-consistency CoT.
It is worth noting that our method can be utilized with any test-time scaling method that generates
explicit series of subthoughts.

Training-Based Reasoning. Training based techniques train the model to enhance its reasoning
capabilities. The key challenge for these methods is the scarcity of human-annotated step-by-step
reasoning chains. Research in this direction focus on developing techniques to automatically generate
valid reasoning traces or propose training techniques that effectively leverage the available data.
The most straingtforward approach to train reasoning models is to finetune a model with supervised
finetuning (SFT) on reasoning trajectories (Huang et al., 2024; Min et al., 2024). Other works have
shown that preference learning further improves reasoning capabilities. (Min et al., 2024; Hui et al.,
2024; Jiao et al., 2024) all have explored DPO Rafailov et al. (2023). (Zhang et al., 2024; Lai et al.,
2024) have explored step-level DPO instead of outcome level. Most recent methods bypass the need
for annotated reasoning chains and by leveraging reinforcement learning (RL). A particular success
in this direction is GRPO Shao et al. (2024) that shows that RL is sufficient for the emergence of
complex reasoning capabilities even without an initial supervised fine-tuning step. The methods
discussed so far use explicit natural language reasoning traces. A recent line of work explores using
latent reasoning that represent reasoning chains implicitly. These methods focus on compressing
natural language chains into much smaller number of tokens Deng et al. (2023; 2024). Other works
introduce learnable tokens that are thought to enable the model to perform additional non-verbal steps
before outputting an answer token. (Goyal et al., 2023; Wang et al., 2023a). More effectively, Hao
et al. (2024) proposed to use the last layer hidden feature as implicit reasoning tokens that are fed
back to the model to generate the next token auto-regressively. Our method is a test-time method and
does not update model parameters. It works with any reasoning model that outputs explicit natural
language thought process before the final answer.

Overthinking Phenomenon in Reasoning Models. The overthinking phenomenon in reasoning
models occurs when the model generates excessively detailed and redundant reasoning steps for
relatively simple problems (Chen et al., 2024). This phenomenon compromises the inference
efficiency of reasoning models and in some cases lead to incorrect answers. Several recent works
explicitly addressed computational efficiency and reasoning quality by posing a length-based reward
to control the length of CoT reasoning Arora & Zanette (2025); Yeo et al. (2025). The s1 approach
Muennighoff et al. (2025) introduced "budget forcing" to effectively control compute through targeted
prompt modifications. Similarly, L1 Aggarwal & Welleck (2025) introduced Length Controlled Policy
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Optimization (LCPO), precisely managing reasoning complexity. Contrary to budgeted reasoning
techniques, our method operates in high compute regime.

Our method is inspired by the observation that overthinking may lead to wrong answers. It analyzes
the dynamics of the thought process as the model proceeds to think longer. It extracts a self-consistent
answer and provides insights on the correctness by measuring the entropy of the model’s answers.

3 METHODOLOGY

We introduce a framework for analyzing LLM reasoning by examining the conclusions derived
from intermediate steps ("subthoughts") within an initial reasoning trace. The process involves: 1)
generating an initial trace, 2) segmenting it based on linguistic cues, 3) prompting completions from
these intermediate points, 4) extracting the resulting answers, and 5) analyzing the distribution of
these answers.

3.1 PROBLEM SETTING AND INITIAL TRACE GENERATION

Let P represent a problem statement that requires complex reasoning (e.g., a mathematical proof
or calculation). We employ a reasoning language model, denoted by M, to solve P . The process
begins by formulating an initial prompt, Π(P ), designed to instruct M to provide step-by-step
reasoning enclosed within specific delimiters (e.g., <thought>...</thought>) followed by a
final answer in a designated format (e.g., \boxed{Answer}).

Using this prompt, we generate an initial full response Rfull via greedy decoding to obtain the
model’s most probable reasoning path:

Rfull = M(Π(P ),Paramsgreedy)

From this full response Rfull, we extract two critical components:

• The primary reasoning trace T , typically identified as the content within the final
<thought>...</thought> block.

• The final answer Alast, extracted from the concluding part of Rfull, usually conforming
to the \boxed{...} format. This extraction is performed by a dedicated extraction
procedure or model, denoted Mextract.

The answer Alast serves as a baseline for comparison which is the standard approach of taking the
single answer produced at the end of the initial trace.

3.2 SUBTHOUGHT IDENTIFICATION AND SEGMENTATION

At the core of our method is segmenting the initial reasoning trace T into a sequence of meaningful
intermediate steps or subthoughts, denoted (s1, s2, . . . , sn). This segmentation aims to capture points
where the model might pause, reflect, change direction, or move to a distinct next step in its reasoning.

We perform segmentation based on occurrences of words or phrases from a predefined set W , which
we refer to as Subthought Transition Markers. These markers often signal reflection, correction,
sequencing, or the exploration of alternatives. The set W used in our experiments is:

Subthought Transition Markers (W)

"Wait", "Alternatively", "Another angle", "Another approach",
"But wait", "Hold on", "Hmm", "Maybe", "Looking back", "Okay", "Let

me", "First", "Then", "Alright", "Got it", "I don’t see any
errors", "I think", "Let me double-check", "Let’s see", "Now",

"Remember", "Seems solid", "Similarly", "So", "Starting", "That’s
correct", "That seems right", "Therefore", "Thus"

We utilize regular expressions derived from W to split the trace T . The pattern ensures that a
transition marker from W typically indicates the start of a new subthought chunk sj (for j > 1), and
the marker itself is included at the beginning of sj . If no markers from W are found within T , the
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entire trace is treated as a single subthought (n = 1). Letting ⊕ denote string concatenation, the
original trace can be reconstructed as T = s1 ⊕ s2 ⊕ · · · ⊕ sn.

3.3 SUBTHOUGHT COMPLETION GENERATION

For each identified subthought boundary i ∈ {1, 2, . . . , n}, we construct a cumulative partial thought
trace Ti, representing the reasoning up to the end of subthought si:

Ti = s1 ⊕ s2 ⊕ · · · ⊕ si

We then create a modified prompt Pi based on the original prompt Π(P ). This prompt Pi con-
tains the original problem description but replaces the full reasoning trace T with the partial
trace Ti. Pi is formatted such that Ti appears within the appropriate reasoning delimiters (e.g.,
<thought>...</thought>) and ends in a way that prompts the model M to continue the
reasoning process from that specific state. Let Format(Π(P ), Ti) represent this formatting function:

Pi = Format(Π(P ), Ti)

Each partial prompt Pi is then fed back into the same reasoning model M to generate a completion
Ci. The concatenation Ri = Pi ⊕ Ci forms a complete response initiated from the intermediate state
Ti. This process is repeated for each i from 1 to n, resulting in n full response variations.

We experiment with two distinct sampling strategies for generating these completions Ci:

• Greedy Subthought Completion (Paramsgreedy): Uses temperature = 0.0 and top-p = 1.0.
This strategy forces the model to follow its deterministic, highest-probability reasoning path
continuation from the state defined by Ti.

• Non-Greedy Subthought Completion (Paramsdiverse): Uses temperature = 1.0 and top-p
= 0.95. This encourages stochasticity and allows the model to explore alternative, potentially
less probable but still viable, reasoning paths extending from Ti.

It is important to note that the initial trace T (used for segmentation) is always generated using
Paramsgreedy . The choice between greedy and non-greedy strategies applies only during the genera-
tion of the n completions Ci from the partial prompts Pi.

3.4 ANSWER EXTRACTION FROM COMPLETIONS

For each of the n generated response variations Ri = Pi ⊕Ci, corresponding to completions starting
after subthoughts s1, . . . , sn, we extract the final numerical answer Ai. This extraction uses the same
procedure or model Mextract employed for obtaining Alast:

Ai = Mextract(Ri)

Mextract is designed to robustly identify and isolate the final numerical answer, parsing specific
formats like \boxed{...} or identifying the most salient numerical result if the expected format
is absent. This procedure yields a set of n potential answers for the original problem P :

A = {A1, A2, . . . , An}

This set A captures the conclusions reached by the model when forced to complete the reasoning
process from different intermediate stages.

3.5 ANALYSIS AND AGGREGATION METRICS

The set of answers A forms the basis for our analysis. As detailed in the results section, we first
analyze the properties of this set, such as the evolution of answers (A1, . . . , An) and their distribution
(e.g., using consistency measures or entropy) to understand how stability relates to correctness.

Based on this analysis, we evaluate the effectiveness of aggregating these answers. Let Atrue

be the ground truth answer for problem P . We define an indicator function for correctness:
IsCorrect(A,Atrue) = 1 if answer A matches Atrue, and 0 otherwise. We compare performance
using two primary metrics, averaged over a dataset of problems:

5
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1. Last Answer Accuracy (AccLast): The accuracy of the single answer Alast extracted from
the initial, uninterrupted greedy trace Rfull. This serves as our baseline.

AccLast = EP∼Dataset[IsCorrect(Alast, Atrue)]

2. Most Frequent Answer Accuracy (AccMostFreq): The accuracy of the most frequent
answer (mode) Amode within the set A = {A1, . . . , An} derived from subthought comple-
tions.

Amode = argmax
A∈A

 n∑
j=1

I(Aj = A)


where I(·) is the indicator function. Ties for the mode are broken by selecting the answer that
appeared earliest in the sequence (A1, . . . , An) (i.e., the one corresponding to the smallest
index j).

AccMostFreq = EP∼Dataset[IsCorrect(Amode, Atrue)]

Our central hypothesis, explored in the experiments, is that analyzing the set A provides valuable
insights. Specifically, aggregating the responses by mode yields a significant improvement over the
baseline in both greedy and non-greedy completion strategies AccMostFreq ≥ AccLast.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP.

Datasets. We consider two datasets AIME2024 and AIME2025 which are based on American
Invitational Mathematics Examination. Both datasets are known to require reasoning capabilities in
order to solve successfully.

Models. In order to evaluate our hypothesis, we consider seven open source models: DeepScaleR-
1.5B-Preview, DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-14B, EXAONE-Deep-
7.8B, Light-R1-7B-DS, QwQ-32B, and Skywork-OR1-Math-7B. For answer extraction (Mextract),
we consistently used Qwen/Qwen2.5-14B-Instruct, prompted specifically to extract the final
numerical answer in the \boxed{...} format or identify the most likely and final numerical result
otherwise.

Implementation Details. For efficient inference we build our pipeline based on VLLM library Kwon
et al. (2023). We limit the maximum number of newly generated tokens at every LLM call to 8192.

4.2 ANALYSIS OF ANSWER EVOLUTION ACROSS SUBTHOUGHTS

We first investigate how the final answer Ai derived from completing the reasoning after the i-th
subthought (Ti) evolves as i increases from 1 to n. Figure 2 illustrate this evolution for different
models on selected problems from AIME2024 using greedy subthought completion. Each plot
shows the sequence of answers A1, . . . , An (y-axis) against the subthought index i (x-axis, labeled
"Candidate Index"). The plots also mark the ground truth answer (Atrue), the final answer from the
original full trace (Alast), and the most frequent answer from the sequence (Amode).

We observe distinct patterns:

• Consistent Correctness (e.g., Left): When the model solves the problem correctly and confidently,
the sequence of answers (A1, . . . , An) often converges quickly to the correct answer Atrue. In
these cases, Alast = Atrue and Amode = Atrue. The answers derived from most subthoughts are
identical and correct, indicating stable reasoning.

• Fluctuating Incorrectness (e.g., Middle): When the model struggles with a problem and produces
an incorrect final answer (Alast ̸= Atrue), the sequence of answers often exhibits high fluctuation.
Many different incorrect answers are generated, and the most frequent answer Amode is also
typically incorrect. Sometimes, the true answer Atrue appears sporadically or not at all. This
suggests unstable reasoning or exploration of incorrect paths.

• Mode Corrects Last Answer Error (e.g., Right): Perhaps the most interesting case is when
the initial trace yields an incorrect final answer (Alast ̸= Atrue), but analyzing the subthought
completions reveals a consistent, correct answer (Amode = Atrue). This occurs when the model

6
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Figure 2: Answer Evolution Across Models on AIME2024 (Greedy Completion). Each row
corresponds to a different model.

frequently reaches the correct conclusion from various intermediate states, but the specific path
taken in the initial greedy generation happens to derail near the end. This highlights scenarios
where Alast is misleading, while Amode captures a more robust consensus from the model’s internal
states.

Note: we did not observe cases in our experiments where Alast was correct but Amode was incorrect.

4.3 ANSWER DISTRIBUTION ENTROPY AND CORRECTNESS

The visual patterns in Figure 2 suggest that the distribution of answers in A = {A1, . . . , An} carries
information about the model’s reasoning process. To quantify the diversity or uncertainty within this
distribution, we calculate the Shannon entropy for each problem:

H(A) = −
∑

a∈Unique(A)

p(a) log2 p(a)

where p(a) = 1
n

∑n
j=1 I(Aj = a) is the frequency of answer a in the sequence A. Higher entropy

indicates a wider spread of different answers (less consistency), while lower entropy indicates
convergence towards one or a few answers (more consistency).
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Figure 3 compares the average entropy of the answer distributions for problems that were ultimately
answered correctly (using Alast as the final answer) versus those answered incorrectly, across three
different models on AIME2024 with greedy completions.
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Figure 3: Mean Entropy of Subthought Answer Distributions on AIME2024 (Greedy Com-
pletion). Comparison between problems answered correctly (Alast = Atrue) and incorrectly
(Alast ̸= Atrue). Lower entropy correlates with correct answers.

Across all models, we observe a clear trend: the average entropy for correctly answered problems
is significantly lower than for incorrectly answered problems. This quantitatively confirms the
visual observation that successful reasoning paths tend to exhibit higher internal consistency across
subthoughts, while unsuccessful paths are often characterized by high variability and exploration of
diverse (incorrect) conclusions. In the future, this can be used as a metric presented to the user to
indicate how likely the answer of the model is correct.

4.4 SUBTHOUGHT AGGREGATION BOOSTS ACCURACY

Building on the qualitative insights, we now quantitatively evaluate our central hypothesis: Does
using the most frequent answer (Amode) lead to higher accuracy than using the last answer (Alast)?
We compare AccMostFreq with the baseline AccLast across all tested models and both datasets
(AIME2024, AIME2025). We also investigate the impact of the subthought completion strategy by
reporting results for both Greedy and Non-Greedy completions.

Figure 4 presents the main accuracy results. The figure compares the baseline Last Answer Accuracy
(AccLast, blue bars) with the Most Frequent Answer Accuracy (AccMostFreq, orange bars) under
four conditions: AIME2024 with Greedy completions (top-left), AIME2024 with Non-Greedy
completions (top-right), AIME2025 with Greedy completions (bottom-left), and AIME2025 with
Non-Greedy completions (bottom-right). The numbers above the bars indicate the absolute accuracy
percentage point difference (AccMostFreq − AccLast).

The results strongly support our hypothesis. Aggregating answers using the mode (AccMostFreq)
consistently outperforms or matches the baseline accuracy (AccLast) across almost all models,
datasets, and completion strategies. The improvements can be substantial:

• On AIME2024, gains reach up to +13.33% (Light-R1-7B-DS, Non-Greedy) and frequently exceed
+6%, with several models showing +10% gains (e.g., DeepSeek-R1-Distill-Qwen-14B, Skywork-
OR1-Math-7B, QwQ-32B under Non-Greedy).

• On AIME2025, gains reach up to +10.0% (DeepSeek-R1-Distill-Qwen-14B Greedy, Skywork-
OR1-Math-7B Non-Greedy), with multiple models showing gains over +6%.

• Even when the gain is 0%, our method generally does not hurt performance significantly. The few
minor decreases observed (-6.66% for DeepScaleR on AIME2024 Greedy; -3.33% for QwQ-32B
on AIME2025 Non-Greedy) might be attributed to noise, particularly for smaller models, or specific
problem interactions rather than a systemic flaw.

When comparing the subthought completion strategies, Non-Greedy completion tends to yield
slightly larger or more frequent improvements than Greedy completion, especially visible on the
AIME2024 results (e.g., compare top-left vs. top-right panels for Light-R1, Skywork, QwQ-32B).
This suggests that exploring alternative reasoning paths via sampling (Non-Greedy) is often more
effective at revealing the model’s robust consensus answer compared to simply reinforcing the
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Figure 4: Accuracy Comparison: Last Answer vs. Most Frequent Answer. Comparison of Last
Answer Accuracy (AccLast, blue) with Most Frequent Answer Accuracy (AccMostFreq, orange)
using Greedy and Non-Greedy subthought completions across various models and AIME datasets.
Numbers above bars show the absolute gain (AccMostFreq − AccLast). Green upward triangles
indicate improvement, red downward triangles indicate decrease. Our method consistently improves
or matches baseline accuracy.

most likely path from intermediate states (Greedy). Nonetheless, Greedy completion also provides
consistent benefits over the baseline method.

Importantly, the pattern of improvement holds across a diverse set of models (ranging from 1.5B
to 32B parameters) and both challenging AIME datasets. This consistency highlights the general
applicability and robustness of analyzing subthought stability and using the mode answer as a more
reliable indicator of the model’s reasoning outcome than the single last answer.

5 CONCLUSION

We demonstrated that evaluating Large Language Models based solely on the final answer of a
reasoning trace can be suboptimal. By analyzing intermediate subthoughts within a single trace and
aggregating the answers derived from completing these partial thoughts we show the following:

Conclusions:

1. Mode Aggregation Enhances Accuracy: Selecting the most frequent answer (Amode) from
completions originating at intermediate subthoughts significantly boosts accuracy compared
to relying solely on the final answer (Alast) of the initial trace. Gains of up to +13% on
AIME2024 and +10% on AIME2025 are observed across various models.

2. Answer Consistency Signals Reliability: The distribution of answers generated from sub-
thoughts provides a valuable signal. High consistency (low entropy) correlates strongly with
correct baseline solutions (Alast), while high fluctuation (high entropy) is characteristic of
incorrect solutions or model struggle. This suggests potential for using distribution metrics
for confidence estimation or error detection.

3. Non-Greedy Completion Often Maximizes Gains: While both greedy and non-greedy
subthought completions improve accuracy via mode aggregation, non-greedy sampling (T=1.0,
top-p=0.95) frequently yields larger improvements, likely by better exploring the reasoning
space around the initial path segments.
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A ENTROPY PLOTS

Plots for the mean entropy for subthough answer distribution for AIME2024 and AIME2025 are
shown in Figure 5 and 6. We observed in Section 4.3, the mean entropy for correctly solved problems
is always lower than those of incorrectly solved problems highlighing how models tend to give a
diverse selection of answers per subthought for questions they are having hard time solving correctly.

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.23

3.69

QwQ-32B

Correct
Incorrect

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.03

3.42

EXAONE-Deep-7.8B

Correct
Incorrect

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.62

3.97

Light-R1-7B-DS

Correct
Incorrect

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.47

3.22

DeepSeek-R1-Distill-Qwen-1.5B

Correct
Incorrect

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.29

3.23

Skywork-OR1-Math-7B

Correct
Incorrect

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.42

3.29

DeepScaleR-1.5B-Preview

Correct
Incorrect

Correct Incorrect0

2

4

M
ea

n 
En

tro
py

1.49

3.70

DeepSeek-R1-Distill-Qwen-14B

Correct
Incorrect

Figure 5: Mean Entropy of Subthought Answer Distributions on AIME2024 (Greedy Com-
pletion). Comparison between problems answered correctly (Alast = Atrue) and incorrectly
(Alast ̸= Atrue). Lower entropy correlates with correct answers.

B USE OF LANGUAGE MODELS IN WRITING

We used large language models (LLMs) (ChatGPT, Gemini and Claude) to assist in drafting and
refining the text of this paper. These tools supported clarity, coherence, and stylistic consistency
throughout the writing process.
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Figure 6: Mean Entropy of Subthought Answer Distributions on AIME2025 (Greedy Com-
pletion). Comparison between problems answered correctly (Alast = Atrue) and incorrectly
(Alast ̸= Atrue). Lower entropy correlates with correct answers.
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